WO2015141304A1 - 発光装置および表示装置 - Google Patents

発光装置および表示装置 Download PDF

Info

Publication number
WO2015141304A1
WO2015141304A1 PCT/JP2015/052944 JP2015052944W WO2015141304A1 WO 2015141304 A1 WO2015141304 A1 WO 2015141304A1 JP 2015052944 W JP2015052944 W JP 2015052944W WO 2015141304 A1 WO2015141304 A1 WO 2015141304A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
pattern
guide plate
light guide
incident surface
Prior art date
Application number
PCT/JP2015/052944
Other languages
English (en)
French (fr)
Inventor
大川 真吾
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2016508579A priority Critical patent/JP6586950B2/ja
Priority to EP15764759.5A priority patent/EP3133333B1/en
Priority to US15/125,680 priority patent/US10031275B2/en
Publication of WO2015141304A1 publication Critical patent/WO2015141304A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • G02B6/0043Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided on the surface of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0058Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide
    • G02B6/0061Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide to provide homogeneous light output intensity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0073Light emitting diode [LED]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0075Arrangements of multiple light guides
    • G02B6/0076Stacked arrangements of multiple light guides of the same or different cross-sectional area

Definitions

  • the present disclosure relates to a light emitting device and a display device including the light emitting device.
  • a light emitting device that emits light emitted from a light source using a light guide plate.
  • a light emitting device for example, as described in Patent Documents 1 and 2, a plurality of point light sources such as a light emitting diode (LED) and a laser diode (laser diode) are arranged on the side surface of the light guide plate.
  • LED light emitting diode
  • laser diode laser diode
  • the light emitting device As described above, it is desired to reduce luminance unevenness or color unevenness in the light emitting surface.
  • the directivity becomes strong, so that uneven brightness or uneven color tends to occur.
  • each light guide plate is provided with an emission promoting portion, for example, a hemispherical convex portion, for emitting light from a point light source incident from the side surface direction from the surface of the light guide plate.
  • the emission facilitating portion provided in each light guide plate is provided in about a half region in each light guide plate, and is provided in a pattern that does not substantially overlap each other when viewed from the surface of each light guide plate. For this reason, reduction in luminance unevenness or color unevenness is insufficient.
  • a light emitting device includes a first light incident surface, a first light emitting surface that emits light in a predetermined light emitting direction, and a first pattern.
  • a first light guide plate having a first light emission promoting surface, a second light incident surface, a second light emission surface for emitting light in the light emission direction, and a second pattern.
  • a second light guide plate having a second light emission promoting surface and disposed opposite to the first light guide plate.
  • the first pattern is a pattern composed of a plurality of first point-like portions whose arrangement pitch changes so that the density increases as the distance from the first light incident surface increases.
  • the second pattern is the second pattern.
  • the regions where the first pattern and the second pattern are provided partially overlap, and the directions in which the density increases between the first pattern and the second pattern are opposite to each other. It is facing.
  • a display device includes a display panel and a light emitting device that illuminates the display panel, and includes the light emitting device according to the embodiment of the present disclosure as the light emitting device. .
  • a pattern optimized to reduce luminance unevenness or color unevenness is provided on each of the two light guide plates arranged to face each other.
  • the optimized pattern is provided to reduce the luminance unevenness or the color unevenness on each of the two light guide plates arranged to face each other. As a result, luminance unevenness or color unevenness can be reduced. Note that the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
  • FIG. 1 It is a perspective view showing an example of 1 composition of a light emitting device concerning a 1st embodiment of this indication. It is sectional drawing which shows one structural example of the light-emitting device which concerns on 1st Embodiment. It is a top view which shows one structural example of the light-guide plate and light source in the light-emitting device which concerns on 1st Embodiment. It is a top view which shows an example of a dot pattern. It is a top view which shows the 1st example of arrangement
  • FIG. 10 is a characteristic diagram comparing luminance distributions in the Y direction between Comparative Example 1 and Example 1. 6 is a plan view showing an in-plane luminance distribution of Comparative Example 1.
  • FIG. 3 is a plan view showing an in-plane luminance distribution of Example 1.
  • FIG. 10 is a plan view showing a dot pattern of an upper light guide plate of Comparative Example 2.
  • FIG. 6 is a plan view showing a dot pattern of an upper light guide plate in Example 1.
  • FIG. FIG. 6 is a characteristic diagram comparing luminance distributions in the Y direction between Comparative Example 2 and Example 1.
  • 10 is a plan view showing an in-plane luminance distribution of Comparative Example 2.
  • FIG. 10 is a characteristic diagram illustrating a luminance distribution in the X direction according to Example 2.
  • 10 is a plan view showing an in-plane luminance distribution of Example 2.
  • FIG. 6 is a plan view showing a light source arrangement in an upper light guide plate of Example 2.
  • FIG. 6 is a plan view showing a light source arrangement in a lower light guide plate of Example 2.
  • FIG. 10 is a characteristic diagram illustrating a luminance distribution in the X direction according to Example 3.
  • FIG. 6 is a plan view illustrating an in-plane luminance distribution of Example 3.
  • FIG. It is a top view which shows the light source arrangement
  • FIG. It is a top view which shows light source arrangement
  • FIG. It is the characteristic view which compared the luminance distribution of the Y direction of Example 3,4,5. It is the characteristic view which compared the luminance distribution of the normalized Y direction of Example 3, 4, and 5.
  • FIG. It is the characteristic view which compared the luminance distribution of the normalized Y direction of Example 3, 4, and 5.
  • FIG. It is the characteristic view which compared the luminance distribution of the normalized Y direction of Example 3, 4, and 5.
  • FIG. 10 is a characteristic diagram illustrating a luminance distribution in the X direction according to Example 4.
  • FIG. 10 is a plan view showing an in-plane luminance distribution of Example 5.
  • FIG. 10 is a characteristic diagram illustrating a luminance distribution in the X direction according to Example 5. It is a top view which shows the in-plane luminance distribution of the upper stage light-guide plate of Example 3.
  • FIG. It is a characteristic view which shows the luminance distribution of the X direction of the upper stage light-guide plate of Example 3.
  • 6 is a plan view schematically showing a luminance distribution of Example 3.
  • FIG. It is a top view which shows the in-plane luminance distribution of the upper stage light-guide plate of Example 4.
  • FIG. 10 is a plan view schematically showing a luminance distribution of Example 5. It is sectional drawing which shows one structural example of the light-emitting device which concerns on 2nd Embodiment. It is a top view which shows one structural example of the light-guide plate and light source in the light-emitting device which concerns on 2nd Embodiment.
  • FIG. 3 is a front view, a left side view, a right side view, a top view, and a bottom view showing the appearance of the cellular phone in a closed state. It is the front view and side view showing the external appearance of the open state of a mobile telephone.
  • First Embodiment> (FIGS. 1 to 42) [1.1 Basic configuration example of light emitting device] [1.2 Example of dot pattern and light source configuration] [1.3 Action and Effect (Example)] ⁇ 2.
  • Second Embodiment> (Light-Emitting Device Using Only Blue Light Source) (FIGS. 43 to 46) ⁇ 3.
  • Third Embodiment> (Example in which a light source is arranged on the side surface in the X direction) (FIG. 47) ⁇ 4.
  • Fourth Embodiment> (Example of Application to Display Device) (FIGS. 48 to 58) ⁇ 5.
  • Other Embodiments> (FIGS. 1 to 42) [1.1 Basic configuration example of light emitting device] [1.2 Example of dot pattern and light source configuration] [1.3 Action and Effect (Example)] ⁇ 2.
  • Second Embodiment> (Light-Emitting Device Using Only Blue Light Source) (FIGS. 43 to 46) ⁇ 3.
  • Third Embodiment> (Example
  • FIG. 1 illustrates an overall configuration of a light emitting device (backlight unit 1) according to a first embodiment of the present disclosure.
  • FIG. 2 shows a cross-sectional configuration of the backlight unit 1.
  • the backlight unit 1 illuminates, for example, a transmissive liquid crystal panel from the back, and includes a first light source 10-1, a second light source 10-2, a lower light guide plate 11A, an upper light guide plate 11B, and a reflection sheet. 12 and the optical sheet 13.
  • the “lower light guide plate 11A” corresponds to a specific example of “first light guide plate” in the present disclosure.
  • the “upper light guide plate 11B” corresponds to a specific example of “second light guide plate” in the present disclosure.
  • Each of the first light source 10-1 and the second light source 10-2 is a point light source, and specifically includes a laser diode (semiconductor laser).
  • a laser diode for example, a laser diode that emits red, green, or blue color light is used.
  • a plurality of first light sources 10-1 are provided in parallel to face the light incident surface (first light incident surface) of the lower light guide plate 11A.
  • a plurality of second light sources 10-2 are provided in parallel so as to face the light incident surface (second light incident surface) of the upper light guide plate 11B.
  • the first light source 10-1 and the second light source 10-2 may be light emitting diodes (LEDs), and a plurality of first light sources 10-1 and second light sources 10- In 2, a laser diode and a light emitting diode may be mixed.
  • Both the lower light guide plate 11A and the upper light guide plate 11B are, for example, plate-like (flat rectangular parallelepiped) optical members.
  • the lower light guide plate 11A has a first light incident surface and a first light exit surface, and guides light incident from the first light entrance surface to the first light exit surface.
  • the upper light guide plate 11B has a second light incident surface and a second light emitting surface, and guides light incident from the second light incident surface to the second light emitting surface.
  • the lower light guide plate 11A further has a first light emission promoting surface provided with a first dot pattern 30-1 to be described later.
  • the upper light guide plate 11B further has a second light emission promoting surface provided with a second dot pattern 30-2 to be described later.
  • Each of the lower light guide plate 11A and the upper light guide plate 11B mainly includes a transparent thermoplastic resin such as polycarbonate resin (PC) or acrylic resin (for example, PMMA (polymethyl methacrylate)).
  • the lower light guide plate 11A and the upper light guide plate 11B are disposed to face each other in the Z direction, for example, and the light emitted from the lower light guide plate 11A and the upper light guide plate 11B is superimposed on the light emitted from the backlight unit 1.
  • a luminance distribution is formed. Light is emitted from the first light emission surface and the second light emission surface in the Z direction as a predetermined light emission direction.
  • the reflection sheet 12 is a plate-like or sheet-like member provided facing the back surface of the lower light guide plate 11A (the second main surface S13 facing the second light emitting surface), and the lower light guide plate 11A (or The light leaking from the upper light guide plate 11B) is returned toward the lower light guide plate 11A.
  • the reflection sheet 12 has, for example, functions such as reflection, diffusion, and scattering, so that the light from the first light source 10-1 and the second light source 10-2 is efficiently used, and the front surface The brightness can be increased.
  • the reflection sheet 12 is made of, for example, foamed PET (polyethylene terephthalate), a silver deposited film, a multilayer film, or white PET.
  • the surface of the reflection sheet 12 is preferably subjected to a treatment such as silver vapor deposition, aluminum vapor deposition, or multilayer film reflection.
  • the reflection sheet 12 may be integrally formed by a technique such as hot press molding using a thermoplastic resin or melt extrusion molding, and for example, PET It may be formed by applying an energy ray (for example, ultraviolet ray) curable resin on a substrate made of, for example, and then transferring the shape to the energy ray curable resin.
  • an energy ray for example, ultraviolet ray
  • thermoplastic resin examples include polycarbonate resins, acrylic resins such as PMMA (polymethyl methacrylate resin), polyester resins such as polyethylene terephthalate, and amorphous copolymers such as MS (copolymer of methyl methacrylate and styrene).
  • examples thereof include a polymerized polyester resin, a polystyrene resin, and a polyvinyl chloride resin.
  • the substrate when transferring the shape to an energy ray (for example, ultraviolet ray) curable resin, the substrate may be glass.
  • the optical sheet 13 is provided to face the first light exit surface of the upper light guide plate 11B, and includes, for example, a diffusion plate, a diffusion sheet, a lens film, a polarization separation sheet, and the like. By providing such an optical sheet 13, it is possible to raise the light emitted in an oblique direction from the upper light guide plate 11 ⁇ / b> B in the front direction, and to further increase the front luminance.
  • FIG. 3 shows an arrangement configuration in the XY plane of the lower light guide plate 11A and the upper light guide plate 11B, and the first light source 10-1 and the second light source 10-2.
  • the lower light guide plate 11A has a first main surface S12 and a second main surface S13.
  • the upper light guide plate 11B has a first main surface S22 and a second main surface S23.
  • first side surface S1 is the first light incident surface
  • main surface S12 surface facing the upper light guide plate 11B
  • the other main surface S13 is a first light emission promoting surface provided with the first dot pattern 30-1.
  • one side surface (second side surface S2) is the second light incident surface
  • one main surface S22 (surface facing the optical sheet 13) is the second light emitting surface. It has become.
  • the light emitting surface of the upper light guide plate 11B constitutes the light emitting surface of the entire light guide unit.
  • Another main surface S23 is a second light emission promoting surface provided with the second dot pattern 30-2.
  • the lower light guide plate 11A and the upper light guide plate 11B are stacked so that the first light incident surface and the second light incident surface do not overlap in the Z direction.
  • the first light incident surface of the lower light guide plate 11A is provided on one of the two side surfaces (for example, the first side surface S1) corresponding to the long side of the XY planar shape (for example, rectangular shape).
  • the second light incident surface of the upper light guide plate 11B is provided on the other of the two side surfaces corresponding to the rectangular long side (for example, the second side surface S2).
  • a plurality of first light sources 10-1 are arranged facing the first light incident surface of the lower light guide plate 11A and along one direction.
  • a plurality of second light sources 10-2 are arranged facing the second light incident surface of the upper light guide plate 11B and along one direction.
  • the first light source 10-1 and the second light source 10-2 emit light in opposite directions as viewed from the light emission direction (Z direction), and the lower light guide plate 11A And the light of mutually opposite direction injects into the upper stage light-guide plate 11B.
  • the first dot pattern 30-1 is provided so as to cover a region exceeding half of the first light emission promoting surface of the lower light guide plate 11A.
  • the second dot pattern 30-2 is provided so as to cover a region exceeding half of the second light emission promoting surface of the upper light guide plate 11B.
  • FIG. 4 schematically shows the second dot pattern 30-2 of the upper light guide plate 11B, but the direction in which the pattern density increases is also reversed for the first dot pattern 30-1 of the lower light guide plate 11A. Except for this, the configuration is substantially the same.
  • the lower light guide plate 11A has a first dot pattern 30-1 in which fine dots 31 as first dot-like portions are provided on the first light emission promoting surface.
  • the upper light guide plate 11B is substantially the same, and has a second dot pattern 30-2 in which dots 31 as second dot-like portions are provided on the second light emission promoting surface.
  • the first dot pattern 30-1 and the second dot pattern 30-2 are formed of white dot patterns that are silk-screen printed using, for example, white ink.
  • a convex or concave pattern corresponding to the dot 31 may be formed by laser processing.
  • the lower light guide plate 11A is configured such that the density of the dots 31 in the first dot pattern 30-1 changes according to the distance from the light incident surface.
  • the upper light guide plate 11B is configured such that the density of the dots 31 in the second dot pattern 30-2 changes according to the distance from the light incident surface.
  • the density of the dots 31 increases as the distance from the light incident surface increases (decreases as the distance from the light incident surface decreases).
  • the density of the dots 31 increases as the distance from the light incident surface increases (decreases as the distance from the light incident surface decreases).
  • the first dot pattern 30-1 and the second dot pattern 30-2 have opposite density directions as viewed from the light emission direction. .
  • the dot density can be changed stepwise by changing the number, pitch, size, and the like of the dots 31 for each region.
  • the first dot pattern 30-1 and the second dot pattern 30-2 are preferably changed in density by changing both the arrangement pitch (dot pitch) and size (dot size) of the dots 31. .
  • the dot pitch Xp1 in the X direction and the dot pitch Yp1 in the Y direction in the portion having a relatively low density the dot pitch Xp2 in the X direction and the dot pitch Yp2 in the Y direction in the portion having a relatively high density. It is good to make it smaller.
  • FIG. 5 shows a first example of the arrangement of the light sources 10.
  • Each of the first light source 10-1 and the second light source 10-2 includes a red light source 10R that emits red light, a green light source 10G that emits blue light, and a blue light source 10B that emits green light. You may go out. White light may be generated by mixing these color lights.
  • each of the first light source 10-1 and the second light source 10-2 may constitute one light source unit 10U for each predetermined number.
  • one red light source 10R, one green light source 10G, and one blue light source 10B constitute one light source unit 10U.
  • FIG. 5 shows a first example of the arrangement of the light sources 10.
  • Each of the first light source 10-1 and the second light source 10-2 includes a red light source 10R that emits red light, a green light source 10G that emits blue light, and a blue light source 10B that emits green light. You may go out. White light may be generated by mixing these color lights.
  • the optical axis position of the first light source 10-1 and the optical axis position of the second light source 10-2 are the same as seen from the light emitting direction. That is, the optical axis position in the X direction of each light source is the same in the lower light guide plate 11A and the upper light guide plate 11B.
  • FIG. 6 shows a second example of the arrangement of the light sources 10.
  • the first light source 10-1 and the second light source plate 11B are different from each other in the X-direction optical axis position between the first light source 10-1 and the second light source 10-2.
  • the relative position with respect to the light source 10-2 may be offset.
  • the optical axis positions of the first light source 10-1 and the second light source 10-2 are different for each light source unit 10U when viewed from the light emitting direction.
  • the light emitted from the first light source 10-1 and incident on the light incident surface of the lower light guide plate 11A travels inside the lower light guide plate 11A and is emitted from the first light output surface.
  • the light emitted from the second light source 10-2 and incident on the second light incident surface of the upper light guide plate 11B travels inside the upper light guide plate 11B and is emitted from the second light output surface.
  • the light emitted from each of the lower light guide plate 11A and the upper light guide plate 11B is combined, passes through the optical sheet 13, and is observed as light emission.
  • each of the two light guide plates arranged opposite to each other is provided with a dot pattern optimized to reduce luminance unevenness or color unevenness. Unevenness can be reduced. Further, by optimizing the arrangement of the light sources arranged to face the light incident surfaces of the light guide plates, the luminance unevenness or the color unevenness can be further reduced.
  • the first light source 10-1 and the second light source 10-2 are each composed of three red light sources 10R and one green light, as in the configuration examples of FIGS.
  • FIG. 7 compares the dot pattern coverages of Comparative Example 1 and Example 1.
  • FIG. 7 shows the coverage of the second dot pattern 30-2 on the upper light guide plate 11B, but the coverage of the first dot pattern 30-1 on the lower light guide plate 11A is substantially the same. May be.
  • the vertical axis represents the coverage of the second dot pattern 30-2, and the horizontal axis represents the distance in the Y direction. The distance in the Y direction is 0 in the center in the Y direction and the minus direction on the light incident surface side (side on which the light source is arranged). The same applies to other characteristic diagrams thereafter.
  • the second light incident surface side (the side on which the second light source 10-2 is disposed) is the minus direction.
  • the side on which the first light incident surface side (first light source 10-1) is disposed is the minus direction.
  • dot patterns 30-1 and 30-2 are provided only in the plus direction from the center in the Y direction.
  • the first dot pattern 30-1 is provided so as to cover a half region of the first light emission promoting surface of the lower light guide plate 11A
  • the second dot pattern 30-2 is provided on the upper light guide plate 11B. Is provided so as to cover a half region of the second light emission promoting surface. That is, as Comparative Example 1, a configuration in the case where the overlapping area (see FIG. 3) of the dot patterns 30-1 and 30-2 is not provided is shown.
  • dot patterns 30-1 and 30-2 are also provided on the minus side in the Y direction, and overlapping areas of dot patterns 30-1 and 30-2 (FIG. 3). Reference) is provided.
  • FIG. 8 shows the dimensions of each part of the upper light guide plate 11B in Comparative Example 1 and Example 1.
  • FIG. 9 shows the dimensions of each part of the lower light guide plate 11A in the first comparative example and the first example.
  • FIG. 9 also shows the dimensions of the arrangement of the first light source 10-1, but the dimensions of the arrangement of the second light source 10-2 are basically the same.
  • the optical axis positions in the X direction of the first light source 10-1 and the second light source 10-2 are the same.
  • the comparative example 2 mentioned later also has the same dimension as FIG. 8 and FIG.
  • FIG. 10 is a comparison of luminance distribution in the Y direction between Comparative Example 1 and Example 1.
  • FIG. 11 shows the in-plane luminance distribution of Comparative Example 1.
  • FIG. 12 shows the in-plane luminance distribution of Example 1.
  • the vertical axis represents luminance
  • the horizontal axis represents distance in the Y direction.
  • FIG. 10 shows characteristics when both the lower light guide plate 11A and the upper light guide plate 11B are turned on, and characteristics when only the upper light guide plate 11B is turned on.
  • Y 0
  • FIG. 13 is a comparison of the dot pattern coverages of Comparative Example 2 and Example 1.
  • FIG. 13 shows the coverage of the second dot pattern 30-2 on the upper light guide plate 11B, but the coverage of the first dot pattern 30-1 on the lower light guide plate 11A is substantially the same. May be.
  • the vertical axis represents the coverage of the second dot pattern 30-2, and the horizontal axis represents the distance in the Y direction.
  • FIG. 14 shows the configuration of the second dot pattern 30-2 of the upper light guide plate 11B of Comparative Example 2, but the configuration of the first dot pattern 30-1 in the lower light guide plate 11A is substantially the same. It may be.
  • FIG. 15 shows the configuration of the second dot pattern 30-2 of the upper light guide plate 11B of Example 1, but the configuration of the first dot pattern 30-1 in the lower light guide plate 11A is substantially the same. It may be.
  • the boundary 40 of the effective area that can be used as illumination light is shown for reference.
  • the second dot pattern 30-2 of the upper light guide plate 11B (and the first dot pattern 30-1 in the lower light guide plate 11A) is a dot corresponding to the position in the Y direction.
  • the pattern density is changed by changing the dot pitch (and dot size) of 31.
  • Comparative Example 1 As shown in FIG. 14, the pattern density is changed by changing only the dot size without changing the dot pitch.
  • FIG. 16 is a comparison of luminance distribution in the Y direction between Comparative Example 2 and Example 1.
  • FIG. 17 shows the in-plane luminance distribution of Comparative Example 2.
  • the vertical axis represents luminance
  • the horizontal axis represents distance in the Y direction.
  • FIG. 16 shows characteristics when both the lower light guide plate 11A and the upper light guide plate 11B are turned on, and characteristics when only the upper light guide plate 11B is turned on.
  • Example 2 In production, there is a limit to minimizing the dot size, and when trying to form a dot pattern at an equal dot pitch as in Comparative Example 2, the minimum coverage is gradually reduced to zero as shown in FIG. It becomes difficult. For this reason, in Comparative Example 2, a singular point of coverage change occurs at the start point of the dot pattern, and is recognized as luminance unevenness as shown at positions Ya, Yb, and Yc in FIGS. On the other hand, in Example 1, it is possible to obtain a surface light source that does not cause singularity unevenness by making the dot pitch variable.
  • FIG. 18 shows a luminance distribution in the X direction of the second embodiment.
  • the vertical axis represents luminance
  • the horizontal axis represents distance in the X direction.
  • the distance in the X direction is 0 in the center in the X direction, and the negative direction on the left side when viewed from the light emitting side.
  • FIG. 19 shows an in-plane luminance distribution of Example 2.
  • FIG. 20 shows the dimensions of the arrangement of the second light source 10-2 in the upper light guide plate 11B of the second embodiment.
  • FIG. 21 shows the dimensions of the arrangement of the first light source 10-1 in the lower light guide plate 11A of the second embodiment.
  • FIG. 22 shows the luminance distribution in the X direction of the third embodiment.
  • the vertical axis represents luminance
  • the horizontal axis represents distance in the X direction.
  • FIG. 23 shows the in-plane luminance distribution of Example 3.
  • FIG. 24 shows the dimensions of the arrangement of the second light source 10-2 in the upper light guide plate 11B of the third embodiment.
  • FIG. 25 shows the dimensions of the arrangement of the first light source 10-1 in the lower light guide plate 11A of the third embodiment. Note that Examples 4 and 5 described later have the same dimensions as those in FIGS.
  • the optical axis positions in the X direction of the first light source 10-1 and the second light source 10-2 are the same as in the configuration example of FIG. No offset).
  • the optical axis positions in the X direction of the first light source 10-1 and the second light source 10-2 are different from each other as in the configuration example of FIG. Let (offset).
  • the arrangement pitch between the first light source 10-1 and the second light source 10-2 is large, if the first light source 10-1 and the second light source 10-2 are arranged coaxially, the axis thereof As shown in FIGS. 18 and 19, the luminance unevenness occurs in the X direction.
  • FIG. 26 compares the coverage of the dot patterns of Examples 3, 4, and 5.
  • FIG. 26 shows the coverage of the second dot pattern 30-2 on the upper light guide plate 11B, but the coverage of the first dot pattern 30-1 on the lower light guide plate 11A is substantially the same. May be.
  • the vertical axis represents the coverage of the second dot pattern 30-2, and the horizontal axis represents the distance in the Y direction.
  • FIG. 27 is a comparison of luminance distributions in the Y direction of Examples 3, 4, and 5.
  • the vertical axis represents luminance
  • the horizontal axis represents distance in the Y direction.
  • FIG. 27 shows characteristics when both the lower light guide plate 11A and the upper light guide plate 11B are turned on, and characteristics when only the upper light guide plate 11B is turned on.
  • FIG. 28 and FIG. 29 compare the normalized luminance distributions in the Y direction of Examples 3, 4 and 5.
  • FIG. 28 and FIG. 29 show characteristics when both the lower light guide plate 11A and the upper light guide plate 11B are turned on, and characteristics when only the upper light guide plate 11B is turned on.
  • FIG. 30 shows the in-plane luminance distribution of Example 4.
  • FIG. 31 shows the luminance distribution in the X direction of the fourth embodiment. In FIG. 31, the vertical axis represents luminance, and the horizontal axis represents distance in the X direction.
  • FIG. 32 shows the in-plane luminance distribution of Example 5.
  • FIG. 33 shows the luminance distribution in the X direction of the fifth embodiment. In FIG. 33, the vertical axis represents luminance and the horizontal axis represents distance in the X direction.
  • FIG. 34 shows the in-plane luminance distribution of the upper light guide plate of Example 3.
  • FIG. 35 shows the luminance distribution in the X direction of the upper light guide plate of Example 3.
  • the vertical axis represents luminance and the horizontal axis represents distance in the X direction.
  • FIG. 36 schematically shows the luminance distribution of the third embodiment.
  • FIG. 36 schematically shows a luminance distribution in the case where the emission luminances of the lower light guide plate 11A and the upper light guide plate 11B are combined in the third embodiment.
  • FIG. 37 shows the in-plane luminance distribution of the upper light guide plate of Example 4.
  • FIG. 38 shows the luminance distribution in the X direction of the upper light guide plate of Example 4.
  • the vertical axis represents luminance
  • the horizontal axis represents distance in the X direction.
  • FIG. 39 schematically shows the luminance distribution of the fourth embodiment.
  • FIG. 39 schematically shows a luminance distribution in the case where the emission luminances of the lower light guide plate 11A and the upper light guide plate 11B are combined in the fourth embodiment.
  • FIG. 40 shows the in-plane luminance distribution of the upper light guide plate of Example 5.
  • FIG. 41 shows the luminance distribution in the X direction of the upper light guide plate of Example 5.
  • the vertical axis represents luminance
  • the horizontal axis represents distance in the X direction.
  • FIG. 42 schematically shows the luminance distribution of the fifth embodiment.
  • FIG. 42 schematically shows a luminance distribution in the case where the emission luminances of the lower light guide plate 11A and the upper light guide plate 11B are combined in the fourth embodiment.
  • the dot pattern coverage is different depending on the distance in the Y direction.
  • the luminance distribution in the Y direction in which only one of the upper light guide plate 11B and the lower light guide plate 11A is lit is different in each embodiment as shown in FIG. Even in such a case, the luminance distribution in the Y direction in which both the upper light guide plate 11B and the lower light guide plate 11A are lit can be made substantially the same in each embodiment as shown in FIG.
  • the luminance distribution in the X direction is different in each embodiment, and the luminance distribution when viewed as a whole surface is different. Further, when considered as a superposition of the respective outgoing luminance distributions of the lower light guide plate 11A and the upper light guide plate 11B, there is an optimum distribution regarding the luminance change in the Y direction. As shown in FIG. 27, there is a region where the luminance distribution is not meshed between the upper and lower light guide plates as shown in FIG. In addition, in the case of the Y-direction luminance change that is too gentle as in the fifth embodiment shown in FIG. 27, the luminance on the light source side tends to increase as shown in FIG. For this reason, it is preferable that the luminance change is between those in the Y direction.
  • the luminance at an arbitrary position in the observation plane orthogonal to the light emission direction satisfies the following condition.
  • y ⁇ 0 0.025 + 1.05 ⁇ sin 2 ⁇ (y + 1) ⁇ ⁇ / 4) ⁇ >L> (0.45 + 1.6 ⁇ y) (1)
  • y position of each light guide plate in the light guide direction viewed from the light exit direction (in the light guide direction of each light guide plate, the position of each light incident surface is ⁇ 1, the center is 0, Position is 1)
  • the following conditions (1) ′ and (2) ′ may be satisfied.
  • Second Embodiment> (Light-Emitting Device Using Only B Light Source)
  • a light emitting device (backlight unit 1A) according to a second embodiment of the present disclosure will be described.
  • substantially the same components as those in the backlight unit 1 according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted as appropriate.
  • FIG. 43 illustrates an example of a cross-sectional configuration of the backlight unit 1A according to the present embodiment.
  • FIG. 44 shows an arrangement configuration in the XY plane of the lower light guide plate 11A and the upper light guide plate 11B, the first light source 10-1, and the second light source 10-2 in the present embodiment.
  • the backlight unit 1 ⁇ / b> A according to the present embodiment further includes a wavelength conversion sheet 14.
  • the configuration example in which the red light source 10R, the green light source 10G, and the blue light source 10B are combined as the first light source 10-1 and the second light source 10-2 has been described. By combining with the sheet 14, it is possible to use only the blue light source 10B.
  • the wavelength conversion sheet 14 is provided between the second light exit surface of the upper light guide plate 11 ⁇ / b> B and the optical sheet 13.
  • the wavelength conversion sheet 14 includes, for example, a fluorescent material that converts part of blue light as predetermined color light into another wavelength such as red light, green light, or yellow light.
  • white light emission is obtained by mixing the blue light as the predetermined color light from the blue light source 10 ⁇ / b> B and the light after wavelength conversion by the wavelength conversion sheet 14.
  • FIG. 45 shows a specific example of the arrangement of the blue light source 10B with respect to the upper light guide plate 11B in the present embodiment.
  • FIG. 46 shows a specific example of the arrangement of the blue light source 10B with respect to the lower light guide plate 11A.
  • the X-direction optical axis positions of the blue light source 10B constituting the first light source 10-1 and the blue light source 10B constituting the second light source 10-2 are different.
  • the relative position of each blue light source 10B may be offset.
  • FIG. 47 shows a configuration example of the light guide plate and the light source in the light emitting device according to the present embodiment.
  • the lower light guide plate 11A and the upper light guide plate 11B have the first light source 10-1 and the second light source 10-2 opposed to the side surfaces in the Y direction.
  • it may be arranged to face the side surface in the X direction.
  • the first light source 10-1 may be disposed to face the third side surface S3 of the lower light guide plate 11A as the first light incident surface.
  • the second light source 10-2 may be disposed to face the fourth side surface S4 of the upper light guide plate 11B as the second light incident surface.
  • the pattern density of the first dot pattern 30-1 and the second dot pattern 30-2 may be changed in the X direction.
  • the backlight units 1 and 1A as described above are incorporated in the display device 2 shown in FIG. 48, for example, and can be applied to the following electronic devices.
  • the display device 2 is, for example, a liquid crystal display.
  • polarizing plates 21a and 21b are stacked on the light incident side and the light emitting side of the liquid crystal panel 20, and the backlight units 1 and 1A illuminate the liquid crystal panel 20 from the back side.
  • Examples of the electronic apparatus include a television device, an electronic book, a smartphone, a digital camera, a notebook personal computer, a video camera, and a mobile phone as described below.
  • the display device 2 using the backlight units 1 and 1A can be applied to electronic devices in various fields that display an externally input video signal or an internally generated video signal as an image or video. Is possible.
  • FIG. 49 is used as a television apparatus, and has a configuration in which a flat main body 102 for image display is supported by a stand 103.
  • the illustrated television apparatus is used as a stationary type with the stand 103 attached to the main body 102 and placed on a horizontal surface such as a floor, a shelf, or a stand, but the stand 103 is removed from the main body 102. It can also be used as a wall-hanging type.
  • the main body 102 is configured to include the display device 2 described above.
  • FIG. 50 shows the appearance of an electronic book.
  • FIG. 51 shows the appearance of another electronic book.
  • Each of these electronic books has, for example, a display unit 210 and a non-display unit 220, and the display unit 210 is configured by the display device 2 described above.
  • FIG. 52 shows the appearance of a smartphone.
  • the smartphone includes a display unit 230 and a non-display unit 240, and the display unit 230 is configured by the display device 2 described above.
  • FIG. 53 and 54 show the appearance of the digital camera.
  • FIG. 53 shows the appearance of the digital camera viewed from the front (subject side)
  • FIG. 54 shows the appearance of the digital camera viewed from the rear (image side).
  • the digital camera includes, for example, a flash light emitting unit 410, a display unit 420, a menu switch 430, and a shutter button 440
  • the display unit 420 includes the display device 2 described above.
  • FIG. 55 shows the appearance of a notebook personal computer.
  • the notebook personal computer has, for example, a main body 510, a keyboard 520 for inputting characters and the like, and a display unit 530 for displaying an image.
  • the display unit 530 is configured by the display device 2 described above. .
  • FIG. 56 shows the appearance of the video camera.
  • This video camera includes, for example, a main body 610, a subject photographing lens 620 provided on the front side surface of the main body 610, a start / stop switch 630 at the time of photographing, and a display 640.
  • the display unit 640 is configured by the display device 2 described above.
  • the mobile phone is obtained by connecting an upper housing 710 and a lower housing 720 with a connecting portion (hinge portion) 730, and includes a display 740, a sub-display 750, a picture light 760, and a camera 770. Yes.
  • the display 740 or the sub-display 750 is configured by the display device 2 described above.
  • the numerical values exemplified in the above embodiments are not limited, and may be other numerical values.
  • a first light guide having a first light incident surface, a first light emitting surface that emits light in a predetermined light emitting direction, and a first light emission promoting surface provided with a first pattern.
  • the first pattern is a pattern composed of a plurality of first point-like portions whose arrangement pitch changes so that the density increases as the distance from the first light incident surface increases.
  • the second pattern is a pattern composed of a plurality of second point-like portions whose arrangement pitch changes as the distance from the second light incident surface increases, and the density increases. As viewed from the light emitting direction, the areas where the first pattern and the second pattern are provided partially overlap, and the first pattern and the second pattern have a high density.
  • a light emitting device comprising: the directions are opposite to each other.
  • Each light guide plate further includes a side surface facing each light incident surface, The light emitting device according to any one of (1) to (5), wherein a luminance at an arbitrary position in an observation plane orthogonal to the light emission direction satisfies the following condition.
  • Each of the plurality of first light sources and the plurality of second light sources includes a laser diode that emits red light, a laser diode that emits green light, and a laser diode that emits blue light. Thru
  • Each of the plurality of first light sources and the plurality of second light sources is a laser diode that emits light of a predetermined color.
  • the light-emitting device according to any one of (1) to (7), further including a wavelength conversion sheet that is disposed opposite to the second light guide plate and converts the predetermined color light into another color light.
  • the light emitting device A first light guide having a first light incident surface, a first light emitting surface that emits light in a predetermined light emitting direction, and a first light emission promoting surface provided with a first pattern.
  • a light plate A second light incident surface; a second light emitting surface that emits light in the light emitting direction; and a second light emission promoting surface provided with a second pattern.
  • a second light guide plate disposed opposite to the light guide plate,
  • the first pattern is a pattern composed of a plurality of first point-like portions whose arrangement pitch changes such that the density increases as the distance from the first light incident surface increases.
  • the second pattern is a pattern composed of a plurality of second point-like portions in which the arrangement pitch changes and the density increases as the distance from the second light incident surface increases. As viewed from the light emitting direction, the areas where the first pattern and the second pattern are provided partially overlap, and the first pattern and the second pattern have a high density. Display devices in which the directions are opposite to each other.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

 本開示の発光装置は、第1の光入射面と、第1のパターンが設けられた第1の光出射促進面とを有する第1の導光板と、第2の光入射面と、第2のパターンが設けられた第2の光出射促進面とを有する第2の導光板とを備える。第1のパターンは、第1の光入射面から離れるにしたがって密度が大きくなるように配置ピッチが変化する複数の第1の点状部からなるパターンであり、第2のパターンは、第2の光入射面から離れるにしたがって配置ピッチが変化して密度が大きくなる複数の第2の点状部からなるパターンであり、光出射方向から見て、第1のパターンと第2のパターンとが設けられた領域が部分的に重複し、かつ、第1のパターンと第2のパターンとで密度が大きくなる方向が互いに逆向きとなっている。

Description

発光装置および表示装置
 本開示は、発光装置、およびこれを備えた表示装置に関する。
 液晶表示装置などのバックライトとして、光源から出射した光を、導光板を用いて面発光させる発光装置が知られている。このような発光装置として、例えば特許文献1および2に記載されているように、発光ダイオード(LED:Light Emitting Diode)やレーザダイオード(laser diode)等の点光源を導光板の側面に複数配置する構造が知られている。
特表2003-532273号公報(図1A、図1B) 特開2011-238484号公報(図1、図2)
 上記のような発光装置において、発光面内における輝度むらあるいは色むらを低減することが望まれている。特に、光源としてレーザダイオードを用いる場合、指向性が強くなるので、輝度むらあるいは色むらが発生しやすい。
 特許文献1および2に記載の発光装置では、互いに異なる側面方向に複数の点光源を配置した2枚の導光板を対向配置し、それら2枚の導光板からの出射光を合成する構造が提案されている。これらに記載の発光装置では、各導光板には、側面方向から入射された点光源からの光を導光板表面から出射させるための出射促進部、例えば半球状の凸形状部が設けられている。しかしながら、各導光板に設けられた出射促進部は、各導光板において約半分の領域に設けられ、各導光板表面から見て互いに実質的に重ならないようなパターンで設けられている。このため、輝度むらあるいは色むらの低減が不十分である。
 従って、輝度むらあるいは色むらを低減することができる発光装置、およびこれを備えた表示装置を提供することが望ましい。
 本開示の一実施の形態に係る発光装置は、第1の光入射面と、所定の光出射方向に向けて光を出射する第1の光出射面と、第1のパターンが設けられた第1の光出射促進面とを有する第1の導光板と、第2の光入射面と、光出射方向に向けて光を出射する第2の光出射面と、第2のパターンが設けられた第2の光出射促進面とを有し、第1の導光板に対向配置された第2の導光板とを備えたものである。
 第1のパターンは、第1の光入射面から離れるにしたがって密度が大きくなるように配置ピッチが変化する複数の第1の点状部からなるパターンであり、第2のパターンは、第2の光入射面から離れるにしたがって配置ピッチが変化して密度が大きくなる複数の第2の点状部からなるパターンである。光出射方向から見て、第1のパターンと第2のパターンとが設けられた領域が部分的に重複し、かつ、第1のパターンと第2のパターンとで密度が大きくなる方向が互いに逆向きとなっている。
 本開示の一実施の形態に係る表示装置は、表示パネルと、表示パネルを照明する発光装置とを含み、発光装置として、上記本開示の一実施の形態に係る発光装置を備えたものである。
 本開示の一実施の形態に係る発光装置、または表示装置では、対向配置された2つの導光板のそれぞれに、輝度むらあるいは色むらを低減するように最適化されたパターンが設けられる。
 本開示の一実施の形態に係る発光装置、または表示装置によれば、対向配置された2つの導光板のそれぞれに、輝度むらあるいは色むらを低減するように最適化されたパターンを設けるようにしたので、輝度むらあるいは色むらを低減することができる。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
本開示の第1の実施の形態に係る発光装置の一構成例を示す斜視図である。 第1の実施の形態に係る発光装置の一構成例を示す断面図である。 第1の実施の形態に係る発光装置における導光板および光源の一構成例を示す平面図である。 ドットパターンの一例を示す平面図である。 光源の配置の第1の例を示す平面図である。 光源の配置の第2の例を示す平面図である。 比較例1と実施例1とのドットパターンの被覆率を比較した特性図である。 比較例1,2と実施例1とにおける上段導光板の寸法を示す平面図である。 比較例1,2と実施例1とにおける下段導光板の寸法を示す平面図である。 比較例1と実施例1とのY方向の輝度分布を比較した特性図である。 比較例1の面内輝度分布を示す平面図である。 実施例1の面内輝度分布を示す平面図である。 比較例2と実施例1とのドットパターンの被覆率を比較した特性図である。 比較例2の上段導光板のドットパターンを示す平面図である。 実施例1の上段導光板のドットパターンを示す平面図である。 比較例2と実施例1とのY方向の輝度分布を比較した特性図である。 比較例2の面内輝度分布を示す平面図である。 実施例2のX方向の輝度分布を示す特性図である。 実施例2の面内輝度分布を示す平面図である。 実施例2の上段導光板における光源配置を示す平面図である。 実施例2の下段導光板における光源配置を示す平面図である。 実施例3のX方向の輝度分布を示す特性図である。 実施例3の面内輝度分布を示す平面図である。 実施例3,4,5の上段導光板における光源配置を示す平面図である。 実施例3,4,5の下段導光板における光源配置を示す平面図である。 実施例3,4,5のドットパターンの被覆率を比較した特性図である。 実施例3,4,5のY方向の輝度分布を比較した特性図である。 実施例3,4,5の正規化されたY方向の輝度分布を比較した特性図である。 実施例3,4,5の正規化されたY方向の輝度分布を比較した特性図である。 実施例4の面内輝度分布を示す平面図である。 実施例4のX方向の輝度分布を示す特性図である。 実施例5の面内輝度分布を示す平面図である。 実施例5のX方向の輝度分布を示す特性図である。 実施例3の上段導光板の面内輝度分布を示す平面図である。 実施例3の上段導光板のX方向の輝度分布を示す特性図である。 実施例3の輝度分布を模式的に示す平面図である。 実施例4の上段導光板の面内輝度分布を示す平面図である。 実施例4の上段導光板のX方向の輝度分布を示す特性図である。 実施例4の輝度分布を模式的に示す平面図である。 実施例5の上段導光板の面内輝度分布を示す平面図である。 実施例5の上段導光板のX方向の輝度分布を示す特性図である。 実施例5の輝度分布を模式的に示す平面図である。 第2の実施の形態に係る発光装置の一構成例を示す断面図である。 第2の実施の形態に係る発光装置における導光板および光源の一構成例を示す平面図である。 第2の実施の形態に係る発光装置における上段導光板に対する光源の配置の一具体例を示す平面図である。 第2の実施の形態に係る発光装置における下段導光板に対する光源の配置の一具体例を示す平面図である。 第3の実施の形態に係る発光装置における導光板および光源の一構成例を示す平面図である。 適用例に係る表示装置の概略構成を表す模式図である。 テレビジョン装置の外観を表す斜視図である。 電子ブックの外観を表す斜視図である。 他の電子ブックの外観を表す斜視図である。 スマートフォンの外観を表す斜視図である。 デジタルカメラの前方からの外観を表す斜視図である。 デジタルカメラの後方からの外観を表す斜視図である。 ノート型パーソナルコンピュータの外観を表す斜視図である。 ビデオカメラの外観を表す斜視図である。 携帯電話機の閉じた状態の外観を表す正面図、左側面図、右側面図、上面図および下面図である。 携帯電話機の開いた状態の外観を表す正面図および側面図である。
 以下、本開示の実施の形態について図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
<1.第1の実施の形態>(図1~図42)
 [1.1 発光装置の基本構成例]
 [1.2 ドットパターンおよび光源の構成例]
 [1.3 作用および効果(実施例)]
<2.第2の実施の形態>(青色光源のみを用いた発光装置)(図43~図46)
<3.第3の実施の形態>(X方向の側面に光源を配置した例)(図47)
<4.第4の実施の形態>(表示装置への適用例)(図48~図58)
<5.その他の実施の形態>
 
<1.第1の実施の形態>
[1.1 発光装置の基本構成例]
 図1は、本開示の第1の実施の形態に係る発光装置(バックライトユニット1)の全体構成を表したものである。図2は、バックライトユニット1の断面構成を表すものである。バックライトユニット1は、例えば、透過型の液晶パネルを背後から照明するものであり、第1の光源10-1、第2の光源10-2、下段導光板11A、上段導光板11B、反射シート12および光学シート13を有している。
 なお、本実施の形態において、「下段導光板11A」が本開示における「第1の導光板」の一具体例に相当する。また、「上段導光板11B」が本開示における「第2の導光板」の一具体例に相当する。
 第1の光源10-1、および第2の光源10-2はそれぞれ、点状光源であり、具体的にはレーザダイオード(半導体レーザ)を含んで構成されている。レーザダイオードとしては、例えば赤色、緑色あるいは青色の色光を出射するものが用いられる。第1の光源10-1は、下段導光板11Aの光入射面(第1の光入射面)に対向して、複数、並列して設けられている。第2の光源10-2は、上段導光板11Bの光入射面(第2の光入射面)に対向して、複数、並列して設けられている。第1の光源10-1、および第2の光源10-2は、発光ダイオード(LED:Light Emitting Diode)であってもよく、複数の第1の光源10-1、および第2の光源10-2の中には、レーザダイオードと発光ダイオードとが混在していてもよい。
 下段導光板11Aおよび上段導光板11Bはいずれも、例えば板状(扁平な直方体形状)の光学部材である。下段導光板11Aは、第1の光入射面と第1の光出射面とを有しており、第1の光入射面から入射した光を第1の光出射面へ導くものである。上段導光板11Bは、第2の光入射面と第2の光出射面とを有しており、第2の光入射面から入射した光を第2の光出射面へ導くものである。下段導光板11Aはさらに、後述する第1のドットパターン30-1が設けられた第1の光出射促進面を有している。上段導光板11Bはさらに、後述する第2のドットパターン30-2が設けられた第2の光出射促進面を有している。
 下段導光板11Aおよび上段導光板11Bはそれぞれ、例えば、ポリカーボネート樹脂(PC)またはアクリル樹脂(例えば、PMMA(ポリメチルメタクリレート))などの透明熱可塑性樹脂を主に含んで構成されている。これらの下段導光板11Aおよび上段導光板11Bは、例えばZ方向に沿って対向配置され、これにより下段導光板11Aおよび上段導光板11Bごとの出射光を重畳したものが、バックライトユニット1における発光輝度分布を形成する。第1の光出射面および第2の光出射面からは、所定の光出射方向としてZ方向に向けて光が出射される。
 反射シート12は、下段導光板11Aの裏面(第2の光出射面と対向する第2の主面S13)と対向して設けられた板状またはシート状部材であり、下段導光板11A(あるいは上段導光板11B)から漏れ出てきた光を、下段導光板11Aへ向けて戻すものである。反射シート12は、例えば、反射、拡散、散乱などの機能を有しており、これにより第1の光源10-1、および第2の光源10-2からの光を効率的に利用し、正面輝度を高めることが可能となっている。
 この反射シート12は、例えば、発泡PET(ポリエチレンテレフタレート),銀蒸着フィルム,多層膜反射フィルム,または白色PETにより構成されている。反射シート12に正反射(鏡面反射)の機能を持たせる場合には、反射シート12の表面は、銀蒸着,アルミニウム蒸着,または多層膜反射などの処理がなされたものであることが好ましい。反射シート12に微細形状を付与する場合は、反射シート12は、熱可塑性樹脂を用いた熱プレス成型,または溶融押し出し成型などの手法で一体的に形成されていてもよいし、また、例えばPETなどからなる基材上にエネルギー線(例えば紫外線)硬化樹脂を塗布したのち、そのエネルギー線硬化樹脂に形状を転写して形成されていてもよい。ここで、熱可塑性樹脂としては、例えば、ポリカーボネート樹脂、PMMA(ポリメチルメタクリレート樹脂)などのアクリル樹脂、ポリエチレンテレフタレートなどのポリエステル樹脂、MS(メチルメタクリレートとスチレンの共重合体)などの非晶性共重合ポリエステル樹脂、ポリスチレン樹脂およびポリ塩化ビニル樹脂などが挙げられる。また、エネルギー線(例えば紫外線)硬化樹脂に形状を転写する場合は、基材はガラスであってもよい。
 光学シート13は、上段導光板11Bの第1の光出射面と対向して設けられ、例えば、拡散板,拡散シート,レンズフィルム,偏光分離シートなどを含んでいる。このような光学シート13を設けることにより、上段導光板11Bから斜め方向に出射した光を正面方向に立ち上げることが可能となり、正面輝度をさらに高めることが可能となる。
[1.2 ドットパターンおよび光源の構成例]
 さらに、図3~図6を参照してドットパターンおよび光源の構成例をより具体的に説明する。
 図3は、下段導光板11Aおよび上段導光板11Bと、第1の光源10-1および第2の光源10-2とのXY平面における配置構成を表している。下段導光板11Aは、図2に示したように、第1の主面S12および第2の主面S13を有している。上段導光板11Bは、図2に示したように、第1の主面S22および第2の主面S23を有している。
 下段導光板11Aでは、1つの側面(第1の側面S1)が第1の光入射面であると共に、1つの主面S12(上段導光板11Bに対向する面)が第1の光出射面となっている。また、もう1つの主面S13が第1のドットパターン30-1が設けられた第1の光出射促進面となっている。
 上段導光板11Bでは、1つの側面(第2の側面S2)が第2の光入射面であると共に、1つの主面S22(光学シート13に対向するの面)が第2の光出射面となっている。この例では、上段導光板11Bの光出射面が導光部全体の発光面を構成する。また、もう1つの主面S23が第2のドットパターン30-2が設けられた第2の光出射促進面となっている。
 これらの下段導光板11Aおよび上段導光板11Bは、第1の光入射面と第2の光入射面とがZ方向において重畳しないように、積層されている。具体的には、下段導光板11Aの第1の光入射面は、XY平面形状(例えば矩形状)の長辺に対応する2つの側面のうちの一方(例えば第1の側面S1)に設けられ、上段導光板11Bの第2の光入射面は、矩形状の長辺に対応する2つの側面のうちのもう一方(例えば第2の側面S2)に設けられる。下段導光板11Aの第1の光入射面に対向して、かつ一の方向に沿って、複数の第1の光源10-1が配列されている。また、上段導光板11Bの第2の光入射面に対向して、かつ一の方向に沿って、複数の第2の光源10-2が配列されている。このような構成により、光出射方向(Z方向)から見て、第1の光源10-1と第2の光源10-2とから、互いに逆方向に向けて光が出射され、下段導光板11Aおよび上段導光板11Bには、互いに逆向きの光が入射される。
 第1のドットパターン30-1は、下段導光板11Aの第1の光出射促進面の半分を越える領域を覆うように設けられている。第2のドットパターン30-2は、上段導光板11Bの第2の光出射促進面の半分を越える領域を覆うように設けられている。これにより、図3に示したように、光出射方向から見て、第1のドットパターン30-1と第2のドットパターン30-2とが設けられた領域が部分的に重複する重複領域を有している。
 図4は、上段導光板11Bの第2のドットパターン30-2を模式的に表しているが、下段導光板11Aの第1のドットパターン30-1についても、パターン密度が大きくなる方向が逆であること以外は実質的に同様の構成となっている。下段導光板11Aでは、第1の光出射促進面に、第1の点状部としての微細なドット31が設けられてなる第1のドットパターン30-1を有している。上段導光板11Bについても実質的に同様で、第2の光出射促進面に、第2の点状部としてのドット31が設けられてなる第2のドットパターン30-2を有している。第1のドットパターン30-1および第2のドットパターン30-2は、例えば白色インクを用いてシルクスクリーン印刷された白色のドットパターンで形成されている。第1のドットパターン30-1および第2のドットパターン30-2としてはまた、例えばレーザ加工によってドット31に相当する凸部または凹部のパターンを形成してもよい。
 下段導光板11Aでは、上記第1のドットパターン30-1におけるドット31の密度が、光入射面からの距離に応じて変化するように構成されている。上段導光板11Bも同様に、上記第2のドットパターン30-2におけるドット31の密度が、光入射面からの距離に応じて変化するように構成されている。具体的には、下段導光板11Aでは、ドット31の密度が、光入射面から遠くなるに従って大きく(光入射面に近くなるに従って小さく)なっている。上段導光板11Bも同様に、ドット31の密度が、光入射面から遠くなるに従って大きく(光入射面に近くなるに従って小さく)なっている。これにより、図3に示したように、光出射方向から見て、第1のドットパターン30-1と第2のドットパターン30-2とで密度が大きくなる方向が互いに逆向きとなっている。なお、ドット密度は、例えばドット31の個数、ピッチおよび大きさなどを領域ごとに変化させることにより、段階的に変化させることができる。
 第1のドットパターン30-1および第2のドットパターン30-2はそれぞれ、ドット31の配置ピッチ(ドットピッチ)と大きさ(ドットサイズ)との両方を変えることで密度を変化させることが好ましい。例えば、図4に示したように、密度が相対的に小さい部分におけるドットサイズDs1を、密度が相対的に大きい部分におけるドットサイズDs2に比べて小さくすることが好ましい。また、密度が相対的に小さい部分におけるX方向のドットピッチXp1、およびY方向のドットピッチYp1に対して、密度が相対的に大きい部分におけるX方向のドットピッチXp2、およびY方向のドットピッチYp2を小さくすることがましい。
 図5は、光源10の配置の第1の例を示している。第1の光源10-1、および第2の光源10-2はそれぞれ、赤色光を出射する赤色光源10Rと、青色光を出射する緑色光源10Gと、緑色光を出射する青色光源10Bとを含んでいてもよい。これらの色光の混色により白色光を生成してもよい。また、第1の光源10-1、および第2の光源10-2はそれぞれ、所定数ごとに1つの光源ユニット10Uを構成してもよい。図5の例では、3つの赤色光源10Rと、1つの緑色光源10Gと、1つの青色光源10Bとで1つの光源ユニット10Uを構成している。また、図5の例では、光出射方向から見て、第1の光源10-1の光軸位置と第2の光源10-2の光軸位置とが互いに同じとなっている。すなわち、下段導光板11Aと上段導光板11Bとで、各光源のX方向の光軸位置が同じとなっている。
 図6は、光源10の配置の第2の例を示している。下段導光板11Aと上段導光板11Bとで、第1の光源10-1と第2の光源10-2とのX方向の光軸位置が異なるように第1の光源10-1と第2の光源10-2との相対的な位置をオフセットさせてもよい。図6の例では、光出射方向から見て、光源ユニット10Uごとに、第1の光源10-1と第2の光源10-2との互いの光軸位置が異なっている。
 [1.2 作用および効果(実施例)]
 このバックライトユニット1では、第1の光源10-1から出射され、下段導光板11Aの光入射面に入射した光は、下段導光板11Aの内部を進行して、第1の光出射面から出射する。一方、第2の光源10-2から出射され、上段導光板11Bの第2の光入射面に入射した光は、上段導光板11Bの内部を進行して、第2の光出射面から出射する。これらの下段導光板11Aと上段導光板11Bとのそれぞれから出射された光が合成され、光学シート13を通過して発光として観測される。
 ここで、本実施の形態によれば、対向配置された2つの導光板のそれぞれに、輝度むらあるいは色むらを低減するように最適化されたドットパターンを設けるようにしたので、輝度むらあるいは色むらを低減することができる。また、各導光板の光入射面に対向配置された各光源の配置を最適化することによって、輝度むらあるいは色むらをさらに低減することができる。
 以下、具体的な比較例および実施例を挙げて、本実施の形態に係る発光装置の作用および効果を説明する。
 なお、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、また他の効果があってもよい。以降の他の実施の形態についても同様である。
 以下で説明する比較例および実施例では、図5および図6の構成例と同様、第1の光源10-1および第2の光源10-2がそれぞれ、3つの赤色光源10Rと、1つの緑色光源10Gと、1つの青色光源10Bとで1つの光源ユニット10Uを構成している場合を例に説明する。
(1)上下段の導光板11A,11Bでドットパターン30-1,30-2の重複領域を設けたことの効果
 図7は、比較例1と実施例1とのドットパターンの被覆率を比較したものである。図7では、上段導光板11Bにおける第2のドットパターン30-2の被覆率を示しているが、下段導光板11Aにおける第1のドットパターン30-1の被覆率についても実質的に同様であってもよい。図7において、縦軸は第2のドットパターン30-2の被覆率、横軸はY方向の距離を示している。Y方向の距離は、Y方向の中央を0、光入射面側(光源が配置された側)をマイナス方向としている。以降の他の特性図についても同様である。例えば、上段導光板11Bの場合、第2の光入射面側(第2の光源10-2が配置された側)をマイナス方向とする。下段導光板11Aの場合、第1の光入射面側(第1の光源10-1)が配置された側をマイナス方向とする。
 図7からも分かるように、比較例1ではY方向の中央からプラス方向にのみドットパターン30-1,30-2が設けられている。比較例1では、第1のドットパターン30-1が下段導光板11Aの第1の光出射促進面の半分の領域を覆うように設けられ、第2のドットパターン30-2が上段導光板11Bの第2の光出射促進面の半分の領域を覆うように設けられている。すなわち、比較例1としては、ドットパターン30-1,30-2の重複領域(図3参照)を設けなかった場合の構成を示している。一方、実施例1では、図7からも分かるように、Y方向のマイナス側にもドットパターン30-1,30-2が設けられ、ドットパターン30-1,30-2の重複領域(図3参照)が設けられている。
 図8は、比較例1と実施例1とにおける上段導光板11Bの各部の寸法を示している。図9は、比較例1と実施例1とにおける下段導光板11Aの各部の寸法を示している。図9にはまた、第1の光源10-1の配置の寸法を示すが、第2の光源10-2の配置の寸法も基本的に同様である。比較例1と実施例1では、第1の光源10-1と第2の光源10-2とのX方向の光軸位置とが互いに同じとなっている。なお、後述する比較例2も図8および図9と同様の寸法となっている。
 図10は、比較例1と実施例1とのY方向の輝度分布を比較したものである。図11は、比較例1の面内輝度分布を示したものである。図12は、実施例1の面内輝度分布を示したものである。図10において、縦軸は輝度、横軸はY方向の距離を示している。図10には、下段導光板11Aおよび上段導光板11Bの双方を点灯させた場合の特性と、上段導光板11Bのみを点灯させた場合の特性とを示す。これらの輝度分布から分かるように、比較例1では、ドットパターン30-1,30-2の重複領域を設けていないことにより、Y中央(Y=0)付近で輝度が低く、暗くなってしまっている。これに対して、実施例1では、ドットパターン30-1,30-2の重複領域を設けていることにより、輝度の低下が低減されている。
(2)ドットパターン30-1,30-2をドットピッチが変化するパターンとすることの効果
 図13は、比較例2と実施例1とのドットパターンの被覆率を比較したものである。図13では、上段導光板11Bにおける第2のドットパターン30-2の被覆率を示しているが、下段導光板11Aにおける第1のドットパターン30-1の被覆率についても実質的に同様であってもよい。図13において、縦軸は第2のドットパターン30-2の被覆率、横軸はY方向の距離を示している。
 図14は、比較例2の上段導光板11Bの第2のドットパターン30-2の構成を示しているが、下段導光板11Aにおける第1のドットパターン30-1の構成についても実質的に同様であってもよい。図15は、実施例1の上段導光板11Bの第2のドットパターン30-2の構成を示しているが、下段導光板11Aにおける第1のドットパターン30-1の構成についても実質的に同様であってもよい。なお、図15には照明光として利用可能な有効領域の境界40を参考として図示している。
 図15に示したように、実施例1では上段導光板11Bの第2のドットパターン30-2(および下段導光板11Aにおける第1のドットパターン30-1)はY方向の位置に応じてドット31のドットピッチ(およびドットサイズ)を変化させることで、パターン密度を変化させている。これに対して、比較例1では。図14に示したように、ドットピッチは変えずにドットサイズのみを変化させることでパターン密度を変化させている。
 図16は、比較例2と実施例1とのY方向の輝度分布を比較したものである。図17は、比較例2の面内輝度分布を示したものである。図16において、縦軸は輝度、横軸はY方向の距離を示している。図16には、下段導光板11Aおよび上段導光板11Bの双方を点灯させた場合の特性と、上段導光板11Bのみを点灯させた場合の特性とを示す。
 製造上、ドットサイズの最小化には限界があり、比較例2のように等ドットピッチでドットパターンを形成しようとすると、図13に示したように、最小被覆率を徐々にゼロにすることが困難となる。このため、比較例2では、ドットパターンの開始点において被覆率変化の特異点が生じ、図16および図17の位置Ya,Yb,Ycに示したように、輝度むらとして認識されてしまう。これに対して、実施例1では、ドットピッチを可変にすることにより特異点のむらが発生しない面光源とすることができる。
(3)第1の光源10-1と第2の光源10-2とのX方向の光軸位置を互いに異ならせる(オフセットさせる)ことの効果
 図18は、実施例2のX方向の輝度分布を示している。図18において、縦軸は輝度、横軸はX方向の距離を示している。X方向の距離は、X方向の中央を0、光出射側から見て左側をマイナス方向としている。以降の他の特性図についても同様である。図19は、実施例2の面内輝度分布を示している。図20は、実施例2の上段導光板11Bにおける第2の光源10-2の配置の寸法を示している。図21は、実施例2の下段導光板11Aにおける第1の光源10-1の配置の寸法を示している。
 図22は、実施例3のX方向の輝度分布を示している。図22において、縦軸は輝度、横軸はX方向の距離を示している。図23は、実施例3の面内輝度分布を示している。図24は、実施例3の上段導光板11Bにおける第2の光源10-2の配置の寸法を示している。図25は、実施例3の下段導光板11Aにおける第1の光源10-1の配置の寸法を示している。なお、後述する実施例4,5も図24および図25と同様の寸法となっている。
 実施例2では、図20および図21に示したように、図5の構成例と同様、第1の光源10-1と第2の光源10-2とのX方向の光軸位置は同じ(オフセットなし)となっている。実施例3では、図24および図25に示したように、図6の構成例と同様、第1の光源10-1と第2の光源10-2とのX方向の光軸位置を互いに異ならせて(オフセットさせて)いる。第1の光源10-1と第2の光源10-2との配置ピッチを大きくとる場合、第1の光源10-1と第2の光源10-2とを同軸上に配置すると、その軸線上の領域の輝度が高くなり、図18および図19に示したように、X方向に輝度むらが発生する。第1の光源10-1と第2の光源10-2とを、図24および図25に示したように1/2ピッチオフセットさせることにより、図22および図23に示したようにX方向の輝度むらが大幅に緩和する。
(4)下段導光板11Aと上段導光板11Bとのそれぞれの出射輝度が所定の関係式を満たすことの効果
 図26は、実施例3,4,5のドットパターンの被覆率を比較したものである。図26では、上段導光板11Bにおける第2のドットパターン30-2の被覆率を示しているが、下段導光板11Aにおける第1のドットパターン30-1の被覆率についても実質的に同様であってもよい。図26において、縦軸は第2のドットパターン30-2の被覆率、横軸はY方向の距離を示している。
 図27は、実施例3,4,5のY方向の輝度分布を比較したものである。図27において、縦軸は輝度、横軸はY方向の距離を示している。図27には、下段導光板11Aおよび上段導光板11Bの双方を点灯させた場合の特性と、上段導光板11Bのみを点灯させた場合の特性とを示す。
 図28および図29は、実施例3,4,5の正規化されたY方向の輝度分布を比較したものである。図28および図29において、縦軸は正規化された輝度、横軸は正規化されたY方向の距離を示している。図28および図29には、下段導光板11Aおよび上段導光板11Bの双方を点灯させた場合の特性と、上段導光板11Bのみを点灯させた場合の特性とを示す。
 図30は、実施例4の面内輝度分布を示したものである。図31は、実施例4のX方向の輝度分布を示している。図31において、縦軸は輝度、横軸はX方向の距離を示している。図32は、実施例5の面内輝度分布を示したものである。図33は、実施例5のX方向の輝度分布を示している。図33において、縦軸は輝度、横軸はX方向の距離を示している。
 図34は、実施例3の上段導光板の面内輝度分布を示したものである。図35は、実施例3の上段導光板のX方向の輝度分布を示している。図35において、縦軸は輝度、横軸はX方向の距離を示している。図36は、実施例3の輝度分布を模式的に示したものである。図36では、実施例3について下段導光板11Aと上段導光板11Bとのそれぞれの出射輝度を合成した場合の輝度分布を模式的に示している。
 図37は、実施例4の上段導光板の面内輝度分布を示したものである。図38は、実施例4の上段導光板のX方向の輝度分布を示している。図38において、縦軸は輝度、横軸はX方向の距離を示している。図39は、実施例4の輝度分布を模式的に示したものである。図39では、実施例4について下段導光板11Aと上段導光板11Bとのそれぞれの出射輝度を合成した場合の輝度分布を模式的に示している。
 図40は、実施例5の上段導光板の面内輝度分布を示したものである。図41は、実施例5の上段導光板のX方向の輝度分布を示している。図41において、縦軸は輝度、横軸はX方向の距離を示している。図42は、実施例5の輝度分布を模式的に示したものである。図42では、実施例4について下段導光板11Aと上段導光板11Bとのそれぞれの出射輝度を合成した場合の輝度分布を模式的に示している。
 実施例3,4,5ではそれぞれ、図26に示したように、ドットパターンの被覆率がY方向の距離に応じて異なるパターンとなっている。この場合、上段導光板11Bおよび下段導光板11Aのうち一方のみを点灯させたY方向の輝度分布は、図27に示したように各実施例で異なるものとなる。このような場合でも、上段導光板11Bおよび下段導光板11Aの双方を点灯させたY方向の輝度分布は、図27に示したように各実施例で略同じにすることが可能である。
 ただし、図30~図42に示したように、X方向の輝度分布が各実施例で異なり、面全体としてみた場合の輝度分布は異なる。また、下段導光板11Aと上段導光板11Bとのそれぞれの出射輝度分布の重ね合わせとして考えた場合、Y方向の輝度変化に関して、最適な分布がある。図27に示した実施例4のように急峻なY方向の輝度変化を持つものについては、図39に示したように上下段の導光板で輝度分布が噛み合わない領域がある。また図27に示した実施例5のように緩やか過ぎるY方向の輝度変化を持つものについては、図42に示したように光源側の輝度が大きくなってしまう傾向がある。このため、Y方向に関して、それらの中間の輝度変化であることが好ましい。
 ここで、図28に示したように、光出射方向に直交する観察面内の任意の位置での輝度が、以下の条件を満たすことが好ましい。
y<0のとき、
  0.025+1.05・sin{(y+1)・π/4)}>L>(0.45+1.6・y) ……(1)
y≧0のとき、
  -0.075+1.05・sin{(y+1)・π/4)}<L<(0.55+1.6・y) ……(2)
 Lmax=1、Lmin=0
ただし、
 y:光出射方向から見た各導光板における導光方向の位置(各導光板の導光方向において、各光入射面の位置を-1、中央を0、各光入射面に対向する側面の位置を1とする)
 L:輝度比率(第1および第2の光源10-1,10-2の双方を点灯したときの観察面内の任意の位置での輝度を1としたときに、第1および第2の光源10-1,10-2のうち一方のみを点灯した場合における任意の位置での輝度比率)
 Lmax:Lの最大値
 Lmin:Lの最小値
とする。
 より好ましくは、図28に示したように、以下の条件(1)’,(2)’を満たすとよい。
y<0のとき、
  0.025+0.95・sin{(y+1)・π/4)}≧L≧(0.5+1.8・y) ……(1)’
y≧0のとき、
  0.025+0.95・sin{(y+1)・π/4)}≦L≦(0.5+1.8・y) ……(2)’
 Lmax=1、Lmin=0
<2.第2の実施の形態>(B光源のみを用いた発光装置)
 次に、本開示の第2の実施の形態に係る発光装置(バックライトユニット1A)について説明する。なお、以下では上記第1の実施の形態に係るバックライトユニット1における構成要素と略同じ部分については、同一符号を付し、適宜説明を省略する。
 図43は、本実施の形態に係るバックライトユニット1Aの断面構成の一例を表したものである。図44は、本実施の形態における下段導光板11Aおよび上段導光板11Bと、第1の光源10-1および第2の光源10-2とのXY平面における配置構成を表している。本実施の形態に係るバックライトユニット1Aは、波長変換シート14をさらに備えている。上記第1の実施の形態では、第1の光源10-1および第2の光源10-2として、赤色光源10R、緑色光源10G、および青色光源10Bを組み合わせた構成例を示したが、波長変換シート14と組み合わせることで、青色光源10Bのみを用いることも可能である。波長変換シート14は例えば、上段導光板11Bの第2の光出射面と、光学シート13との間に設けられている。波長変換シート14は、例えば所定の色光としての青色光の一部を赤色光、緑色光あるいは黄色光などの他の波長に変換する蛍光材料を含んで構成されている。これにより、青色光源10Bからの所定の色光としての青色光と、波長変換シート14による波長変換後の光との混色により、例えば白色の発光が得られる。
 図45は、本実施の形態における上段導光板11Bに対する青色光源10Bの配置の一具体例を示している。図46は、下段導光板11Aに対する青色光源10Bの配置の一具体例を示している。図45および図46に示したように、第1の光源10-1を構成する青色光源10Bと第2の光源10-2を構成する青色光源10BとのX方向の光軸位置が異なるように各青色光源10Bの相対的な位置をオフセットさせてもよい。
<3.第3の実施の形態>(X方向の側面に光源を配置した例)(図47)
 次に、本開示の第3の実施の形態に係る発光装置(バックライトユニット)について説明する。なお、以下では上記第1および第2の実施の形態に係るバックライトユニット1,1Aにおける構成要素と略同じ部分については、同一符号を付し、適宜説明を省略する。
 図47は、本実施の形態に係る発光装置における導光板および光源の一構成例を示している。上記第1および第2の実施の形態では、下段導光板11Aと上段導光板11Bとで、第1の光源10-1と第2の光源10-2とをY方向の側面に対向配置した例を示したが、例えば図47に示したように、X方向の側面に対向配置してもよい。すなわち、例えば下段導光板11Aの第3の側面S3を第1の光入射面として、第1の光源10-1を対向配置してもよい。また、上段導光板11Bの第4の側面S4を第2の光入射面として、第2の光源10-2を対向配置してもよい。この場合、第1のドットパターン30-1および第2のドットパターン30-2のパターン密度はX方向に変化させればよい。
<4.第4の実施の形態>(表示装置への適用例)
 上記のようなバックライトユニット1,1Aは、例えば図48に示した表示装置2に組み込まれ、以下の電子機器に適用することができる。表示装置2は、例えば液晶ディスプレイである。この表示装置1では、例えば液晶パネル20の光入射側および光出射側に偏光板21a,21bが積層されると共に、バックライトユニット1,1Aがその液晶パネル20を背面側から照明するように構成されている。電子機器としては、例えば以下に挙げるようなテレビジョン装置,電子ブック、スマートフォン、デジタルカメラ,ノート型パーソナルコンピュータ、ビデオカメラおよび携帯電話機等が挙げられる。言い換えると、上記バックライトユニット1,1Aを用いた表示装置2は、外部から入力された映像信号あるいは内部で生成した映像信号を、画像あるいは映像として表示するあらゆる分野の電子機器に適用することが可能である。
(適用例1)
 図49は、テレビジョン装置として用いられるものであり、画像表示のための平板状の本体部102をスタンド103により支持した構成を有している。なお、図示したテレビジョン装置は、スタンド103を本体部102に取り付けた状態で、床,棚または台などの水平面に載置して据置型として用いられるが、スタンド103を本体部102から取り外した状態で壁掛型として用いることも可能である。本体部102が、上記の表示装置2を含んで構成されている。
(適用例2)
 図50は、電子ブックの外観を表したものである。図51は、他の電子ブックの外観を表したものである。これらの電子ブックは、いずれも、例えば表示部210および非表示部220を有しており、表示部210が上記の表示装置2により構成されている。
(適用例3)
 図52は、スマートフォンの外観を表したものである。このスマートフォンは、例えば、表示部230および非表示部240を有しており、表示部230が上記の表示装置2により構成されている。
(適用例4)
 図53および図54は、デジタルカメラの外観を表したものである。図53は、そのデジタルカメラをその前方(被写体側)から眺めた外観を表し、図54は、そのデジタルカメラをその後方(像側)から眺めた外観を表す。このデジタルカメラは、例えば、フラッシュ用の発光部410、表示部420、メニュースイッチ430およびシャッターボタン440を有しており、表示部420が上記の表示装置2により構成されている。
(適用例5)
 図55は、ノート型パーソナルコンピュータの外観を表したものである。このノート型パーソナルコンピュータは、例えば、本体510,文字等の入力操作のためのキーボード520および画像を表示する表示部530を有しており、表示部530が上記の表示装置2により構成されている。
(適用例6)
 図56は、ビデオカメラの外観を表したものである。このビデオカメラは、例えば、本体部610,この本体部610の前方側面に設けられた被写体撮影用のレンズ620,撮影時のスタート/ストップスイッチ630および表示部640を有している。表示部640が上記の表示装置2により構成されている。
(適用例7)
 図57および図58は、携帯電話機の外観を表したものである。この携帯電話機は、例えば、上側筐体710と下側筐体720とを連結部(ヒンジ部)730で連結したものであり、ディスプレイ740,サブディスプレイ750,ピクチャーライト760およびカメラ770を有している。これらのうちのディスプレイ740またはサブディスプレイ750が、上記の表示装置2により構成されている。
<5.その他の実施の形態>
 本開示による技術は、上記各実施の形態および実施例の説明に限定されず種々の変形実施が可能である。
 例えば、上記各実施例において例示した数値は限定されるものではなく、他の数値であってもよい。
 例えば、本技術は以下のような構成を取ることができる。
(1)
 第1の光入射面と、所定の光出射方向に向けて光を出射する第1の光出射面と、第1のパターンが設けられた第1の光出射促進面とを有する第1の導光板と、
 第2の光入射面と、光出射方向に向けて光を出射する第2の光出射面と、第2のパターンが設けられた第2の光出射促進面とを有し、第1の導光板に対向配置された第2の導光板と
 を備え、
 第1のパターンは、第1の光入射面から離れるにしたがって密度が大きくなるように配置ピッチが変化する複数の第1の点状部からなるパターンであり、
 第2のパターンは、第2の光入射面から離れるにしたがって配置ピッチが変化して密度が大きくなる複数の第2の点状部からなるパターンであり、
 前記光出射方向から見て、前記第1のパターンと前記第2のパターンとが設けられた領域が部分的に重複し、かつ、前記第1のパターンと前記第2のパターンとで密度が大きくなる方向が互いに逆向きとなっている
 を備える発光装置。
(2)
 前記第1の光入射面に対向配置された複数の第1の光源と、
 前記第2の光入射面に対向配置された複数の第2の光源と
 をさらに備える上記(1)に記載の発光装置。
(3)
 前記光出射方向から見て、前記第1の光源の光軸位置と前記第2の光源の光軸位置とが、互いに異なる
 上記(2)に記載の発光装置。
(4)
 前記第1および第2の光源はそれぞれ、所定数ごとに1つの光源ユニットを構成し、
 前記光出射方向から見て、前記光源ユニットごとに、前記第1の光源の光軸位置と前記第2の光源の光軸位置とが、互いに異なる
 上記(2)に記載の発光装置。
(5)
 複数の前記第1の点状部は、前記第1の光入射面から離れるにしたがって密度が大きくなるように配置ピッチおよび大きさが変化し、
 複数の前記第2の点状部は、前記第2の光入射面から離れるにしたがって密度が大きくなるように配置ピッチおよび大きさが変化する
 上記(1)ないし(4)のいずれか1つに記載の発光装置。
(6)
 前記各導光板は、前記各光入射面に対向する側面をさらに有し、
 前記光出射方向に直交する観察面内の任意の位置での輝度が、以下の条件を満たす
 上記(1)ないし(5)のいずれか1つに記載の発光装置。
y<0のとき、
  0.025+1.05・sin{(y+1)・π/4)}>L>(0.45+1.6・y) ……(1)
y≧0のとき、
  -0.075+1.05・sin{(y+1)・π/4)}<L<(0.55+1.6・y) ……(2)
 Lmax=1、Lmin=0
ただし、
 y:前記光出射方向から見た前記各導光板における導光方向の位置(前記各導光板の導光方向において、前記各光入射面の位置を-1、中央を0、前記各光入射面に対向する側面の位置を1とする)
 L:輝度比率(前記第1および第2の光源の双方を点灯したときの前記観察面内の任意の位置での輝度を1としたときに、前記第1および第2の光源のうち一方のみを点灯した場合における前記任意の位置での輝度比率)
 Lmax:Lの最大値
 Lmin:Lの最小値
とする。
(7)
 前記光出射方向から見て、前記第1の光源と前記第2の光源とが互いに逆方向に向けて光を出射する
 上記(2)ないし(6)のいずれか1つに記載の発光装置。
(8)
 前記複数の第1の光源および前記複数の第2の光源はそれぞれ、赤色光を出射するレーザダイオードと、緑色光を出射するレーザダイオードと、青色光を出射するレーザダイオードとを含む
 上記(2)ないし(7)のいずれか1つに記載の発光装置。
(9)
 前記複数の第1の光源および前記複数の第2の光源はそれぞれ、所定の色光を出射するレーザダイオードであり、
 前記第2の導光板に対向配置され、前記所定の色光を他の色光に変換する波長変換シートをさらに備えた
 上記(1)ないし(7)のいずれか1つに記載の発光装置。
(10)
 表示パネルと、前記表示パネルを照明する発光装置とを含み、
 前記発光装置は、
 第1の光入射面と、所定の光出射方向に向けて光を出射する第1の光出射面と、第1のパターンが設けられた第1の光出射促進面とを有する第1の導光板と、
 第2の光入射面と、前記光出射方向に向けて光を出射する第2の光出射面と、第2のパターンが設けられた第2の光出射促進面とを有し、前記第1の導光板に対向配置された第2の導光板と
 を備え、
 前記第1のパターンは、前記第1の光入射面から離れるにしたがって密度が大きくなるように配置ピッチが変化する複数の第1の点状部からなるパターンであり、
 前記第2のパターンは、前記第2の光入射面から離れるにしたがって配置ピッチが変化して密度が大きくなる複数の第2の点状部からなるパターンであり、
 前記光出射方向から見て、前記第1のパターンと前記第2のパターンとが設けられた領域が部分的に重複し、かつ、前記第1のパターンと前記第2のパターンとで密度が大きくなる方向が互いに逆向きとなっている
 表示装置。
 本出願は、日本国特許庁において2014年3月20日に出願された日本特許出願番号第2014-57460号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (10)

  1.  第1の光入射面と、所定の光出射方向に向けて光を出射する第1の光出射面と、第1のパターンが設けられた第1の光出射促進面とを有する第1の導光板と、
     第2の光入射面と、前記光出射方向に向けて光を出射する第2の光出射面と、第2のパターンが設けられた第2の光出射促進面とを有し、前記第1の導光板に対向配置された第2の導光板と
     を備え、
     前記第1のパターンは、前記第1の光入射面から離れるにしたがって密度が大きくなるように配置ピッチが変化する複数の第1の点状部からなるパターンであり、
     前記第2のパターンは、前記第2の光入射面から離れるにしたがって配置ピッチが変化して密度が大きくなる複数の第2の点状部からなるパターンであり、
     前記光出射方向から見て、前記第1のパターンと前記第2のパターンとが設けられた領域が部分的に重複し、かつ、前記第1のパターンと前記第2のパターンとで密度が大きくなる方向が互いに逆向きとなっている
     発光装置。
  2.  前記第1の光入射面に対向配置された複数の第1の光源と、
     前記第2の光入射面に対向配置された複数の第2の光源と
     をさらに備える請求項1に記載の発光装置。
  3.  前記光出射方向から見て、前記第1の光源の光軸位置と前記第2の光源の光軸位置とが、互いに異なる
     請求項2に記載の発光装置。
  4.  前記第1および第2の光源はそれぞれ、所定数ごとに1つの光源ユニットを構成し、
     前記光出射方向から見て、前記光源ユニットごとに、前記第1の光源の光軸位置と前記第2の光源の光軸位置とが、互いに異なる
     請求項2に記載の発光装置。
  5.  複数の前記第1の点状部は、前記第1の光入射面から離れるにしたがって密度が大きくなるように配置ピッチおよび大きさが変化し、
     複数の前記第2の点状部は、前記第2の光入射面から離れるにしたがって密度が大きくなるように配置ピッチおよび大きさが変化する
     請求項1に記載の発光装置。
  6.  前記各導光板は、前記各光入射面に対向する側面をさらに有し、
     前記光出射方向に直交する観察面内の任意の位置での輝度が、以下の条件を満たす
     請求項1に記載の発光装置。
    y<0のとき、
      0.025+1.05・sin{(y+1)・π/4)}>L>(0.45+1.6・y) ……(1)
    y≧0のとき、
      -0.075+1.05・sin{(y+1)・π/4)}<L<(0.55+1.6・y) ……(2)
     Lmax=1、Lmin=0
    ただし、
     y:前記光出射方向から見た前記各導光板における導光方向の位置(前記各導光板の導光方向において、前記各光入射面の位置を-1、中央を0、前記各光入射面に対向する側面の位置を1とする)
     L:輝度比率(前記第1および第2の光源の双方を点灯したときの前記観察面内の任意の位置での輝度を1としたときに、前記第1および第2の光源のうち一方のみを点灯した場合における前記任意の位置での輝度比率)
     Lmax:Lの最大値
     Lmin:Lの最小値
    とする。
  7.  前記光出射方向から見て、前記第1の光源と前記第2の光源とが互いに逆方向に向けて光を出射する
     請求項2に記載の発光装置。
  8.  前記複数の第1の光源および前記複数の第2の光源はそれぞれ、赤色光を出射するレーザダイオードと、緑色光を出射するレーザダイオードと、青色光を出射するレーザダイオードとを含む
     請求項2に記載の発光装置。
  9.  前記複数の第1の光源および前記複数の第2の光源はそれぞれ、所定の色光を出射するレーザダイオードであり、
     前記第2の導光板に対向配置され、前記所定の色光を他の色光に変換する波長変換シートをさらに備えた
     請求項2に記載の発光装置。
  10.  表示パネルと、前記表示パネルを照明する発光装置とを含み、
     前記発光装置は、
     第1の光入射面と、所定の光出射方向に向けて光を出射する第1の光出射面と、第1のパターンが設けられた第1の光出射促進面とを有する第1の導光板と、
     第2の光入射面と、前記光出射方向に向けて光を出射する第2の光出射面と、第2のパターンが設けられた第2の光出射促進面とを有し、前記第1の導光板に対向配置された第2の導光板と
     を備え、
     前記第1のパターンは、前記第1の光入射面から離れるにしたがって密度が大きくなるように配置ピッチが変化する複数の第1の点状部からなるパターンであり、
     前記第2のパターンは、前記第2の光入射面から離れるにしたがって配置ピッチが変化して密度が大きくなる複数の第2の点状部からなるパターンであり、
     前記光出射方向から見て、前記第1のパターンと前記第2のパターンとが設けられた領域が部分的に重複し、かつ、前記第1のパターンと前記第2のパターンとで密度が大きくなる方向が互いに逆向きとなっている
     表示装置。
PCT/JP2015/052944 2014-03-20 2015-02-03 発光装置および表示装置 WO2015141304A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016508579A JP6586950B2 (ja) 2014-03-20 2015-02-03 発光装置および表示装置
EP15764759.5A EP3133333B1 (en) 2014-03-20 2015-02-03 Light-emitting device and display device
US15/125,680 US10031275B2 (en) 2014-03-20 2015-02-03 Light-emitting device and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-057460 2014-03-20
JP2014057460 2014-03-20

Publications (1)

Publication Number Publication Date
WO2015141304A1 true WO2015141304A1 (ja) 2015-09-24

Family

ID=54144284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052944 WO2015141304A1 (ja) 2014-03-20 2015-02-03 発光装置および表示装置

Country Status (4)

Country Link
US (1) US10031275B2 (ja)
EP (1) EP3133333B1 (ja)
JP (1) JP6586950B2 (ja)
WO (1) WO2015141304A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108132564B (zh) * 2018-01-23 2020-12-18 京东方科技集团股份有限公司 一种导光结构、背光源及显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000268617A (ja) * 1999-03-12 2000-09-29 Ichikoh Ind Ltd 平面カラー発光装置
JP2004342454A (ja) * 2003-05-15 2004-12-02 Sharp Corp 発光装置及びこの発光装置を用いた表示装置
WO2005057083A1 (ja) * 2003-12-15 2005-06-23 Sony Corporation 照明装置及びこの照明装置を用いたバックライト装置
WO2007086456A1 (ja) * 2006-01-27 2007-08-02 Enplas Corporation 面光源装置及び表示装置
JP2010015969A (ja) * 2008-06-03 2010-01-21 Epson Imaging Devices Corp 照明装置及び電気光学装置
WO2011108038A1 (ja) * 2010-03-03 2011-09-09 パナソニック株式会社 発光装置及びそれを用いたバックライトモジュール
JP2011238484A (ja) * 2010-05-11 2011-11-24 Mitsubishi Electric Corp バックライト装置および液晶表示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH036525A (ja) * 1989-06-02 1991-01-14 Mitsubishi Petrochem Co Ltd バックライト装置
GB9807204D0 (en) * 1998-04-04 1998-06-03 Ici Plc An edge-lit illumination system
US6816145B1 (en) * 1998-07-22 2004-11-09 Silicon Graphics, Inc. Large area wide aspect ratio flat panel monitor having high resolution for high information content display
TWI321694B (en) * 2005-12-23 2010-03-11 Innolux Display Corp Backlight module and liquid crystal display module
JP2011018619A (ja) * 2009-07-10 2011-01-27 Sony Corp 表示装置及び面照明装置
WO2012035760A1 (ja) * 2010-09-14 2012-03-22 パナソニック株式会社 バックライト装置、およびそのバックライト装置を用いた液晶表示装置、およびそれらに用いる発光ダイオード
WO2012075334A1 (en) * 2010-12-02 2012-06-07 Intematix Corporation Solid-state lamps with light guide and photoluminescence material
KR101850431B1 (ko) * 2011-07-07 2018-05-31 엘지이노텍 주식회사 발광 모듈 및 이를 포함하는 조명 시스템
JP5738742B2 (ja) * 2011-11-09 2015-06-24 株式会社東芝 面光源装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000268617A (ja) * 1999-03-12 2000-09-29 Ichikoh Ind Ltd 平面カラー発光装置
JP2004342454A (ja) * 2003-05-15 2004-12-02 Sharp Corp 発光装置及びこの発光装置を用いた表示装置
WO2005057083A1 (ja) * 2003-12-15 2005-06-23 Sony Corporation 照明装置及びこの照明装置を用いたバックライト装置
WO2007086456A1 (ja) * 2006-01-27 2007-08-02 Enplas Corporation 面光源装置及び表示装置
JP2010015969A (ja) * 2008-06-03 2010-01-21 Epson Imaging Devices Corp 照明装置及び電気光学装置
WO2011108038A1 (ja) * 2010-03-03 2011-09-09 パナソニック株式会社 発光装置及びそれを用いたバックライトモジュール
JP2011238484A (ja) * 2010-05-11 2011-11-24 Mitsubishi Electric Corp バックライト装置および液晶表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3133333A4 *

Also Published As

Publication number Publication date
EP3133333B1 (en) 2022-04-06
EP3133333A1 (en) 2017-02-22
EP3133333A4 (en) 2018-04-04
US10031275B2 (en) 2018-07-24
US20170010402A1 (en) 2017-01-12
JP6586950B2 (ja) 2019-10-09
JPWO2015141304A1 (ja) 2017-04-06

Similar Documents

Publication Publication Date Title
US9618687B2 (en) Light-emitting unit and display
JP6192897B2 (ja) 発光装置、表示装置および照明装置
US9239418B2 (en) Light emitting device, display unit, and illumination unit
JP5939004B2 (ja) 発光装置、表示装置および照明装置
JP6265055B2 (ja) 発光装置、表示装置および照明装置
CN113168040A (zh) 用于光导的输出耦合结构
CN113168815B (zh) Led背光系统
JP2014225379A (ja) 発光装置、表示装置および照明装置
JP2010277851A (ja) 照明装置及びこれを用いた表示装置
JP6586950B2 (ja) 発光装置および表示装置
CN208547791U (zh) 背光模组、液晶显示模组和电子装置
CN208421472U (zh) 背光模组、液晶显示模组和电子装置
JP6771476B2 (ja) 発光装置、表示装置および照明装置
JP2022031473A (ja) 表示装置
JP6708593B2 (ja) 表示装置
JP6961754B2 (ja) 表示装置および発光装置
JP7257478B2 (ja) 表示装置および発光装置
JP2010123345A (ja) 面状照明装置および液晶表示装置
WO2018037892A1 (ja) 発光装置、表示装置および照明装置
JP2015146294A (ja) 照明装置および表示装置
WO2016111086A1 (ja) 発光装置、表示装置および照明装置
TW200944900A (en) Backlight module and light guide plate thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15764759

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016508579

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015764759

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015764759

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15125680

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE