WO2015141664A1 - アーク溶接制御方法 - Google Patents

アーク溶接制御方法 Download PDF

Info

Publication number
WO2015141664A1
WO2015141664A1 PCT/JP2015/057874 JP2015057874W WO2015141664A1 WO 2015141664 A1 WO2015141664 A1 WO 2015141664A1 JP 2015057874 W JP2015057874 W JP 2015057874W WO 2015141664 A1 WO2015141664 A1 WO 2015141664A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
feed
amplitude
period
speed
Prior art date
Application number
PCT/JP2015/057874
Other languages
English (en)
French (fr)
Inventor
章博 井手
Original Assignee
株式会社ダイヘン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイヘン filed Critical 株式会社ダイヘン
Priority to KR1020167018101A priority Critical patent/KR102224414B1/ko
Priority to US15/122,288 priority patent/US10220464B2/en
Priority to CN201580003081.3A priority patent/CN105829006B/zh
Priority to EP15765474.0A priority patent/EP3120963B1/en
Priority to JP2016508731A priority patent/JP6544865B2/ja
Publication of WO2015141664A1 publication Critical patent/WO2015141664A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/124Circuits or methods for feeding welding wire
    • B23K9/125Feeding of electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/06Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
    • B23K9/073Stabilising the arc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage
    • B23K9/091Arrangements or circuits for arc welding with pulsed current or voltage characterised by the circuits
    • B23K9/092Arrangements or circuits for arc welding with pulsed current or voltage characterised by the circuits characterised by the shape of the pulses produced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage
    • B23K9/091Arrangements or circuits for arc welding with pulsed current or voltage characterised by the circuits
    • B23K9/093Arrangements or circuits for arc welding with pulsed current or voltage characterised by the circuits the frequency of the pulses produced being modulatable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/124Circuits or methods for feeding welding wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode

Definitions

  • the present invention relates to an arc welding control method in which welding is performed by generating a short circuit period and an arc period by repeating normal feeding and reverse feeding of a feeding speed of a welding wire at a predetermined cycle and a predetermined amplitude. .
  • a welding wire as a consumable electrode is fed at a constant speed, and an arc is generated between the welding wire and the base material to perform welding.
  • the welding wire and the base material are often in a welding state in which a short circuit period and an arc period are alternately repeated.
  • FIG. 4 is a waveform diagram in the welding method in which the feeding speed is periodically forwarded and reversed.
  • FIG. 4A shows the waveform of the feeding speed Fw
  • FIG. 4B shows the waveform of the welding current Iw
  • FIG. 4C shows the waveform of the welding voltage Vw.
  • the feed speed Fw is a forward feed period above 0 and a reverse feed period below. Forward feeding is feeding in the direction in which the welding wire is brought closer to the base material, and reverse feeding is feeding in a direction away from the base material.
  • the feeding speed Fw changes in a sine wave shape and has a waveform shifted to the forward feeding side. For this reason, the average value of the feeding speed Fw is a positive value, and the welding wire is fed forward on average.
  • the feeding speed Fw is 0 at time t1
  • the period from time t1 to t2 is the forward acceleration period
  • the maximum value of forward feeding at time t2 and the time t2 to
  • the period of t3 is the forward deceleration period
  • the period of time t3 to t4 is the reverse acceleration period
  • the period of time t4 to t5 is the reverse deceleration period It becomes.
  • the period from time t5 to t6 again becomes the normal feed acceleration period
  • the period from time t6 to t7 again becomes the normal feed deceleration period.
  • the feed speed Fw is determined by the period Tf (ms) from time t1 to t5, the amplitude Wf (mm / min) that is the difference between the maximum value of forward feed at time t2 and the maximum value of reverse feed at time t4,
  • the feeding side shift amount Sf (mm / min) is repeated with the feeding speed pattern set to a predetermined value.
  • the feeding speed Fw is in the reverse feed period from time t3, so the welding wire is fed backward.
  • the short circuit is released by this reverse feed, and the arc is regenerated at time t31.
  • the reoccurrence of the arc often occurs before and after the maximum reverse feed value at time t4.
  • the case occurs at time t31 during the reverse acceleration period before the reverse peak value. Therefore, the period from time t21 to t31 is a short circuit period.
  • the welding voltage Vw When the arc is regenerated at time t31, the welding voltage Vw rapidly increases to an arc voltage value of several tens of volts as shown in FIG. As shown in FIG. 5B, the welding current Iw starts to change from the maximum value during the short circuit period.
  • the feeding speed Fw is in the reverse feeding state, so that the welding wire is pulled up and the arc length is gradually increased.
  • the welding voltage Vw increases and the welding current Iw decreases because constant voltage control is performed. Therefore, during the arc period reverse feed period Tar from time t31 to t5, the welding voltage Vw gradually increases as shown in FIG. 3C, and the welding current Iw gradually decreases as shown in FIG. Become.
  • the period from time t31 to t61 is the arc period.
  • the feed speed Fw is in the forward feed state, so the welding wire is fed forward and the arc length is gradually shortened.
  • the welding voltage Vw is reduced and the constant current control is performed, so that the welding current Iw is increased. Therefore, during the arc period normal feed period Tas from time t5 to t61, the welding voltage Vw gradually decreases as shown in FIG. 3C, and the welding current Iw gradually increases as shown in FIG. Become.
  • the average value of the feeding speed according to the welding current set value is used, and the frequency and amplitude of the forward and reverse feeding of the welding wire are values according to the welding current set value.
  • the welding state is unstable if the welding wire feed speed pattern remains the same at low and high welding speeds. become. Similarly, the welding state becomes unstable if the welding wire feed speed pattern remains the same between the case where the wire welding amount per unit welding length is small and the case where it is large.
  • arc welding control that can keep the welding state stable even when the welding speed or the amount of wire welding per unit welding length changes in arc welding in which forward and reverse feeding of the welding wire is repeated. It aims to provide a method.
  • the present invention provides: In the arc welding control method of performing welding by generating a short circuit period and an arc period by repeating the forward feed and the reverse feed of the feeding speed of the welding wire at a predetermined cycle and a predetermined amplitude, Setting the period and / or the amplitude based on the welding speed or the amount of wire deposited per unit weld length; An arc welding control method characterized by the above.
  • the present invention controls the feeding speed so that the average value of the feeding speed is constant even when the amplitude changes.
  • the period and / or amplitude of the feeding speed changes to an appropriate value, so that a stable welding state can be maintained.
  • the cycle and / or amplitude of the feeding speed is set based on the welding speed.
  • FIG. 1 is a block diagram of a welding power source for carrying out the arc welding control method according to Embodiment 1 of the present invention. Hereinafter, each block will be described with reference to FIG.
  • the power supply main circuit PM receives a commercial power supply (not shown) such as a three-phase 200V, performs output control by inverter control or the like according to a drive signal Dv described later, and outputs an output voltage E.
  • a commercial power supply such as a three-phase 200V
  • the power supply main circuit PM is driven by a primary rectifier that rectifies commercial power, a smoothing capacitor that smoothes the rectified direct current, and the drive signal Dv that converts the smoothed direct current to high-frequency alternating current.
  • An inverter circuit a high-frequency transformer that steps down the high-frequency alternating current to a voltage value suitable for welding, and a secondary rectifier that rectifies the stepped-down high-frequency alternating current into direct current.
  • the reactor WL smoothes the output voltage E described above.
  • the inductance value of the reactor WL is, for example, 200 ⁇ H.
  • the feed motor WM receives a feed control signal Fc, which will be described later, and feeds the welding wire 1 at a feed speed Fw by periodically repeating forward feed and reverse feed.
  • a motor with fast transient response is used as the feed motor WM.
  • the feeding motor WM may be installed near the tip of the welding torch 4. In some cases, two feed motors WM are used to form a push-pull feed system.
  • the welding wire 1 is fed through the welding torch 4 by the rotation of the feeding roll 5 coupled to the feeding motor WM, and an arc 3 is generated between the base metal 2 and the welding wire 1.
  • a welding voltage Vw is applied between the power feed tip (not shown) in the welding torch 4 and the base material 2, and a welding current Iw is conducted.
  • the output voltage setting circuit ER outputs a predetermined output voltage setting signal Er.
  • the output voltage detection circuit ED detects and smoothes the output voltage E and outputs an output voltage detection signal Ed.
  • the voltage error amplification circuit EA receives the output voltage setting signal Er and the output voltage detection signal Ed, and amplifies an error between the output voltage setting signal Er (+) and the output voltage detection signal Ed ( ⁇ ).
  • the voltage error amplification signal Ea is output.
  • the welding power source is controlled at a constant voltage.
  • the drive circuit DV receives the voltage error amplification signal Ea, performs PWM modulation control based on the voltage error amplification signal Ea, and outputs a drive signal Dv for driving the inverter circuit in the power supply main circuit PM. To do.
  • the average feed speed setting circuit FAR outputs a predetermined average feed speed setting signal Far.
  • the welding speed setting circuit WSR outputs a predetermined welding speed setting signal Wsr.
  • the period setting circuit TFR receives the average feed speed setting signal Far and the welding speed setting signal Wsr as described above, calculates a period using a predetermined period setting function, and outputs a period setting signal Tfr.
  • This period setting function is calculated in advance by experiments.
  • the cycle setting signal Tfr has a proportional relationship of increasing.
  • the welding speed setting signal Wsr increases, the cycle setting signal Tfr is in an inversely proportional relationship.
  • the amplitude setting circuit WFR receives the average feed speed setting signal Far and the welding speed setting signal Wsr as described above, calculates an amplitude using a predetermined amplitude setting function, and outputs an amplitude setting signal Wfr.
  • This amplitude setting function is calculated in advance by experiments.
  • the amplitude setting signal Wfr has a proportional relationship of increasing.
  • the amplitude setting signal Wfr is in an inversely proportional relationship.
  • the forward feed shift amount setting circuit SFR outputs a predetermined forward feed shift amount setting signal Sfr.
  • the feed speed setting circuit FR receives the period setting signal Tfr, the amplitude setting signal Wfr, and the normal shift side shift amount setting signal Sfr as inputs, and is determined by the period and amplitude setting signal Wfr determined by the period setting signal Tfr.
  • a feed speed pattern obtained by shifting the sine wave formed from the amplitude by the forward feed side shift amount determined by the forward feed side shift amount setting signal Sfr is output as the feed speed setting signal Fr.
  • the feed speed setting signal Fr is 0 or more, it is a forward feed period, and when it is less than 0, it is a reverse feed period.
  • the feed control circuit FC receives the feed speed setting signal Fr and inputs the feed control signal Fc for feeding the welding wire 1 at the feed speed Fw corresponding to the value of the feed speed setting signal Fr. To the feed motor WM.
  • FIG. 1 are the same as those in FIG. 4 described above, and the description thereof will not be repeated.
  • the period setting signal Tfr is set to an appropriate value by the period setting circuit TFR
  • the amplitude setting signal Wfr is set to an appropriate value by the amplitude setting circuit WFR.
  • FIG. 4A when the welding speed changes, the period Tf and the amplitude Wf automatically change to appropriate values. For this reason, the stable welding state can be maintained.
  • FIG. 1 illustrates the case where both the cycle setting signal Tfr and the amplitude setting signal Wfr change based on the welding speed setting signal Wsr, only one of them may be changed.
  • the feeding speed pattern is a sine wave has been described, it may be a triangular wave, a trapezoidal wave or the like.
  • the cycle and / or amplitude of the feeding speed is set based on the welding speed. Therefore, even if the welding speed changes, the period and / or amplitude of the feeding speed changes to an appropriate value, so that a stable welding state can be maintained.
  • the cycle and / or amplitude of the feeding speed is set based on the amount of wire welding per unit weld length.
  • FIG. 2 is a block diagram of a welding power source for carrying out the arc welding control method according to the second embodiment of the present invention. This figure corresponds to FIG. 1 described above, and the same reference numerals are given to the same blocks and their description will not be repeated.
  • a welding wire radius setting circuit DR and a wire welding amount calculation circuit MD per unit weld length are added to FIG. 1, and the cycle setting circuit TFR in FIG. 1 is replaced with a second cycle setting circuit TFR2.
  • the amplitude setting circuit WFR is replaced with a second amplitude setting circuit WFR2.
  • the welding wire radius setting circuit DR sets the radius of the welding wire to be used and outputs a welding wire radius setting signal dr.
  • the wire welding amount calculation circuit MD per unit welding length receives the welding wire radius setting signal dr, the average feed speed setting signal Far, and the welding speed setting signal Wsr, and inputs the unit welding length according to the above-described equation (1). A wire welding amount per unit length is calculated, and a wire welding amount signal Md per unit welding length is output.
  • the second cycle setting circuit TFR2 receives the wire welding amount signal Md per unit weld length as an input, calculates a cycle by a predetermined second cycle setting function, and outputs a cycle setting signal Tfr. This second period setting function is calculated in advance by experiments. As the wire welding amount signal Md per unit welding length increases, the cycle setting signal Tfr has a proportional relationship of increasing.
  • the second amplitude setting circuit WFR2 receives the wire welding amount signal Md per unit welding length as an input, calculates the amplitude by a predetermined second amplitude setting function, and outputs the amplitude setting signal Wfr.
  • This second amplitude setting function is calculated in advance by experiments. As the wire welding amount signal Md per unit welding length increases, the amplitude setting signal Wfr has a proportional relationship of increasing.
  • the cycle and / or amplitude of the feeding speed is set based on the amount of wire welding per unit weld length.
  • the invention of the third embodiment controls the feeding speed so that the average value of the feeding speed becomes constant even when the amplitude (amplitude setting signal Wfr) changes in the first or second embodiment. .
  • FIG. 3 is a block diagram of a welding power source for carrying out the arc welding control method according to the third embodiment of the present invention. This figure corresponds to FIG. 1 described above, and the same reference numerals are given to the same blocks and their description will not be repeated.
  • an average feed speed calculation circuit FAD and a feed error amplification circuit EF are added to FIG. 1, and the forward feed shift amount setting circuit SFR in FIG. 1 is replaced with a second forward feed shift amount setting circuit SFR2. Is.
  • these blocks will be described with reference to FIG.
  • the average feeding speed calculation circuit FAD receives the feeding speed setting signal Fr, calculates an average feeding speed per cycle, and outputs an average feeding speed calculation signal Fad.
  • the feed error amplifying circuit EF receives the average feed speed setting signal Far and the average feed speed calculation signal Fad, and receives the average feed speed setting signal Far (+) and the average feed speed calculation signal Fad ( ⁇ ). And a feed error amplification signal Ef is output.
  • the second forward feed side shift amount setting circuit SFR2 receives the feed error amplification signal Ef, integrates the feed error amplification signal Ef, and outputs a forward feed side shift amount setting signal Sfr.
  • the value of the normal feed side shift amount setting signal Sfr is feedback-controlled so that the value of the average feed speed calculation signal Fad becomes equal to the value of the average feed speed setting signal Far.
  • the period setting signal Tfr is set to an appropriate value by the period setting circuit TFR
  • the amplitude setting signal Wfr is set to an appropriate value by the amplitude setting circuit WFR.
  • the second-feed-side shift amount setting circuit SFR2 sets the forward-feed-side shift amount setting signal Sfr so that the average feed-speed calculation signal Fad becomes equal to the average feed-speed setting signal Far. Feedback controlled.
  • FIG. 3 shows the case where the forward-feed-side shift amount automatic correction function is added on the basis of the first embodiment, but the same applies to the case of adding on the basis of the second embodiment, and the drawings and the description thereof are omitted.
  • the second cycle setting circuit TFR2 changes the cycle setting signal Tfr. Is set to an appropriate value, and the amplitude setting signal Wfr is set to an appropriate value by the second amplitude setting circuit WFR2.
  • the forward feed side shift amount is set so that the average feed speed calculation signal Fad becomes equal to the average feed speed setting signal Far by the added second forward feed side shift amount setting circuit SFR2.
  • the signal Sfr is feedback controlled.
  • the period Tf and the amplitude Wf automatically change to appropriate values so that the average value of the feeding speed Fw becomes constant.
  • the forward shift amount Sf automatically changes. Since the average value of the feeding speed is constant, a more stable welding state can be maintained.
  • the feeding speed is controlled so that the average value of the feeding speed remains constant even if the amplitude changes.
  • the average value of the feeding speed is constant even if the welding speed or the amount of wire welding per unit welding length changes and the feeding speed amplitude changes. Therefore, a more stable welding state can be maintained.
  • the arc welding control which can maintain a welding state stably, even if the welding speed or the amount of wire welding per unit welding length changes in the arc welding which repeats the forward feed and reverse feed of a welding wire A method can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding Control (AREA)

Abstract

 溶接ワイヤ(1)の正送と逆送とを周期的に繰り返して行うアーク溶接の安定性を向上させる。 溶接ワイヤ(1)の送給速度(Fw)の正送と逆送とを所定の周期(Tf)及び所定の振幅(Wf)で繰り返して、短絡期間とアーク期間とを発生させて溶接を行うアーク溶接制御方法において、平均送給速度(Far)及び溶接速度(Wsr)、又は、単位溶接長さ当たりのワイヤ溶着量(Md)、に基づいて、送給速度(Fw)の周期(Tf)及び/又は振幅(Wf)を自動的に設定する。さらに、振幅(Wf)が変化した場合には、送給速度(Fw)の平均値が一定になるように正送側シフト量(Sf)をフィードバック制御する。これにより、送給速度(Fw)の周期(Tf)及び振幅(Wf)が常に適正値に設定されるので、安定した溶接状態を保つことができる。

Description

アーク溶接制御方法
 本発明は、溶接ワイヤの送給速度の正送と逆送とを所定の周期及び所定の振幅で繰り返して、短絡期間とアーク期間とを発生させて溶接を行うアーク溶接制御方法に関するものである。
 一般的な消耗電極式アーク溶接では、消耗電極である溶接ワイヤを一定速度で送給し、溶接ワイヤと母材との間にアークを発生させて溶接が行なわれる。消耗電極式アーク溶接では、溶接ワイヤと母材とが短絡期間とアーク期間とを交互に繰り返す溶接状態になることが多い。
 溶接品質をさらに向上させるために、溶接ワイヤの正送と逆送とを周期的に繰り返して溶接する方法が提案されている(例えば、特許文献1参照)。以下、この溶接方法について説明する。
 図4は、送給速度の正送と逆送とを周期的に繰り返す溶接方法における波形図である。同図(A)は送給速度Fwの波形を示し、同図(B)は溶接電流Iwの波形を示し、同図(C)は溶接電圧Vwの波形を示す。以下、同図を参照して説明する。
 同図(A)に示すように、送給速度Fwは、0よりも上側が正送期間となり、下側が逆送期間となる。正送とは溶接ワイヤを母材に近づける方向に送給することであり、逆送とは母材から離反する方向に送給することである。送給速度Fwは、正弦波状に変化しており、正送側にシフトした波形となっている。このために、送給速度Fwの平均値は正の値となり、溶接ワイヤは平均的には正送されている。
 同図(A)に示すように、送給速度Fwは、時刻t1時点では0であり、時刻t1~t2の期間は正送加速期間となり、時刻t2で正送の最大値となり、時刻t2~t3の期間は正送減速期間となり、時刻t3で0となり、時刻t3~t4の期間は逆送加速期間となり、時刻t4で逆送の最大値となり、時刻t4~t5の期間は逆送減速期間となる。そして、時刻t5~t6の期間は再び正送加速期間となり、時刻t6~t7の期間は再び正送減速期間となる。したがって、送給速度Fwは、時刻t1~t5の周期Tf(ms)、時刻t2の正送の最大値と時刻t4の逆送の最大値との差である振幅Wf(mm/min)及び正送側シフト量Sf(mm/min)が所定値に設定された送給速度パターンで繰り返すことになる。
 溶接ワイヤと母材との短絡は、時刻t2の正送最大値の前後で発生することが多い。同図では、正送最大値の後の正送減速期間中の時刻t21で発生した場合である。時刻t21において短絡が発生すると、同図(C)に示すように、溶接電圧Vwは数Vの短絡電圧値に急減し、同図(B)に示すように、溶接電流Iwは次第に増加する。
 同図(A)に示すように、送給速度Fwは、時刻t3からは逆送期間になるので、溶接ワイヤは逆送される。この逆送によって短絡が解除されて、時刻t31においてアークが再発生する。アークの再発生は、時刻t4の逆送最大値の前後で発生することが多い。同図では、逆送ピーク値の前の逆送加速期間中の時刻t31で発生した場合である。したがって、時刻t21~t31の期間が短絡期間となる。
 時刻t31においてアークが再発生すると、同図(C)に示すように、溶接電圧Vwは数十Vのアーク電圧値に急増する。同図(B)に示すように、溶接電流Iwは、短絡期間中の最大値の状態から変化を開始する。
 時刻t31~t5の期間中は、同図(A)に示すように、送給速度Fwは逆送状態であるので、溶接ワイヤは引き上げられてアーク長は次第に長くなる。アーク長が長くなると、溶接電圧Vwは大きくなり、定電圧制御されているので溶接電流Iwは小さくなる。したがって、時刻t31~t5のアーク期間逆送期間Tar中は、同図(C)に示すように、溶接電圧Vwは次第に大きくなり、同図(B)に示すように、溶接電流Iwは次第に小さくなる。
 そして、次の短絡が、時刻t6~t7の正送減速期間中の時刻t61に発生する。但し、時刻t61に発生した短絡は、時刻t21に発生した短絡よりも正送最大値からの時間(位相)が遅くなっている。このように短絡が発生するタイミングは、ある程度のばらつきを有している。時刻t31~t61の期間がアーク期間となる。時刻t5~t61の期間中は、同図(A)に示すように、送給速度Fwは正送状態であるので、溶接ワイヤは正送されてアーク長は次第に短くなる。アーク長が短くなると、溶接電圧Vwは小さくなり、定電圧制御されているので溶接電流Iwは大きくなる。したがって、時刻t5~t61のアーク期間正送期間Tas中は、同図(C)に示すように、溶接電圧Vwは次第に小さくなり、同図(B)に示すように、溶接電流Iwは次第に大きくなる。
 上述したように、溶接ワイヤの正送と逆送とを繰り返す溶接方法では、定速送給の従来技術では不可能であった短絡とアークとの繰り返しの周期を所望値に設定することができるので、スパッタ発生量の削減、ビード外観の改善等の溶接品質の向上を図ることができる。
 特許文献1の発明では、溶接電流設定値に応じた送給速度の平均値とし、溶接ワイヤの正送と逆送との周波数及び振幅を溶接電流設定値に応じた値とする。これにより、溶接電流設定値が変化しても安定した溶接を行うことができる。
日本国特許第5201266号公報
 しかし、溶接電流設定値(送給速度平均値)が同一であっても、溶接速度が低速の場合と高速の場合とで溶接ワイヤの送給速度パターンが同一のままでは、溶接状態が不安定になる。同様に、単位溶接長さ当たりのワイヤ溶着量が小さい場合と大きい場合とで溶接ワイヤの送給速度パターンが同一のままでは、溶接状態が不安定になる。
 そこで、本発明では、溶接ワイヤの正送と逆送とを繰り返すアーク溶接において、溶接速度又は単位溶接長さ当たりのワイヤ溶着量が変化しても溶接状態を安定に保つことができるアーク溶接制御方法を提供することを目的とする。
 上述した課題を解決するために、本発明は、
溶接ワイヤの送給速度の正送と逆送とを所定の周期及び所定の振幅で繰り返して、短絡期間とアーク期間とを発生させて溶接を行うアーク溶接制御方法において、
 溶接速度又は単位溶接長さ当たりのワイヤ溶着量に基づいて前記周期及び/又は前記振幅を設定する、
ことを特徴とするアーク溶接制御方法である。
 本発明は、前記振幅が変化しても前記送給速度の平均値が一定になるように前記送給速度を制御する、
ことを特徴とするアーク溶接制御方法である。
 本発明によれば、溶接速度又は単位溶接長さ当たりのワイヤ溶着量が変化しても、送給速度の周期及び/又は振幅が適正値に変化するので、安定した溶接状態を保つことができる。
本発明の実施の形態1に係るアーク溶接制御方法を実施するための溶接電源のブロック図である。 本発明の実施の形態2に係るアーク溶接制御方法を実施するための溶接電源のブロック図である。 本発明の実施の形態3に係るアーク溶接制御方法を実施するための溶接電源のブロック図である。 従来技術において、送給速度の正送と逆送とを周期的に繰り返す溶接方法における波形図である。
 以下、図面を参照して本発明の実施の形態について説明する。
[実施の形態1]
 実施の形態1の発明は、溶接速度に基づいて送給速度の周期及び/又は振幅を設定するものである。
 図1は、本発明の実施の形態1に係るアーク溶接制御方法を実施するための溶接電源のブロック図である。以下、同図を参照して各ブロックについて説明する。
 電源主回路PMは、3相200V等の商用電源(図示は省略)を入力として、後述する駆動信号Dvに従ってインバータ制御等による出力制御を行い、出力電圧Eを出力する。この電源主回路PMは、図示は省略するが、商用電源を整流する1次整流器、整流された直流を平滑する平滑コンデンサ、平滑された直流を高周波交流に変換する上記の駆動信号Dvによって駆動されるインバータ回路、高周波交流を溶接に適した電圧値に降圧する高周波変圧器、降圧された高周波交流を直流に整流する2次整流器を備えている。
 リアクトルWLは、上記の出力電圧Eを平滑する。このリアクトルWLのインダクタンス値は、例えば200μHである。
 送給モータWMは、後述する送給制御信号Fcを入力として、正送と逆送とを周期的に繰り返して溶接ワイヤ1を送給速度Fwで送給する。送給モータWMには、過渡応答性の速いモータが使用される。溶接ワイヤ1の送給速度Fwの変化率及び送給方向の反転を速くするために、送給モータWMは溶接トーチ4の先端の近くに設置される場合がある。また、送給モータWMを2個使用して、プッシュプル方式の送給系とする場合もある。
 溶接ワイヤ1は、上記の送給モータWMに結合された送給ロール5の回転によって溶接トーチ4内を送給されて、母材2との間にアーク3が発生する。溶接トーチ4内の給電チップ(図示は省略)と母材2との間には溶接電圧Vwが印加し、溶接電流Iwが通電する。
 出力電圧設定回路ERは、予め定めた出力電圧設定信号Erを出力する。出力電圧検出回路EDは、上記の出力電圧Eを検出し平滑して、出力電圧検出信号Edを出力する。
 電圧誤差増幅回路EAは、上記の出力電圧設定信号Er及び上記の出力電圧検出信号Edを入力として、出力電圧設定信号Er(+)と出力電圧検出信号Ed(-)との誤差を増幅して、電圧誤差増幅信号Eaを出力する。この回路によって、溶接電源は定電圧制御される。
 駆動回路DVは、上記の電圧誤差増幅信号Eaを入力として、電圧誤差増幅信号Eaに基づいてPWM変調制御を行い、上記の電源主回路PM内のインバータ回路を駆動するための駆動信号Dvを出力する。
 平均送給速度設定回路FARは、予め定めた平均送給速度設定信号Farを出力する。溶接速度設定回路WSRは、予め定めた溶接速度設定信号Wsrを出力する。
 周期設定回路TFRは、上記の平均送給速度設定信号Far及び上記の溶接速度設定信号Wsrを入力として、予め定めた周期設定関数によって周期を算出して、周期設定信号Tfrを出力する。この周期設定関数は、予め実験によって算出しておく。平均送給速度設定信号Farが大きくなるのに伴い、周期設定信号Tfrは大きくなる比例の関係にある。他方、溶接速度設定信号Wsrが大きくなるのに伴い、周期設定信号Tfrは小さくなる反比例の関係にある。
 振幅設定回路WFRは、上記の平均送給速度設定信号Far及び上記の溶接速度設定信号Wsrを入力として、予め定めた振幅設定関数によって振幅を算出して、振幅設定信号Wfrを出力する。この振幅設定関数は、予め実験によって算出しておく。平均送給速度設定信号Farが大きくなるのに伴い、振幅設定信号Wfrは大きくなる比例の関係にある。他方、溶接速度設定信号Wsrが大きくなるのに伴い、振幅設定信号Wfrは小さくなる反比例の関係にある。
 正送側シフト量設定回路SFRは、予め定めた正送側シフト量設定信号Sfrを出力する。
 送給速度設定回路FRは、上記の周期設定信号Tfr、上記の振幅設定信号Wfr及び上記の正送側シフト量設定信号Sfrを入力として、周期設定信号Tfrによって定まる周期及び振幅設定信号Wfrによって定まる振幅から形成される正弦波を、正送側シフト量設定信号Sfrによって定まる正送側シフト量だけシフトした送給速度パターンを送給速度設定信号Frとして出力する。この送給速度設定信号Frが0以上のときは正送期間となり、0未満のときは逆送期間となる。
 送給制御回路FCは、この送給速度設定信号Frを入力として、送給速度設定信号Frの値に相当する送給速度Fwで溶接ワイヤ1を送給するための送給制御信号Fcを上記の送給モータWMに出力する。
 図1における送給速度Fw、溶接電流Iw及び溶接電圧Vwの波形図は、上述した図4と同一であるので、説明は繰り返さない。図1において、溶接速度設定回路WSRから出力される溶接速度設定信号Wsrが変化すると、周期設定回路TFRによって周期設定信号Tfrが適正値に設定され、振幅設定回路WFRによって振幅設定信号Wfrが適正値に設定される。この結果、図4(A)において、溶接速度が変化すると、周期Tf及び振幅Wfが適正値に自動的に変化する。このために、安定した溶接状態を保つことができる。図1においては、溶接速度設定信号Wsrに基づいて周期設定信号Tfr及び振幅設定信号Wfrが共に変化する場合を例示したが、どちらか一方だけ変化するようにしても良い。また、送給速度パターンが正弦波である場合を説明したが、三角波、台形波等であっても良い。
 上述した実施の形態1によれば、溶接速度に基づいて送給速度の周期及び/又は振幅を設定する。これにより、溶接速度が変化しても、送給速度の周期及び/又は振幅が適正値に変化するので、安定した溶接状態を保つことができる。
[実施の形態2]
 実施の形態2の発明は、単位溶接長さ当たりのワイヤ溶着量に基づいて送給速度の周期及び/又は振幅を設定するものである。
 単位溶接長さ当たりのワイヤ溶着量Md(mm/mm)は、溶接ワイヤの半径をd(mm)、平均送給速度設定信号Far(mm/min)及び溶接速度設定信号Wsr(mm/min)を入力として下式によって算出することができる。
 Md=π・d・Far/Wsr …(1)式
 図2は、本発明の実施の形態2に係るアーク溶接制御方法を実施するための溶接電源のブロック図である。同図は上述した図1と対応しており、同一のブロックには同一符号を付してそれらの説明は繰り返さない。同図は、図1に溶接ワイヤ半径設定回路DR及び単位溶接長さ当たりのワイヤ溶着量算出回路MDを追加し、図1の周期設定回路TFRを第2周期設定回路TFR2に置換し、図1の振幅設定回路WFRを第2振幅設定回路WFR2に置換したものである。以下、同図を参照してこれらのブロックについて説明する。
 溶接ワイヤ半径設定回路DRは、使用する溶接ワイヤの半径を設定して、溶接ワイヤ半径設定信号drを出力する。
 単位溶接長さ当たりのワイヤ溶着量算出回路MDは、上記の溶接ワイヤ半径設定信号dr、平均送給速度設定信号Far及び溶接速度設定信号Wsrを入力として、上述した(1)式によって単位溶接長さ当たりのワイヤ溶着量を算出して、単位溶接長さ当たりのワイヤ溶着量信号Mdを出力する。
 第2周期設定回路TFR2は、上記の単位溶接長さ当たりのワイヤ溶着量信号Mdを入力として、予め定めた第2周期設定関数によって周期を算出して、周期設定信号Tfrを出力する。この第2周期設定関数は、予め実験によって算出しておく。単位溶接長さ当たりのワイヤ溶着量信号Mdが大きくなるのに伴い、周期設定信号Tfrは大きくなる比例の関係にある。
 第2振幅設定回路WFR2は、上記の単位溶接長さ当たりのワイヤ溶着量信号Mdを入力として、予め定めた第2振幅設定関数によって振幅を算出して、振幅設定信号Wfrを出力する。この第2振幅設定関数は、予め実験によって算出しておく。単位溶接長さ当たりのワイヤ溶着量信号Mdが大きくなるのに伴い、振幅設定信号Wfrは大きくなる比例の関係にある。
 図2における送給速度Fw、溶接電流Iw及び溶接電圧Vwの波形図は、上述した図4と同一であるので、説明は繰り返さない。図2において、単位溶接長さ当たりのワイヤ溶着量算出回路MDから出力される単位溶接長さ当たりのワイヤ溶着量信号Mdが変化すると、第2周期設定回路TFR2によって周期設定信号Tfrが適正値に設定され、第2振幅設定回路WFR2によって振幅設定信号Wfrが適正値に設定される。この結果、図4(A)において、単位溶接長さ当たりのワイヤ溶着量が変化すると、周期Tf及び振幅Wfが適正値に自動的に変化する。このために、安定した溶接状態を保つことができる。図2においては、単位溶接長さ当たりのワイヤ溶着量信号Mdに基づいて周期設定信号Tfr及び振幅設定信号Wfrが共に変化する場合を例示したが、どちらか一方だけ変化するようにしても良い。また、送給速度パターンが正弦波である場合を説明したが、三角波、台形波等であっても良い。
 上述した実施の形態2によれば、単位溶接長さ当たりのワイヤ溶着量に基づいて送給速度の周期及び/又は振幅を設定する。これにより、単位溶接長さ当たりのワイヤ溶着量が変化しても、送給速度の周期及び/又は振幅が適正値に変化するので、安定した溶接状態を保つことができる。
[実施の形態3]
 実施の形態3の発明は、実施の形態1又は2において、振幅(振幅設定信号Wfr)が変化しても、送給速度の平均値が一定になるように送給速度を制御するものである。
 図3は、本発明の実施の形態3に係るアーク溶接制御方法を実施するための溶接電源のブロック図である。同図は上述した図1と対応しており、同一のブロックには同一符号を付してそれらの説明は繰り返さない。同図は、図1に平均送給速度算出回路FAD及び送給誤差増幅回路EFを追加し、図1の正送側シフト量設定回路SFRを第2正送側シフト量設定回路SFR2に置換したものである。以下、同図を参照してこれらのブロックについて説明する。
 平均送給速度算出回路FADは、送給速度設定信号Frを入力として、1周期当たりの平均送給速度を算出して、平均送給速度算出信号Fadを出力する。
 送給誤差増幅回路EFは、平均送給速度設定信号Far及びこの平均送給速度算出信号Fadを入力として、平均送給速度設定信号Far(+)と平均送給速度算出信号Fad(-)との誤差を増幅して、送給誤差増幅信号Efを出力する。
 第2正送側シフト量設定回路SFR2は、この送給誤差増幅信号Efを入力として、送給誤差増幅信号Efを積分して、正送側シフト量設定信号Sfrを出力する。この回路によって、平均送給速度算出信号Fadの値が平均送給速度設定信号Farの値と等しくなるように、正送側シフト量設定信号Sfrの値がフィードバック制御される。
 図3において、溶接速度設定回路WSRから出力される溶接速度設定信号Wsrが変化すると、周期設定回路TFRによって周期設定信号Tfrが適正値に設定され、振幅設定回路WFRによって振幅設定信号Wfrが適正値に設定される。そして、振幅設定信号Wfrが変化すると、第2正送側シフト量設定回路SFR2によって平均送給速度算出信号Fadが平均送給速度設定信号Farと等しくなるように正送側シフト量設定信号Sfrがフィードバック制御される。この結果、図4(A)において、溶接速度が変化すると、周期Tf及び振幅Wfが適正値に自動的に変化し、送給速度Fwの平均値が一定になるように正送側シフト量Sfが自動的に変化する。送給速度の平均値が一定になるために、さらに安定した溶接状態を保つことができる。
 図3では、実施の形態1を基礎として正送側シフト量自動修正機能を追加した場合であるが、実施の形態2を基礎として追加する場合も同様であるので、図面及びその説明は省略する。この場合には、図2の単位溶接長さ当たりのワイヤ溶着量算出回路MDから出力される単位溶接長さ当たりのワイヤ溶着量信号Mdが変化すると、第2周期設定回路TFR2によって周期設定信号Tfrが適正値に設定され、第2振幅設定回路WFR2によって振幅設定信号Wfrが適正値に設定される。そして、振幅設定信号Wfrが変化すると、追加される第2正送側シフト量設定回路SFR2によって平均送給速度算出信号Fadが平均送給速度設定信号Farと等しくなるように正送側シフト量設定信号Sfrがフィードバック制御される。この結果、図4(A)において、単位溶接長さ当たりのワイヤ溶着量が変化すると、周期Tf及び振幅Wfが適正値に自動的に変化し、送給速度Fwの平均値が一定になるように正送側シフト量Sfが自動的に変化する。送給速度の平均値が一定になるために、さらに安定した溶接状態を保つことができる。
上述した実施の形態3によれば、振幅が変化しても、送給速度の平均値が一定になるように送給速度を制御する。これにより、実施の形態1及び2の効果に加えて、溶接速度又は単位溶接長さ当たりのワイヤ溶着量が変化して送給速度の振幅が変化しても、送給速度の平均値は一定になるので、さらに安定した溶接状態を保つことができる。
 本発明によれば、溶接ワイヤの正送と逆送とを繰り返すアーク溶接において、溶接速度又は単位溶接長さ当たりのワイヤ溶着量が変化しても溶接状態を安定に保つことができるアーク溶接制御方法を提供することができる。
 以上、本発明を特定の実施形態によって説明したが、本発明はこの実施形態に限定されるものではなく、開示された発明の技術思想を逸脱しない範囲で種々の変更が可能である。
 本出願は、2014年3月17日出願の日本特許出願(特願2014-053152)に基づくものであり、その内容はここに取り込まれる。
1     溶接ワイヤ
2     母材
3     アーク
4     溶接トーチ
5     送給ロール
DR   溶接ワイヤ半径設定回路
dr   溶接ワイヤ半径設定信号
DV   駆動回路
Dv   駆動信号
E     出力電圧
EA   電圧誤差増幅回路
Ea   電圧誤差増幅信号
ED   出力電圧検出回路
Ed   出力電圧検出信号
EF   送給誤差増幅回路
Ef   送給誤差増幅信号
ER   出力電圧設定回路
Er   出力電圧設定信号
FAD 平均送給速度算出回路
Fad 平均送給速度算出信号
FAR 平均送給速度設定回路
Far 平均送給速度設定信号
FC   送給制御回路
Fc   送給制御信号
FR   送給速度設定回路
Fr   送給速度設定信号
Fw   送給速度
Iw   溶接電流
MD   単位溶接長さ当たりのワイヤ溶着量算出回路
Md   単位溶接長さ当たりのワイヤ溶着量(信号)
PM   電源主回路
Sf   正送側シフト量
SFR 正送側シフト量設定回路
Sfr 正送側シフト量設定信号
SFR2      第2正送側シフト量設定回路
Tar アーク期間逆送期間
Tas アーク期間正送期間
Tf   周期
TFR 周期設定回路
Tfr 周期設定信号
TFR2      第2周期設定回路
Vw   溶接電圧
Wf   振幅
WFR 振幅設定回路
Wfr 振幅設定信号
WFR2      第2振幅設定回路
WL   リアクトル
WM   送給モータ
WSR 溶接速度設定回路
Wsr 溶接速度設定信号

Claims (2)

  1.  溶接ワイヤの送給速度の正送と逆送とを所定の周期及び所定の振幅で繰り返して、短絡期間とアーク期間とを発生させて溶接を行うアーク溶接制御方法において、
     溶接速度又は単位溶接長さ当たりのワイヤ溶着量に基づいて前記周期及び/又は前記振幅を設定する、
    ことを特徴とするアーク溶接制御方法。
  2.  前記振幅が変化しても前記送給速度の平均値が一定になるように前記送給速度を制御する、
    ことを特徴とする請求項1記載のアーク溶接制御方法。
PCT/JP2015/057874 2014-03-17 2015-03-17 アーク溶接制御方法 WO2015141664A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167018101A KR102224414B1 (ko) 2014-03-17 2015-03-17 아크 용접 제어 방법
US15/122,288 US10220464B2 (en) 2014-03-17 2015-03-17 Arc welding control method
CN201580003081.3A CN105829006B (zh) 2014-03-17 2015-03-17 电弧焊接控制方法
EP15765474.0A EP3120963B1 (en) 2014-03-17 2015-03-17 Arc welding control method
JP2016508731A JP6544865B2 (ja) 2014-03-17 2015-03-17 アーク溶接制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-053152 2014-03-17
JP2014053152 2014-03-17

Publications (1)

Publication Number Publication Date
WO2015141664A1 true WO2015141664A1 (ja) 2015-09-24

Family

ID=54144629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057874 WO2015141664A1 (ja) 2014-03-17 2015-03-17 アーク溶接制御方法

Country Status (6)

Country Link
US (1) US10220464B2 (ja)
EP (1) EP3120963B1 (ja)
JP (1) JP6544865B2 (ja)
KR (1) KR102224414B1 (ja)
CN (1) CN105829006B (ja)
WO (1) WO2015141664A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3412396B1 (en) * 2016-02-04 2021-09-15 Panasonic Intellectual Property Management Co., Ltd. Pulsed arc welding control method and pulsed arc welding device
EP3575025A4 (en) * 2017-01-24 2020-11-04 Daihen Corporation ARC WELDING CONTROL PROCESS
JP7365598B2 (ja) * 2018-04-18 2023-10-20 パナソニックIpマネジメント株式会社 アーク溶接制御方法
US11203077B2 (en) * 2019-08-20 2021-12-21 Hanka Gordon R Apparatus for controlling AC weld current by means of an arc igniter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129388A1 (ja) * 2005-05-31 2006-12-07 Matsushita Electric Industrial Co., Ltd. パルスアーク溶接制御方法及びパルスアーク溶接装置
WO2011013321A1 (ja) * 2009-07-29 2011-02-03 パナソニック株式会社 アーク溶接方法およびアーク溶接装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS521266B1 (ja) 1967-07-18 1977-01-13
US6160241A (en) * 1999-03-16 2000-12-12 Lincoln Global, Inc. Method and apparatus for electric arc welding
JP5154056B2 (ja) * 2006-10-23 2013-02-27 株式会社ダイヘン 溶接ワイヤのリトラクトの制御方法及び溶接ワイヤリトラクト制御装置
WO2008105116A1 (ja) * 2007-02-28 2008-09-04 Panasonic Corporation 溶接出力制御方法およびアーク溶接装置
CN101870032A (zh) * 2010-06-18 2010-10-27 杭州凯尔达电焊机有限公司 大电流co2焊接过程中的熔滴定时强制短路过渡控制方法
JP2012006020A (ja) * 2010-06-22 2012-01-12 Daihen Corp アーク溶接制御方法
WO2012164833A1 (ja) * 2011-06-03 2012-12-06 パナソニック株式会社 アーク溶接制御方法およびアーク溶接装置
CN103260807B (zh) * 2011-07-12 2015-01-21 松下电器产业株式会社 电弧焊接控制方法及电弧焊接装置
JP5960437B2 (ja) * 2012-01-20 2016-08-02 株式会社ダイヘン アーク溶接システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129388A1 (ja) * 2005-05-31 2006-12-07 Matsushita Electric Industrial Co., Ltd. パルスアーク溶接制御方法及びパルスアーク溶接装置
WO2011013321A1 (ja) * 2009-07-29 2011-02-03 パナソニック株式会社 アーク溶接方法およびアーク溶接装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3120963A4 *

Also Published As

Publication number Publication date
KR102224414B1 (ko) 2021-03-05
CN105829006B (zh) 2018-05-01
EP3120963A4 (en) 2017-11-29
EP3120963B1 (en) 2024-05-01
US10220464B2 (en) 2019-03-05
EP3120963A1 (en) 2017-01-25
JP6544865B2 (ja) 2019-07-17
US20160368076A1 (en) 2016-12-22
KR20160130374A (ko) 2016-11-11
JPWO2015141664A1 (ja) 2017-04-13
CN105829006A (zh) 2016-08-03

Similar Documents

Publication Publication Date Title
JP6555818B2 (ja) アーク溶接制御方法
JP6537137B2 (ja) 正逆送給アーク溶接方法
US10493553B2 (en) Arc welding control method
WO2015141664A1 (ja) アーク溶接制御方法
WO2016027638A1 (ja) アーク溶接制御方法
JP6448622B2 (ja) アーク溶接制御方法
WO2015178170A1 (ja) アーク溶接制御方法
WO2016125540A1 (ja) アーク溶接制御方法
JP6347721B2 (ja) アーク溶接制御方法
WO2015166793A1 (ja) アーク溶接制御方法
JP2016073996A (ja) アーク溶接制御方法
JP6261614B2 (ja) アーク溶接制御方法
KR102233253B1 (ko) 아크 용접 제어 방법
JP2016087610A (ja) アーク溶接の状態監視方法
JP6460821B2 (ja) アーク溶接制御方法
JP6516291B2 (ja) 正逆送給アーク溶接方法
JP6198327B2 (ja) アーク溶接制御方法
JP6516289B2 (ja) 正逆送給アーク溶接の倣い制御方法
JP6516290B2 (ja) 正逆送給アーク溶接の倣い制御方法
JP2015231632A (ja) アーク溶接制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15765474

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016508731

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167018101

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15122288

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015765474

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015765474

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE