WO2015141396A1 - 水処理装置及びこれを用いた水処理方法 - Google Patents

水処理装置及びこれを用いた水処理方法 Download PDF

Info

Publication number
WO2015141396A1
WO2015141396A1 PCT/JP2015/055004 JP2015055004W WO2015141396A1 WO 2015141396 A1 WO2015141396 A1 WO 2015141396A1 JP 2015055004 W JP2015055004 W JP 2015055004W WO 2015141396 A1 WO2015141396 A1 WO 2015141396A1
Authority
WO
WIPO (PCT)
Prior art keywords
main body
water treatment
layer
cleaning fluid
particles
Prior art date
Application number
PCT/JP2015/055004
Other languages
English (en)
French (fr)
Inventor
柏原 秀樹
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN201580003554.XA priority Critical patent/CN105873860A/zh
Priority to US15/106,925 priority patent/US20160340209A1/en
Publication of WO2015141396A1 publication Critical patent/WO2015141396A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • B01D24/02Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof with the filter bed stationary during the filtration
    • B01D24/10Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof with the filter bed stationary during the filtration the filtering material being held in a closed container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • B01D24/46Regenerating the filtering material in the filter
    • B01D24/4631Counter-current flushing, e.g. by air
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • C02F1/004Processes for the treatment of water whereby the filtration technique is of importance using large scale industrial sized filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/286Treatment of water, waste water, or sewage by sorption using natural organic sorbents or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/02Fluid flow conditions
    • C02F2301/028Tortuous
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters

Definitions

  • the present invention relates to a water treatment apparatus and a water treatment method using the same.
  • Methods for separating and removing oil and turbidity from the mixture include gravity separation, distillation separation, chemical separation, etc., but a method using a treatment layer enclosing particles as a method for separating and removing oil and turbidity at low cost There is.
  • the water treatment apparatus using the above treatment layer separates the oil and turbidity of the oil / water mixture with the particles of the treatment layer and discharges the water from which these have been removed (see JP-A-5-154309).
  • Such a water treatment apparatus includes a plurality of treatment layers having different particle sizes in the case of treating an oil / water mixture containing turbidity and oil emulsions of various sizes.
  • the treatment layers are arranged in the vertical direction. Therefore, if cleaning is performed from the bottom to the top (or vice versa), the cleaning fluid with turbidity after cleaning flows into the upper layer (or the lower layer), so that each processing layer can be cleaned. Piping is required. Therefore, as the number of treatment layers increases, the water treatment apparatus becomes complicated and the manufacturing cost of the water treatment apparatus increases. Moreover, since cleaning is performed for each treatment layer, the cleaning takes time.
  • the present invention has been made based on the above-described circumstances, and provides a water treatment apparatus having a simple treatment layer cleaning configuration and capable of reducing the treatment layer cleaning time, and a water treatment method using the same. For the purpose.
  • the invention made in order to solve the above-mentioned problems includes a cylindrical main body installed sideways, supplies the liquid to be processed from one end side in the axial direction of the main body, and discharges the processed liquid from the other end side.
  • a water treatment apparatus connected to a lower part of the peripheral surface of the main body and supplying a cleaning fluid to the inside of the main body, and connected to an upper part of the peripheral surface of the main body, and the cleaning fluid from the main body
  • a cleaning fluid recovery section for recovery, and the main body has a plurality of treatment layers that are partitioned along the axial direction and in which a plurality of particles are enclosed.
  • Another invention made to solve the above problems is a water treatment method having a step of supplying a liquid to be treated to the water treatment apparatus and discharging the treated liquid.
  • the water treatment apparatus of the present invention has a simple treatment layer cleaning configuration, the treatment layer cleaning time can be reduced. Therefore, the water treatment apparatus of the present invention and the water treatment method using the same can efficiently separate and treat an oil / water mixture containing various turbid substances in addition to oil.
  • FIG. 1 is a schematic end view showing a water treatment apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic end view showing a water treatment apparatus according to an embodiment different from the embodiment of FIG.
  • FIG. 3 is a schematic end view showing a water treatment apparatus according to an embodiment different from the embodiment of FIGS. 1 and 2.
  • the water treatment apparatus of the present invention is a water treatment apparatus that includes a cylindrical main body installed sideways, supplies a liquid to be treated from one end side in the axial direction of the main body, and discharges a treated liquid from the other end side.
  • a cleaning fluid supply unit that is connected to a lower part of the peripheral surface of the main body and supplies a cleaning fluid to the inside of the main body; and a cleaning fluid that is connected to the upper peripheral surface of the main body and collects the cleaning fluid from the main body
  • a fluid recovery unit, the main body is partitioned along the axial direction, and has a plurality of treatment layers in which a plurality of particles are enclosed.
  • the direction in which the liquid to be treated flows (lateral direction) is different from the direction in which the washing fluid flows (vertical direction), so that the washing fluid with turbidity after washing one treatment layer It can prevent flowing into the downstream or upstream processing layer. Therefore, complicated piping or the like for cleaning each processing layer is unnecessary, and the configuration of processing layer cleaning can be simplified. For this reason, design of a water treatment apparatus is easy and the manufacturing cost of a water treatment apparatus can be held down. In addition, since the water treatment apparatus does not need to perform cleaning for each processing layer, the cleaning time for the processing layer can be shortened.
  • the plurality of treatment layers may have a space above the plurality of particles. Since the plurality of treatment layers have spaces above the plurality of particles as described above, the particles easily flow when the treatment layer is washed, and the washing efficiency is improved.
  • the spaces of the plurality of treatment layers are separated by a wall portion that does not allow fluid to pass therethrough.
  • the liquid to be treated passes more reliably through the particle layer formed by the plurality of particles enclosed in the treatment layer. It is possible to prevent passing through the treatment layer without being sufficiently filtered.
  • fluid flow paths to adjacent processing layers of the plurality of processing layers are alternately formed in the vertical direction.
  • the flow paths of the fluid to the processing layers adjacent to the plurality of processing layers are alternately formed in the vertical direction, so that the flow path of the liquid to be processed becomes longer and the water treatment efficiency is improved.
  • the plurality of treatment layers may be inclined with respect to the axial direction of the main body. As described above, since the plurality of treatment layers are inclined with respect to the axial direction of the main body, the flow path of the liquid to be treated is lengthened, and the water treatment efficiency is improved. Further, since the height of the particle layer is reduced by giving the particle layer an inclination, the cleaning efficiency by the cleaning fluid from the lower side to the upper side is improved.
  • a void layer in which particles are not enclosed between the plurality of treatment layers as described above, a path through which the cleaning liquid fed from below flows from not only the lower side of the treatment layer but also from the side via the void layer. Therefore, the plurality of particles are stirred more greatly, and the cleaning efficiency is improved.
  • An introduction pipe for introducing the cleaning fluid into the cleaning fluid supply unit is connected to one of the main liquid supply side and the processed liquid discharge side of the main body, and recovers the cleaning fluid from the cleaning fluid recovery unit
  • the recovery tube may be connected to the other of the main liquid supply side and the processed liquid discharge side of the main body.
  • the introduction pipe is connected to either the treated liquid supply side or the treated liquid discharge side of the main body, and the recovery pipe is connected to the other of the treated liquid supply side or the processed liquid discharge side of the main body. Therefore, the cleaning fluid flows smoothly in one direction in the main body, and the cleaning fluid does not easily stay in the main body. Therefore, oil droplets and turbidity separated from each particle are less likely to remain in the main body, and the cleaning efficiency is improved.
  • the water treatment apparatus can be suitably used as an apparatus for obtaining treated water in which oil and turbidity are separated from a liquid to be treated containing oil and turbidity.
  • another invention is a water treatment method including a step of supplying a liquid to be treated to the water treatment apparatus and discharging the treated liquid.
  • the water treatment method treats the liquid to be treated using the water treatment apparatus, the manufacturing cost of the water treatment apparatus can be suppressed. In addition, since it is not necessary to clean each processing layer, the cleaning time of the processing layer can be reduced. Therefore, the water treatment method using the water treatment apparatus of the present invention can efficiently separate and treat an oil / water mixture containing various turbid substances in addition to oil.
  • the “space” of the treatment layer means a region between the partition plate formed above the plurality of particles in the treatment layer and the surface of the particle layer.
  • a water treatment apparatus 1 of FIG. 1 includes a cylindrical main body 100 installed sideways, and supplies a liquid X to be treated from one end side (right side in the drawing) of the main body 100 in the axial direction.
  • the treated liquid Y is discharged from the middle left).
  • the water treatment apparatus 1 is connected to the lower part of the peripheral surface of the main body 100, connected to the cleaning fluid supply unit 10 for supplying the cleaning fluid A into the main body 100, and connected to the upper part of the peripheral surface of the main body 100 for cleaning.
  • a cleaning fluid recovery unit 11 that recovers the cleaning fluid Z used in the main body 100 from the inside of the main body 100.
  • the main body 100 is partitioned along the axial direction, and a plurality of treatment layers (first treatment layer 21, second treatment layer 22, and third treatment layer 23) in which a plurality of particles 21a, 22a, and 23a are enclosed.
  • the main body 100 includes a void layer (first void layer) in which particles are not enclosed between the first treatment layer 21 and the second treatment layer 22 and between the second treatment layer 22 and the third treatment layer 23. 24 and a second void layer 25).
  • the main body 100 includes a fourth processing layer 26 in which an adsorbent that adsorbs oil is sealed, and a header portion 27, and the first processing layer 21 and the first gap are formed from one end side to which the liquid X to be processed is supplied.
  • the layer 24, the second processing layer 22, the second gap layer 25, the third processing layer 23, the fourth processing layer 26, and the header portion 27 are arranged in series in this order. These layers and the header portion are partitioned by partition plates 31 to 36.
  • the said water treatment apparatus 1 can be used suitably with respect to the to-be-processed liquid containing oil and turbidity.
  • the turbidity includes, for example, particles such as sand, silica and calcium carbonate, iron powder, microorganisms, and wood chips.
  • the main body 100 is a cylindrical body, and a central axis thereof is disposed sideways (horizontal direction). Further, a supply pipe 41 for supplying the liquid to be processed X is connected to one end side of the main body 100 in the axial direction, and a discharge pipe 42 for discharging the processed liquid Y is connected to the other end side.
  • the material of the main body 100 is not particularly limited, and metal, synthetic resin, or the like can be used.
  • stainless steel or acrylonitrile-butadiene-styrene copolymer (ABS resin) is preferable from the viewpoint of strength, heat resistance, chemical resistance, and the like.
  • ABS resin acrylonitrile-butadiene-styrene copolymer
  • FRP fiber reinforced plastic
  • As the FRP for example, a fiber made of glass fiber or carbon fiber and a resin made of epoxy resin can be used.
  • the cross-sectional shape perpendicular to the axial direction of the main body 100 is not particularly limited, and may be a circle, a rectangle, or the like.
  • the cross-sectional shape of the main body 100 is circular, corner portions inside the main body 100 can be eliminated, and particles and the like can be prevented from clogging the corner portions.
  • the merit that the strength design of the main body 100 is easy is also obtained.
  • the cross-sectional shape of the main body 100 is rectangular, the main body 100 is easy to manufacture and the cost is reduced. Moreover, it is easy to supply cleaning water and air uniformly from below the treatment layers during the cleaning.
  • the size of the main body 100 can be appropriately designed according to the amount of liquid to be processed.
  • the diameter of the main body 100 (in the case of a rectangle, the length of one side) can be, for example, 0.5 m or more and 5 m or less.
  • the axial length of the main body 100 can be, for example, not less than 0.5 m and not more than 10 m.
  • the main body 100 may have a partition plate 41a (supply portion partition plate 41a) that prevents the particles 21a (first particles 21a) of the first treatment layer 21 from flowing out at a connection portion with the supply pipe 41. That is, the supply part partition plate 41a has a configuration that allows the liquid to flow without passing through the first particles 21a. Specifically, the supply part partition plate 41a has a mesh structure.
  • the material of the supply pipe 41 and the discharge pipe 42 connected to the main body 100 is not particularly limited, but may be the same as the material of the main body 100.
  • the cross-sectional areas of the supply pipe 41 and the discharge pipe 42 may be increased as approaching the side connected to the main body 100. By increasing the cross-sectional area as approaching the side connected to the main body 100 in this way, the flow rate of the liquid X to be treated when supplied to the water treatment apparatus 1 is reduced, and the water treatment efficiency is improved.
  • the plurality of treatment layers 21, 22, and 23 in which the plurality of particles 21 a, 22 a, and 23 a are enclosed are in order of the first treatment layer 21, the second treatment layer 22, and the third treatment layer 23 from the upstream side inside the main body 100.
  • the plurality of particles 21 a, 22 a, and 23 a are arranged to form a particle layer in each of the treatment layers 21, 22, and 23.
  • the first treatment layer 21 mainly removes oil droplets and turbid particles having a relatively large particle diameter contained in the treatment liquid X
  • the second treatment layer 22 is a medium particle diameter contained in the treatment liquid X.
  • the third treatment layer 23 mainly removes fine oil droplets and turbidity contained in the liquid X to be treated.
  • the length (width) in the axial direction of the main body 100 of the plurality of treatment layers 21, 22, and 23 is not particularly limited, but may be, for example, 100 mm or more and 300 mm or less.
  • the lower limit of the average diameter of the first particles 21a is preferably 200 ⁇ m, more preferably 250 ⁇ m, and even more preferably 300 ⁇ m. Moreover, as an upper limit of the average diameter of the 1st particle
  • grains 21a 500 micrometers is preferable, 450 micrometers is more preferable, and 400 micrometers is further more preferable.
  • the average diameter of the first particles 21a is less than the lower limit, the density of the particles enclosed in the first treatment layer 21 is increased, and the cost and weight of the water treatment apparatus 1 may be increased.
  • the average diameter of the first particles 21a exceeds the above upper limit, the removal performance of oil droplets and turbid particles having a relatively large particle diameter may be insufficient.
  • the average diameter of the second particles 22a is smaller than the average diameter of the first particles 21a.
  • the lower limit of the average diameter of the second particles 22a is preferably 100 ⁇ m, more preferably 120 ⁇ m, and still more preferably 140 ⁇ m.
  • grains 22a 300 micrometers is preferable, 250 micrometers is more preferable, and 200 micrometers is more preferable.
  • the average diameter of the second particles 22a is less than the lower limit, the density of the particles enclosed in the second treatment layer 22 is increased, and the cost and weight of the water treatment device 1 may be increased.
  • the average diameter of the second particles 22a exceeds the above upper limit, there is a risk that the performance of removing medium-sized oil droplets and turbidity will be insufficient.
  • the average diameter of the third particles 23a is smaller than the average diameter of the second particles 22a.
  • As a minimum of the average diameter of the 3rd particle 23a 10 micrometers is preferred, 20 micrometers is more preferred, and 30 micrometers is still more preferred.
  • As an upper limit of the average diameter of the 3rd particle 23a 100 micrometers is preferable, 80 micrometers is more preferable, and 60 micrometers is more preferable.
  • the average diameter of the third particles 23a is less than the above lower limit, the density of the particles enclosed in the third treatment layer 23 increases, and the cost and weight of the water treatment apparatus 1 may increase.
  • the average diameter of the third particles 23a exceeds the above upper limit, there is a risk that the performance of removing fine oil droplets and turbidity will be insufficient.
  • the lower limit of the uniformity coefficient of the plurality of particles 21a, 22a, and 23a is preferably 1.1, and more preferably 1.3.
  • the upper limit of the uniformity coefficient of the plurality of particles 21a, 22a, and 23a is preferably 1.8 and more preferably 1.6.
  • the uniformity coefficient of the plurality of particles 21a, 22a, and 23a is less than the lower limit, there is a possibility that the dispersion of the particles becomes small and the particles cannot be densely deposited.
  • the uniformity coefficient of the plurality of particles 21a, 22a, and 23a exceeds the upper limit, there is a possibility that the separation ability of oil droplets and turbidity may not be uniform inside each processing layer 21, 22, and 23.
  • the uniformity coefficient is defined as D60 when the sieve aperture (particle size) through which 60% of the particles have passed by mass is D60 and D10 when the sieve aperture (particle size) through which 10% of the particles have passed by mass is passed through. , D60 / D10.
  • known particles for filtration can be used, and examples thereof include particles mainly composed of sand, polymer compounds, natural materials, and the like.
  • sand examples include anthracite, garnet, manganese sand having a relatively large particle size, and diatomaceous earth having a relatively small particle size. You may use these in mixture of 2 or more types.
  • polymer compound examples include vinyl resin, polyolefin, polyurethane, epoxy resin, polyester, polyamide, polyimide, melamine resin, and polycarbonate.
  • vinyl resins, polyurethanes, and epoxy resins that are excellent in water resistance and oil resistance are preferable, and polyolefins that are excellent in adsorptivity are more preferable.
  • polyolefins polypropylene having particularly excellent oil adsorption capability is preferable.
  • natural materials those having a particle size adjusted by sieving can be used, and examples thereof include natural fibers such as walnut shells, sawdust and hemp.
  • the plurality of particles 21a, 22a, and 23a it is preferable to use particles having the above-described polymer compound as a main component.
  • the cost and weight of the said water treatment apparatus 1 can be reduced by using the particle
  • grains 21a, 22a, and 23a can be made small, the stirring effect at the time of the washing
  • the plurality of treatment layers 21, 22, 23 have spaces 21b, 22b, 23b (first space 21b, second space 22b, and third space 23b) above the plurality of particles 21a, 22a, 23a. is doing. Since the plurality of treatment layers 21, 22, and 23 have the spaces 21b, 22b, and 23b, the plurality of particles 21a, 22a, and 23a rise into the spaces 21b, 22b, and 23b when the treatment layer is cleaned. By stirring, the plurality of treatment layers 21, 22, and 23 can be effectively washed. In addition, some of the oil and turbid particles separated in the plurality of treatment layers 21, 22, and 23 are retained (floating and separated) in the spaces 21b, 22b, and 23b, and together with the cleaning fluid Z when washing the treatment layers. Discharged.
  • the lower limit of the average height of the spaces 21b, 22b, and 23b is preferably 5 cm, and more preferably 20 cm. Moreover, as an upper limit of the said average height, 40 cm is preferable and 30 cm is more preferable. When the average height is less than the lower limit, the cleaning effects of the plurality of treatment layers 21, 22, and 23 may not be sufficiently obtained. On the other hand, when the average height exceeds the upper limit, the height of the particle layer of the plurality of particles 21a, 22a, and 23a becomes too small, and the water treatment capability may be insufficient.
  • the “average height” of the space means the average of the distance from the surface of the particle layer to the connecting portion 61 of the cleaning fluid recovery unit 11 described later.
  • the two void layers 24 and 25 are layers in which particles disposed between the first treatment layer 21 and the second treatment layer 22 and between the second treatment layer 22 and the third treatment layer 23 are not encapsulated. . In this way, by disposing the void layers 24 and 25 between which the particles are not encapsulated between the first treatment layer 21 and the second treatment layer 22 and between the second treatment layer 22 and the third treatment layer 23, cleaning is performed.
  • the plurality of particles 21 a, 22 a , 23a is further stirred, and oil droplets, turbidity and the like that have been captured can be separated and removed more reliably.
  • the length (width) in the axial direction of the main body 100 of the gap layers 24 and 25 is not particularly limited, but may be, for example, 100 mm or more and 200 mm or less.
  • the ratio of the width of the void layer to the width of the treatment layer can be, for example, 1/5 or more and 1 or less.
  • the fourth treatment layer 26 is disposed on the downstream side of the third treatment layer 23 and encloses an adsorbent that adsorbs oil. This adsorbent forms a layer in the fourth treatment layer 26.
  • the fourth treatment layer 26 mainly absorbs and removes finer oil droplets that could not be removed by the first treatment layer 21, the second treatment layer 22, and the third treatment layer 23.
  • adsorbent known adsorbents for oil can be used, and examples thereof include porous ceramics, nonwoven fabrics, woven fabrics, fibers, activated carbon and the like.
  • a nonwoven fabric formed of a plurality of organic fibers is preferable.
  • the nonwoven fabric formed of the plurality of organic fibers separates oil and water by adsorbing oil with organic fibers. Therefore, this non-woven fabric can increase the hole diameter without the need to refine the pores formed between the fibers, so that the pores are not blocked by the high viscosity oil and the increase in pressure loss is suppressed. be able to.
  • the main component of the organic fiber forming the nonwoven fabric is not particularly limited as long as it is an organic resin capable of adsorbing oil.
  • organic resin capable of adsorbing oil.
  • cellulose resin rayon resin, polyester, polyurethane, polyolefin (polyethylene, polypropylene, etc.), polyamide (fat Aromatic polyamide, aromatic polyamide, etc.), acrylic resin, polyacrylonitrile, polyvinyl alcohol, polyimide, silicone resin, fluorine resin, and the like.
  • a fluororesin or polyolefin is preferable.
  • the fluororesins polytetrafluoroethylene having particularly excellent heat resistance is preferable.
  • the oil-adsorption capability of a nonwoven fabric can be improved by using the organic fiber which has polyolefin as a main component.
  • polyolefins polypropylene having particularly excellent oil adsorption capability is preferable.
  • the organic fiber forming material may be appropriately mixed with other polymers, additives such as lubricants, and the like.
  • the upper limit of the average diameter of the organic fiber is preferably 1 ⁇ m, more preferably 0.9 ⁇ m, and further preferably 0.1 ⁇ m. Moreover, as a minimum of the average diameter of organic fiber, 10 nm is preferable.
  • the average diameter of the organic fibers exceeds the above upper limit, the surface area per unit volume of the organic fibers becomes small, so that it is necessary to increase the fiber density in order to ensure a certain oil adsorption capacity. As a result, the pore diameter and porosity of the non-woven fabric become small, and blockage with oil tends to occur.
  • the particle diameter of the C heavy oil dispersed and contained in water tends to be about 0.1 to 1.0 ⁇ m, so the average diameter of the organic fibers is not more than the above upper limit. This makes it possible to adsorb C heavy oil more reliably.
  • the average diameter of the organic fibers is less than the above lower limit, it may be difficult to form a nonwoven fabric or the strength may be insufficient.
  • the lower limit of the porosity of the nonwoven fabric is preferably 80%, more preferably 85%, and even more preferably 88%. Moreover, as an upper limit of the porosity of a nonwoven fabric, 99% is preferable and 95% is more preferable.
  • the porosity of a nonwoven fabric is less than the said minimum, there exists a possibility that the processing amount of the to-be-processed liquid of a nonwoven fabric may fall, or the void
  • the porosity of a nonwoven fabric exceeds the said upper limit, there exists a possibility that the intensity
  • the lower limit of the average pore diameter of the nonwoven fabric is preferably 1 ⁇ m, more preferably 2 ⁇ m, and even more preferably 5 ⁇ m. Moreover, as an upper limit of the average hole diameter of a nonwoven fabric, 20 micrometers is preferable and 8 micrometers is more preferable.
  • the average pore diameter of the nonwoven fabric is less than the above lower limit, the processing amount of the liquid to be treated of the nonwoven fabric may be reduced, or the pores of the nonwoven fabric may be easily blocked by oil.
  • the average pore diameter of the nonwoven fabric exceeds the above upper limit, the oil adsorption function of the nonwoven fabric may be deteriorated, and the strength of the nonwoven fabric may not be maintained.
  • the fourth treatment layer 26 can also be formed by filling the main body 100 with a plurality of fibers.
  • this fiber it is preferable to use a long fiber having an average diameter of 1 ⁇ m or less.
  • the length of the fourth processing layer 26 in the axial direction of the main body 100 is not particularly limited, but may be, for example, 10 mm or more and 100 mm or less.
  • the partition plates 31 to 36 are plates disposed between the processing layers to prevent the plurality of particles 21a, 22a, 23a and the adsorbent from flowing out, and have a mesh structure similar to the supply unit partition plate 41a. .
  • the material of these partition plates 31 to 36, 41a is not particularly limited, and metal, synthetic resin, or the like can be used.
  • metal it is preferable to use stainless steel (especially SUS316L) from the viewpoint of corrosion protection.
  • synthetic resin it is preferable to use a support material such as a reinforcing wire in combination so that the mesh opening does not change depending on the water pressure or the weight of the particles.
  • the nominal mesh opening of the supply part partition plate 41a and the partition plate 31 (first partition plate 31) disposed between the gap layer 24 and the first treatment layer 21 is a plurality of first particles 21a.
  • the minimum diameter (the maximum opening of the sieve through which the first particles 21a do not pass) is less than or equal to.
  • the upper limit of the mesh opening of the first partition plate 31 is preferably 200 ⁇ m, and more preferably 180 ⁇ m. Moreover, as a minimum of the said nominal opening, 10 micrometers is preferable and 80 micrometers is more preferable.
  • the nominal opening exceeds the said upper limit, there exists a possibility that the 1st particle
  • the nominal opening is less than the lower limit, the flow rate of the liquid to be treated becomes too slow due to pressure loss, and the treatment efficiency of the water treatment apparatus may be insufficient.
  • a partition plate 32 (second partition plate 32) disposed between the gap layer 24 and the second treatment layer 22 and a partition plate 33 (second partition) disposed between the second treatment layer 22 and the gap layer 25.
  • the nominal mesh opening of the three partition plates 33) is designed to be equal to or smaller than the minimum diameter of the plurality of second particles 22a (the maximum opening of the sieve through which the second particles 22a do not pass).
  • the upper limit of the nominal mesh opening of the second partition plate 32 and the third partition plate 33 is preferably 100 ⁇ m, and more preferably 80 ⁇ m.
  • 10 micrometers is preferable and 40 micrometers is more preferable.
  • the second particles 22 a may pass through the second partition plate 32 and the third partition plate 33.
  • the nominal opening exceeds the upper limit, the second particles 22 a may pass through the second partition plate 32 and the third partition plate 33.
  • the nominal opening is less than the lower limit, the flow rate of the liquid to be treated becomes too slow due to pressure loss, and the treatment efficiency of the water treatment apparatus may be insufficient.
  • the nominal mesh opening of the partition plate 34 (fourth partition plate 34) disposed between the gap layer 25 and the third treatment layer 23 is the minimum diameter of the plurality of third particles 23a (the third particles 23a pass through).
  • the maximum opening of the sieve that does not) is designed to be below.
  • the upper limit of the nominal mesh opening of the mesh of the fourth partition plate 34 is preferably 80 ⁇ m, and more preferably 50 ⁇ m. Moreover, as a minimum of the said nominal opening, 10 micrometers is preferable and 20 micrometers is more preferable. When the nominal opening exceeds the upper limit, the third particles 23a may pass through the fourth partition plate 34. On the other hand, when the nominal opening is less than the lower limit, the flow rate of the liquid to be treated becomes too slow due to pressure loss, and the treatment efficiency of the water treatment apparatus may be insufficient.
  • a partition plate 35 (fifth partition plate 35) disposed between the third treatment layer 23 and the fourth treatment layer 26 and a partition plate 36 disposed between the fourth treatment layer 26 and the header portion 27.
  • the nominal mesh opening of the (sixth partition plate 36) is not limited as long as it can prevent the adsorbent from flowing out, and can be appropriately designed depending on the type of adsorbent.
  • the fifth partition plate 35 also needs to prevent the outflow of the third particles 23a from the third treatment layer 23. Therefore, the nominal opening of the mesh of the fifth partition plate is the nominal mesh of the mesh of the fourth partition plate 34. A value smaller than the opening is preferred.
  • the plate 34 and the fifth partition plate 35 are wall portions 31a, 32a, 33a, 34a, 35a that do not allow fluid to pass through the upper portion thereof (first wall portion 31a, second wall portion 32a, third wall portion 33a, fourth wall, respectively). It has a wall 34a and a fifth wall 35a).
  • the first wall portion 31 a separates the first space 21 b of the first treatment layer 21 from the adjacent first gap layer 24.
  • the first wall portion 31 a separates the first space 21 b of the first treatment layer 21 from the adjacent first gap layer 24, so that the liquid X to be treated passes through the first space 21 b to the first gap layer 24. Inflow can be prevented.
  • the processing liquid X of each processing layer passes through the space above the processing layer and is adjacent to the processing layer. Can be prevented.
  • the header portion 27 is disposed on the downstream side of the fourth processing layer 26.
  • a discharge pipe 42 that discharges the processed liquid Y is connected to the downstream side of the header section 27, and the processed liquid Y that has passed through each processing layer is collected by the header section 25 and then discharged.
  • the cleaning fluid supply unit 10 is connected to the lower part of the peripheral surface of the main body 100 and supplies the cleaning fluid A into the main body 100.
  • the cleaning fluid supply unit 10 includes an introduction pipe 10a for introducing the cleaning fluid A on the liquid supply side (the right side in the drawing) of the main body 100, and the first processing layer 21 of the main body 100, the second
  • the first treatment layer 21 is disposed below the one void layer 24, the second treatment layer 22, the second void layer 25, the third treatment layer 23, the fourth treatment layer 26, and the header portion 27.
  • the first gap layer 24, the second treatment layer 22, the second gap layer 25, the third treatment layer 23, the fourth treatment layer 26, and the header portion 27 are connected to the partition plate 60 (fluid supply portion partition plate 60). Is done.
  • the material of the cleaning fluid supply unit 10 is not particularly limited, but can be the same as the material of the main body 100.
  • the cleaning fluid supply unit 10 can be integrally formed with the main body 100 by partitioning the cylindrical body into the main body 100 and the cleaning fluid supply unit 10 through the fluid supply unit partition plate 60, for example.
  • the fluid supply part partition plate 60 has a configuration that allows liquid to flow without passing through the first particles 21a, the second particles 22a, the third particles 23a, and the adsorbent.
  • the fluid supply part partition plate 60 has a mesh structure.
  • the size of the first particle 21a, the second particle 22a, the third particle 23a, and the adsorbent may be a size that can prevent the outflow of the smallest particle, and can be appropriately designed depending on the type of the particle.
  • the mesh of the fluid supply part partition plate 60 has the first particles 21a, the second particles 22a, and the third particles 23a.
  • the adsorbent can be prevented from descending to the cleaning fluid supply unit 10.
  • the nominal mesh opening of the fluid supply part partition plate 60 is a treatment layer to be connected unless the first particles 21a, the second particles 22a, the third particles 23a, and the adsorbent descend to the cleaning fluid supply part 10. You may change every.
  • the fluid supply part partition plate 60 has a wall part 60 a at a connection part with the header part 27.
  • This wall portion 60a prevents the cleaning fluid A from passing through the header portion 27 where particles or the like to be cleaned do not exist and being recovered by the cleaning fluid recovery portion 11, thereby improving the cleaning efficiency. Moreover, it can prevent that the to-be-processed liquid X flows into the header part 27, without being filtered enough.
  • the introduction pipe 10a of the cleaning fluid supply unit 10 has an opening / closing port (not shown) that can control the flow of the cleaning fluid A into the cleaning fluid supply unit 10.
  • the opening / closing port is opened when the treatment layer is cleaned, and supplies the cleaning fluid A to the cleaning fluid supply unit 10.
  • the opening / closing port is closed during water treatment, and prevents the liquid to be treated from flowing out from the main body 100 through the cleaning fluid supply unit 10.
  • the cleaning fluid A is supplied to the introduction pipe 10a of the cleaning water supply unit 10 as a jet water flow by being pumped by, for example, a pump.
  • This jet water flow passes through the fluid supply part partition plate 60 and becomes an upward flow, so that the plurality of first particles 21a, second particles 22a, and third particles 23a move upward and are stirred.
  • oil droplets, turbidity and the like trapped between the particles are separated, and these flow above the water treatment apparatus 1.
  • the oil droplets and turbidity that have flowed upward are collected together with the cleaning fluid Z via the cleaning fluid recovery section 11 described later.
  • the water supply pressure of the cleaning fluid A is preferably 0.2 MPa or more
  • the jet water flux in the fluid supply part partition plate 60 is preferably 20 m / d or more.
  • the particles of each treatment layer may be washed by air scrubbing that sends bubbles from the introduction pipe 10a of the washing water supply unit 10. Specifically, after the cleaning fluid A is retained, air bubbles are sent to the main body 100, and the surfaces of the plurality of first particles 21a, the second particles 22a, and the third particles 23a are rubbed, and the plurality of first particles 21a, the second particles 22a, and the third particles 23a are vibrated to remove deposits.
  • the cleaning by jet water flow and the cleaning by air scrubbing may be performed simultaneously, but are preferably performed alternately.
  • the cleaning effect is enhanced by alternately performing cleaning by jet water flow and cleaning by air scrubbing.
  • the flow rate of the cleaning fluid can be, for example, double the supply amount of the liquid to be treated during water treatment.
  • the cleaning time for the treatment layer can be, for example, 30 seconds to 10 minutes, and the cleaning interval can be, for example, 1 hour to 12 hours.
  • the cleaning fluid recovery unit 11 is connected to the upper surface of the main body 100 and recovers the cleaning fluid Z from the main body 100.
  • the cleaning fluid recovery unit 11 includes a recovery pipe 11a for recovering the cleaning fluid Z on the liquid discharge side (left side in the drawing) of the main body 100, and the first processing layer 21 of the main body 100, the second
  • the first treatment layer 21 is disposed across the one void layer 24, the second treatment layer 22, the second void layer 25, the third treatment layer 23, the fourth treatment layer 26, and the header portion 27.
  • the first gap layer 24, the second treatment layer 22, the second gap layer 25, the third treatment layer 23, the fourth treatment layer 26, and the header portion 27 are connected via the connection portion 61.
  • the material of the cleaning fluid recovery unit 11 is not particularly limited, but may be the same as the material of the cleaning fluid supply unit 10.
  • the cleaning fluid recovery unit 11 can be integrally formed with the main body 100 in the same manner as the cleaning fluid supply unit 10, for example.
  • the recovery pipe 11a may have a control valve (not shown) that can adjust the pressure in the cleaning fluid recovery unit 11. By adjusting the pressure in the cleaning fluid recovery unit 11 with this control valve, the amount of cleaning fluid and bubbles that reach each layer can be controlled, and the cleaning efficiency is improved.
  • the recovery pipe 11a of the cleaning fluid recovery unit 11 has an opening / closing port (not shown) that can control recovery of the cleaning fluid Z from the cleaning fluid recovery unit 11.
  • the opening / closing port is opened when the processing layer is cleaned, and the cleaning fluid Z is recovered from the cleaning fluid recovery unit 11.
  • the opening / closing port is closed during water treatment, and prevents the liquid X to be treated from flowing out from the main body 100 through the cleaning fluid recovery unit 11.
  • the cleaning fluid recovery unit 11 is connected to the main body 100 via the connection unit 61.
  • the connecting portion 61 has a configuration that allows liquid to flow without passing through the first particles 21a, the second particles 22a, the third particles 23a, and the adsorbent.
  • the connection part 61 has a mesh structure.
  • the nominal opening of the mesh of the connecting portion 61 may be, for example, a size that can prevent the outflow of the smallest particles among them, and can be appropriately designed depending on the type of particles.
  • the connecting portion 61 has a wall portion 61 a at a connecting portion with the first gap layer 24, the second gap layer 25, and the header portion 27.
  • the cleaning fluid A passes through the first gap layer 24, the second gap layer 25, and the header portion 27 in which particles to be cleaned do not exist, and is recovered by the cleaning fluid recovery section 11. This improves the cleaning efficiency. Moreover, it can suppress that the to-be-processed liquid X bypasses a process layer, and flows in into the header part 27.
  • the water treatment apparatus 1 Since the water treatment apparatus 1 is different in the direction in which the liquid X to be treated flows (lateral direction) and the direction in which the cleaning fluid A flows (vertical direction), washing with turbidity after washing one treatment layer It is possible to prevent the working fluid Z from flowing into the downstream or upstream processing layer. Therefore, complicated piping or the like for cleaning each processing layer is unnecessary, and the configuration of processing layer cleaning can be simplified. For this reason, design of a water treatment apparatus is easy and the manufacturing cost of a water treatment apparatus can be held down. Moreover, since the said water treatment apparatus 1 does not need to wash
  • the introduction pipe 10 a of the cleaning fluid supply unit 10 is connected to the liquid supply side of the main body 100, and the recovery pipe 11 a of the cleaning fluid recovery unit 11 is connected to the processed liquid discharge side of the main body 100.
  • the cleaning fluid flows smoothly from the upstream side to the downstream side in the main body 100, and the staying in the main body 100 hardly occurs. Therefore, oil droplets and turbidity separated from each particle are less likely to stay in the main body 100, and the cleaning efficiency is improved.
  • the introduction pipe 10a is on the upstream side, it is easy to apply a stronger jet water flow to the first particles 21a having large particles, and the cleaning effect can be further improved.
  • the water treatment method includes a step of supplying a liquid to be treated to the water treatment apparatus and discharging the treated liquid.
  • the method for supplying the liquid to be treated is not particularly limited, and for example, a method of pumping the liquid to be treated to the water treatment apparatus with a pump or a water head can be used.
  • the lower limit of the supply amount of the liquid to be treated in the water treatment process is preferably 100m 3 / m 2 ⁇ day, more preferably from 200m 3 / m 2 ⁇ day, more preferably 300m 3 / m 2 ⁇ day.
  • the oil concentration, turbidity concentration and viscosity of the liquid to be treated are high, high water quality can be obtained even at a treatment speed below the above lower limit, and a sufficiently inexpensive treatment can be performed, but the concentration of the liquid to be treated is low and the cost is low.
  • the water treatment method may not be suitable for use in an environment where a large amount of liquid to be treated is generated when the amount of liquid to be treated is less than the lower limit.
  • the upper limit of the supply amount of the liquid to be processed is not particularly limited, but can be set to, for example, 1000 m 3 / m 2 ⁇ day.
  • the upper limit of the turbidity concentration of the treated liquid discharged by the water treatment method is preferably 10 ppm, more preferably 5 ppm, still more preferably 3 ppm, and particularly preferably 1 ppm or less.
  • the turbidity concentration means the concentration of suspended matter (SS) and is a value measured according to “14.1 Suspended matter” of JIS-K0102 (2008).
  • the upper limit of the oil concentration of the treated liquid discharged by the water treatment method is preferably 100 ppm, more preferably 50 ppm, still more preferably 10 ppm, and particularly preferably 1 ppm or less.
  • the said water treatment method processes the to-be-processed liquid X using the said water treatment apparatus 1, the manufacturing cost of a water treatment apparatus can be held down. In addition, since it is not necessary to clean each processing layer, the cleaning time of the processing layer can be reduced. Therefore, the water treatment method can efficiently separate and treat an oil / water mixture containing various turbid substances in addition to oil.
  • [Second Embodiment] 2 mainly includes a cylindrical main body 200, a cleaning fluid supply unit 10, and a cleaning fluid recovery unit 11 installed sideways.
  • the main body 200 includes a first treatment layer 21, a first gap layer 24, a second treatment layer 22, a second gap layer 25, and a third treatment layer that are arranged in series from one end side to which the liquid X to be treated is supplied. 23, the fourth processing layer 26 and the header portion 27, and these layers and the header portion are partitioned by partition plates 51 to 56.
  • FIG. 2 the same parts as those in FIG.
  • Partition plate In the water treatment apparatus 2, as shown in FIG. 2, fluid flow paths to adjacent gap layers 24, 25 of the plurality of treatment layers 21, 22, 23 are alternately formed in the vertical direction.
  • the first partition plate 51 has a wall portion 51a on the upper side of the partition plate
  • the second partition plate 52 has a wall portion 52a on the lower side of the partition plate
  • the third partition plate 53 are arranged on the upper side, the fourth partition plate 54 on the lower side, the fifth partition plate 55 on the upper side, and the sixth partition plate 56 on the lower side so that the wall portions 53a to 56a are alternately formed.
  • or 56 have a mesh structure in parts other than a wall part.
  • the supply pipe 41 is connected to the upper side of the main body 200. Thereby, the flow path of the said water treatment apparatus 2 can be lengthened.
  • the lower limit of the ratio of the length of the wall portions 51a to 56a to the partition plates 51 to 56 is preferably 0.5, and more preferably 0.6. Moreover, as an upper limit of the ratio of the length with respect to the partition plate of the said wall part, 0.9 is preferable and 0.8 is more preferable.
  • the ratio of the length of the wall portion to the partition plate is less than the lower limit, the flow rate of the liquid to be treated becomes too slow due to pressure loss, and the treatment efficiency of the water treatment device may be insufficient.
  • the ratio of the length of the wall portion to the partition plate exceeds the upper limit, the expansion effect of the flow path of the liquid X to be processed may not be sufficiently obtained.
  • the flow path of the fluid to the treatment layers adjacent to each other of the plurality of treatment layers is alternately formed in the vertical direction, so that the liquid X to be treated flows meandering up and down, so that the flow path is Longer water treatment efficiency is improved.
  • the wall portions 51a to 56a are alternately formed in the order of the upper part and the lower part from the first partition plate 51 toward the sixth partition plate 56, but the reverse, that is, from the first partition plate 51 to the sixth partition plate 56.
  • the same effect can be obtained even if the wall portions 51a to 56a are formed in order of the lower portion and the upper portion toward the partition plate 56.
  • [Third embodiment] 3 mainly includes a cylindrical main body 300, a cleaning fluid supply unit 10, and a cleaning fluid recovery unit 11 that are installed sideways.
  • the main body 300 includes a first treatment layer 21, a first gap layer 24, a second treatment layer 22, a second gap layer 25, and a third treatment layer that are arranged in series from one end side to which the liquid X to be treated is supplied. 23, the 4th process layer 26, and the header part 27, and these layers and the header part are partitioned off by the partition plates 31 thru
  • each treatment layer is inclined with respect to the axial direction of the main body 300 so that the upper side of each treatment layer is directed toward the liquid to be treated as shown in FIG. 3. Thereby, the flow path of the said water treatment apparatus 3 can be lengthened.
  • the lower limit of the inclination angle of each treatment layer is preferably 10 °, more preferably 15 °. Moreover, as an upper limit of the inclination-angle of each said process layer, 30 degrees is preferable and 25 degrees is more preferable. When the inclination angle of each treatment layer is less than the lower limit, the expansion effect of the flow path may not be sufficiently obtained. In addition, the length of the main body 300 may be too large. On the other hand, when the inclination angle of each processing layer exceeds the upper limit, the cleaning fluid may easily flow into the adjacent processing layer.
  • the plurality of treatment layers are inclined with respect to the axial direction of the main body 300, whereby the flow path of the liquid to be treated is lengthened and the water treatment efficiency is improved. Further, since the height of the particle layer is reduced by giving the particle layer an inclination, the cleaning efficiency by the cleaning fluid from the lower side to the upper side is improved.
  • the upper side of each treatment layer is inclined so as to be directed toward the liquid to be treated, but the same is true even when the upper side of each treatment layer is inclined so as to be directed to the liquid to be treated. An effect is obtained.
  • the water treatment apparatus includes an introduction pipe into which the cleaning fluid supply unit introduces the cleaning fluid on the liquid supply side of the main body, and the cleaning fluid recovery unit collects the recovery pipe from which the cleaning fluid is recovered.
  • the introduction pipe may be provided on the processed liquid discharge side of the main body, and the recovery pipe may be provided on the liquid supply side of the main body.
  • the water treatment apparatus of the above embodiment has three treatment layers in which a plurality of particles are encapsulated, but may have two layers or four or more layers.
  • the average diameter of the particles enclosed in the plurality of treatment layers is increased in order from the upstream layer, but the average diameter of the particles in the downstream treatment layer is the upstream treatment. It may be equal to or larger than the average particle size of the layer.
  • the water treatment apparatus of the above embodiment includes the fourth treatment layer on the downstream side of the third treatment layer, the fourth treatment layer can be omitted when the oil content of the liquid to be treated is small. . Moreover, you may abut a 5th partition plate and a discharge pipe, for example, when providing a 4th process layer, without providing a header part.
  • the first space, the second space, and the third space formed above the first treatment layer, the second treatment layer, and the third treatment layer are not essential components, and may be omitted as appropriate. Is possible. However, it is preferable to provide these spaces in order to effectively clean the treatment layers.
  • the gap layer disposed between the first treatment layer and the second treatment layer and between the second treatment layer and the third treatment layer is not an essential component and can be omitted. is there. However, it is preferable to provide this void layer in order to effectively clean each treatment layer. Conversely, a void layer may be disposed on the upstream side of the first treatment layer or between the third treatment layer and the fourth treatment layer. By disposing the void layer in this way, the cleaning effect of the treatment layer adjacent to the void layer is further enhanced.
  • one cleaning fluid supply unit is connected across each processing layer below each processing layer of the main body, but a plurality of cleaning fluid supply units are connected to each of the plurality of processing layers. You may connect.
  • fluid flow passages of the third embodiment may be formed alternately in the vertical direction as in the second embodiment.
  • the flow path can be further expanded by alternately forming the fluid flow paths in the vertical direction.
  • connection part of the cleaning fluid recovery part has the structure having the wall part at the connection part between the first gap layer and the second gap layer, but the fluid supply part partition plate of the cleaning fluid supply part is You may further have a wall part in the connection part with a 1st space
  • the connecting part of the cleaning fluid recovery part has a mesh structure at the connecting part between the first gap layer and the second gap layer, and the fluid supply part partition plate of the cleaning fluid supply part is the first gap layer and the second gap layer. You may have a wall part in a connection part with two space layers.
  • the fluid supply part partition plate of the cleaning fluid supply part has the wall part at the connection portion between the first gap layer and the second gap layer, so that the cleaning fluid A easily flows from the lower part of each processing layer. Therefore, the cleaning effect of the lower part of the particle layer is particularly enhanced.
  • the water treatment apparatus of the present invention has a simple treatment layer cleaning configuration, and therefore can reduce the cleaning time of the treatment layer. Therefore, the water treatment apparatus of the present invention and the water treatment method using the same can efficiently separate and treat an oil / water mixture containing various turbid substances in addition to oil. Therefore, the water treatment apparatus of the present invention and the water treatment method using the same can be suitably used in production facilities such as factories and oil fields.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Water Treatment By Sorption (AREA)
  • Filtration Of Liquid (AREA)
  • Removal Of Floating Material (AREA)

Abstract

処理層洗浄の構成が簡潔で、製造コストの低い水処理装置及びこれを用いた水処理方法を提供することを目的とする。本発明の水処理装置は、横向きに設置される筒状の本体を備え、この本体の軸方向の一端側から被処理液を供給し、他端側から処理済液を排出する水処理装置であって、上記本体の周面下方に接続され、洗浄用流体を本体内部に供給する洗浄用流体供給部と、上記本体の周面上方に接続され、洗浄用流体を本体内部から回収する洗浄用流体回収部とを備え、上記本体が、軸方向に沿って区画され、複数の粒子が封入される複数の処理層を有する。

Description

水処理装置及びこれを用いた水処理方法
 本発明は、水処理装置及びこれを用いた水処理方法に関する。
 油田や工場等で発生する油や濁質を含んだ油水混合液は、環境保全の観点から油や濁質の混合量を一定値以下まで低減してから廃棄する必要がある。油や濁質を混合液から分離除去する方法としては、重力分離、蒸留分離、薬品分離等があるが、低コストで油や濁質を分離除去する方法として粒子を封入した処理層を用いる方法がある。
 上記処理層を用いた水処理装置は、処理層の粒子によって油水混合液の油分及び濁質を分離し、これらを除去した水を排出するものである(特開平5-154309号公報参照)。このような水処理装置は、様々な大きさの濁質や油のエマルジョン等を含有する油水混合液を処理する場合は、粒子の大きさの異なる複数の処理層を備える。
 ところで、上記従来の水処理装置では油滴や濁質が処理層内に蓄積されるため、処理層内に油滴や濁質がある程度蓄積すると、処理層の粒子の洗浄を行う必要がある。この洗浄では、一般に処理層の下方から上方へ向けて水等の洗浄用流体を送り込んで行う洗浄と、気泡を送り込んで行うエアスクラビングとが同時又は個別に行われる。
特開平5-154309号公報
 上記複数の処理層を有する従来の水処理装置は、処理層が上下方向に配列される。従って、そのまま下方から上方(又はその逆)に向けて洗浄を行うと、洗浄後の濁質を伴った洗浄用流体が上層(又は下層)に流れ込んでしまうため、処理層ごとに洗浄が行えるような配管等が必要となる。従って、処理層の増加に伴い水処理装置が複雑化し水処理装置の製造コストが上昇する。また、処理層ごとに洗浄を行うため、洗浄に時間を要する。
 本発明は、上述のような事情に基づいてなされたものであり、処理層洗浄の構成が簡潔で、かつ処理層の洗浄時間を低減できる水処理装置及びこれを用いた水処理方法を提供することを目的とする。
 上記課題を解決するためになされた発明は、横向きに設置される筒状の本体を備え、この本体の軸方向の一端側から被処理液を供給し、他端側から処理済液を排出する水処理装置であって、上記本体の周面下方に接続され、洗浄用流体を本体内部に供給する洗浄用流体供給部と、上記本体の周面上方に接続され、洗浄用流体を本体内部から回収する洗浄用流体回収部とを備え、上記本体が、軸方向に沿って区画され、複数の粒子が封入される複数の処理層を有する。
 また、上記課題を解決するためになされた別の発明は、当該水処理装置に被処理液を供給し、処理済液を排出する工程を有する水処理方法である。
 本発明の水処理装置は、処理層洗浄の構成が簡潔であるので、処理層の洗浄時間を低減できる。従って、本発明の水処理装置及びこれを用いた水処理方法は、油に加えて種々の濁質を含む油水混合液を効率よく分離処理することができる。
図1は、本発明の一実施形態の水処理装置を示す模式的端面図である。 図2は、図1の実施形態とは異なる実施形態の水処理装置を示す模式的端面図である。 図3は、図1及び図2の実施形態とは異なる実施形態の水処理装置を示す模式的端面図である。
[本発明の実施形態の説明]
 本発明の水処理装置は、横向きに設置される筒状の本体を備え、この本体の軸方向の一端側から被処理液を供給し、他端側から処理済液を排出する水処理装置であって、上記本体の周面下方に接続され、洗浄用流体を本体内部に供給する洗浄用流体供給部と、上記本体の周面上方に接続され、洗浄用流体を本体内部から回収する洗浄用流体回収部とを備え、上記本体が軸方向に沿って区画され、複数の粒子が封入される複数の処理層を有する。
 当該水処理装置は、被処理液が流れる方向(横方向)と洗浄用流体が流れる方向(上下方向)とが異なるため、1つの処理層を洗浄した後の濁質を伴った洗浄用流体が下流又は上流側の処理層に流れ込むことを防止できる。従って、処理層ごとに洗浄を行うための複雑な配管等が不要であり、処理層洗浄の構成が簡潔にできる。このため、水処理装置の設計が容易であり、水処理装置の製造コストを抑えられる。また、当該水処理装置は、処理層ごとに洗浄を行う必要がないため、処理層の洗浄時間を短縮できる。
 上記複数の処理層が上記複数の粒子の上方に空間を有しているとよい。このように上記複数の処理層が上記複数の粒子の上方に空間を有していることで、処理層の洗浄時に粒子が流動しやすくなり、洗浄効率が向上する。
 上記複数の処理層の空間同士が流体を透過させない壁部で隔てられているとよい。このように上記複数の処理層の空間同士が流体を透過させない壁部で隔てられていることで、被処理液が処理層に封入される複数の粒子により形成される粒子層をより確実に通過するようになり、十分に濾過されずに処理層を通過することを防ぐことができる。
 上記複数の処理層の隣接する処理層への流体の流通路が上下方向交互に形成されているとよい。このように上記複数の処理層の隣接する処理層への流体の流通路が上下方向交互に形成されていることで、被処理液の流通路が長くなり、水処理効率が向上する。
 上記複数の処理層が本体の軸方向に対して傾斜しているとよい。このように上記複数の処理層が本体の軸方向に対して傾斜していることで、被処理液の流通路が長くなり、水処理効率が向上する。また、粒子層に傾斜が与えられることで粒子層の高さが減るので、下方から上方へ向けての洗浄用流体による洗浄効率が向上する。
 上記複数の処理層の間に粒子が封入されない空隙層をさらに有するとよい。このように上記複数の処理層の間に粒子が封入されない空隙層をさらに有することで、下方より送り込まれる洗浄用液体が処理層の下方からのみならず空隙層を経由する側方から流入する経路が存在するため、上記複数の粒子がより大きく撹拌され、洗浄効率が向上する。
 上記洗浄用流体供給部に洗浄用流体を導入する導入管が本体の被処理液供給側及び処理済液排出側のいずれか一方に接続され、上記洗浄用流体回収部から洗浄用流体を回収する回収管が本体の被処理液供給側及び処理済液排出側の他方に接続されているとよい。このように上記導入管が本体の被処理液供給側及び処理済液排出側のいずれか一方に接続され、上記回収管が本体の被処理液供給側及び処理済液排出側の他方に接続されていることで、洗浄用流体が本体内を一方向にスムーズに流れ、本体内に洗浄用流体の滞留が発生しにくい。従って、各粒子から分離した油滴や濁質等が本体内に留まりにくくなり、洗浄効率が向上する。
 従って、当該水処理装置は、油と濁質とを含有する被処理液に対し、油と濁質とを分離した処理水を得る装置として好適に用いることができる。
 また、別の発明は、当該水処理装置に被処理液を供給し、処理済液を排出する工程を有する水処理方法である。
 当該水処理方法は、当該水処理装置を用いて被処理液を処理するため、水処理装置の製造コストを抑えられる。また、処理層ごとに洗浄を行う必要がないため、処理層の洗浄時間を低減できる。従って、本発明の水処理装置を用いた水処理方法は、油に加えて種々の濁質を含む油水混合液を効率よく分離処理することができる。
 ここで、処理層の「空間」とは、処理層内の複数の粒子の上方に形成される仕切板と粒子層の表面との間の領域を意味する。
[本発明の実施形態の詳細]
 以下、本発明に係る水処理装置及び水処理方法の実施形態について詳説する。
[第一実施形態]
 図1の水処理装置1は、横向きに設置される筒状の本体100を備え、この本体100の軸方向の一端側(図中右側)から被処理液Xを供給し、他端側(図中左側)から処理済液Yを排出する。また、当該水処理装置1は、上記本体100の周面下方に接続され、洗浄用流体Aを本体100内部に供給する洗浄用流体供給部10と、上記本体の周面上方に接続され、洗浄に使用された洗浄用流体Zを本体100内部から回収する洗浄用流体回収部11とを備える。また、上記本体100が、軸方向に沿って区画され、複数の粒子21a、22a、23aが封入される複数の処理層(第一処理層21、第二処理層22及び第三処理層23)を有する。また、上記本体100は、上記第一処理層21と第二処理層22との間及び上記第二処理層22と第三処理層23との間に粒子が封入されない空隙層(第一空隙層24及び第二空隙層25)をさらに有する。
 さらに上記本体100は、油を吸着する吸着剤が封入される第四処理層26と、ヘッダ部27とを備え、被処理液Xが供給される一端側から第一処理層21、第一空隙層24、第二処理層22、第二空隙層25、第三処理層23、第四処理層26、ヘッダ部27の順に直列に配列されている。これらの層及びヘッダ部の間は、仕切板31乃至36で仕切られている。
 なお、当該水処理装置1は、油と濁質とを含有する被処理液に対し好適に用いることができる。この濁質とは、例えば砂、シリカや炭酸カルシウムなどの粒子、鉄粉、微生物、木片等を含む。
(本体)
 上記本体100は筒状体であり、その中心軸が横向き(水平方向)に配置される。また、この本体100の軸方向の一端側に、被処理液Xを供給する供給管41が接続され、他端側に、処理済液Yを排出する排出管42が接続されている。
 本体100の材質としては特に限定されず、金属や合成樹脂等を用いることができる。
特に、強度、耐熱性、耐薬品性等の観点からステンレス又はアクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)が好ましい。また、さらに強度及び耐熱性が求められる場合は、繊維強化プラスチック(FRP)が好ましい。FRPとしては、例えば繊維がガラス繊維やカーボン繊維等であり、樹脂がエポキシ樹脂で構成されたものを用いることができる。
 本体100の軸方向に垂直な断面形状としては特に限定されず、円形、矩形等とすることができる。本体100の断面形状を円形とする場合、本体100内部の角部を無くすことができ、粒子等が角部に詰まることを防止できる。また、本体100の強度設計がし易いというメリットも得られる。一方、本体100の断面形状を矩形とする場合、本体100が製作しやすく、低コストになる。また、洗浄の際に洗浄水やエアーを各処理層の下方から均一に供給しやすい。
 本体100のサイズは、被処理液の処理量によって適宜設計することができる。本体100の直径(矩形の場合は1辺の長さ)としては例えば0.5m以上5m以下とすることができる。本体100の軸方向の長さとしては例えば0.5m以上10m以下とすることができる。
 また、本体100は、供給管41との接続部分に第一処理層21の粒子21a(第一粒子21a)の流出を防止する仕切板41a(供給部仕切板41a)を有するとよい。つまり、供給部仕切板41aは、第一粒子21aを通さずに液体を流通可能とする構成を有する。具体的には、供給部仕切板41aは、メッシュ(網)構造を有する。
 なお、本体100に接続される供給管41及び排出管42の材質としては特に限定されないが、本体100の材質と同じものとすることができる。また、供給管41及び排出管42の断面積は、本体100に接続される側に近づくに従って大きくするとよい。このように本体100に接続される側に近づくに従って断面積が大きくすることで、当該水処理装置1に供給される際の被処理液Xの流速が遅くなり、水処理効率が向上する。
(複数の粒子が封入される処理層)
 上記複数の粒子21a、22a、23aが封入される複数の処理層21、22、23は、本体100内部の上流側から第一処理層21、第二処理層22、第三処理層23の順に配設され、上記複数の粒子21a、22a、23aは、各処理層21、22、23内に粒子層を形成する。例えば第一処理層21は被処理液Xに含まれる粒径の比較的大きい油滴や濁質粒子を主に除去し、第二処理層22は被処理液Xに含まれる粒径の中程度の油滴や濁質粒子を、第三処理層23は被処理液Xに含まれる微細な油滴や濁質を主に除去する。
 上記複数の処理層21、22、23の本体100の軸方向の長さ(幅)としては、特に制限されないが、例えば100mm以上300mm以下とすることができる。
 上記第一粒子21aの平均径の下限としては、200μmが好ましく、250μmがより好ましく、300μmがさらに好ましい。また、第一粒子21aの平均径の上限としては、500μmが好ましく、450μmがより好ましく、400μmがさらに好ましい。第一粒子21aの平均径が上記下限未満の場合、第一処理層21に封入される粒子の密度が大きくなり、当該水処理装置1のコスト及び重量が増加するおそれがある。一方、第一粒子21aの平均径が上記上限を超える場合、粒径の比較的大きい油滴や濁質粒子の除去性能が不十分となるおそれがある。
 第二粒子22aの平均径は、第一粒子21aの平均径よりも小さい。第二粒子22aの平均径の下限としては、100μmが好ましく、120μmがより好ましく、140μmがさらに好ましい。また、第二粒子22aの平均径の上限としては、300μmが好ましく、250μmがより好ましく、200μmがさらに好ましい。第二粒子22aの平均径が上記下限未満の場合、第二処理層22に封入される粒子の密度が大きくなり、当該水処理装置1のコスト及び重量が増加するおそれがある。一方、第二粒子22aの平均径が上記上限を超える場合、粒径の中程度の油滴や濁質の除去性能が不十分となるおそれがある。
 第三粒子23aの平均径は、第二粒子22aの平均径よりも小さい。第三粒子23aの平均径の下限としては、10μmが好ましく、20μmがより好ましく、30μmがさらに好ましい。また、第三粒子23aの平均径の上限としては、100μmが好ましく、80μmがより好ましく、60μmがさらに好ましい。第三粒子23aの平均径が上記下限未満の場合、第三処理層23に封入される粒子の密度が大きくなり、当該水処理装置1のコスト及び重量が増加するおそれがある。一方、第三粒子23aの平均径が上記上限を超える場合、微細な油滴や濁質の除去性能が不十分となるおそれがある。
 上記複数の粒子21a、22a、23aの均等係数の下限としては、1.1が好ましく、1.3がより好ましい。また、上記複数の粒子21a、22a、23aの均等係数の上限としては、1.8が好ましく、1.6がより好ましい。上記複数の粒子21a、22a、23aの均等係数が上記下限未満の場合、粒子のバラツキが小さくなり粒子を緻密に堆積させることができないおそれがある。一方、上記複数の粒子21a、22a、23aの均等係数が上記上限を超える場合、各処理層21、22、23内部で油滴や濁質の分離能力が不均一となるおそれがある。なお、均等係数とは、質量で60%の粒子が通過した篩の目開き(粒径)をD60、質量で10%の粒子が通過した篩の目開き(粒径)をD10としたときに、D60/D10で得られる値である。
 上記複数の粒子としては、公知の濾過処理用の粒子を用いることができ、例えば砂、高分子化合物、天然素材等を主成分とする粒子が挙げられる。
 上記砂としては、例えば粒子径の比較的大きいアンスラサイト、ガーネット、マンガン砂、粒子径の比較的小さい珪藻土等を挙げることができる。これらは2種以上を混合して用いてもよい。
 上記高分子化合物としては、例えばビニル樹脂、ポリオレフィン、ポリウレタン、エポキシ樹脂、ポリエステル、ポリアミド、ポリイミド、メラミン樹脂、ポリカーボネート等を挙げることができる。これらの中でも耐水性、耐油性等に優れるビニル樹脂、ポリウレタン、エポキシ樹脂が好ましく、吸着性に優れるポリオレフィンがより好ましい。さらにポリオレフィンの中でも特に油分吸着能力に優れるポリプロピレンが好ましい。また、高分子化合物の場合、不定形の粉砕粒子を用いることが好ましい。不定形の粉砕粒子を用いることで、粒子を緻密に堆積させることができ、濾過効率を向上させると共に、粒子の浮き上がりを防止することができる。
 上記天然素材としては、篩い分けして粒子サイズを整えたものを使用することができ、例えばクルミの殻、おがくず、麻などの天然繊維等を挙げることができる。
 複数の粒子21a、22a、23aとしては、上述した高分子化合物を主成分とする粒子を用いることが好ましい。このように高分子化合物を主成分とする粒子を複数の粒子21a、22a、23aとして用いることで、当該水処理装置1のコスト及び重量を低減することができる。また、複数の粒子21a、22a、23aの比重を小さくできるため、処理層の洗浄時の撹拌効果を高めることができる。
 また、上記複数の処理層21、22、23は、上記複数の粒子21a、22a、23aの上方に空間21b、22b、23b(第一空間21b、第二空間22b及び第三空間23b)を有している。上記複数の処理層21、22、23がこの空間21b、22b、23bを有していることにより、処理層の洗浄時に複数の粒子21a、22a、23aがこの空間21b、22b、23b内に舞い上がり撹拌されることで、効果的に複数の処理層21、22、23を洗浄することができる。また、複数の処理層21、22、23で分離された油や濁質の粒子の一部はこの空間21b、22b、23bに滞留(浮上分離)し、処理層の洗浄時に洗浄用流体Zと共に排出される。
 上記空間21b、22b、23bの平均高さの下限としては、5cmが好ましく、20cmがより好ましい。また、上記平均高さの上限としては、40cmが好ましく、30cmがより好ましい。上記平均高さが上記下限未満の場合、複数の処理層21、22、23の洗浄効果が十分に得られないおそれがある。一方、上記平均高さが上記上限を超える場合、複数の粒子21a、22a、23aの粒子層の高さが小さくなり過ぎ、水処理能力が不十分となるおそれがある。なお、ここで空間の「平均高さ」とは、上記粒子層の表面から後述する洗浄用流体回収部11の接続部61までの距離の平均を意味するものとする。
(空隙層)
 2つの空隙層24、25は、第一処理層21と第二処理層22との間及び第二処理層22と第三処理層23との間に配設された粒子が封入されない層である。このように第一処理層21と第二処理層22との間及び第二処理層22と第三処理層23との間に粒子が封入されない空隙層24、25を配設することにより、洗浄を行う際に下方より送り込まれる洗浄用液体が処理層21、22、23の下方からのみならず空隙層24、25を経由する側方から流入する経路が存在するため、複数の粒子21a、22a、23aがより大きく撹拌され、捕捉されていた油滴や濁質等をより確実に分離除去することができる。
 上記空隙層24、25の本体100の軸方向の長さ(幅)としては、特に制限されないが、例えば100mm以上200mm以下とすることができる。また、空隙層の幅と処理層の幅との比(空隙層の幅/処理層の幅)としては、例えば1/5以上1以下とすることができる。
(第四処理層)
 第四処理層26は、上記第三処理層23の下流側に配設され、油を吸着する吸着剤を封入する。この吸着剤は、第四処理層26内に層を形成する。この第四処理層26は、第一処理層21、第二処理層22及び第三処理層23で除去できなかったさらに微細な油滴を主に吸着除去する。
 上記吸着剤としては、公知の油用吸着剤を用いることができ、例えば多孔セラミックス、不織布、織布、繊維、活性炭等を挙げることができる。これらの中でも、複数の有機繊維により形成された不織布が好ましい。この複数の有機繊維により形成される不織布は、油分を有機繊維で吸着することで油水を分離する。従って、この不織布は繊維間に形成される空孔を微細化する必要がなく孔径を大きくすることができるため、高粘度油によって空孔が閉塞されることを抑制し、圧損の上昇を抑制することができる。
 上記不織布を形成する有機繊維の主成分としては、油を吸着可能な有機樹脂であれば特に限定されず、例えばセルロース樹脂、レーヨン樹脂、ポリエステル、ポリウレタン、ポリオレフィン(ポリエチレン、ポリプロピレン等)、ポリアミド(脂肪族ポリアミド、芳香族ポリアミド等)、アクリル樹脂、ポリアクリロニトリル、ポリビニルアルコール、ポリイミド、シリコーン樹脂、フッ素樹脂等を挙げることができる。これらの中でも、フッ素樹脂又はポリオレフィンが好ましい。フッ素樹脂を主成分とする有機繊維を用いることで、不織布の耐熱性及び耐薬品性を高めることができる。さらにフッ素樹脂の中でも特に耐熱性等に優れるポリテトラフルオロエチレンが好ましい。また、ポリオレフィンを主成分とする有機繊維を用いることで、不織布の油分吸着能力を高めることができる。さらにポリオレフィンの中でも特に油分吸着能力に優れるポリプロピレンが好ましい。なお、有機繊維の形成材料には、他のポリマー、潤滑剤などの添加剤等が適宜配合されていてもよい。
 上記有機繊維の平均径の上限としては、1μmが好ましく、0.9μmがより好ましく、0.1μmがさらに好ましい。また、有機繊維の平均径の下限としては、10nmが好ましい。有機繊維の平均径が上記上限を超えると、有機繊維の単位体積あたりの表面積が小さくなるため一定の油吸着能力を確保するために繊維密度を大きくする必要が生じる。その結果、不織布の孔径及び空隙率が小さくなって油による閉塞が発生し易くなる。特に、被処理液XがC重油を含有する場合、水中に分散含有されるC重油の粒径は0.1~1.0μm程度になりやすいため、有機繊維の平均径を上記上限以下とすることで、より確実にC重油を吸着することができる。一方、有機繊維の平均径が上記下限未満の場合、不織布の形成が困難になるおそれや、強度が不足するおそれがある。
 上記不織布の空隙率の下限としては、80%が好ましく、85%がより好ましく、88%がさらに好ましい。また、不織布の空隙率の上限としては、99%が好ましく、95%がより好ましい。不織布の空隙率が上記下限未満の場合、不織布の被処理液の処理量が低下するおそれや、油分によって不織布の空孔が閉塞され易くなるおそれがある。一方、不織布の空隙率が上記上限を超える場合、不織布の強度が維持できないおそれがある。
 上記不織布の平均孔径の下限としては、1μmが好ましく、2μmがより好ましく、5μmがさらに好ましい。また、不織布の平均孔径の上限としては、20μmが好ましく、8μmがより好ましい。不織布の平均孔径が上記下限未満の場合、不織布の被処理液の処理量が低下するおそれや、油分によって不織布の空孔が閉塞され易くなるおそれがある。
一方、不織布の平均孔径が上記上限を超える場合、不織布の油吸着機能が低下するおそれや、不織布の強度が維持できないおそれがある。
 また、第四処理層26は、複数の繊維を本体100内に充填することで形成することもできる。この繊維としては、平均径が1μm以下の長繊維を用いることが好ましい。
 上記第四処理層26の本体100の軸方向の長さとしては、特に制限されないが、例えば10mm以上100mm以下とすることができる。
(仕切板)
 仕切板31乃至36は、各処理層間に配設され、複数の粒子21a、22a、23a及び吸着剤の流出を防止する板であり、供給部仕切板41aと同様にメッシュ構造を有している。
 これらの仕切板31乃至36、41aの材質としては特に限定されず、金属や合成樹脂等を用いることができる。金属を用いる場合、防食の観点からステンレス(特にSUS316L)を用いることが好ましい。合成樹脂を用いる場合、水圧や粒子の重量によって目開きが変化しないよう補強ワイヤー等の支持材を併用することが好ましい。
 上記供給部仕切板41aと、空隙層24と第一処理層21との間に配設される仕切板31(第一仕切板31)とのメッシュの公称目開きは、複数の第一粒子21aの最小径(第一粒子21aが通過しない篩の最大目開き)以下となるように設計される。この第一仕切板31のメッシュの公称目開きの上限としては、200μmが好ましく、180μmがより好ましい。また、上記公称目開きの下限としては、10μmが好ましく、80μmがより好ましい。上記公称目開きが上記上限を超える場合、第一粒子21aが供給部仕切板41a及び第一仕切板31を通過するおそれがある。一方、上記公称目開きが上記下限未満の場合、圧損により被処理液の流速が遅くなり過ぎ水処理装置の処理効率が不十分となるおそれがある。
 空隙層24と第二処理層22との間に配設される仕切板32(第二仕切板32)及び第二処理層22と空隙層25との間に配設される仕切板33(第三仕切板33)のメッシュの公称目開きは複数の第二粒子22aの最小径(第二粒子22aが通過しない篩の最大目開き)以下となるように設計される。この第二仕切板32及び第三仕切板33のメッシュの公称目開きの上限としては、100μmが好ましく、80μmがより好ましい。また、上記公称目開きの下限としては、10μmが好ましく、40μmがより好ましい。上記公称目開きが上記上限を超える場合、第二粒子22aが第二仕切板32及び第三仕切板33を通過するおそれがある。一方、上記公称目開きが上記下限未満の場合、圧損により被処理液の流速が遅くなり過ぎ水処理装置の処理効率が不十分となるおそれがある。
 空隙層25と第三処理層23との間に配設される仕切板34(第四仕切板34)のメッシュの公称目開きは複数の第三粒子23aの最小径(第三粒子23aが通過しない篩の最大目開き)以下となるように設計される。この第四仕切板34のメッシュの公称目開きの上限としては、80μmが好ましく、50μmがより好ましい。また、上記公称目開きの下限としては、10μmが好ましく、20μmがより好ましい。上記公称目開きが上記上限を超える場合、第三粒子23aが第四仕切板34を通過するおそれがある。一方、上記公称目開きが上記下限未満の場合、圧損により被処理液の流速が遅くなり過ぎ水処理装置の処理効率が不十分となるおそれがある。
 第三処理層23と第四処理層26との間に配設される仕切板35(第五仕切板35)及び第四処理層26とヘッダ部27との間に配設される仕切板36(第六仕切板36)のメッシュの公称目開きは、吸着剤の流出を防止できる大きさであればよく、吸着剤の種類によって適宜設計することができる。なお、第五仕切板35は第三処理層23からの第三粒子23aの流出を防ぐ必要もあるため、第五仕切板のメッシュの公称目開きは、第四仕切板34のメッシュの公称目開きよりも小さい値が好ましい。
 上部に空間21b、22b、23bを有する第一処理層21、第二処理層22及び第三処理層23に接する第一仕切板31、第二仕切板32、第三仕切板33、第四仕切板34及び第五仕切板35は、その上部に流体を透過させない壁部31a、32a、33a、34a、35a(それぞれ第一壁部31a、第二壁部32a、第三壁部33a、第四壁部34a及び第五壁部35a)を有する。上記第一壁部31aは、第一処理層21の第一空間21bを隣接する第一空隙層24から隔てる。このように第一壁部31aが第一処理層21の第一空間21bを隣接する第一空隙層24から隔てることにより、被処理液Xが第一空間21bをすり抜けて第一空隙層24へ流入することを防止できる。同様に第二壁部32a、第三壁部33a、第四壁部34a及び第五壁部35aについても、各処理層の被処理液Xが、処理層上部の空間をすり抜けて隣接する処理層へ流入することを防止できる。
(ヘッダ部)
 ヘッダ部27は、上記第四処理層26の下流側に配設される。このヘッダ部27の下流側には処理済液Yを排出する排出管42が接続され、各処理層を通過した処理済液Yがこのヘッダ部25で収集された後に排出される。
(洗浄用流体供給部)
 洗浄用流体供給部10は、本体100の周面下方に接続され、洗浄用流体Aを本体100内部に供給する。具体的には、洗浄用流体供給部10は、洗浄用流体Aを導入する導入管10aを本体100の被処理液供給側(図中右側)に備え、本体100の第一処理層21、第一空隙層24、第二処理層22、第二空隙層25、第三処理層23、第四処理層26及びヘッダ部27の下方にこれらを跨いで配設されるとともに、第一処理層21、第一空隙層24、第二処理層22、第二空隙層25、第三処理層23、第四処理層26及びヘッダ部27と仕切板60(流体供給部仕切板60)を介して接続される。
 洗浄用流体供給部10の材質としては特に限定されないが、本体100の材質と同じものとすることができる。洗浄用流体供給部10は、例えば流体供給部仕切板60を介して本体100と洗浄用流体供給部10とに筒状体を仕切ることで、本体100と一体形成することができる。
 流体供給部仕切板60は、第一粒子21a、第二粒子22a、第三粒子23a及び吸着剤を通さずに液体を流通可能とする構成を有する。具体的には、流体供給部仕切板60は、メッシュ構造を有する。例えば上記第一粒子21a、第二粒子22a、第三粒子23a及び吸着剤のうちで最小の粒子の流出を防止できる大きさであればよく、粒子の種類によって適宜設計することができる。流体供給部仕切板60のメッシュの公称目開きを最小の粒子の流出を防止できる大きさとすることで、流体供給部仕切板60のメッシュは第一粒子21a、第二粒子22a、第三粒子23a及び吸着剤が洗浄用流体供給部10に降下することを防げる。なお、流体供給部仕切板60のメッシュの公称目開きは、第一粒子21a、第二粒子22a、第三粒子23a及び吸着剤が洗浄用流体供給部10に降下しない限り、接続される処理層ごとに変えてもよい。
 また、流体供給部仕切板60は、ヘッダ部27との接続部分に壁部60aを有する。この壁部60aにより、洗浄用流体Aが、洗浄すべき粒子等が存在しないヘッダ部27を通過して、洗浄用流体回収部11に回収されることを防ぎ、洗浄効率が向上する。また、被処理液Xが十分に濾過されずにヘッダ部27に流入することを防ぐことができる。
 また、洗浄用流体供給部10の導入管10aは、洗浄用流体Aの洗浄用流体供給部10への流入を制御できる開閉口(図示せず)を有する。上記開閉口は、処理層の洗浄時には開けられ、洗浄用流体Aを洗浄用流体供給部10へ供給する。一方、上記開閉口は、水処理時には閉じられ、本体100から洗浄用流体供給部10を通じて被処理液が流出することを防ぐ。
 この洗浄水供給部10の導入管10aには、例えばポンプによって圧送することで洗浄用流体Aがジェット水流として供給される。このジェット水流は、流体供給部仕切板60を通過し上昇流となって、複数の第一粒子21a、第二粒子22a及び第三粒子23aを上方に舞い上げ撹拌する。この撹拌により各粒子間に捕捉されていた油滴や濁質等が分離され、これらが当該水処理装置1の上方に流動する。上方に流動した油滴や濁質は、後述する洗浄用流体回収部11を介して洗浄用流体Zと共に回収される。洗浄用流体Aの送水圧としては、0.2MPa以上が好ましく、流体供給部仕切板60におけるジェット水の流束としては20m/d以上が好ましい。
 また、洗浄水供給部10の導入管10aから気泡を送るエアスクラビングにより各処理層の粒子を洗浄してもよい。具体的には、洗浄用流体Aを滞留させた後、本体100へ気泡を送り、複数の第一粒子21a、第二粒子22a及び第三粒子23aの表面を擦過し、さらに複数の第一粒子21a、第二粒子22a及び第三粒子23aを振動させて付着物を除去する。
 ジェット水流による洗浄とエアスクラビングによる洗浄とは、同時に行ってもよいが、交互に行うことが好ましい。ジェット水流による洗浄とエアスクラビングによる洗浄とを交互に行うことで、洗浄効果が高まる。
 なお、洗浄用流体の流量としては、例えば水処理時における被処理液の供給量の倍とすることができる。また、処理層の洗浄時間としては例えば30秒以上10分以下とすることができ、洗浄間隔としては例えば1時間以上12時間以下とすることができる。
(洗浄用流体回収部)
 洗浄用流体回収部11は、本体100の周面上方に接続され、洗浄用流体Zを本体100内部から回収する。具体的には、洗浄用流体回収部11は、洗浄用流体Zを回収する回収管11aを本体100の被処理液排出側(図中左側)に備え、本体100の第一処理層21、第一空隙層24、第二処理層22、第二空隙層25、第三処理層23、第四処理層26及びヘッダ部27の上方にこれらを跨いで配設されるとともに、第一処理層21、第一空隙層24、第二処理層22、第二空隙層25、第三処理層23、第四処理層26及びヘッダ部27と接続部61を介して接続される。
 洗浄用流体回収部11の材質としては特に限定されないが、洗浄用流体供給部10の材質と同じものとすることができる。また、洗浄用流体回収部11は、例えば洗浄用流体供給部10と同様に本体100と一体形成することができる。
 上記回収管11aが、洗浄用流体回収部11内の圧力を調整できるコントロールバルブ(図示せず)を有するとよい。このコントロールバルブにより洗浄用流体回収部11内の圧力を調整することで、各層に行き渡る洗浄用流体や気泡の量を制御でき、洗浄効率が向上する。
 また、洗浄用流体回収部11の回収管11aは、洗浄用流体Zの洗浄用流体回収部11からの回収を制御できる開閉口(図示せず)を有する。上記開閉口は、処理層の洗浄時には開けられ、洗浄用流体Zを洗浄用流体回収部11から回収する。一方、上記開閉口は、水処理時には閉じられ、本体100から洗浄用流体回収部11を通じて被処理液Xが流出することを防ぐ。
 洗浄用流体回収部11は、接続部61を介して本体100に接続される。この接続部61は、第一粒子21a、第二粒子22a、第三粒子23a及び吸着剤を通さずに液体を流通可能とする構成を有する。具体的には、接続部61はメッシュ構造を有する。このように接続部61をメッシュ構造とすることで、接続部61から処理層内の粒子が流出することを防げる。接続部61のメッシュの公称目開きは、例えばこれらのうちで最小の粒子の流出を防止できる大きさであればよく、粒子の種類によって適宜設計することができる。
 また、接続部61は、第一空隙層24、第二空隙層25及びヘッダ部27との接続部分に壁部61aを有する。この壁部61aにより、洗浄用流体Aが、洗浄すべき粒子等が存在しない第一空隙層24、第二空隙層25及びヘッダ部27を通過して、洗浄用流体回収部11に回収されることを防ぎ、洗浄効率が向上する。また、被処理液Xが処理層をバイパスしてヘッダ部27へ流入することを抑止できる。
(利点)
 当該水処理装置1は、被処理液Xが流れる方向(横方向)と洗浄用流体Aが流れる方向(上下方向)とが異なるため、1つの処理層を洗浄した後の濁質を伴った洗浄用流体Zが下流又は上流側の処理層に流れ込むことを防止できる。従って、処理層ごとに洗浄を行うための複雑な配管等が不要であり、処理層洗浄の構成が簡潔にできる。このため、水処理装置の設計が容易であり、水処理装置の製造コストを抑えられる。また、当該水処理装置1は、処理層ごとに洗浄を行う必要がないため、処理層の洗浄時間を短縮できる。
 また、洗浄用流体供給部10の導入管10aが本体100の被処理液供給側に接続され、洗浄用流体回収部11の回収管11aが本体100の処理済液排出側に接続されているため、洗浄用流体が本体100内の上流側から下流側へスムーズに流れ、本体100内に滞留が発生しにくい。従って、各粒子から分離した油滴や濁質等が本体100内に留まりにくくなり、洗浄効率が向上する。また、導入管10aが上流側にあるので、粒子の大きい第一粒子21aに、より強いジェット水流を当てることが容易であり、洗浄効果をさらに向上できる。
 <水処理方法>
 当該水処理方法は、当該水処理装置に被処理液を供給し、処理済液を排出する工程を有する。
 被処理液の供給方法は特に限定されず、例えばポンプ又は水頭で当該水処理装置に被処理液を圧送する方法を用いることができる。
 当該水処理方法における被処理液の供給量の下限としては、100m/m・dayが好ましく、200m/m・dayがより好ましく、300m/m・dayがさらに好ましい。被処理液の油分濃度、濁質濃度及び粘度が高い場合には、上記下限未満の処理速度でも高水質が得られ十分安価な処理を行うことができるが、被処理液の濃度が低くコストの点で高速処理が望まれる場合には、被処理液の供給量が上記下限未満の場合、大量に被処理液が発生する環境下で当該水処理方法が使用に適さなくなるおそれがある。
なお、被処理液の供給量の上限は特に限定されないが、例えば1000m/m・dayとすることができる。
 当該水処理方法で排出した処理済液の濁質濃度の上限としては、10ppmが好ましく、5ppmがより好ましく、3ppmがさらに好ましく、1ppm以下が特に好ましい。
処理済液の濁質濃度を上記上限以下とすることで、当該水処理方法で処理した処理済液を環境に負荷を与えず廃棄することや産業用水として利用することが可能となる。なお、濁質濃度とは、浮遊物質(SS)の濃度を意味し、JIS-K0102(2008)の「14.1 懸濁物質」に準拠して測定される値である。
 当該水処理方法で排出した処理済液の油濃度の上限としては、100ppmが好ましく、50ppmがより好ましく、10ppmがさらに好ましく、1ppm以下が特に好ましい。処理済液の油濃度を上記上限以下とすることで、当該水処理方法の後で行う油水分離処理の負荷を低減することや、条件によっては他の油水分離処理を行なわずとも当該水処理方法で油水分離した処理済液を環境に負荷を与えず廃棄することができる。
(利点)
 当該水処理方法は、当該水処理装置1を用いて被処理液Xを処理するため、水処理装置の製造コストを抑えられる。また、処理層ごとに洗浄を行う必要がないため、処理層の洗浄時間を低減できる。従って、当該水処理方法は、油に加えて種々の濁質を含む油水混合液を効率よく分離処理することができる。
[第二実施形態]
 図2の水処理装置2は、横向きに設置される筒状の本体200、洗浄用流体供給部10及び洗浄用流体回収部11を主に備える。上記本体200は、被処理液Xが供給される一端側から順に直列に配列される第一処理層21、第一空隙層24、第二処理層22、第二空隙層25、第三処理層23、第四処理層26及びヘッダ部27を有し、これらの層及びヘッダ部の間は、仕切板51乃至56で仕切られている。図2において、図1と同様の部分は同一の符号を付して説明を省略する。
(仕切板)
 当該水処理装置2において、図2に示すように複数の処理層21、22、23の隣接する空隙層24、25への流体の流通路が上下方向交互に形成されている。具体的には、第一仕切板51は仕切板の上部側に壁部51aを有し、第二仕切板52は仕切板の下部側に壁部52aを有し、同様に第三仕切板53は上部側、第四仕切板54は下部側、第五仕切板55は上部側、第六仕切板56は下部側に壁部53a乃至56aを有するというように壁部の位置が交互に形成されている。そして、仕切板51乃至56は壁部以外の部分にメッシュ構造を有する。また、供給管41は本体200の側面上側に接続されている。これにより当該水処理装置2の流通路を長くすることができる。
 上記壁部51a乃至56aの仕切板51乃至56に対する長さの割合の下限としては、0.5が好ましく、0.6がより好ましい。また、上記壁部の仕切板に対する長さの割合の上限としては、0.9が好ましく、0.8がより好ましい。上記壁部の仕切板に対する長さの割合が上記下限未満である場合、圧損により被処理液の流速が遅くなり過ぎ水処理装置の処理効率が不十分となるおそれがある。一方、上記壁部の仕切板に対する長さの割合が上記上限を超える場合、被処理液Xの流通経路の拡張効果が十分に得られないおそれがある。
(利点)
 当該水処理装置2は、上記複数の処理層の隣接する処理層への流体の流通路が上下方向交互に形成されていることで、被処理液Xが上下に蛇行して流れるため流通経路が長くなり、水処理効率が向上する。
 なお、上記実施形態では第一仕切板51から第六仕切板56に向かって壁部51a乃至56aが上部、下部の順に交互に形成されるが、その逆、すなわち第一仕切板51から第六仕切板56に向かって壁部51a乃至56aが下部、上部の順に形成されても同様の効果が得られる。
[第三実施形態]
 図3の水処理装置3は、横向きに設置される筒状の本体300、洗浄用流体供給部10及び洗浄用流体回収部11を主に備える。上記本体300は、被処理液Xが供給される一端側から順に直列に配列される第一処理層21、第一空隙層24、第二処理層22、第二空隙層25、第三処理層23、第四処理層26及びヘッダ部27を有し、これらの層及びヘッダ部の間は、仕切板31乃至36で仕切られている。図3において、図1と同様の部分は同一の符号を付して説明を省略する。
(処理層)
 当該水処理装置3において、図3に示すように各処理層の上側が被処理液供給側に向かうように各処理層が本体300の軸方向に対して傾斜している。これにより当該水処理装置3の流通路を長くすることができる。
 上記各処理層の傾斜角度の下限としては、10°が好ましく、15°がより好ましい。
また、上記各処理層の傾斜角度の上限としては、30°が好ましく、25°がより好ましい。上記各処理層の傾斜角度が上記下限未満である場合、流通路の拡張効果が十分に得られないおそれがある。また、本体300の長さが大きくなり過ぎるおそれがある。一方、上記各処理層の傾斜角度が上記上限を超える場合、洗浄用流体が隣接する処理層へ流入しやすくなるおそれがある。
(利点)
 当該水処理装置3は、上記複数の処理層が本体300の軸方向に対して傾斜していることで、被処理液の流通路が長くなり水処理効率が向上する。また、粒子層に傾斜が与えられることで粒子層の高さが減るので、下方から上方へ向けての洗浄用流体による洗浄効率が向上する。
 なお、上記水処理装置3では、各処理層の上側が被処理液供給側に向かうように傾斜させたが、各処理層の上側が被処理液排出側に向かうように傾斜させても同様の効果が得られる。
[その他の実施形態]
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記実施形態の構成に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
 上記実施形態の水処理装置は、洗浄用流体供給部が洗浄用流体を導入する導入管を本体の被処理液供給側に備え、洗浄用流体回収部が洗浄用流体を回収する回収管を本体の処理済液排出側に備えるが、上記導入管を本体の処理済液排出側に、上記回収管を本体の被処理液供給側に備えてもよい。このように導入管を本体の処理済液排出側に、上記回収管を本体の被処理液供給側に備えることで、洗浄用流体が本体内の下流側から上流側へ流れるため、被処理液の進行方向と逆方向の水流で洗浄することとなり、洗浄効果が高まる。
 上記実施形態の水処理装置は、複数の粒子が封入される処理層を3層有していたが、2層又は4層以上有していてもよい。
 また、上記実施形態の水処理装置では、複数処理層に封入される粒子の平均径は上流側の層から順に大きいものとしたが、下流側の処理層の粒子の平均径が上流側の処理層の粒子の平均径と同等又は大きくてもよい。
 上記実施形態の水処理装置は第三処理層の下流側に第四処理層を備えていたが、被処理液の油含有量が少ない場合等、第四処理層を省略することも可能である。また、ヘッダ部を設けずに、例えば第四処理層を設ける際に第五仕切板と排出管とを当接させてもよい。
 また、当該水処理装置において、第一処理層、第二処理層及び第三処理層の上方に形成される第一空間、第二空間及び第三空間は必須の構成要素ではなく、適宜省略が可能である。ただし、各処理層の洗浄を効果的に行うためにはこれらの空間を設けることが好ましい。
 当該水処理装置において、第一処理層と第二処理層との間及び第二処理層と第三処理層との間に配設される空隙層は必須の構成要素ではなく、省略が可能である。ただし、各処理層の洗浄を効果的に行うためにはこの空隙層を設けることが好ましい。逆に、第一処理層の上流側や第三処理層と第四処理層との間に空隙層を配設してもよい。このように空隙層を配設することで、空隙層に隣接する処理層の洗浄効果がさらに高まる。
 上記実施形態の水処理装置では、1つの洗浄用流体供給部が本体の各処理層の下方に各処理層を跨いで接続されたが、複数の洗浄用流体供給部を複数の処理層それぞれに接続してもよい。
 また、上記第三実施形態の流体の流通路を上記第二実施形態のように上下方向交互に形成してもよい。このように流体の流通路を上下方向交互に形成することで、さらに流通経路を拡張できる。
 上記実施形態では、洗浄用流体回収部の接続部が第一空隙層及び第二空隙層との接続部分に壁部を有する構造を示したが、洗浄用流体供給部の流体供給部仕切板が第一空隙層及び第二空隙層との接続部分に壁部をさらに有してもよい。また、洗浄用流体回収部の接続部が第一空隙層及び第二空隙層との接続部分にメッシュ構造を有し、かつ洗浄用流体供給部の流体供給部仕切板が第一空隙層及び第二空隙層との接続部分に壁部を有してもよい。
このように洗浄用流体供給部の流体供給部仕切板が第一空隙層及び第二空隙層との接続部分に壁部を有することで、洗浄用流体Aが各処理層の下部から流入しやすくなるため、特に粒子層下部の洗浄効果が高まる。
 以上のように、本発明の水処理装置は、処理層洗浄の構成が簡潔であるので、処理層の洗浄時間を低減できる。従って、本発明の水処理装置及びこれを用いた水処理方法は、油に加えて種々の濁質を含む油水混合液を効率よく分離処理することができる。従って、本発明の水処理装置及びこれを用いた水処理方法は、工場や油田等の生産施設において好適に用いることができる。
1、2、3 水処理装置
10 洗浄用流体供給部
10a 導入管
11 洗浄用流体回収部
11a 回収管
21 第一処理層
21a 第一粒子
21b 第一空間
22 第二処理層
22a 第二粒子
22b 第二空間
23 第三処理層
23a 第三粒子
23b 第三空間
24 第一空隙層
25 第二空隙層
26 第四処理層
27 ヘッダ部
31 第一仕切板
31a 第一壁部
32 第二仕切板
32a 第二壁部
33 第三仕切板
33a 第三壁部
34 第四仕切板
34a 第四壁部
35 第五仕切板
35a 第五壁部
36 第六仕切板
41 供給管
41a 仕切板
42 排出管
51、52、53、54、55、56 仕切板
51a、52a、53a、54a、55a、56a 壁部
60 仕切板
60a 壁部
61 接続部
61a 壁部
100、200、300 本体
X 被処理液
Y 処理済液
A、Z 洗浄用流体

Claims (9)

  1.  横向きに設置される筒状の本体を備え、この本体の軸方向の一端側から被処理液を供給し、他端側から処理済液を排出する水処理装置であって、
     上記本体の周面下方に接続され、洗浄用流体を本体内部に供給する洗浄用流体供給部と、
     上記本体の周面上方に接続され、洗浄用流体を本体内部から回収する洗浄用流体回収部と
     を備え、
     上記本体が、軸方向に沿って区画され、複数の粒子が封入される複数の処理層を有する水処理装置。
  2.  上記複数の処理層が上記複数の粒子の上方に空間を有している請求項1に記載の水処理装置。
  3.  上記複数の処理層の空間同士が流体を透過させない壁部で隔てられている請求項2に記載の水処理装置。
  4.  上記複数の処理層の隣接する処理層への流体の流通路が上下方向交互に形成されている請求項1又は請求項2に記載の水処理装置。
  5.  上記複数の処理層が本体の軸方向に対して傾斜している請求項1から請求項4のいずれか1項に記載の水処理装置。
  6.  上記複数の処理層の間に粒子が封入されない空隙層をさらに有する請求項1から請求項5のいずれか1項に記載の水処理装置。
  7.  上記洗浄用流体供給部に洗浄用流体を導入する導入管が本体の被処理液供給側及び処理済液排出側のいずれか一方に接続され、上記洗浄用流体回収部から洗浄用流体を回収する回収管が本体の被処理液供給側及び処理済液排出側の他方に接続されている請求項1から請求項6のいずれか1項に記載の水処理装置。
  8.  上記被処理液が油と濁質とを含有し、この被処理液から油と濁質とを分離する請求項1から請求項7のいずれか1項に記載の水処理装置。
  9.  請求項1から請求項8のいずれか1項に記載の水処理装置に被処理液を供給し、処理済液を排出する工程
     を備える水処理方法。
PCT/JP2015/055004 2014-03-17 2015-02-23 水処理装置及びこれを用いた水処理方法 WO2015141396A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580003554.XA CN105873860A (zh) 2014-03-17 2015-02-23 水处理装置和使用该水处理装置的水处理方法
US15/106,925 US20160340209A1 (en) 2014-03-17 2015-02-23 Water treatment apparatus and water treatment method using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-054031 2014-03-17
JP2014054031A JP2015174062A (ja) 2014-03-17 2014-03-17 水処理装置及びこれを用いた水処理方法

Publications (1)

Publication Number Publication Date
WO2015141396A1 true WO2015141396A1 (ja) 2015-09-24

Family

ID=54144374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055004 WO2015141396A1 (ja) 2014-03-17 2015-02-23 水処理装置及びこれを用いた水処理方法

Country Status (4)

Country Link
US (1) US20160340209A1 (ja)
JP (1) JP2015174062A (ja)
CN (1) CN105873860A (ja)
WO (1) WO2015141396A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3429719B1 (en) * 2016-03-18 2021-10-13 Parkson Corporation Improved method for cleaning filtration system media
JP6705086B2 (ja) * 2016-03-31 2020-06-03 株式会社システック ろ過材及びこれを用いたろ過装置及びろ過材の閉塞回避方法
CN111153488A (zh) * 2020-01-13 2020-05-15 南京公诚节能新材料研究院有限公司 一种复合生物滤料
CN112274979B (zh) * 2020-09-30 2021-12-14 倍杰特集团股份有限公司 一种树脂除油设备用前置过滤器、水处理过滤系统和方法
CN115198091B (zh) * 2022-07-18 2023-05-02 江西金辉锂业有限公司 一种提锂吸附树脂装置及操作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0332990U (ja) * 1989-04-06 1991-03-29
JPH0453490U (ja) * 1990-09-11 1992-05-07
JPH11310481A (ja) * 1998-01-30 1999-11-09 Nippon Zeolite Kk アルカリイオン水製造用多孔質セラミックス、該多孔質セラミックスの製造方法及びアルカリイオン水生成器
US6029479A (en) * 1998-03-11 2000-02-29 Pattee; Harley J. Fine particle lint filter
JP2005144230A (ja) * 2003-11-11 2005-06-09 Takenaka Komuten Co Ltd ろ過装置
JP2007136309A (ja) * 2005-11-16 2007-06-07 Mitsui Eng & Shipbuild Co Ltd 横型ろ過装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4411779A (en) * 1978-04-24 1983-10-25 Mcconnell Iii Frank G Fluid treatment system
JP3652557B2 (ja) * 1999-08-03 2005-05-25 オルガノ株式会社 ろ過装置の逆洗方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0332990U (ja) * 1989-04-06 1991-03-29
JPH0453490U (ja) * 1990-09-11 1992-05-07
JPH11310481A (ja) * 1998-01-30 1999-11-09 Nippon Zeolite Kk アルカリイオン水製造用多孔質セラミックス、該多孔質セラミックスの製造方法及びアルカリイオン水生成器
US6029479A (en) * 1998-03-11 2000-02-29 Pattee; Harley J. Fine particle lint filter
JP2005144230A (ja) * 2003-11-11 2005-06-09 Takenaka Komuten Co Ltd ろ過装置
JP2007136309A (ja) * 2005-11-16 2007-06-07 Mitsui Eng & Shipbuild Co Ltd 横型ろ過装置

Also Published As

Publication number Publication date
US20160340209A1 (en) 2016-11-24
CN105873860A (zh) 2016-08-17
JP2015174062A (ja) 2015-10-05

Similar Documents

Publication Publication Date Title
KR101592329B1 (ko) 하이브리드형 섬유여과장치
WO2015141396A1 (ja) 水処理装置及びこれを用いた水処理方法
JP6309090B2 (ja) 加圧浮上装置
TW201341032A (zh) 不定形濾材層及具備該濾材層的過濾裝置
WO2015079923A1 (ja) 水処理装置及びこれを用いた水処理方法
WO2015156118A1 (ja) 油水分離処理システム及び油水分離処理方法
US9789423B2 (en) Filtration apparatus and method for treating granular filtration medium
JP2004321839A (ja) 濾過装置およびそれを用いた濾過方法
KR20080102340A (ko) 초음파를 이용한 산업용 섬유 여과기
WO2016092643A1 (ja) 油水分離処理システム、油水分離処理方法及びスパイラル型分離膜エレメント
WO2016075773A1 (ja) 水処理装置及びこれを用いた水処理方法
KR20140121600A (ko) 상향류 섬유볼 여과장치
KR101350537B1 (ko) 멀티 화이버층을 이용한 여과장치 및 그 역세방법
KR101846252B1 (ko) 설비구조 및 여과기능을 개선시킨 비점오염원 단계별 저감장치
WO2016076042A1 (ja) 下向流式濾過塔
JP2014226604A (ja) 水処理装置及びこれを用いた水処理方法
JP2015029949A (ja) 油水分離処理システム、油水分離処理方法及びスパイラル型分離膜エレメント
WO2016038948A1 (ja) 濾過ユニット
JP5742032B2 (ja) ろ過装置
JP6241510B1 (ja) 圧力式密閉型急速ろ過装置及び浄水器
JP2016064371A (ja) 水処理装置
KR102423918B1 (ko) 액상 버티컬 스크린 필터 및 액상 스크린 필터장치
CN209865618U (zh) 除尘过滤装置
KR101938134B1 (ko) 부정형 여과재층 및 이것을 구비한 여과장치
JP6450645B2 (ja) シルト濾過装置及びシルト濾過方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15765439

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15106925

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15765439

Country of ref document: EP

Kind code of ref document: A1