WO2015143859A1 - 光伏空调器的温度调节方法和系统 - Google Patents

光伏空调器的温度调节方法和系统 Download PDF

Info

Publication number
WO2015143859A1
WO2015143859A1 PCT/CN2014/087798 CN2014087798W WO2015143859A1 WO 2015143859 A1 WO2015143859 A1 WO 2015143859A1 CN 2014087798 W CN2014087798 W CN 2014087798W WO 2015143859 A1 WO2015143859 A1 WO 2015143859A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
temperature
photovoltaic
air conditioner
preset
Prior art date
Application number
PCT/CN2014/087798
Other languages
English (en)
French (fr)
Inventor
晏飞
Original Assignee
广东美的制冷设备有限公司
广东美的集团芜湖制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的制冷设备有限公司, 广东美的集团芜湖制冷设备有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2015143859A1 publication Critical patent/WO2015143859A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • F24F2005/0064Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground using solar energy
    • F24F2005/0067Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground using solar energy with photovoltaic panels

Definitions

  • the present invention relates to the field of air conditioner technology, and in particular, to a temperature adjustment method and system for a photovoltaic air conditioner.
  • the air conditioner is generally used to adjust the indoor temperature to maintain the humidity temperature at a relatively comfortable temperature.
  • the air conditioner needs to perform a long-time cooling or heating function to make the indoor temperature reach a more comfortable temperature.
  • the prior art controls the start of the air conditioner by means of timing or reservation.
  • This scheme turns on the air conditioner before the user enters the room, and the air conditioner operates to keep the indoor temperature relatively comfortable, but the scheme is Before the user enters the room, it is necessary to waste more commercial power for the air conditioner to heat or cool, and it is more troublesome for the user to set the startup time.
  • the main object of the present invention is to provide a temperature adjustment method and system for a photovoltaic air conditioner, which aims to improve the convenience of operation and save energy consumption of the commercial power.
  • the invention provides a temperature adjustment method for a photovoltaic air conditioner, comprising:
  • the air conditioner When the air conditioner is operating in the standby mode, the air conditioner acquires the indoor temperature in a timely manner or in real time;
  • the air conditioner When the acquired indoor temperature is greater than a preset starting temperature, and the preset starting mode is the cooling mode, the air conditioner turns on the photovoltaic mode to turn on the electrical connection relationship with the photovoltaic power generation device, and is based on receiving from the photovoltaic power generating device The electrical energy is operated in a cooling mode.
  • the method further comprises: before the step of the air conditioner timing or real-time acquiring the indoor temperature when the air conditioner is operating in the standby mode, the method further comprises:
  • the air conditioner When detecting the standby mode switching instruction, the air conditioner turns off the photovoltaic mode to cut off the electrical connection relationship with the photovoltaic power generation device;
  • the air conditioner operates in a standby mode and supplies a standby current through a commercial power.
  • the air conditioner turns on the photovoltaic mode to turn on the electrical connection relationship with the photovoltaic power generation device, and is based on the After the step of operating the electrical energy received by the photovoltaic power generation device in the cooling mode, the method further includes:
  • the air conditioner acquires the indoor temperature at a time or in real time
  • the air conditioner When the acquired indoor temperature is less than or equal to the preset starting temperature, and the preset starting mode is the cooling mode, the air conditioner turns off the photovoltaic mode to cut off the electrical connection relationship with the photovoltaic power generating device, and switches to the standby mode operation.
  • the air conditioner turns on the photovoltaic mode to turn on an electrical connection relationship with the photovoltaic power generating device, and receives the electrical connection relationship from the photovoltaic power generating device.
  • the steps of the electrical energy to operate in the cooling mode include:
  • the air conditioner determines a difference between the acquired indoor temperature and the preset starting temperature
  • the air conditioner turns on the photovoltaic mode to turn on the electrical connection relationship with the photovoltaic power generation device, and the electrical energy received from the photovoltaic power generation device performs the cooling mode operation.
  • the method further includes:
  • the air conditioner When the obtained indoor temperature is less than a preset starting temperature, and the preset starting mode is the heating mode, the air conditioner turns on the photovoltaic mode to turn on the electrical connection relationship with the photovoltaic power generating device, and the electrical energy received from the photovoltaic power generating device Perform heating mode operation.
  • the air conditioner turns on the photovoltaic mode to turn on the electrical connection relationship with the photovoltaic power generating device, from the photovoltaic After the step of operating the power received by the power generating device in the heating mode, the method further includes:
  • the air conditioner acquires the indoor temperature at a time or in real time
  • the air conditioner When the acquired indoor temperature is greater than the preset starting temperature, and the preset starting mode is the heating mode, the air conditioner turns off the photovoltaic mode to cut off the electrical connection relationship with the photovoltaic power generating device, and switches to the standby mode operation.
  • the air conditioner turns on the photovoltaic mode to turn on the electrical connection relationship with the photovoltaic power generating device, from the photovoltaic
  • the steps of the power received by the power generating device to perform the heating mode operation include:
  • the air conditioner determines a difference between the acquired indoor temperature and a preset starting temperature
  • the air conditioner turns on the photovoltaic mode to turn on the electrical connection relationship with the photovoltaic power generation device, and the electrical energy received from the photovoltaic power generation device performs the heating mode operation.
  • the invention also proposes a temperature regulation system for a photovoltaic air conditioner, the temperature regulation system of the photovoltaic air conditioner comprising a functional module for implementing the corresponding steps of the method according to any of the above.
  • the invention also provides a temperature regulation system for a photovoltaic air conditioner, the temperature regulation system of the photovoltaic air conditioner comprising:
  • a first temperature detecting module configured to acquire indoor temperature in a timed or real time when the air conditioner is operating in a standby mode
  • the first control module is configured to start the photovoltaic mode when the acquired indoor temperature is greater than a preset startup temperature, and the preset startup mode is the cooling mode, and operate in a cooling mode based on the generated amount of the photovoltaic.
  • the first control module is further configured to turn off the photovoltaic mode, operate in the standby mode, and supply the standby current through the commercial power when the standby mode switching instruction is detected.
  • the first temperature detecting module is further configured to: when the first control module turns on the photovoltaic mode, and controls the air conditioner to obtain the indoor temperature in a timed or real time after operating in the cooling mode based on the generated power of the photovoltaic; the first control module further When the obtained indoor temperature is less than or equal to the preset starting temperature, and the preset starting mode is the cooling mode, the photovoltaic mode is turned off, and the operation is switched to the standby mode.
  • the temperature adjustment system of the air conditioner further includes a determining module, configured to determine the acquired indoor temperature and the preset start when the acquired indoor temperature is greater than a preset starting temperature, and the preset startup mode is the cooling mode.
  • the difference between the temperatures; the first control module is further configured to turn on the photovoltaic mode when the determined difference is greater than or equal to the first preset threshold, and operate in the cooling mode based on the amount of electricity generated by the photovoltaic.
  • the first control module is further configured to: when the acquired indoor temperature is less than a preset startup temperature, and the preset startup mode is the heating mode, turn on the photovoltaic mode, and based on the generated amount of electricity in the heating mode run.
  • the first temperature detecting module is further configured to: the first control module turns on the photovoltaic mode, and controls the air conditioner to obtain the indoor temperature in a timed or real time after the electric energy generated in the heating mode is operated based on the photovoltaic generated power; the first control module It is also used to turn off the photovoltaic mode and switch to the standby mode when the acquired indoor temperature is greater than the preset starting temperature and the preset starting mode is the heating mode.
  • the determining module is further configured to determine a difference between the acquired indoor temperature and the preset starting temperature when the acquired indoor temperature is greater than a preset starting temperature, and the preset starting mode is the heating mode;
  • the first control module is further configured to turn on the photovoltaic mode when the determined difference is greater than or equal to the second preset threshold, and operate in the heating mode based on the amount of electricity generated by the photovoltaic.
  • the temperature adjustment method and system for the photovoltaic air conditioner proposed by the invention can send a standby command to the air conditioner to control the air conditioner to operate in the standby mode when the user leaves the room, and the air conditioner obtains the indoor temperature in time or in real time, when the obtained indoor temperature
  • the air conditioner turns on the photovoltaic mode to turn on the electrical connection relationship with the photovoltaic power generation device, and performs the cooling mode operation based on the electrical energy received from the photovoltaic power generating device. To ensure that the indoor ambient temperature is maintained at a suitable temperature.
  • FIG. 1 is a hardware structural diagram of a preferred embodiment of an air conditioner for realizing temperature adjustment of a photovoltaic air conditioner according to the present invention
  • FIG. 2 is a schematic diagram of functional modules of a first embodiment of a temperature adjustment system for a photovoltaic air conditioner of the present invention
  • FIG. 3 is a schematic diagram of functional modules of a second embodiment of a temperature adjustment system for a photovoltaic air conditioner of the present invention.
  • FIG. 4 is a schematic flow chart of a first embodiment of a temperature adjustment method for a photovoltaic air conditioner according to the present invention
  • FIG. 5 is a schematic flow chart of a second embodiment of a temperature adjustment method for a photovoltaic air conditioner according to the present invention.
  • FIG. 1 is a hardware structural diagram of a preferred embodiment of an air conditioner for realizing temperature adjustment of a photovoltaic air conditioner according to the present invention.
  • the air conditioner 1 includes a processing unit 11, a storage unit 12, a temperature adjustment system 13 of the photovoltaic air conditioner, a refrigeration control system 14, and a heating control system 15.
  • the refrigeration control system 14 is configured to control the refrigeration unit to perform a cooling operation under the control of the processing unit 11.
  • the heating control system 15 is configured to control the heating component to perform heating operation under the control of the processing unit 11
  • the storage unit 12 is configured to store the temperature adjustment system 14 of the photovoltaic air conditioner and the operation data thereof, the refrigeration control system 14 and its operation data, the heating control system 15 and its operation data, and the user preset start Temperature, start mode, and operating parameters for each mode. It should be emphasized that the storage unit 12 may be a single storage device or a collective name of a plurality of different storage devices, and details are not described herein.
  • the processing unit 11 is configured to call and execute the temperature adjustment system 13 of the photovoltaic air conditioner to control the air conditioner switching operation mode under the operation of the user, and when the acquired indoor temperature is greater than a preset startup temperature, and preset
  • the startup mode is the cooling mode
  • the air conditioner is controlled to turn on the photovoltaic mode, and the cooling control system 14 is controlled to operate; and when the cooling mode switching instruction sent by the control terminal is received, the cooling control system 14 is controlled to operate, and the control terminal is received.
  • the heating control system 15 is controlled to operate.
  • the processing unit 11 and the storage unit 12 may be separate units, or may be integrated to form a controller, which is not described herein.
  • FIG. 2 is a schematic diagram of functional modules of a first embodiment of a temperature adjustment system for a photovoltaic air conditioner of the present invention.
  • the temperature adjustment system 13 of the photovoltaic air conditioner proposed in this embodiment includes:
  • the first temperature detecting module 131 is configured to acquire the indoor temperature in a timed or real time when the air conditioner is operating in the standby mode;
  • the air conditioner can determine whether the air conditioner is in standby mode depending on whether it is currently running its cooling and heating modes.
  • a temperature sensor may be provided on the air conditioner to obtain the indoor temperature, or a temperature sensor may be provided at other positions in the room to detect the indoor temperature, and the temperature sensor and the temperature adjustment system 13 of the photovoltaic air conditioner may be
  • a temperature detecting module is connected by communication, and the communication connection mode can be a wired connection (such as R485, serial interface, etc.), or a wireless connection, such as Bluetooth, infrared, and WIFI connection.
  • a temperature sensor may be disposed at a plurality of locations in the room, and the first temperature detecting module 131 averages the data detected by each temperature and temperature sensor, and the average value is the current indoor The exact temperature.
  • the first temperature detecting module 131 periodically acquires the indoor temperature, and the time interval obtained by the timing may be set by the user or the manufacturer, for example, 10 min.
  • the first control module 132 is configured to: when the acquired indoor temperature is greater than a preset startup temperature, and the preset startup mode is the cooling mode, turn on the photovoltaic mode, and operate in a cooling mode based on the generated amount of the photovoltaic.
  • the user can set the startup temperature and the startup mode when transmitting the standby switching instruction to the air conditioner.
  • the air conditioner can select the starting temperature and the starting mode according to the user's recent habits, for example, determining the respective starting temperatures set in the user standby mode within the preset time interval.
  • the number of startup modes determine the startup temperature and startup mode with the maximum number of settings, and use the startup temperature and startup mode with the maximum number of settings as the startup temperature and startup mode corresponding to the current standby mode; or obtain the user within the preset time interval.
  • the running mode of the running mode and its running parameter (starting temperature), and the operating mode with the most running times of the running mode and its running parameters and its operating parameters are used as the starting temperature and starting mode corresponding to the current standby mode.
  • the photovoltaic mode when the acquired indoor temperature is greater than a preset starting temperature, it may be determined whether the indoor temperature acquired within the preset time interval is greater than a preset starting temperature, and the obtained indoor temperature is greater than a preset
  • the photovoltaic mode is turned on, and the operation is performed in the cooling mode based on the amount of electricity generated by the photovoltaic, so that the detected temperature error or temperature jitter causes the control of the air conditioner to be inaccurate.
  • the air conditioner when the air conditioner operates in a photovoltaic mode, the thermal energy received by the photovoltaic component is converted into electrical energy, and the air conditioner is powered based on the converted electrical energy to operate the air conditioner in a cooling mode;
  • the temperature difference between the temperature reached and the preset starting temperature is large, the electric energy generated by the photovoltaic module may be insufficient, and the air conditioner reduces the indoor temperature to a preset starting temperature, and at the same time, the air conditioner photovoltaic mode and the commercial power mode simultaneously
  • the electrical energy generated by the photovoltaic module when the temperature difference between the temperature detected by the temperature sensor and the preset starting temperature is small, the electrical energy generated by the photovoltaic module may be excessive, and at this time, the excess energy is stored by the electrical energy storage module.
  • it may be determined to operate in a photovoltaic mode according to a temperature difference between the detected temperature and a preset starting temperature, or to operate simultaneously in a photovoltaic mode and a commercial mode, or to perform energy storage while operating in a photovoltaic mode.
  • the air conditioner when the air conditioner is operating in the standby mode, if the power-on command is received, the air conditioner can directly operate in the preset startup temperature and the startup mode.
  • the startup temperature, the startup mode, and the startup time of the air conditioner may also be set when the standby command is sent to the air conditioner to ensure automation of the air conditioner startup.
  • the user when the user leaves the room, the user can send a standby command to the air conditioner to control the air conditioner to operate in the standby mode, and the air conditioner obtains the indoor temperature in a timely manner or in real time, when the acquired indoor temperature is greater than
  • the preset starting temperature is preset and the preset starting mode is the cooling mode
  • the air conditioner turns on the photovoltaic mode and operates in a cooling mode based on the amount of electricity generated by the photovoltaic to ensure that the indoor ambient temperature is maintained at a suitable temperature.
  • the first control module 132 is further configured to turn off the photovoltaic mode, operate in the standby mode, and supply the standby current through the commercial power when the standby mode switching instruction is detected.
  • the user can send a standby mode switching instruction to the air conditioner through the remote controller or other intelligent terminal (such as a mobile phone) as a remote controller when leaving the room to control the air conditioner to operate in the standby mode.
  • the standby current is supplied by the commercial power to ensure the normal operation of each functional module in the temperature adjustment system of the photovoltaic air conditioner.
  • the common air conditioner may also be powered by a battery or the like. powered by. For example, when the air conditioner is in normal operation, the electrical energy generated by the photovoltaic module can be stored by the battery.
  • the first temperature detecting module 131 is further configured to enable the first control module 132 to turn on the photovoltaic mode, and control the air conditioner to operate in the cooling mode based on the generated power of the photovoltaic, timing or real time.
  • the first control module 132 is further configured to: when the acquired indoor temperature is less than or equal to a preset startup temperature, and the preset startup mode is the cooling mode, turn off the photovoltaic mode, and switch to the standby mode operation.
  • the air conditioner when the indoor ambient temperature drops below a preset starting temperature, the air conditioner can be controlled to turn off the photovoltaic mode and switch to the standby mode to ensure that the indoor temperature is maintained at a preset starting temperature.
  • the temperature adjustment system of the air conditioner further includes a determining module, configured to: when the acquired indoor temperature is greater than a preset starting temperature, and preset When the startup mode is the cooling mode, the difference between the acquired indoor temperature and the preset starting temperature is determined; the first control module 132 is further configured to: when the determined difference is greater than or equal to the first preset threshold, Photovoltaic mode, and operates in a cooling mode based on the amount of electricity generated by the PV.
  • the difference between the acquired indoor temperature and the preset starting temperature may be determined when the acquired indoor temperature is greater than the preset starting temperature.
  • the value, when the obtained difference is greater than the preset first threshold the first control module 132 is further configured to turn on the photovoltaic mode and operate in the cooling mode based on the amount of electricity generated by the photovoltaic.
  • the preset first threshold can be set by the user or the manufacturer. Further, in order to make the temperature adjustment system of the photovoltaic air conditioner more accurate to the air conditioner, the indoor temperature and the pre-continuation may be obtained when the difference between the indoor temperature and the preset starting temperature is greater than a preset first threshold.
  • the first control module 132 turns on the photovoltaic when the difference between the starting temperatures is set, and the difference between the indoor temperature acquired in the preset time interval and the preset starting temperature is greater than the preset first threshold Mode and operate in cooling mode based on the amount of electricity generated by the PV.
  • the first control module 132 is further configured to: when the acquired indoor temperature is less than a preset startup temperature, and the preset startup mode is the heating mode, Photovoltaic mode and operating in heating mode based on the amount of electricity generated by the PV.
  • the photovoltaic mode is turned on, and the electric power generated by the photovoltaic is operated in the heating mode to avoid the error of the detected temperature or the temperature jitter causes the control of the air conditioner to be inaccurate.
  • the air conditioner when the air conditioner is operated in the photovoltaic mode, since the air conditioner consumes a large amount of energy when operating in the heating mode, there may be a case where the amount of electricity generated by the photovoltaic module is insufficient to heat, and the photovoltaic module and the commercial power are required at this time.
  • Combined power supply when the temperature difference between the temperature detected by the temperature sensor and the preset starting temperature is large, the energy generated by the photovoltaic module may not be sufficient to cause the air conditioner to raise the indoor temperature to a preset starting temperature, at this time, the air conditioner The PV mode and the mains mode operate simultaneously.
  • the first temperature detecting module 131 is further configured to enable the first control module 132 to turn on the photovoltaic mode, and control the air conditioner to operate in the heating mode based on the generated amount of the photovoltaic power, timing or
  • the first control module 132 is further configured to: when the acquired indoor temperature is greater than a preset startup temperature, and the preset startup mode is the heating mode, turn off the photovoltaic mode, and switch to the standby mode operation.
  • the air conditioner when the indoor ambient temperature rises above a preset starting temperature, the air conditioner can be controlled to turn off the photovoltaic mode and switch to the standby mode to ensure that the indoor temperature is maintained at a preset starting temperature.
  • the determining module is further configured to determine when the acquired indoor temperature is greater than a preset starting temperature, and the preset starting mode is the heating mode. The difference between the obtained indoor temperature and the preset starting temperature; the first control module 132 is further configured to: when the determined difference is greater than or equal to the second preset threshold, turn on the photovoltaic mode, and generate the photovoltaic based The battery operates in heating mode.
  • the difference between the acquired indoor temperature and the preset starting temperature may be determined when the acquired indoor temperature is less than the preset starting temperature.
  • the preset first threshold can be set by the user or the manufacturer. Further, in order to make the temperature adjustment system of the photovoltaic air conditioner more accurate to the air conditioner, the indoor temperature and the pre-continuation may be obtained when the difference between the indoor temperature and the preset starting temperature is greater than a preset first threshold.
  • the first control module 132 turns on the photovoltaic when the difference between the starting temperatures is set, and the difference between the indoor temperature acquired in the preset time interval and the preset starting temperature is greater than the preset first threshold Mode and operate in heating mode based on the amount of electricity generated by the PV.
  • FIG. 3 is a schematic diagram of functional modules of a second embodiment of a temperature adjustment system for a photovoltaic air conditioner of the present invention.
  • This embodiment provides a temperature adjustment system 13 for a photovoltaic air conditioner, including:
  • a second temperature detecting module 133 configured to acquire the indoor temperature in a timed or real time when the air conditioner is operating in the standby mode
  • the air conditioner can determine whether the air conditioner is in standby mode depending on whether it is currently running its cooling and heating modes.
  • a temperature sensor may be provided on the air conditioner to obtain the indoor temperature, or a temperature sensor may be provided at other positions in the room to detect the indoor temperature, and the temperature sensor and the temperature adjustment system 13 of the photovoltaic air conditioner may be
  • the second temperature detecting module is connected by communication, and the communication connection mode may be a wired connection (such as R485, serial interface, etc.), or a wireless connection, such as Bluetooth, infrared, and WIFI connection.
  • a temperature sensor may be disposed at a plurality of locations in the room, and the second temperature detecting module 131 averages the data detected by each temperature and temperature sensor, and the average is the current indoor The exact temperature.
  • the second temperature detecting module 131 periodically acquires the indoor temperature, and the time interval obtained by the timing may be set by the user or the manufacturer, for example, 10 min.
  • the second control module 134 starts the photovoltaic mode when the acquired indoor temperature is less than the preset startup temperature, and the preset startup mode is the heating mode, and operates in the heating mode based on the generated amount of the photovoltaic.
  • the user can set the startup temperature and the startup mode when transmitting the standby switching instruction to the air conditioner.
  • the air conditioner can select the starting temperature and the starting mode according to the user's recent habits, for example, determining the respective starting temperatures set in the user standby mode within the preset time interval.
  • the number of startup modes determine the startup temperature and startup mode with the maximum number of settings, and use the startup temperature and startup mode with the maximum number of settings as the startup temperature and startup mode corresponding to the current standby mode; or obtain the user within the preset time interval.
  • the running mode of the running mode and its running parameter (starting temperature), and the operating mode with the most running times of the running mode and its running parameters and its operating parameters are used as the starting temperature and starting mode corresponding to the current standby mode.
  • the acquired indoor temperature is less than the preset starting temperature
  • the photovoltaic mode is turned on, and the operation is performed in the heating mode based on the amount of electricity generated by the photovoltaic, so that the detected temperature error or temperature jitter causes the control of the air conditioner to be inaccurate.
  • the air conditioner when the air conditioner operates in the photovoltaic mode, the thermal energy received by the photovoltaic component is converted into electrical energy, and the air conditioner is powered based on the converted electrical energy, so that the air conditioner operates in the heating mode;
  • the temperature difference between the detected temperature and the preset starting temperature is large, the electric energy generated by the photovoltaic module may be insufficient, and the air conditioner reduces the indoor temperature to a preset starting temperature.
  • the air conditioner photovoltaic mode and the commercial power mode Simultaneous operation; in other variant implementations, when the temperature difference between the temperature detected by the temperature sensor and the preset starting temperature is small, the electrical energy generated by the photovoltaic module may be excessive, and at this time, the excess energy is stored by the electrical energy storage module. In this embodiment, it may be determined to operate in a photovoltaic mode according to a temperature difference between the detected temperature and a preset starting temperature, or to operate simultaneously in a photovoltaic mode and a commercial mode, or to perform energy storage while operating in a photovoltaic mode.
  • the air conditioner when the air conditioner is operating in the standby mode, if the power-on command is received, the air conditioner can directly operate in the preset startup temperature and the startup mode.
  • the startup temperature, the startup mode, and the startup time of the air conditioner may also be set when the standby command is sent to the air conditioner to ensure automation of the air conditioner startup.
  • the user when the user leaves the room, the user may send a standby command to the air conditioner to control the air conditioner to operate in the standby mode, and the air conditioner obtains the indoor temperature in a timely manner or in real time, when the acquired indoor temperature is less than
  • the preset starting temperature is preset and the preset starting mode is the heating mode
  • the air conditioner turns on the photovoltaic mode and operates in the heating mode based on the amount of electricity generated by the photovoltaic to ensure that the indoor ambient temperature is maintained at a suitable temperature.
  • the second temperature detecting module 133 is further configured to enable the second control module 134 to turn on the photovoltaic mode, and control the air conditioner to operate in the heating mode based on the generated amount of the photovoltaic power, timing or
  • the second control module 134 is further configured to: when the acquired indoor temperature is greater than a preset startup temperature, and the preset startup mode is the heating mode, turn off the photovoltaic mode, and switch to the standby mode operation.
  • the air conditioner when the indoor ambient temperature rises above a preset starting temperature, the air conditioner can be controlled to turn off the photovoltaic mode and switch to the standby mode to ensure that the indoor temperature is maintained at a preset starting temperature.
  • the determining module is further configured to determine when the acquired indoor temperature is greater than a preset starting temperature, and the preset starting mode is the heating mode. The difference between the obtained indoor temperature and the preset starting temperature; the second control module 132 is further configured to turn on the photovoltaic mode when the determined difference is greater than or equal to the second preset threshold, and based on the generated by the photovoltaic The battery operates in heating mode.
  • the difference between the acquired indoor temperature and the preset starting temperature may be determined when the acquired indoor temperature is less than the preset starting temperature.
  • the preset first threshold can be set by the user or the manufacturer. Further, in order to make the temperature adjustment system of the photovoltaic air conditioner more accurate to the air conditioner, the indoor temperature and the pre-continuation may be obtained when the difference between the indoor temperature and the preset starting temperature is greater than a preset first threshold.
  • the second control module 134 turns on the photovoltaic when the difference between the starting temperatures is set, and the difference between the indoor temperature obtained during the preset time interval and the preset starting temperature is greater than the preset first threshold Mode and operate in heating mode based on the amount of electricity generated by the PV.
  • FIG. 4 is a schematic flow chart of a first embodiment of a temperature adjustment method for a photovoltaic air conditioner according to the present invention.
  • the embodiment provides a temperature adjustment method for a photovoltaic air conditioner, including:
  • Step S10 when the air conditioner is operating in the standby mode, the air conditioner acquires the indoor temperature periodically or in real time;
  • the air conditioner can determine whether the air conditioner is in standby mode depending on whether it is currently running its cooling and heating modes.
  • a temperature sensor may be provided on the air conditioner to obtain the indoor temperature, or a temperature sensor may be set at other positions in the room to detect the indoor temperature, and the temperature sensor is communicably connected with the photovoltaic air conditioner. It can be a wired connection (such as R485, serial interface, etc.) or a wireless connection, such as Bluetooth, infrared, and WIFI connection.
  • a temperature sensor may be disposed at a plurality of locations in the room, and the air conditioner averages the data detected by each temperature and temperature sensor, and the average value is the accurate temperature in the current indoor.
  • the air conditioner periodically acquires the indoor temperature, and the time interval obtained by the timing can be set by the user or the manufacturer, for example, 10 min.
  • Step S20 when the acquired indoor temperature is greater than a preset starting temperature, and the preset starting mode is the cooling mode, the air conditioner turns on the photovoltaic mode to turn on the electrical connection relationship with the photovoltaic power generation device, and is based on photovoltaic power generation.
  • the electrical energy received by the device is operated in a cooling mode.
  • the user can set the startup temperature and the startup mode when transmitting the standby switching instruction to the air conditioner.
  • the air conditioner can select the starting temperature and the starting mode according to the user's recent habits, for example, determining the respective starting temperatures set in the user standby mode within the preset time interval.
  • the number of startup modes determine the startup temperature and startup mode with the maximum number of settings, and use the startup temperature and startup mode with the maximum number of settings as the startup temperature and startup mode corresponding to the current standby mode; or obtain the user within the preset time interval.
  • the running mode of the running mode and its running parameter (starting temperature), and the operating mode with the most running times of the running mode and its running parameters and its operating parameters are used as the starting temperature and starting mode corresponding to the current standby mode.
  • the photovoltaic mode when the acquired indoor temperature is greater than a preset starting temperature, it may be determined whether the indoor temperature acquired within the preset time interval is greater than a preset starting temperature, and the obtained indoor temperature is greater than a preset
  • the photovoltaic mode is turned on, and the operation is performed in the cooling mode based on the amount of electricity generated by the photovoltaic, so that the detected temperature error or temperature jitter causes the control of the air conditioner to be inaccurate.
  • the air conditioner when the air conditioner operates in a photovoltaic mode, the thermal energy received by the photovoltaic component is converted into electrical energy, and the air conditioner is powered based on the converted electrical energy to operate the air conditioner in a cooling mode;
  • the temperature difference between the temperature reached and the preset starting temperature is large, the electric energy generated by the photovoltaic module may be insufficient, and the air conditioner reduces the indoor temperature to a preset starting temperature, and at the same time, the air conditioner photovoltaic mode and the commercial power mode simultaneously
  • the electrical energy generated by the photovoltaic module when the temperature difference between the temperature detected by the temperature sensor and the preset starting temperature is small, the electrical energy generated by the photovoltaic module may be excessive, and at this time, the excess energy is stored by the electrical energy storage module.
  • it may be determined to operate in a photovoltaic mode according to a temperature difference between the detected temperature and a preset starting temperature, or to operate simultaneously in a photovoltaic mode and a commercial mode, or to perform energy storage while operating in a photovoltaic mode.
  • the air conditioner when the air conditioner is operating in the standby mode, if the power-on command is received, the air conditioner can directly operate in the preset startup temperature and the startup mode.
  • the startup temperature, the startup mode, and the startup time of the air conditioner may also be set when the standby command is sent to the air conditioner to ensure automation of the air conditioner startup.
  • the user when the user leaves the room, the user can send a standby command to the air conditioner to control the air conditioner to operate in the standby mode, and the air conditioner obtains the indoor temperature in a timely manner or in real time, when the acquired indoor temperature is greater than
  • the preset starting temperature is preset and the preset starting mode is the cooling mode
  • the air conditioner turns on the photovoltaic mode and operates in a cooling mode based on the amount of electricity generated by the photovoltaic to ensure that the indoor ambient temperature is maintained at a suitable temperature.
  • the method further includes:
  • Step S30 when detecting the standby mode switching instruction, the air conditioner turns off the photovoltaic mode to cut off the electrical connection relationship with the photovoltaic power generation device;
  • Step S40 the air conditioner operates in a standby mode and supplies standby current through the commercial power supply.
  • the user can send a standby mode switching instruction to the air conditioner through the remote controller or other intelligent terminal (such as a mobile phone) as a remote controller when leaving the room to control the air conditioner to operate in the standby mode.
  • the standby current is supplied by the commercial power to ensure the normal operation of each functional module in the temperature adjustment system of the photovoltaic air conditioner.
  • the common air conditioner may also be powered by a battery or the like. powered by. For example, when the air conditioner is in normal operation, the electrical energy generated by the photovoltaic module can be stored by the battery.
  • the method further includes after step S20:
  • Step S50 the air conditioner acquires the indoor temperature periodically or in real time
  • Step S60 when the acquired indoor temperature is less than or equal to a preset startup temperature, and the preset startup mode is the cooling mode, the air conditioner turns off the photovoltaic mode to cut off the electrical connection relationship with the photovoltaic power generation device, and switches to the standby mode. run.
  • the air conditioner when the indoor ambient temperature drops below a preset starting temperature, the air conditioner can be controlled to turn off the photovoltaic mode and switch to the standby mode to ensure that the indoor temperature is maintained at a preset starting temperature.
  • step S20 includes:
  • Step S21 when the acquired indoor temperature is greater than a preset starting temperature, and the preset starting mode is the cooling mode, the air conditioner determines a difference between the acquired indoor temperature and the preset starting temperature;
  • Step S22 when the determined difference is greater than or equal to the first preset threshold, the air conditioner turns on the photovoltaic mode to turn on the electrical connection relationship with the photovoltaic power generation device, and the electrical energy received from the photovoltaic power generation device performs the cooling mode operation.
  • the difference between the acquired indoor temperature and the preset starting temperature may be determined when the acquired indoor temperature is greater than the preset starting temperature.
  • the value, when the obtained difference is greater than the preset first threshold the control module 132 is further configured to turn on the photovoltaic mode and operate in the cooling mode based on the amount of electricity generated by the photovoltaic.
  • the preset first threshold can be set by the user or the manufacturer. Further, in order to make the temperature adjustment system of the photovoltaic air conditioner more accurate to the air conditioner, the indoor temperature and the pre-continuation may be obtained when the difference between the indoor temperature and the preset starting temperature is greater than a preset first threshold.
  • the air conditioner turns on the photovoltaic mode to guide Through the electrical connection relationship with the photovoltaic power generation device, the electrical energy received from the photovoltaic power generation device is operated in a cooling mode.
  • the method further includes after step S10:
  • Step S70 when the acquired indoor temperature is less than a preset starting temperature, and the preset starting mode is the heating mode, the air conditioner turns on the photovoltaic mode to turn on the electrical connection relationship with the photovoltaic power generating device, and the photovoltaic power generating device The received electrical energy is operated in the heating mode.
  • the photovoltaic mode is turned on, and the electric power generated by the photovoltaic is operated in the heating mode to avoid the error of the detected temperature or the temperature jitter causes the control of the air conditioner to be inaccurate.
  • the air conditioner when the air conditioner is operated in the photovoltaic mode, since the air conditioner consumes a large amount of energy when operating in the heating mode, there may be a case where the amount of electricity generated by the photovoltaic module is insufficient to heat, and the photovoltaic module and the commercial power are required at this time.
  • Combined power supply when the temperature difference between the temperature detected by the temperature sensor and the preset starting temperature is large, the energy generated by the photovoltaic module may not be sufficient to cause the air conditioner to raise the indoor temperature to a preset starting temperature, at this time, the air conditioner The PV mode and the mains mode operate simultaneously.
  • the method further includes after step S70:
  • Step S80 the air conditioner acquires the indoor temperature periodically or in real time
  • Step S90 when the acquired indoor temperature is greater than a preset startup temperature, and the preset startup mode is the heating mode, the air conditioner turns off the photovoltaic mode to cut off the electrical connection relationship with the photovoltaic power generation device, and switches to the standby mode. run.
  • the air conditioner when the indoor ambient temperature rises above a preset starting temperature, the air conditioner can be controlled to turn off the photovoltaic mode and switch to the standby mode to ensure that the indoor temperature is maintained at a preset starting temperature.
  • step S70 includes:
  • Step S71 when the acquired indoor temperature is greater than a preset starting temperature, and the preset starting mode is the heating mode, the air conditioner determines a difference between the acquired indoor temperature and the preset starting temperature;
  • Step S72 when the determined difference is greater than or equal to the second preset threshold, the air conditioner turns on the photovoltaic mode to turn on the electrical connection relationship with the photovoltaic power generation device, and the electric energy received from the photovoltaic power generation device performs the heating mode operation.
  • the difference between the acquired indoor temperature and the preset starting temperature may be determined when the acquired indoor temperature is less than the preset starting temperature.
  • the value, when the obtained difference is greater than the preset first threshold the control module 132 is further configured to turn on the photovoltaic mode and operate in the heating mode based on the amount of electricity generated by the photovoltaic.
  • the preset first threshold can be set by the user or the manufacturer. Further, in order to make the temperature adjustment system of the photovoltaic air conditioner more accurate to the air conditioner, the indoor temperature and the pre-continuation may be obtained when the difference between the indoor temperature and the preset starting temperature is greater than a preset first threshold.
  • the air conditioner turns on the photovoltaic mode to guide Through the electrical connection relationship with the photovoltaic power generation device, the electric energy received from the photovoltaic power generation device is operated in the heating mode.
  • FIG. 5 is a schematic flow chart of a second embodiment of a temperature adjustment method for a photovoltaic air conditioner according to the present invention.
  • the embodiment provides a temperature adjustment method for a photovoltaic air conditioner, including:
  • Step S80 when the air conditioner is operating in the standby mode, the air conditioner acquires the indoor temperature periodically or in real time;
  • the air conditioner can determine whether the air conditioner is in standby mode depending on whether it is currently running its cooling and heating modes.
  • a temperature sensor may be provided on the air conditioner to obtain the indoor temperature, or a temperature sensor may be set at other positions in the room to detect the indoor temperature, and the temperature sensor is communicably connected with the photovoltaic air conditioner. It can be a wired connection (such as R485, serial interface, etc.) or a wireless connection, such as Bluetooth, infrared, and WIFI connection.
  • a temperature sensor may be disposed at a plurality of locations in the room, and the air conditioner averages the data detected by each temperature and temperature sensor, and the average value is the accurate temperature in the current indoor.
  • the temperature detection module 131 periodically acquires the indoor temperature, and the time interval obtained by the timing can be set by the user or the manufacturer, for example, 10 min.
  • Step S90 when the acquired indoor temperature is less than a preset starting temperature, and the preset starting mode is the heating mode, the air conditioner turns on the photovoltaic mode to turn on the electrical connection relationship with the photovoltaic power generating device, and the photovoltaic power generating device The received electrical energy is operated in the heating mode.
  • the user can set the startup temperature and the startup mode when transmitting the standby switching instruction to the air conditioner.
  • the air conditioner can select the starting temperature and the starting mode according to the user's recent habits, for example, determining the respective starting temperatures set in the user standby mode within the preset time interval.
  • the number of startup modes determine the startup temperature and startup mode with the maximum number of settings, and use the startup temperature and startup mode with the maximum number of settings as the startup temperature and startup mode corresponding to the current standby mode; or obtain the user within the preset time interval.
  • the running mode of the running mode and its running parameter (starting temperature), and the operating mode with the most running times of the running mode and its running parameters and its operating parameters are used as the starting temperature and starting mode corresponding to the current standby mode.
  • the acquired indoor temperature is less than the preset starting temperature
  • the photovoltaic mode is turned on, and the operation is performed in the heating mode based on the amount of electricity generated by the photovoltaic, so that the detected temperature error or temperature jitter causes the control of the air conditioner to be inaccurate.
  • the air conditioner when the air conditioner operates in the photovoltaic mode, the thermal energy received by the photovoltaic component is converted into electrical energy, and the air conditioner is powered based on the converted electrical energy, so that the air conditioner operates in the heating mode;
  • the temperature difference between the detected temperature and the preset starting temperature is large, the electric energy generated by the photovoltaic module may be insufficient, and the air conditioner reduces the indoor temperature to a preset starting temperature.
  • the air conditioner photovoltaic mode and the commercial power mode Simultaneous operation; in other variant implementations, when the temperature difference between the temperature detected by the temperature sensor and the preset starting temperature is small, the electrical energy generated by the photovoltaic module may be excessive, and at this time, the excess energy is stored by the electrical energy storage module. In this embodiment, it may be determined to operate in a photovoltaic mode according to a temperature difference between the detected temperature and a preset starting temperature, or to operate simultaneously in a photovoltaic mode and a commercial mode, or to perform energy storage while operating in a photovoltaic mode.
  • the air conditioner when the air conditioner is operating in the standby mode, if the power-on command is received, the air conditioner can directly operate in the preset startup temperature and the startup mode.
  • the startup temperature, the startup mode, and the startup time of the air conditioner may also be set when the standby command is sent to the air conditioner to ensure automation of the air conditioner startup.
  • the user when the user leaves the room, the user may send a standby command to the air conditioner to control the air conditioner to operate in the standby mode, and the air conditioner obtains the indoor temperature in a timely manner or in real time, when the acquired indoor temperature is less than a preset starting temperature, and when the preset starting mode is the heating mode, the air conditioner turns on the photovoltaic mode to turn on the electrical connection relationship with the photovoltaic power generating device, and the electric energy received from the photovoltaic power generating device performs the heating mode operation, To ensure that the indoor ambient temperature is maintained at a suitable temperature.
  • the method further includes after step S90:
  • Step S100 the air conditioner acquires the indoor temperature periodically or in real time
  • Step S110 when the acquired indoor temperature is greater than a preset startup temperature, and the preset startup mode is the heating mode, the air conditioner turns off the photovoltaic mode to cut off the electrical connection relationship with the photovoltaic power generation device, and switches to the standby mode. run.
  • the air conditioner when the indoor ambient temperature rises above a preset starting temperature, the air conditioner can be controlled to turn off the photovoltaic mode and switch to the standby mode to ensure that the indoor temperature is maintained at a preset starting temperature.
  • step S90 includes:
  • Step S91 when the acquired indoor temperature is greater than a preset starting temperature, and the preset starting mode is the heating mode, the air conditioner determines a difference between the obtained indoor temperature and a preset starting temperature;
  • Step S92 when the determined difference is greater than or equal to the second preset threshold, the air conditioner turns on the photovoltaic mode to turn on the electrical connection relationship with the photovoltaic power generation device, and the electric energy received from the photovoltaic power generation device performs the heating mode operation.
  • the difference between the acquired indoor temperature and the preset starting temperature may be determined when the acquired indoor temperature is less than the preset starting temperature.
  • the value, when the obtained difference is greater than the preset first threshold the control module 132 is further configured to turn on the photovoltaic mode and operate in the heating mode based on the amount of electricity generated by the photovoltaic.
  • the preset first threshold can be set by the user or the manufacturer. Further, in order to make the temperature adjustment system of the photovoltaic air conditioner more accurate to the air conditioner, the indoor temperature and the pre-continuation may be obtained when the difference between the indoor temperature and the preset starting temperature is greater than a preset first threshold.
  • the air conditioner turns on the photovoltaic mode to guide Through the electrical connection relationship with the photovoltaic power generation device, the electric energy received from the photovoltaic power generation device is operated in the heating mode.

Abstract

一种光伏空调器的温度调节方法,空调器以待机模式运行时,空调器定时或实时获取室内温度,当获取的室内温度大于预设的启动温度,且预设的启动模式为制冷模式时,空调器开启光伏模式以导通与光伏发电装置的电连接关系,并基于从光伏发电装置接收的电能进行制冷模式运行,以保证室内环境温度保持在适宜的温度。还公开了一种光伏空调器的温度调节系统。

Description

光伏空调器的温度调节方法和系统
技术领域
本发明涉及空调器技术领域,尤其涉及一种光伏空调器的温度调节方法和系统。
背景技术
随着生活水平的提高人们,越来越注重室内环境的舒适度,而现在一般通过空调器来调节室内温度以使湿度温度维持在较为舒适的温度。而当人们从外面环境进入室内环境时,空调器需要进行较长时间制冷或制热功能才能使室内温度达到较为舒适的温度。
未解决上述技术问题,现有技术通过定时或者预约的方式控制空调器启动,这种方案在用户进入房间之前先开启空调器,空调器运行以使室内温度保持较为舒适的温度,但该方案在用户进入房间之前需要浪费较多的市电能源以供空调器进行制热或制冷,而且需要用户进行启动时间的设定操作较为麻烦。
发明内容
本发明的主要目的是提供一种光伏空调器的温度调节方法和系统,旨在提高操作便捷性的基础上,节省市电能耗。
本发明提出一种光伏空调器的温度调节方法,包括:
在空调器以待机模式运行时,所述空调器定时或实时获取室内温度;
当获取的室内温度大于预设的启动温度,且预设的启动模式为制冷模式时,所述空调器开启光伏模式以导通与光伏发电装置的电连接关系,并基于从光伏发电装置接收的电能进行制冷模式运行。
优选地,所述在空调器以待机模式运行时,所述空调器定时或实时获取室内温度的步骤之前该方法还包括:
在侦测到待机模式切换指令时,所述空调器关闭光伏模式以截止与光伏发电装置的电连接关系;
所述空调器以待机模式运行,并通过市电供应待机电流。
优选地,所述当获取的室内温度大于预设的启动温度,且预设的启动模式为制冷模式时,所述空调器开启光伏模式以导通与光伏发电装置的电连接关系,并基于从光伏发电装置接收的电能进行制冷模式运行的步骤之后,该方法还包括:
所述空调器定时或实时获取室内温度;
当获取的室内温度小于等于预设的启动温度,且预设的启动模式为制冷模式时,所述空调器关闭光伏模式以切断与光伏发电装置的电连接关系,并切换至待机模式运行。
优选地,当获取的室内温度大于预设的启动温度,且预设的启动模式为制冷模式时,所述空调器开启光伏模式以导通与光伏发电装置的电连接关系,从光伏发电装置接收的电能进行制冷模式运行的步骤包括:
当获取的室内温度大于预设的启动温度,且预设的启动模式为制冷模式时,所述空调器确定获取的室内温度与预设的启动温度之间的差值;
当确定的差值大于等于第一预设阀值时,所述空调器开启光伏模式以导通与光伏发电装置的电连接关系,从光伏发电装置接收的电能进行制冷模式运行。
优选地,所述在空调器以待机模式运行时,所述空调器定时或实时获取室内温度的步骤之后,该方法还包括:
当获取的室内温度小于预设的启动温度,且预设的启动模式为制热模式时,所述空调器开启光伏模式以导通与光伏发电装置的电连接关系,从光伏发电装置接收的电能进行制热模式运行。
优选地,所述当获取的室内温度小于预设的启动温度,且预设的启动模式为制热模式时,所述空调器开启光伏模式以导通与光伏发电装置的电连接关系,从光伏发电装置接收的电能进行制热模式运行的步骤之后,该方法还包括:
所述空调器定时或实时获取室内温度;
当获取的室内温度大于预设的启动温度,且预设的启动模式为制热模式时,所述空调器关闭光伏模式以切断与光伏发电装置的电连接关系,并切换至待机模式运行。
优选地,所述当获取的室内温度小于预设的启动温度,且预设的启动模式为制热模式时,所述空调器开启光伏模式以导通与光伏发电装置的电连接关系,从光伏发电装置接收的电能进行制热模式运行的步骤包括:
当获取的室内温度大于预设的启动温度,且预设的启动模式为制热模式时,所述空调器确定获取的室内温度与预设的启动温度之间的差值;
当确定的差值大于等于第二预设阀值时,所述空调器开启光伏模式以导通与光伏发电装置的电连接关系,从光伏发电装置接收的电能进行制热模式运行。
本发明还提出一种光伏空调器的温度调节系统,该光伏空调器的温度调节系统包括实现如以上任一项所述方法对应步骤的功能模块。
本发明还提出一种光伏空调器的温度调节系统,该光伏空调器的温度调节系统包括:
第一温度检测模块,用于在空调器以待机模式运行时,定时或实时获取室内温度;
第一控制模块,用于当获取的室内温度大于预设的启动温度,且预设的启动模式为制冷模式时,开启光伏模式,并基于光伏产生的电量以制冷模式运行。
优选地,所述第一控制模块还用于在侦测到待机模式切换指令时,关闭光伏模式,以待机模式运行,并通过市电供应待机电流。
优选地,所述第一温度检测模块还用于第一控制模块开启光伏模式,并控制空调器基于光伏产生的电量以制冷模式运行之后,定时或实时获取室内温度;所述第一控制模块还用于当获取的室内温度小于等于预设的启动温度,且预设的启动模式为制冷模式时,关闭光伏模式,并切换至待机模式运行。
优选地,该空调器的温度调节系统还包括确定模块,用于当获取的室内温度大于预设的启动温度,且预设的启动模式为制冷模式时,确定获取的室内温度与预设的启动温度之间的差值;所述第一控制模块还用于当确定的差值大于等于第一预设阀值时,开启光伏模式,并基于光伏产生的电量以制冷模式运行。
优选地,所述第一控制模块还用于当获取的室内温度小于预设的启动温度,且预设的启动模式为制热模式时,开启光伏模式,并基于光伏产生的电量以制热模式运行。
优选地,所述第一温度检测模块还用于第一控制模块开启光伏模式,并控制空调器基于光伏产生的电量以制热模式运行之后,定时或实时获取室内温度;所述第一控制模块还用于当获取的室内温度大于预设的启动温度,且预设的启动模式为制热模式时,关闭光伏模式,并切换至待机模式运行。
优选地,确定模块还用于当获取的室内温度大于预设的启动温度,且预设的启动模式为制热模式时,确定获取的室内温度与预设的启动温度之间的差值;所述第一控制模块还用于当确定的差值大于等于第二预设阀值时,开启光伏模式,并基于光伏产生的电量以制热模式运行。
本发明提出的光伏空调器的温度调节方法和系统,用户在离开室内时,可向空调器发送待机指令以控制空调器以待机模式运行,空调器定时或实时获取室内温度,当获取的室内温度大于预设的启动温度,且预设的启动模式为制冷模式时,所述空调器开启光伏模式以导通与光伏发电装置的电连接关系,并基于从光伏发电装置接收的电能进行制冷模式运行,以保证室内环境温度保持在适宜的温度。
附图说明
图1为本发明实现光伏空调器的温度调节的空调器较佳实施例的硬件结构图;
图2为本发明光伏空调器的温度调节系统第一实施例的功能模块示意图;
图3为本发明光伏空调器的温度调节系统第二实施例的功能模块示意图;
图4为本发明光伏空调器的温度调节方法第一实施例的流程示意图;
图5为本发明光伏空调器的温度调节方法第二实施例的流程示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面结合附图及具体实施例就本发明的技术方案做进一步的说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
参照图1,图1为本发明实现光伏空调器的温度调节的空调器较佳实施例的硬件结构图。
该空调器1包括处理单元11、存储单元12、光伏空调器的温度调节系统13、制冷控制系统14以及制热控制系统15。
制冷控制系统14,用于在处理单元11的控制下,控制制冷组件进行制冷操作。
制热控制系统15,用于在处理单元11的控制下,控制制热组件进行制热操作
存储单元12,用于存储该自定义参数的光伏空调器的温度调节系统14及其运行数据,制冷控制系统14及其运行数据,制热控制系统15及其运行数据,以及用户预设的启动温度、启动模式以及各个模式的运行参数等。需要强调的是,该存储单元12既可以是一个单独的存储装置,也可以是多个不同存储装置的统称,在此不作赘述。
该处理单元11,用于调用并执行该光伏空调器的温度调节系统13,以在用户的操作下,控制空调器切换工作模式,以及当获取的室内温度大于预设的启动温度,且预设的启动模式为制冷模式时,控制空调器开启光伏模式,并控制制冷控制系统14运行;并在接收到控制终端发送的制冷模式切换指令时,控制制冷控制系统14运行,以及在接收到控制终端发送的制热模式切换指令时,控制制热控制系统15运行。该处理单元11与存储单元12既可以分别是单独的单元,也可以集成在一起,构成一个控制器,在此不作赘述。
参照图2,图2为本发明光伏空调器的温度调节系统第一实施例的功能模块示意图。
本实施例提出的光伏空调器的温度调节系统13,包括:
第一温度检测模块131,用于在空调器以待机模式运行时,定时或实时获取室内温度;
空调器可根据其当前是否运行其制冷以及制热等模式来确定空调器是否处于待机模式。在本实时例中,可在空调器上设置温度传感器来获取室内温度,或者也可在室内其它位置处设置温度传感器来检测室内温度,并将温度传感器与光伏空调器的温度调节系统13的第一温度检测模块通信连接,该通信连接方式可为有线连接(如R485,串行接口等),也可为无线连接,如蓝牙、红外以及WIFI连接等。进一步地,为保证获取到的室内温度的准确性,可在室内多个位置设置温度传感器,第一温度检测模块131对各个温度温度传感器检测到的数据求平均值,该平均值即为当前室内的准确温度。
在本实施例中,为节省空调器的功耗优选方案为第一温度检测模块131定时获取室内温度,该定时获取的时间间隔可由用户或者厂商进行设定,例如10min。
第一控制模块132,用于当获取的室内温度大于预设的启动温度,且预设的启动模式为制冷模式时,开启光伏模式,并基于光伏产生的电量以制冷模式运行。
在本实施例中,用户可在向空调器发送待机切换指令时,设置启动温度以及启动模式。在其它变形实施例中,若用户为预设启动温度和启动模式,空调器可根据用户近期习惯选择启动温度和启动模式,例如,确定预设时间间隔内用户待机模式时设定的各个启动温度和启动模式次数,确定设定次数最多的启动温度以及启动模式,并将设定次数最多的启动温度以及启动模式作为当前待机模式所对应的启动温度以及启动模式;或者获取预设时间间隔内用户运行模式及其运行参数(启动温度)的运行次数,并将运行模式及其运行参数的运行次数最多的运行模式及其运行参数,作为当前待机模式所对应的启动温度以及启动模式。
在本实施例中,当获取的室内温度大于预设的启动温度时,可确定预设的时间间隔内获取的室内温度是否均大于预设的启动温度,在获取的室内温度均大于预设的启动温度时,开启光伏模式,并基于光伏产生的电量以制冷模式运行,避免检测到的温度出现误差或温度抖动导致对空调器的控制不够准确。
在本实施例中,空调器以光伏模式运行时,将光伏组件接收到的热能转换为电能,并基于该转换后的电能为空调器供电,以供空调器以制冷模式运行;在温度传感器检测到的温度与预设的启动温度之间的温差较大时,可能光伏组件产生的电能不足以时空调器将室内温度降低至预设的启动温度,此时空调器光伏模式以及市电模式同时运行;在其它变形实施中,在温度传感器检测到的温度与预设的启动温度之间的温差较小时,可能导致光伏组件产生的电能过剩,此时,通过电能存储模块存储多余的电量。在本实施例中,可根据检测到的温度与预设的启动温度之间的温差确定以光伏模式运行,或者以光伏模式以及市电模式同时运行,或者以光伏模式运行同时进行储能。
在本实施例中,空调器在以待机模式运行时,若接收到开机指令,可直接以预设的启动温度以及启动模式运行。在其它变形实施例中,也可在向空调器发送待机指令时,设置空调器的启动温度、启动模式以及启动时间,以保证空调器启动的自动化。
本实施例提出的光伏空调器的温度调节系统,用户在离开室内时,可向空调器发送待机指令以控制空调器以待机模式运行,空调器定时或实时获取室内温度,当获取的室内温度大于预设的启动温度,且预设的启动模式为制冷模式时,所述空调器开启光伏模式,并基于光伏产生的电量以制冷模式运行,以保证室内环境温度保持在适宜的温度。
进一步地,为减少空调器的能耗,所述第一控制模块132还用于在侦测到待机模式切换指令时,关闭光伏模式,以待机模式运行,并通过市电供应待机电流。
在本实施例中,用户在离开室内时可通过遥控器或者其它作为遥控器的智能终端(如手机)向空调器发送待机模式切换指令,以控制空调器以待机模式运行。在空调器处于待机模式时,通过市电供应待机电流以保证该光伏空调器的温度调节系统中各个功能模块的正常运行,在其它变形实施例中,也可通过电池等供电方式对共空调器供电。例如,在空调器正常运行时,可通过蓄电池对光伏组件产生的电能进行储存。
进一步地,为保证室内环境温度的稳定性,所述第一温度检测模块131还用于第一控制模块132开启光伏模式,并控制空调器基于光伏产生的电量以制冷模式运行之后,定时或实时获取室内温度;所述第一控制模块132还用于当获取的室内温度小于等于预设的启动温度,且预设的启动模式为制冷模式时,关闭光伏模式,并切换至待机模式运行。
在本实施例中,在室内环境温度下降至低于预设的启动温度时,可控制空调器关闭光伏模式,并切换至待机模式运行,以保证室内温度维持在预设的启动温度。
进一步地,为保证光伏空调器的温度调节系统对空调器控制的准确性,该空调器的温度调节系统还包括确定模块,用于当获取的室内温度大于预设的启动温度,且预设的启动模式为制冷模式时,确定获取的室内温度与预设的启动温度之间的差值;所述第一控制模块132还用于当确定的差值大于等于第一预设阀值时,开启光伏模式,并基于光伏产生的电量以制冷模式运行。
在本实施例中,为避免室内环境温度浮动,同时节省空调器的能耗,可在获取的室内温度大于预设的启动温度时,确定获取的室内温度与预设的启动温度之间的差值,在获取到的差值大于预设的第一阀值时,第一控制模块132还用于才开启光伏模式,并基于光伏产生的电量以制冷模式运行。该预设的第一阀值可由用户或者生产厂商进行设定。进一步地,为使光伏空调器的温度调节系统对空调器控制更加准确,可在室内温度与预设的启动温度之间的差值大于预设的第一阀值时,继续获取室内温度与预设的启动温度之间的差值,并在预设的时间间隔内获取的室内温度与预设的启动温度之间的差值大于预设的第一阀值时,第一控制模块132开启光伏模式,并基于光伏产生的电量以制冷模式运行。
进一步地,为丰富光伏空调器的温度调节系统的功能,所述第一控制模块132还用于当获取的室内温度小于预设的启动温度,且预设的启动模式为制热模式时,开启光伏模式,并基于光伏产生的电量以制热模式运行。
在本实施例中,在获取的室内温度大于预设的启动温度时,确定预设时间间隔内获取的室内温度是否均大于预设的启动温度,在预设的时间间隔内获取的室内温度均大于预设的启动温度时,开启光伏模式,并基于光伏产生的电量以制热模式运行,避免检测到的温度出现误差或温度抖动导致对空调器的控制不够准确。
在本实施例中,空调器以光伏模式运行时,由于空调器以制热模式运行时耗能较大,可能存在光伏组件产生的电量不足以制热的情况,此时需要光伏组件以及市电联合供电;在温度传感器检测到的温度与预设的启动温度之间的温差较大时,可能光伏组件产生的电能不足以时空调器将室内温度升高至预设的启动温度,此时空调器光伏模式以及市电模式同时运行。
进一步地,为保证室内环境温度的稳定性,所述第一温度检测模块131还用于第一控制模块132开启光伏模式,并控制空调器基于光伏产生的电量以制热模式运行之后,定时或实时获取室内温度;所述第一控制模块132还用于当获取的室内温度大于预设的启动温度,且预设的启动模式为制热模式时,关闭光伏模式,并切换至待机模式运行。
在本实施例中,在室内环境温度升高至高于预设的启动温度时,可控制空调器关闭光伏模式,并切换至待机模式运行,以保证室内温度维持在预设的启动温度。
进一步地,为保证光伏空调器的温度调节系统对空调器控制的准确性,确定模块还用于当获取的室内温度大于预设的启动温度,且预设的启动模式为制热模式时,确定获取的室内温度与预设的启动温度之间的差值;所述第一控制模块132还用于当确定的差值大于等于第二预设阀值时,开启光伏模式,并基于光伏产生的电量以制热模式运行。
在本实施例中,为避免室内环境温度浮动,同时节省空调器的能耗,可在获取的室内温度小于预设的启动温度时,确定获取的室内温度与预设的启动温度之间的差值,在获取到的差值大于预设的第一阀值时,第一控制模块132还用于才开启光伏模式,并基于光伏产生的电量以制热模式运行。该预设的第一阀值可由用户或者生产厂商进行设定。进一步地,为使光伏空调器的温度调节系统对空调器控制更加准确,可在室内温度与预设的启动温度之间的差值大于预设的第一阀值时,继续获取室内温度与预设的启动温度之间的差值,并在预设的时间间隔内获取的室内温度与预设的启动温度之间的差值大于预设的第一阀值时,第一控制模块132开启光伏模式,并基于光伏产生的电量以制热模式运行。
参照图3,图3为本发明光伏空调器的温度调节系统第二实施例的功能模块示意图。
本实施例提出一种光伏空调器的温度调节系统13,包括:
第二温度检测模块133,用于在空调器以待机模式运行时,定时或实时获取室内温度;
空调器可根据其当前是否运行其制冷以及制热等模式来确定空调器是否处于待机模式。在本实时例中,可在空调器上设置温度传感器来获取室内温度,或者也可在室内其它位置处设置温度传感器来检测室内温度,并将温度传感器与光伏空调器的温度调节系统13的第二温度检测模块通信连接,该通信连接方式可为有线连接(如R485,串行接口等),也可为无线连接,如蓝牙、红外以及WIFI连接等。进一步地,为保证获取到的室内温度的准确性,可在室内多个位置设置温度传感器,第二温度检测模块131对各个温度温度传感器检测到的数据求平均值,该平均值即为当前室内的准确温度。
在本实施例中,为节省空调器的功耗优选方案为第二温度检测模块131定时获取室内温度,该定时获取的时间间隔可由用户或者厂商进行设定,例如10min。
第二控制模块134,当获取的室内温度小于预设的启动温度,且预设的启动模式为制热模式时,开启光伏模式,并基于光伏产生的电量以制热模式运行。
在本实施例中,用户可在向空调器发送待机切换指令时,设置启动温度以及启动模式。在其它变形实施例中,若用户为预设启动温度和启动模式,空调器可根据用户近期习惯选择启动温度和启动模式,例如,确定预设时间间隔内用户待机模式时设定的各个启动温度和启动模式次数,确定设定次数最多的启动温度以及启动模式,并将设定次数最多的启动温度以及启动模式作为当前待机模式所对应的启动温度以及启动模式;或者获取预设时间间隔内用户运行模式及其运行参数(启动温度)的运行次数,并将运行模式及其运行参数的运行次数最多的运行模式及其运行参数,作为当前待机模式所对应的启动温度以及启动模式。
在本实施例中,当获取的室内温度小于预设的启动温度时,可确定预设的时间间隔内获取的室内温度是否均小于预设的启动温度,在获取的室内温度均小于预设的启动温度时,开启光伏模式,并基于光伏产生的电量以制热模式运行,避免检测到的温度出现误差或温度抖动导致对空调器的控制不够准确。
在本实施例中,空调器以光伏模式运行时,将光伏组件接收到的热能转换为电能,并基于该转换后的电能为空调器供电,以供空调器以制热模式运行;在温度传感器检测到的温度与预设的启动温度之间的温差较大时,可能光伏组件产生的电能不足以时空调器将室内温度降低至预设的启动温度,此时空调器光伏模式以及市电模式同时运行;在其它变形实施中,在温度传感器检测到的温度与预设的启动温度之间的温差较小时,可能导致光伏组件产生的电能过剩,此时,通过电能存储模块存储多余的电量。在本实施例中,可根据检测到的温度与预设的启动温度之间的温差确定以光伏模式运行,或者以光伏模式以及市电模式同时运行,或者以光伏模式运行同时进行储能。
在本实施例中,空调器在以待机模式运行时,若接收到开机指令,可直接以预设的启动温度以及启动模式运行。在其它变形实施例中,也可在向空调器发送待机指令时,设置空调器的启动温度、启动模式以及启动时间,以保证空调器启动的自动化。
本实施例提出的光伏空调器的温度调节系统,用户在离开室内时,可向空调器发送待机指令以控制空调器以待机模式运行,空调器定时或实时获取室内温度,当获取的室内温度小于预设的启动温度,且预设的启动模式为制热模式时,所述空调器开启光伏模式,并基于光伏产生的电量以制热模式运行,以保证室内环境温度保持在适宜的温度。
进一步地,为保证室内环境温度的稳定性,所述第二温度检测模块133还用于第二控制模块134开启光伏模式,并控制空调器基于光伏产生的电量以制热模式运行之后,定时或实时获取室内温度;所述第二控制模块134还用于当获取的室内温度大于预设的启动温度,且预设的启动模式为制热模式时,关闭光伏模式,并切换至待机模式运行。
在本实施例中,在室内环境温度升高至高于预设的启动温度时,可控制空调器关闭光伏模式,并切换至待机模式运行,以保证室内温度维持在预设的启动温度。
进一步地,为保证光伏空调器的温度调节系统对空调器控制的准确性,确定模块还用于当获取的室内温度大于预设的启动温度,且预设的启动模式为制热模式时,确定获取的室内温度与预设的启动温度之间的差值;所述第二控制模块132还用于当确定的差值大于等于第二预设阀值时,开启光伏模式,并基于光伏产生的电量以制热模式运行。
在本实施例中,为避免室内环境温度浮动,同时节省空调器的能耗,可在获取的室内温度小于预设的启动温度时,确定获取的室内温度与预设的启动温度之间的差值,在获取到的差值大于预设的第一阀值时,第二控制模块132还用于才开启光伏模式,并基于光伏产生的电量以制热模式运行。该预设的第一阀值可由用户或者生产厂商进行设定。进一步地,为使光伏空调器的温度调节系统对空调器控制更加准确,可在室内温度与预设的启动温度之间的差值大于预设的第一阀值时,继续获取室内温度与预设的启动温度之间的差值,并在预设的时间间隔内获取的室内温度与预设的启动温度之间的差值大于预设的第一阀值时,第二控制模块134开启光伏模式,并基于光伏产生的电量以制热模式运行。
参照图4,图4为本发明光伏空调器的温度调节方法第一实施例的流程示意图。
本实施例提出一种光伏空调器的温度调节方法,包括:
步骤S10,在空调器以待机模式运行时,所述空调器定时或实时获取室内温度;
空调器可根据其当前是否运行其制冷以及制热等模式来确定空调器是否处于待机模式。在本实时例中,可在空调器上设置温度传感器来获取室内温度,或者也可在室内其它位置处设置温度传感器来检测室内温度,并将温度传感器与光伏空调器通信连接,该通信连接方式可为有线连接(如R485,串行接口等),也可为无线连接,如蓝牙、红外以及WIFI连接等。进一步地,为保证获取到的室内温度的准确性,可在室内多个位置设置温度传感器,空调器对各个温度温度传感器检测到的数据求平均值,该平均值即为当前室内的准确温度。
在本实施例中,为节省空调器的功耗优选方案为空调器定时获取室内温度,该定时获取的时间间隔可由用户或者厂商进行设定,例如10min。
步骤S20,当获取的室内温度大于预设的启动温度,且预设的启动模式为制冷模式时,所述空调器开启光伏模式以导通与光伏发电装置的电连接关系,并基于从光伏发电装置接收的电能进行制冷模式运行。
在本实施例中,用户可在向空调器发送待机切换指令时,设置启动温度以及启动模式。在其它变形实施例中,若用户为预设启动温度和启动模式,空调器可根据用户近期习惯选择启动温度和启动模式,例如,确定预设时间间隔内用户待机模式时设定的各个启动温度和启动模式次数,确定设定次数最多的启动温度以及启动模式,并将设定次数最多的启动温度以及启动模式作为当前待机模式所对应的启动温度以及启动模式;或者获取预设时间间隔内用户运行模式及其运行参数(启动温度)的运行次数,并将运行模式及其运行参数的运行次数最多的运行模式及其运行参数,作为当前待机模式所对应的启动温度以及启动模式。
在本实施例中,当获取的室内温度大于预设的启动温度时,可确定预设的时间间隔内获取的室内温度是否均大于预设的启动温度,在获取的室内温度均大于预设的启动温度时,开启光伏模式,并基于光伏产生的电量以制冷模式运行,避免检测到的温度出现误差或温度抖动导致对空调器的控制不够准确。
在本实施例中,空调器以光伏模式运行时,将光伏组件接收到的热能转换为电能,并基于该转换后的电能为空调器供电,以供空调器以制冷模式运行;在温度传感器检测到的温度与预设的启动温度之间的温差较大时,可能光伏组件产生的电能不足以时空调器将室内温度降低至预设的启动温度,此时空调器光伏模式以及市电模式同时运行;在其它变形实施中,在温度传感器检测到的温度与预设的启动温度之间的温差较小时,可能导致光伏组件产生的电能过剩,此时,通过电能存储模块存储多余的电量。在本实施例中,可根据检测到的温度与预设的启动温度之间的温差确定以光伏模式运行,或者以光伏模式以及市电模式同时运行,或者以光伏模式运行同时进行储能。
在本实施例中,空调器在以待机模式运行时,若接收到开机指令,可直接以预设的启动温度以及启动模式运行。在其它变形实施例中,也可在向空调器发送待机指令时,设置空调器的启动温度、启动模式以及启动时间,以保证空调器启动的自动化。
本实施例提出的光伏空调器的温度调节系统,用户在离开室内时,可向空调器发送待机指令以控制空调器以待机模式运行,空调器定时或实时获取室内温度,当获取的室内温度大于预设的启动温度,且预设的启动模式为制冷模式时,所述空调器开启光伏模式,并基于光伏产生的电量以制冷模式运行,以保证室内环境温度保持在适宜的温度。
进一步地,为减少空调器的能耗,步骤S10之前该方法还包括:
步骤S30,在侦测到待机模式切换指令时,所述空调器关闭光伏模式以截止与光伏发电装置的电连接关系;
步骤S40,所述空调器以待机模式运行,并通过市电供应待机电流
在本实施例中,用户在离开室内时可通过遥控器或者其它作为遥控器的智能终端(如手机)向空调器发送待机模式切换指令,以控制空调器以待机模式运行。在空调器处于待机模式时,通过市电供应待机电流以保证该光伏空调器的温度调节系统中各个功能模块的正常运行,在其它变形实施例中,也可通过电池等供电方式对共空调器供电。例如,在空调器正常运行时,可通过蓄电池对光伏组件产生的电能进行储存。
进一步地,为保证室内环境温度的稳定性,步骤S20之后该方法还包括:
步骤S50,所述空调器定时或实时获取室内温度;
步骤S60,当获取的室内温度小于等于预设的启动温度,且预设的启动模式为制冷模式时,所述空调器关闭光伏模式以切断与光伏发电装置的电连接关系,并切换至待机模式运行。
在本实施例中,在室内环境温度下降至低于预设的启动温度时,可控制空调器关闭光伏模式,并切换至待机模式运行,以保证室内温度维持在预设的启动温度。
进一步地,为保证光伏空调器的温度调节系统对空调器控制的准确性,步骤S20包括:
步骤S21,当获取的室内温度大于预设的启动温度,且预设的启动模式为制冷模式时,所述空调器确定获取的室内温度与预设的启动温度之间的差值;
步骤S22,当确定的差值大于等于第一预设阀值时,所述空调器开启光伏模式以导通与光伏发电装置的电连接关系,从光伏发电装置接收的电能进行制冷模式运行。
在本实施例中,为避免室内环境温度浮动,同时节省空调器的能耗,可在获取的室内温度大于预设的启动温度时,确定获取的室内温度与预设的启动温度之间的差值,在获取到的差值大于预设的第一阀值时,控制模块132还用于才开启光伏模式,并基于光伏产生的电量以制冷模式运行。该预设的第一阀值可由用户或者生产厂商进行设定。进一步地,为使光伏空调器的温度调节系统对空调器控制更加准确,可在室内温度与预设的启动温度之间的差值大于预设的第一阀值时,继续获取室内温度与预设的启动温度之间的差值,并在预设的时间间隔内获取的室内温度与预设的启动温度之间的差值大于预设的第一阀值时,空调器开启光伏模式以导通与光伏发电装置的电连接关系,从光伏发电装置接收的电能进行制冷模式运行。
进一步地,为丰富光伏空调器的温度调节系统的功能,步骤S10之后该方法还包括:
步骤S70,当获取的室内温度小于预设的启动温度,且预设的启动模式为制热模式时,所述空调器开启光伏模式以导通与光伏发电装置的电连接关系,从光伏发电装置接收的电能进行制热模式运行。
在本实施例中,在获取的室内温度大于预设的启动温度时,确定预设时间间隔内获取的室内温度是否均大于预设的启动温度,在预设的时间间隔内获取的室内温度均大于预设的启动温度时,开启光伏模式,并基于光伏产生的电量以制热模式运行,避免检测到的温度出现误差或温度抖动导致对空调器的控制不够准确。
在本实施例中,空调器以光伏模式运行时,由于空调器以制热模式运行时耗能较大,可能存在光伏组件产生的电量不足以制热的情况,此时需要光伏组件以及市电联合供电;在温度传感器检测到的温度与预设的启动温度之间的温差较大时,可能光伏组件产生的电能不足以时空调器将室内温度升高至预设的启动温度,此时空调器光伏模式以及市电模式同时运行。
进一步地,为保证室内环境温度的稳定性,步骤S70之后该方法还包括:
步骤S80,所述空调器定时或实时获取室内温度;
步骤S90,当获取的室内温度大于预设的启动温度,且预设的启动模式为制热模式时,所述空调器关闭光伏模式以切断与光伏发电装置的电连接关系,并切换至待机模式运行。
在本实施例中,在室内环境温度升高至高于预设的启动温度时,可控制空调器关闭光伏模式,并切换至待机模式运行,以保证室内温度维持在预设的启动温度。
进一步地,为保证光伏空调器的温度调节系统对空调器控制的准确性,步骤S70包括:
步骤S71,当获取的室内温度大于预设的启动温度,且预设的启动模式为制热模式时,所述空调器确定获取的室内温度与预设的启动温度之间的差值;
步骤S72,当确定的差值大于等于第二预设阀值时,所述空调器开启光伏模式以导通与光伏发电装置的电连接关系,从光伏发电装置接收的电能进行制热模式运行。
在本实施例中,为避免室内环境温度浮动,同时节省空调器的能耗,可在获取的室内温度小于预设的启动温度时,确定获取的室内温度与预设的启动温度之间的差值,在获取到的差值大于预设的第一阀值时,控制模块132还用于才开启光伏模式,并基于光伏产生的电量以制热模式运行。该预设的第一阀值可由用户或者生产厂商进行设定。进一步地,为使光伏空调器的温度调节系统对空调器控制更加准确,可在室内温度与预设的启动温度之间的差值大于预设的第一阀值时,继续获取室内温度与预设的启动温度之间的差值,并在预设的时间间隔内获取的室内温度与预设的启动温度之间的差值大于预设的第一阀值时,空调器开启光伏模式以导通与光伏发电装置的电连接关系,从光伏发电装置接收的电能进行制热模式运行。
参照图5,图5为本发明光伏空调器的温度调节方法第二实施例的流程示意图。
本实施例提出一种光伏空调器的温度调节方法,包括:
步骤S80,在空调器以待机模式运行时,所述空调器定时或实时获取室内温度;
空调器可根据其当前是否运行其制冷以及制热等模式来确定空调器是否处于待机模式。在本实时例中,可在空调器上设置温度传感器来获取室内温度,或者也可在室内其它位置处设置温度传感器来检测室内温度,并将温度传感器与光伏空调器通信连接,该通信连接方式可为有线连接(如R485,串行接口等),也可为无线连接,如蓝牙、红外以及WIFI连接等。进一步地,为保证获取到的室内温度的准确性,可在室内多个位置设置温度传感器,空调器对各个温度温度传感器检测到的数据求平均值,该平均值即为当前室内的准确温度。
在本实施例中,为节省空调器的功耗优选方案为温度检测模块131定时获取室内温度,该定时获取的时间间隔可由用户或者厂商进行设定,例如10min。
步骤S90,当获取的室内温度小于预设的启动温度,且预设的启动模式为制热模式时,所述空调器开启光伏模式以导通与光伏发电装置的电连接关系,从光伏发电装置接收的电能进行制热模式运行。
在本实施例中,用户可在向空调器发送待机切换指令时,设置启动温度以及启动模式。在其它变形实施例中,若用户为预设启动温度和启动模式,空调器可根据用户近期习惯选择启动温度和启动模式,例如,确定预设时间间隔内用户待机模式时设定的各个启动温度和启动模式次数,确定设定次数最多的启动温度以及启动模式,并将设定次数最多的启动温度以及启动模式作为当前待机模式所对应的启动温度以及启动模式;或者获取预设时间间隔内用户运行模式及其运行参数(启动温度)的运行次数,并将运行模式及其运行参数的运行次数最多的运行模式及其运行参数,作为当前待机模式所对应的启动温度以及启动模式。
在本实施例中,当获取的室内温度小于预设的启动温度时,可确定预设的时间间隔内获取的室内温度是否均小于预设的启动温度,在获取的室内温度均小于预设的启动温度时,开启光伏模式,并基于光伏产生的电量以制热模式运行,避免检测到的温度出现误差或温度抖动导致对空调器的控制不够准确。
在本实施例中,空调器以光伏模式运行时,将光伏组件接收到的热能转换为电能,并基于该转换后的电能为空调器供电,以供空调器以制热模式运行;在温度传感器检测到的温度与预设的启动温度之间的温差较大时,可能光伏组件产生的电能不足以时空调器将室内温度降低至预设的启动温度,此时空调器光伏模式以及市电模式同时运行;在其它变形实施中,在温度传感器检测到的温度与预设的启动温度之间的温差较小时,可能导致光伏组件产生的电能过剩,此时,通过电能存储模块存储多余的电量。在本实施例中,可根据检测到的温度与预设的启动温度之间的温差确定以光伏模式运行,或者以光伏模式以及市电模式同时运行,或者以光伏模式运行同时进行储能。
在本实施例中,空调器在以待机模式运行时,若接收到开机指令,可直接以预设的启动温度以及启动模式运行。在其它变形实施例中,也可在向空调器发送待机指令时,设置空调器的启动温度、启动模式以及启动时间,以保证空调器启动的自动化。
本实施例提出的光伏空调器的温度调节系统,用户在离开室内时,可向空调器发送待机指令以控制空调器以待机模式运行,空调器定时或实时获取室内温度,当获取的室内温度小于预设的启动温度,且预设的启动模式为制热模式时,所述空调器开启光伏模式以导通与光伏发电装置的电连接关系,从光伏发电装置接收的电能进行制热模式运行,以保证室内环境温度保持在适宜的温度。
进一步地,为保证室内环境温度的稳定性,步骤S90之后该方法还包括:
步骤S100,所述空调器定时或实时获取室内温度;
步骤S110,当获取的室内温度大于预设的启动温度,且预设的启动模式为制热模式时,所述空调器关闭光伏模式以切断与光伏发电装置的电连接关系,并切换至待机模式运行。
在本实施例中,在室内环境温度升高至高于预设的启动温度时,可控制空调器关闭光伏模式,并切换至待机模式运行,以保证室内温度维持在预设的启动温度。
进一步地,为保证光伏空调器的温度调节系统对空调器控制的准确性,步骤S90包括:
步骤S91,当获取的室内温度大于预设的启动温度,且预设的启动模式为制热模式时,所述空调器确定获取的室内温度与预设的启动温度之间的差值;
步骤S92,当确定的差值大于等于第二预设阀值时,所述空调器开启光伏模式以导通与光伏发电装置的电连接关系,从光伏发电装置接收的电能进行制热模式运行。
在本实施例中,为避免室内环境温度浮动,同时节省空调器的能耗,可在获取的室内温度小于预设的启动温度时,确定获取的室内温度与预设的启动温度之间的差值,在获取到的差值大于预设的第一阀值时,控制模块132还用于才开启光伏模式,并基于光伏产生的电量以制热模式运行。该预设的第一阀值可由用户或者生产厂商进行设定。进一步地,为使光伏空调器的温度调节系统对空调器控制更加准确,可在室内温度与预设的启动温度之间的差值大于预设的第一阀值时,继续获取室内温度与预设的启动温度之间的差值,并在预设的时间间隔内获取的室内温度与预设的启动温度之间的差值大于预设的第一阀值时,空调器开启光伏模式以导通与光伏发电装置的电连接关系,从光伏发电装置接收的电能进行制热模式运行。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (14)

1、一种光伏空调器的温度调节方法,其特征在于,包括:
在空调器以待机模式运行时,所述空调器定时或实时获取室内温度;
当获取的室内温度大于预设的启动温度,且预设的启动模式为制冷模式时,所述空调器开启光伏模式以导通与光伏发电装置的电连接关系,并基于从光伏发电装置接收的电能进行制冷模式运行。
根据权利要求1所述的方法,其特征在于,所述在空调器以待机模式运行时,所述空调器定时或实时获取室内温度的步骤之前该方法还包括:
在侦测到待机模式切换指令时,所述空调器关闭光伏模式以截止与光伏发电装置的电连接关系;
所述空调器以待机模式运行,并通过市电供应待机电流。
根据权利要求1所述的方法,其特征在于,所述当获取的室内温度大于预设的启动温度,且预设的启动模式为制冷模式时,所述空调器开启光伏模式以导通与光伏发电装置的电连接关系,并基于从光伏发电装置接收的电能进行制冷模式运行的步骤之后,该方法还包括:
所述空调器定时或实时获取室内温度;
当获取的室内温度小于等于预设的启动温度,且预设的启动模式为制冷模式时,所述空调器关闭光伏模式以切断与光伏发电装置的电连接关系,并切换至待机模式运行。
根据权利要求1所述的方法,其特征在于,当获取的室内温度大于预设的启动温度,且预设的启动模式为制冷模式时,所述空调器开启光伏模式以导通与光伏发电装置的电连接关系,从光伏发电装置接收的电能进行制冷模式运行的步骤包括:
当获取的室内温度大于预设的启动温度,且预设的启动模式为制冷模式时,所述空调器确定获取的室内温度与预设的启动温度之间的差值;
当确定的差值大于等于第一预设阀值时,所述空调器开启光伏模式以导通与光伏发电装置的电连接关系,从光伏发电装置接收的电能进行制冷模式运行。
根据权利要求1所述的方法,其特征在于,所述在空调器以待机模式运行时,所述空调器定时或实时获取室内温度的步骤之后,该方法还包括:
当获取的室内温度小于预设的启动温度,且预设的启动模式为制热模式时,所述空调器开启光伏模式以导通与光伏发电装置的电连接关系,从光伏发电装置接收的电能进行制热模式运行。
根据权利要求5所述的方法,其特征在于,所述当获取的室内温度小于预设的启动温度,且预设的启动模式为制热模式时,所述空调器开启光伏模式以导通与光伏发电装置的电连接关系,从光伏发电装置接收的电能进行制热模式运行的步骤之后,该方法还包括:
所述空调器定时或实时获取室内温度;
当获取的室内温度大于预设的启动温度,且预设的启动模式为制热模式时,所述空调器关闭光伏模式以切断与光伏发电装置的电连接关系,并切换至待机模式运行。
根据权利要求5所述的方法,其特征在于,所述当获取的室内温度小于预设的启动温度,且预设的启动模式为制热模式时,所述空调器开启光伏模式以导通与光伏发电装置的电连接关系,从光伏发电装置接收的电能进行制热模式运行的步骤包括:
当获取的室内温度大于预设的启动温度,且预设的启动模式为制热模式时,所述空调器确定获取的室内温度与预设的启动温度之间的差值;
当确定的差值大于等于第二预设阀值时,所述空调器开启光伏模式以导通与光伏发电装置的电连接关系,从光伏发电装置接收的电能进行制热模式运行。
一种光伏空调器的温度调节系统,其特征在于,该光伏空调器的温度调节系统包括:
第一温度检测模块,用于在空调器以待机模式运行时,定时或实时获取室内温度;
第一控制模块,用于当获取的室内温度大于预设的启动温度,且预设的启动模式为制冷模式时,开启光伏模式,并基于光伏产生的电量以制冷模式运行。
根据权利要求8所述的系统,其特征在于,所述第一控制模块还用于在侦测到待机模式切换指令时,关闭光伏模式,以待机模式运行,并通过市电供应待机电流。
根据权利要求8所述的系统,其特征在于,所述第一温度检测模块还用于第一控制模块开启光伏模式,并控制空调器基于光伏产生的电量以制冷模式运行之后,定时或实时获取室内温度;所述第一控制模块还用于当获取的室内温度小于等于预设的启动温度,且预设的启动模式为制冷模式时,关闭光伏模式,并切换至待机模式运行。
根据权利要求8所述的系统,其特征在于,该空调器的温度调节系统还包括确定模块,用于当获取的室内温度大于预设的启动温度,且预设的启动模式为制冷模式时,确定获取的室内温度与预设的启动温度之间的差值;所述第一控制模块还用于当确定的差值大于等于第一预设阀值时,开启光伏模式,并基于光伏产生的电量以制冷模式运行。
根据权利要求8所述的系统,其特征在于,所述第一控制模块还用于当获取的室内温度小于预设的启动温度,且预设的启动模式为制热模式时,开启光伏模式,并基于光伏产生的电量以制热模式运行。
根据权利要求8所述的系统,其特征在于,所述第一温度检测模块还用于第一控制模块开启光伏模式,并控制空调器基于光伏产生的电量以制热模式运行之后,定时或实时获取室内温度;所述第一控制模块还用于当获取的室内温度大于预设的启动温度,且预设的启动模式为制热模式时,关闭光伏模式,并切换至待机模式运行。
根据权利要求13所述的系统,其特征在于,确定模块还用于当获取的室内温度大于预设的启动温度,且预设的启动模式为制热模式时,确定获取的室内温度与预设的启动温度之间的差值;所述第一控制模块还用于当确定的差值大于等于第二预设阀值时,开启光伏模式,并基于光伏产生的电量以制热模式运行。
PCT/CN2014/087798 2014-03-26 2014-09-29 光伏空调器的温度调节方法和系统 WO2015143859A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410117870.7 2014-03-26
CN201410117870.7A CN103925680A (zh) 2014-03-26 2014-03-26 光伏空调器的温度调节方法和系统

Publications (1)

Publication Number Publication Date
WO2015143859A1 true WO2015143859A1 (zh) 2015-10-01

Family

ID=51143982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087798 WO2015143859A1 (zh) 2014-03-26 2014-09-29 光伏空调器的温度调节方法和系统

Country Status (2)

Country Link
CN (1) CN103925680A (zh)
WO (1) WO2015143859A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114791137A (zh) * 2022-05-30 2022-07-26 青岛海信日立空调系统有限公司 空调管理系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103925680A (zh) * 2014-03-26 2014-07-16 广东美的制冷设备有限公司 光伏空调器的温度调节方法和系统
CN104828103B (zh) * 2015-04-13 2017-06-30 中车唐山机车车辆有限公司 空调机组与柴油发电机组的闭环控制方法
CN109899941A (zh) * 2019-03-26 2019-06-18 安徽鼎博新能源科技发展有限公司 一种光伏发电智能调控温度系统及其温度调控方法
CN111121256A (zh) * 2020-01-06 2020-05-08 北京小米移动软件有限公司 空调的控制方法、装置及存储介质
CN113465058B (zh) * 2021-04-26 2023-01-13 青岛海尔空调器有限总公司 一种光伏空调器及其控制方法、电子设备和可读存储介质
CN113932377A (zh) * 2021-10-28 2022-01-14 珠海格力电器股份有限公司 光伏空调及其控制方法、计算机可读存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20312719U1 (de) * 2003-08-18 2004-04-22 Schulte, Gerhard Universell aufsetzbares Energiedach
TW200842228A (en) * 2007-04-16 2008-11-01 Asustek Comp Inc Optoelectronic transformation structure and temperature control system using the same
KR20120007939A (ko) * 2010-08-09 2012-01-25 엘지전자 주식회사 공기조화기
CN103225861A (zh) * 2013-05-17 2013-07-31 陈毅丹 冷热量储存式太阳能空调装置
CN103453604A (zh) * 2013-08-23 2013-12-18 清华大学 一种太阳能空调系统
CN203375584U (zh) * 2013-05-17 2014-01-01 陈毅丹 冷热量储存式太阳能空调装置
CN103925680A (zh) * 2014-03-26 2014-07-16 广东美的制冷设备有限公司 光伏空调器的温度调节方法和系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20312719U1 (de) * 2003-08-18 2004-04-22 Schulte, Gerhard Universell aufsetzbares Energiedach
TW200842228A (en) * 2007-04-16 2008-11-01 Asustek Comp Inc Optoelectronic transformation structure and temperature control system using the same
KR20120007939A (ko) * 2010-08-09 2012-01-25 엘지전자 주식회사 공기조화기
CN103225861A (zh) * 2013-05-17 2013-07-31 陈毅丹 冷热量储存式太阳能空调装置
CN203375584U (zh) * 2013-05-17 2014-01-01 陈毅丹 冷热量储存式太阳能空调装置
CN103453604A (zh) * 2013-08-23 2013-12-18 清华大学 一种太阳能空调系统
CN103925680A (zh) * 2014-03-26 2014-07-16 广东美的制冷设备有限公司 光伏空调器的温度调节方法和系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114791137A (zh) * 2022-05-30 2022-07-26 青岛海信日立空调系统有限公司 空调管理系统
CN114791137B (zh) * 2022-05-30 2023-10-27 青岛海信日立空调系统有限公司 空调管理系统

Also Published As

Publication number Publication date
CN103925680A (zh) 2014-07-16

Similar Documents

Publication Publication Date Title
WO2015143859A1 (zh) 光伏空调器的温度调节方法和系统
WO2017041337A1 (zh) 空调器的控制方法、终端及系统
WO2019051905A1 (zh) 空调器控制方法、空调器及计算机可读存储介质
WO2019051893A1 (zh) 基于空调器的控制方法、空调器、家居系统、及存储介质
WO2017088438A1 (zh) 无线路由器及其控制方法
WO2015106390A1 (zh) 电子烟识别装置、电子烟盒及对电子烟进行识别的方法
WO2019051909A1 (zh) 空调器运行参数调整方法、空调器及计算机可读存储介质
WO2016200146A1 (en) Portable device, content reproducing device, and the method thereof
WO2020080804A1 (en) Electronic device and method for wired or wireless charging in electronic device
WO2016182249A1 (ko) 냉장고 및 그 제어 방법
WO2018153133A1 (zh) 一种家用电器检测方法及系统
WO2019051903A1 (zh) 终端控制方法、装置及计算机可读存储介质
WO2015058455A1 (zh) 空调器及其控制方法、控制终端
WO2018058956A1 (zh) 一种交流电机控制方法、装置及空调器
WO2019068241A1 (zh) 空气处理系统及其控制方法、装置及计算机可读存储介质
WO2019114269A1 (zh) 一种节目续播方法、电视设备及计算机可读存储介质
WO2019062113A1 (zh) 家电设备的控制方法、装置、家电设备及可读存储介质
WO2016187998A1 (zh) 动态调整背光方法及装置
WO2019114127A1 (zh) 空气调节器的语音播报方法及装置
WO2017095208A1 (en) Method and apparatus for managing device using at least one sensor
WO2018058826A1 (zh) 电视机节能待机快速开机的方法及装置
WO2017088427A1 (zh) 音频输出控制方法及装置
WO2019169717A1 (zh) 空调器及其的控制方法和计算机可读存储介质
WO2019071762A1 (zh) 楼层位置定位方法、系统、服务器和计算机可读存储介质
EP3338444A1 (en) Image capturing apparatus and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14886985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14886985

Country of ref document: EP

Kind code of ref document: A1