WO2015140872A1 - Refrigeration device - Google Patents

Refrigeration device Download PDF

Info

Publication number
WO2015140872A1
WO2015140872A1 PCT/JP2014/057030 JP2014057030W WO2015140872A1 WO 2015140872 A1 WO2015140872 A1 WO 2015140872A1 JP 2014057030 W JP2014057030 W JP 2014057030W WO 2015140872 A1 WO2015140872 A1 WO 2015140872A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat medium
heat
load
heat source
medium
Prior art date
Application number
PCT/JP2014/057030
Other languages
French (fr)
Japanese (ja)
Inventor
真哉 東井上
岡崎 多佳志
伊東 大輔
裕樹 宇賀神
拓未 西山
繁佳 松井
Original Assignee
三菱電機株式会社
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 旭硝子株式会社 filed Critical 三菱電機株式会社
Priority to EP14886496.0A priority Critical patent/EP3128260A4/en
Priority to JP2016508332A priority patent/JP6223545B2/en
Priority to PCT/JP2014/057030 priority patent/WO2015140872A1/en
Publication of WO2015140872A1 publication Critical patent/WO2015140872A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems

Definitions

  • the present invention relates to a refrigeration apparatus in which a plurality of heat medium circuits are configured in multiple stages.
  • Patent Document 1 discloses a refrigeration cycle apparatus in which the heat medium flowing through the high-temperature side circulation circuit that is the heat source heat medium circuit is HFO1234yf, and the heat medium flowing through the low-temperature side circulation circuit that is the load heat medium circuit is carbon dioxide. Is disclosed.
  • HFO1234yf is used as a heat medium circulating in the high-temperature side circulation circuit. Since this HFO1234yf is a high boiling point refrigerant having a high boiling point, it is difficult to gasify and the gas density at the operating pressure is small. For this reason, the pressure loss in the piping in the high-temperature side circulation circuit increases, and there is a possibility that the refrigerant conveyance power (power consumption of the compressor) increases.
  • carbon dioxide is used as a heat medium circulating in the low-temperature side circulation circuit. This carbon dioxide refrigerant has a higher operating pressure than the chlorofluorocarbon refrigerant. Thereby, since the inside of a low temperature side circulation circuit becomes a high voltage
  • the present invention has been made against the background of the above problems, and provides a refrigeration apparatus that reduces power consumption and costs.
  • the refrigeration apparatus has a heat source heat medium flowing therethrough, a compressor, a heat source heat exchanger, an expansion unit, and cascade heat exchange that performs heat exchange between the heat source heat medium and the load heat medium.
  • the heat source heat medium circuit in which the heat exchanger is connected by piping, and the load heat medium in which the load heat medium circulates and transports the load heat medium, the load heat exchanger, and the cascade heat exchanger are connected by the pipe
  • at least one of the heat source heat medium and the load heat medium is a refrigerant including HFO1123.
  • the heat source heat medium and the load heat medium is a refrigerant containing HFO 1123, energy consumption can be reduced and cost can be reduced.
  • FIG. 1 is a heat medium circuit diagram showing a refrigeration apparatus 1 according to Embodiment 1.
  • FIG. 3 is a graph showing the operation of the refrigeration apparatus 1 according to Embodiment 1.
  • 6 is a graph showing the operation of the refrigeration apparatus according to Comparative Example 1. It is a graph which shows the effect
  • FIG. 10 is a graph showing the operation of the refrigeration apparatus according to Comparative Example 2.
  • FIG. 1 is a heat medium circuit diagram showing a refrigeration apparatus 1 according to Embodiment 1.
  • FIG. The refrigeration apparatus 1 will be described based on FIG.
  • the refrigeration apparatus 1 includes a heat source heat medium circuit 2 on the heat source side and a load heat medium circuit 3 on the load side, and these are connected in a cascade heat exchanger 7. This is the refrigeration apparatus 1.
  • the refrigeration apparatus 1 is not limited to a two-stage configuration, and may have a multi-stage configuration.
  • the heat source heat medium circuit 2 is a circuit in which a heat source heat medium flows and the compressor 21, the heat source heat exchanger 22, the expansion unit 23, and the cascade heat exchanger 7 are connected by piping.
  • the heat source heat medium is a refrigerant including HFO1123.
  • the compressor 21 compresses the heat source heat medium, and the heat source heat exchanger 22 exchanges heat between the heat source heat medium and, for example, outdoor air.
  • the heat source heat medium circuit 2 is provided with a heat source blower 22 a, and the heat source blower 22 a blows outdoor air to the heat source heat exchanger 22.
  • the expansion unit 23 expands the heat source heat medium.
  • the heat source heat medium may be a single refrigerant including only HFO 1123 or a mixed refrigerant including HFO 1123.
  • the load heat medium circuit 3 is a circuit in which a load heat medium circulates and the pump 31, the load heat exchanger 32, and the cascade heat exchanger 7 are connected by piping.
  • the load heat medium is a refrigerant including HFO1123.
  • the pump 31 conveys a load heat medium, and the load heat exchanger 32 exchanges heat between the load heat medium and, for example, room air.
  • the load heat medium circuit 3 is provided with a load blower 32 a, and the load blower 32 a blows room air to the load heat exchanger 32.
  • the load heat medium may be a single refrigerant including only HFO 1123 or a mixed refrigerant including HFO 1123.
  • the load heat medium may be water or antifreeze.
  • the heat source heat medium circuit 2 and the pump 31 in the load heat medium circuit 3 are installed in the outdoor space 4, and the load heat exchanger 32 in the load heat medium circuit 3 is installed in the indoor space 5. Yes.
  • the pump 31 and the load heat exchanger 32 are connected by a first extension pipe 6a.
  • the cascade heat exchanger 7 that connects the heat source heat medium circuit 2 and the load heat medium circuit 3 and the load heat exchanger 32 are connected by a second extension pipe 6b.
  • the cascade heat exchanger 7 connects the heat source heat medium circuit 2 and the load heat medium circuit 3, and is configured by, for example, a plate heat exchanger or a double pipe heat exchanger.
  • the cascade heat exchanger 7 performs heat exchange between the heat source heat medium that flows through the heat source heat medium circuit 2 and the load heat medium that flows through the load heat medium circuit 3.
  • the refrigeration apparatus 1 configured in two stages by the cascade heat exchanger 7 performs heat exchange between the heat source heat medium and the load heat medium, whereby independent heat source heat medium circuits 2 are provided.
  • the load heat medium circuit 3 can be controlled in cooperation.
  • the compressor 21 sucks in the heat source heat medium, compresses the heat source heat medium, and discharges the heat medium in a high-temperature and high-pressure gas state.
  • the discharged heat source heat medium flows into the heat source heat exchanger 22, and the heat source heat exchanger 22 condenses the heat source heat medium by heat exchange with the outdoor air supplied from the heat source blower 22a.
  • the condensed heat source heat medium flows into the expansion unit 23, and the expansion unit 23 decompresses the condensed heat source heat medium.
  • the decompressed heat source heat medium flows into the cascade heat exchanger 7, and the cascade heat exchanger 7 evaporates the heat source heat medium by heat exchange with the load heat medium in the load heat medium circuit 3. .
  • the evaporated heat source heat medium is sucked into the compressor 21.
  • the pump 31 conveys the load heat medium, and the conveyed load heat medium flows into the load heat exchanger 32.
  • the load heat exchanger 32 evaporates the load heat medium by heat exchange with room air supplied from the load blower 32a.
  • the evaporated load heat medium flows into the cascade heat exchanger 7, and the cascade heat exchanger 7 condenses the load heat medium by heat exchange with the heat source heat medium in the heat source heat medium circuit 2.
  • the heat medium for load that has been condensed and liquefied flows into the pump 31.
  • the heat source heat medium and the load heat medium are counterflow in the cascade heat exchanger 7.
  • the refrigerant including HFO 1123 is used as the heat source heat medium and the load heat medium.
  • the gas density of the HFO 1123 is about 25% higher than the gas density of the HFO 1234yf. For this reason, in the heat medium circuit in which the amount of circulation of the heat medium is the same, by using HFO 1123 as the heat medium, the flow rate of circulation is slower than when using HFO 1234yf, and thereby the pressure of the piping in the heat medium circuit Loss can be reduced.
  • coolant containing HFO1123 is used for this Embodiment 1 as a heat source heat medium and a load heat medium
  • the pressure loss of the piping in the heat source heat medium circuit 2 and the load heat medium circuit 3 is shown. Can be reduced. Therefore, the conveyance power of the compressor 21 and the pump 31 can be suppressed, and thereby energy consumption can be suppressed.
  • HFO1123 The standard boiling point of HFO1123 is -51 ° C, and carbon dioxide is -78 ° C. For this reason, in the heat medium circuit where the evaporation temperature of the heat medium is the same, by using HFO 1123 as the heat medium, it can be operated at a lower pressure than when carbon dioxide is used. For this reason, it is not necessary to excessively improve the pressure resistance of the piping in the heat medium circuit.
  • coolant containing HFO1123 is used for this Embodiment 1 as a heat source heat medium and a load heat medium
  • element devices such as piping in the heat source heat medium circuit 2 and the load heat medium circuit 3, are used.
  • the pressure resistance of can be suppressed. For this reason, the cost which manufactures the freezing apparatus 1 can be reduced.
  • both the heat source heat medium and the load heat medium are refrigerants including HFO 1123.
  • at least one of the heat source heat medium and the load heat medium is a refrigerant including HFO 1123. I just need it.
  • the effects of the reduction in the energy consumption and the reduction in cost are achieved.
  • the load heat exchanger 32 and the cascade heat exchanger 7 in the load heat medium circuit 3 utilize phase change heat transfer with a good heat transfer coefficient, so that the heat exchange performance is high. improves. For this reason, the load heat exchanger 32 and the cascade heat exchanger 7 can be reduced in size.
  • FIG. 2 is a graph showing the operation of the refrigeration apparatus 1 according to Embodiment 1
  • FIG. 3 is a graph showing the operation of the refrigeration apparatus according to Comparative Example 1.
  • the operation of the refrigeration apparatus 1 (FIG. 2) in which the flow direction according to the first embodiment is counterflow is described in comparison with Comparative Example 1 (FIG. 3) in which the flow direction in the cascade heat exchanger 7 is parallel flow.
  • both the heat source heat medium and the load heat medium are a single refrigerant of only HFO1123.
  • the horizontal axis indicates the flow direction in which the heat medium flows
  • the vertical axis indicates the temperature of the heat medium.
  • the heat source heat medium and the load heat medium have a high heat exchange performance in the cascade heat exchanger 7 because the flow direction in the cascade heat exchanger 7 is counterflow. For this reason, size reduction of the cascade heat exchanger 7 can be achieved.
  • FIG. 4 is a graph showing the operation of the refrigeration apparatus 100 according to the modification of the first embodiment
  • FIG. 5 is a graph showing the operation of the refrigeration apparatus according to Comparative Example 2.
  • the operation of the refrigeration apparatus 100 (FIG. 4) in which the flow direction in the cascade heat exchanger 7 according to the modification is a counter flow is compared with Comparative Example 2 (FIG. 5) in which the flow direction in the cascade heat exchanger 7 is a parallel flow.
  • both the heat source heat medium and the load heat medium are mixed refrigerants including HFO1123.
  • the refrigerant added to the HFO 1123 is, for example, R32 refrigerant. Since the mixed refrigerants of the HFO 1123 and the R32 refrigerant have different boiling points, they are non-azeotropic mixed refrigerants. This non-azeotropic refrigerant mixture has a temperature gradient with respect to the flow direction of the heat medium in the heat source heat medium circuit 102 and the load heat medium circuit 103. For this reason, the temperature difference between the temperature of the heat source heat medium and the temperature of the load heat medium is more likely to be non-uniform in the flow direction than the single refrigerant.
  • the horizontal axis indicates the flow direction in which the heat medium flows
  • the vertical axis indicates the temperature of the heat medium.
  • the heat source heat medium and the load heat medium are counterflow in the cascade heat exchanger 7, so that both the heat source heat medium and the load heat medium are HFO 1123. Even if it is a mixed refrigerant containing, the heat exchange performance in the cascade heat exchanger 7 is high. For this reason, also in this modification, the cascade heat exchanger 7 can be downsized.

Abstract

A refrigeration device having: a heat-source heat medium circuit which circulates a heat-source-use heat medium, and in which a compressor, a heat-source-use heat exchanger, an expansion unit, and a cascade heat exchanger that exchanges heat between the heat-source-use heat medium and a load-use heat medium are connected by pipes; and a load heat medium circuit that circulates a load-use heat medium, and in which a pump feeding the load-use heat medium, a load-use heat exchanger, and the cascade heat exchanger are connected by pipes. The heat-source-use heat medium and/or the load-use heat medium is a refrigerant containing HFO1123.

Description

冷凍装置Refrigeration equipment
 本発明は、複数の熱媒体回路が多段構成された冷凍装置に関する。 The present invention relates to a refrigeration apparatus in which a plurality of heat medium circuits are configured in multiple stages.
 従来より、例えば、熱源熱媒体回路と、負荷用熱媒体回路とが多段構成された冷凍装置が提案されている。このような多段構成の冷凍装置は、熱源熱媒体回路又は負荷用熱媒体回路における熱媒体として、例えば冷媒又は水等が使用されている。特許文献1には、熱源熱媒体回路である高温側循環回路に流通する熱媒体がHFO1234yfであり、負荷用熱媒体回路である低温側循環回路に流通する熱媒体が二酸化炭素である冷凍サイクル装置が開示されている。 Conventionally, for example, a refrigeration apparatus in which a heat source heat medium circuit and a load heat medium circuit are configured in multiple stages has been proposed. In such a multistage refrigeration apparatus, for example, refrigerant or water is used as a heat medium in the heat source heat medium circuit or the load heat medium circuit. Patent Document 1 discloses a refrigeration cycle apparatus in which the heat medium flowing through the high-temperature side circulation circuit that is the heat source heat medium circuit is HFO1234yf, and the heat medium flowing through the low-temperature side circulation circuit that is the load heat medium circuit is carbon dioxide. Is disclosed.
特開2013-36706号公報(第4頁)JP2013-36706A (page 4)
 特許文献1に開示されている冷凍サイクル装置は、高温側循環回路に流通する熱媒体として、HFO1234yfが使用されている。このHFO1234yfは、沸点が高い高沸点冷媒であるため、ガス化し難く、動作圧力におけるガス密度が小さい。このため、高温側循環回路における配管内の圧力損失が増大して、冷媒の搬送動力(圧縮機の消費電力)が増大する虞がある。また、特許文献1に開示されている冷凍サイクル装置は、低温側循環回路に流通する熱媒体として、二酸化炭素が使用されている。この二酸化炭素冷媒は、フロン系冷媒に比べて動作圧力が高い。これにより、低温側循環回路内が高圧となるため、配管の強度を向上させる必要があり、そのための費用がかさむ虞がある。 In the refrigeration cycle apparatus disclosed in Patent Document 1, HFO1234yf is used as a heat medium circulating in the high-temperature side circulation circuit. Since this HFO1234yf is a high boiling point refrigerant having a high boiling point, it is difficult to gasify and the gas density at the operating pressure is small. For this reason, the pressure loss in the piping in the high-temperature side circulation circuit increases, and there is a possibility that the refrigerant conveyance power (power consumption of the compressor) increases. In the refrigeration cycle apparatus disclosed in Patent Document 1, carbon dioxide is used as a heat medium circulating in the low-temperature side circulation circuit. This carbon dioxide refrigerant has a higher operating pressure than the chlorofluorocarbon refrigerant. Thereby, since the inside of a low temperature side circulation circuit becomes a high voltage | pressure, it is necessary to improve the intensity | strength of piping and there exists a possibility that the cost for it may increase.
 本発明は、上記のような課題を背景としてなされたもので、消費電力を抑え、且つコストを抑えた冷凍装置を提供するものである。 The present invention has been made against the background of the above problems, and provides a refrigeration apparatus that reduces power consumption and costs.
 本発明に係る冷凍装置は、熱源用熱媒体が流通し、圧縮機、熱源用熱交換器、膨張部、及び、熱源用熱媒体と負荷用熱媒体との間で熱交換を行うカスケード熱交換器が配管により接続された熱源熱媒体回路と、負荷用熱媒体が流通し、負荷用熱媒体を搬送するポンプ、負荷用熱交換器、及びカスケード熱交換器が配管により接続された負荷熱媒体回路と、を有し、熱源用熱媒体及び負荷用熱媒体のうち少なくとも一方が、HFO1123を含む冷媒である。 The refrigeration apparatus according to the present invention has a heat source heat medium flowing therethrough, a compressor, a heat source heat exchanger, an expansion unit, and cascade heat exchange that performs heat exchange between the heat source heat medium and the load heat medium. The heat source heat medium circuit in which the heat exchanger is connected by piping, and the load heat medium in which the load heat medium circulates and transports the load heat medium, the load heat exchanger, and the cascade heat exchanger are connected by the pipe And at least one of the heat source heat medium and the load heat medium is a refrigerant including HFO1123.
 本発明によれば、熱源用熱媒体及び負荷用熱媒体のうち少なくとも一方が、HFO1123を含む冷媒であるため、エネルギ消費量を削減することができ、また、コスト低減を図ることができる。 According to the present invention, since at least one of the heat source heat medium and the load heat medium is a refrigerant containing HFO 1123, energy consumption can be reduced and cost can be reduced.
実施の形態1に係る冷凍装置1を示す熱媒体回路図である。1 is a heat medium circuit diagram showing a refrigeration apparatus 1 according to Embodiment 1. FIG. 実施の形態1に係る冷凍装置1の作用を示すグラフである。3 is a graph showing the operation of the refrigeration apparatus 1 according to Embodiment 1. 比較例1に係る冷凍装置の作用を示すグラフである。6 is a graph showing the operation of the refrigeration apparatus according to Comparative Example 1. 実施の形態1の変形例に係る冷凍装置100の作用を示すグラフである。It is a graph which shows the effect | action of the freezing apparatus 100 which concerns on the modification of Embodiment 1. FIG. 比較例2に係る冷凍装置の作用を示すグラフである。10 is a graph showing the operation of the refrigeration apparatus according to Comparative Example 2.
 以下、本発明に係る冷凍装置の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。 Hereinafter, embodiments of the refrigeration apparatus according to the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments described below. Moreover, in the following drawings including FIG. 1, the relationship of the size of each component may be different from the actual one.
実施の形態1.
 図1は、実施の形態1に係る冷凍装置1を示す熱媒体回路図である。この図1に基づいて、冷凍装置1について説明する。図1に示すように、冷凍装置1は、熱源側の熱源熱媒体回路2と、負荷側の負荷熱媒体回路3とを備えており、これらがカスケード熱交換器7で接続された二段構成の冷凍装置1である。なお、冷凍装置1は、二段構成されたものに限らず、多段構成としてもよい。
Embodiment 1 FIG.
1 is a heat medium circuit diagram showing a refrigeration apparatus 1 according to Embodiment 1. FIG. The refrigeration apparatus 1 will be described based on FIG. As shown in FIG. 1, the refrigeration apparatus 1 includes a heat source heat medium circuit 2 on the heat source side and a load heat medium circuit 3 on the load side, and these are connected in a cascade heat exchanger 7. This is the refrigeration apparatus 1. The refrigeration apparatus 1 is not limited to a two-stage configuration, and may have a multi-stage configuration.
 熱源熱媒体回路2は、熱源用熱媒体が流通し、圧縮機21、熱源用熱交換器22、膨張部23、及びカスケード熱交換器7が配管により接続されたものである。熱源用熱媒体は、HFO1123を含む冷媒である。そして、圧縮機21は、この熱源用熱媒体を圧縮するものであり、熱源用熱交換器22は、熱源用熱媒体と、例えば室外空気とを熱交換するものである。ここで、熱源熱媒体回路2には、熱源用送風機22aが設けられており、この熱源用送風機22aは、室外空気を熱源用熱交換器22に送風するものである。また、膨張部23は、熱源用熱媒体を膨張するものである。なお、熱源用熱媒体は、HFO1123のみの単一冷媒としてもよいし、HFO1123を含む混合冷媒としてもよい。 The heat source heat medium circuit 2 is a circuit in which a heat source heat medium flows and the compressor 21, the heat source heat exchanger 22, the expansion unit 23, and the cascade heat exchanger 7 are connected by piping. The heat source heat medium is a refrigerant including HFO1123. The compressor 21 compresses the heat source heat medium, and the heat source heat exchanger 22 exchanges heat between the heat source heat medium and, for example, outdoor air. Here, the heat source heat medium circuit 2 is provided with a heat source blower 22 a, and the heat source blower 22 a blows outdoor air to the heat source heat exchanger 22. The expansion unit 23 expands the heat source heat medium. The heat source heat medium may be a single refrigerant including only HFO 1123 or a mixed refrigerant including HFO 1123.
 負荷熱媒体回路3は、負荷用熱媒体が流通し、ポンプ31、負荷用熱交換器32、カスケード熱交換器7が配管により接続されたものである。負荷用熱媒体は、熱源用熱媒体と同様に、HFO1123を含む冷媒である。そして、ポンプ31は、負荷用熱媒体を搬送するものであり、負荷用熱交換器32は、負荷用熱媒体と、例えば室内空気とを熱交換するものである。ここで、負荷熱媒体回路3には、負荷用送風機32aが設けられており、この負荷用送風機32aは、室内空気を負荷用熱交換器32に送風するものである。なお、負荷用熱媒体は、HFO1123のみの単一冷媒としてもよいし、HFO1123を含む混合冷媒としてもよい。また、負荷用熱媒体は、そのほかに、水としてもよいし、不凍液としてもよい。 The load heat medium circuit 3 is a circuit in which a load heat medium circulates and the pump 31, the load heat exchanger 32, and the cascade heat exchanger 7 are connected by piping. Similarly to the heat source heat medium, the load heat medium is a refrigerant including HFO1123. The pump 31 conveys a load heat medium, and the load heat exchanger 32 exchanges heat between the load heat medium and, for example, room air. Here, the load heat medium circuit 3 is provided with a load blower 32 a, and the load blower 32 a blows room air to the load heat exchanger 32. Note that the load heat medium may be a single refrigerant including only HFO 1123 or a mixed refrigerant including HFO 1123. In addition, the load heat medium may be water or antifreeze.
 なお、熱源熱媒体回路2と、負荷熱媒体回路3におけるポンプ31とは、室外空間4に設置されており、負荷熱媒体回路3における負荷用熱交換器32は、室内空間5に設置されている。そして、ポンプ31と負荷用熱交換器32とは、第1の延長配管6aで接続されている。また、熱源熱媒体回路2と負荷熱媒体回路3とを接続するカスケード熱交換器7と、負荷用熱交換器32とは、第2の延長配管6bで接続されている。 The heat source heat medium circuit 2 and the pump 31 in the load heat medium circuit 3 are installed in the outdoor space 4, and the load heat exchanger 32 in the load heat medium circuit 3 is installed in the indoor space 5. Yes. The pump 31 and the load heat exchanger 32 are connected by a first extension pipe 6a. The cascade heat exchanger 7 that connects the heat source heat medium circuit 2 and the load heat medium circuit 3 and the load heat exchanger 32 are connected by a second extension pipe 6b.
 カスケード熱交換器7は、前述の如く、熱源熱媒体回路2と負荷熱媒体回路3とを接続するものであり、例えばプレート熱交換器又は二重管熱交換器等で構成されている。そして、このカスケード熱交換器7は、熱源熱媒体回路2を流通する熱源用熱媒体と、負荷熱媒体回路3を流通する負荷用熱媒体との間で熱交換を行うものである。このように、カスケード熱交換器7によって二段構成された冷凍装置1は、熱源用熱媒体と負荷用熱媒体との間で熱交換が行われ、これにより、夫々独立した熱源熱媒体回路2及び負荷熱媒体回路3を、連携して制御することが可能である。 As described above, the cascade heat exchanger 7 connects the heat source heat medium circuit 2 and the load heat medium circuit 3, and is configured by, for example, a plate heat exchanger or a double pipe heat exchanger. The cascade heat exchanger 7 performs heat exchange between the heat source heat medium that flows through the heat source heat medium circuit 2 and the load heat medium that flows through the load heat medium circuit 3. In this way, the refrigeration apparatus 1 configured in two stages by the cascade heat exchanger 7 performs heat exchange between the heat source heat medium and the load heat medium, whereby independent heat source heat medium circuits 2 are provided. The load heat medium circuit 3 can be controlled in cooperation.
 次に、本実施の形態1に係る冷凍装置1の動作について説明する。なお、本実施の形態1においては、一例として、冷房運転における動作について説明する。 Next, the operation of the refrigeration apparatus 1 according to the first embodiment will be described. In the first embodiment, the operation in the cooling operation will be described as an example.
 先ず、熱源熱媒体回路2における動作について説明する。圧縮機21は、熱源用熱媒体を吸入し、この熱源用熱媒体を圧縮して高温高圧のガスの状態で吐出する。この吐出された熱源用熱媒体は、熱源用熱交換器22に流入し、熱源用熱交換器22は、熱源用送風機22aから供給される室外空気との熱交換により、熱源用熱媒体を凝縮する。この凝縮された熱源用熱媒体は、膨張部23に流入し、膨張部23は、凝縮された熱源用熱媒体を減圧する。そして、減圧された熱源用熱媒体は、カスケード熱交換器7に流入し、カスケード熱交換器7は、負荷熱媒体回路3における負荷用熱媒体との熱交換により、熱源用熱媒体を蒸発する。そして、蒸発された熱源用熱媒体は、圧縮機21に吸入される。 First, the operation in the heat source heat medium circuit 2 will be described. The compressor 21 sucks in the heat source heat medium, compresses the heat source heat medium, and discharges the heat medium in a high-temperature and high-pressure gas state. The discharged heat source heat medium flows into the heat source heat exchanger 22, and the heat source heat exchanger 22 condenses the heat source heat medium by heat exchange with the outdoor air supplied from the heat source blower 22a. To do. The condensed heat source heat medium flows into the expansion unit 23, and the expansion unit 23 decompresses the condensed heat source heat medium. The decompressed heat source heat medium flows into the cascade heat exchanger 7, and the cascade heat exchanger 7 evaporates the heat source heat medium by heat exchange with the load heat medium in the load heat medium circuit 3. . The evaporated heat source heat medium is sucked into the compressor 21.
 次に、負荷熱媒体回路3における動作について説明する。ポンプ31は、負荷用熱媒体を搬送し、搬送された負荷用熱媒体は、負荷用熱交換器32に流入する。負荷用熱交換器32は、負荷用送風機32aから供給される室内空気との熱交換により、負荷用熱媒体を蒸発する。この蒸発された負荷用熱媒体は、カスケード熱交換器7に流入し、カスケード熱交換器7は、熱源熱媒体回路2における熱源用熱媒体との熱交換により、負荷用熱媒体を凝縮する。そして凝縮液化された負荷用熱媒体は、ポンプ31に流入する。 Next, the operation in the load heat medium circuit 3 will be described. The pump 31 conveys the load heat medium, and the conveyed load heat medium flows into the load heat exchanger 32. The load heat exchanger 32 evaporates the load heat medium by heat exchange with room air supplied from the load blower 32a. The evaporated load heat medium flows into the cascade heat exchanger 7, and the cascade heat exchanger 7 condenses the load heat medium by heat exchange with the heat source heat medium in the heat source heat medium circuit 2. Then, the heat medium for load that has been condensed and liquefied flows into the pump 31.
 このように、本実施の形態1において、熱源用熱媒体と負荷用熱媒体とは、カスケード熱交換器7における流通方向が対向流である。 Thus, in the first embodiment, the heat source heat medium and the load heat medium are counterflow in the cascade heat exchanger 7.
 次に、本実施の形態1に係る冷凍装置1の作用について説明する。本実施の形態1では、上記のとおり、熱源用熱媒体及び負荷用熱媒体として、HFO1123を含む冷媒が使用されている。このHFO1123は、そのガス密度が、HFO1234yfのガス密度よりも25%程度高い。このため、熱媒体が循環する量が同一の熱媒体回路においては、熱媒体としてHFO1123を用いることによって、HFO1234yfを用いるよりも、流通する流速が遅くなり、これにより、熱媒体回路における配管の圧力損失を低減することができる。 Next, the operation of the refrigeration apparatus 1 according to the first embodiment will be described. In the first embodiment, as described above, the refrigerant including HFO 1123 is used as the heat source heat medium and the load heat medium. The gas density of the HFO 1123 is about 25% higher than the gas density of the HFO 1234yf. For this reason, in the heat medium circuit in which the amount of circulation of the heat medium is the same, by using HFO 1123 as the heat medium, the flow rate of circulation is slower than when using HFO 1234yf, and thereby the pressure of the piping in the heat medium circuit Loss can be reduced.
 このように、本実施の形態1は、熱源用熱媒体及び負荷用熱媒体として、HFO1123を含む冷媒が使用されているため、熱源熱媒体回路2及び負荷熱媒体回路3における配管の圧力損失を低減することができる。従って、圧縮機21及びポンプ31の搬送動力を抑えることができ、これにより、エネルギ消費量を抑制することができる。 Thus, since the refrigerant | coolant containing HFO1123 is used for this Embodiment 1 as a heat source heat medium and a load heat medium, the pressure loss of the piping in the heat source heat medium circuit 2 and the load heat medium circuit 3 is shown. Can be reduced. Therefore, the conveyance power of the compressor 21 and the pump 31 can be suppressed, and thereby energy consumption can be suppressed.
 また、HFO1123の標準沸点は、-51℃であり、二酸化炭素は、-78℃である。このため、熱媒体の蒸発温度が同一の熱媒体回路においては、熱媒体としてHFO1123を用いることによって、二酸化炭素を用いるよりも、低い圧力で運転させることができる。このため、熱媒体回路における配管の耐圧性を過剰に向上させる必要がない。 The standard boiling point of HFO1123 is -51 ° C, and carbon dioxide is -78 ° C. For this reason, in the heat medium circuit where the evaporation temperature of the heat medium is the same, by using HFO 1123 as the heat medium, it can be operated at a lower pressure than when carbon dioxide is used. For this reason, it is not necessary to excessively improve the pressure resistance of the piping in the heat medium circuit.
 このように、本実施の形態1は、熱源用熱媒体及び負荷用熱媒体として、HFO1123を含む冷媒が使用されているため、熱源熱媒体回路2及び負荷熱媒体回路3における配管等の要素機器の耐圧性を抑えることができる。このため、冷凍装置1を製造するコストを削減することができる。 Thus, since the refrigerant | coolant containing HFO1123 is used for this Embodiment 1 as a heat source heat medium and a load heat medium, element devices, such as piping in the heat source heat medium circuit 2 and the load heat medium circuit 3, are used. The pressure resistance of can be suppressed. For this reason, the cost which manufactures the freezing apparatus 1 can be reduced.
 なお、本実施の形態1では、熱源用熱媒体及び負荷用熱媒体のいずれも、HFO1123を含む冷媒としたが、熱源用熱媒体及び負荷用熱媒体のうち少なくとも一方が、HFO1123を含む冷媒であればよい。この場合、HFO1123を含む冷媒が使用された熱源熱媒体回路2又は負荷熱媒体回路3のいずれかにおいて、上記のエネルギ消費量の低減及びコストの削減という効果を奏する。 In the first embodiment, both the heat source heat medium and the load heat medium are refrigerants including HFO 1123. However, at least one of the heat source heat medium and the load heat medium is a refrigerant including HFO 1123. I just need it. In this case, in either the heat source heat medium circuit 2 or the load heat medium circuit 3 in which the refrigerant including the HFO 1123 is used, the effects of the reduction in the energy consumption and the reduction in cost are achieved.
 また、本実施の形態1では、負荷熱媒体回路3における負荷用熱交換器32及びカスケード熱交換器7において、熱伝達率の良好な相変化熱伝達を利用しているため、熱交換性能が向上する。このため、これらの負荷用熱交換器32及びカスケード熱交換器7の小型化を図ることができる。 Further, in the first embodiment, the load heat exchanger 32 and the cascade heat exchanger 7 in the load heat medium circuit 3 utilize phase change heat transfer with a good heat transfer coefficient, so that the heat exchange performance is high. improves. For this reason, the load heat exchanger 32 and the cascade heat exchanger 7 can be reduced in size.
 更に、本実施の形態1では、熱源用熱媒体と負荷用熱媒体とは、カスケード熱交換器7における流通方向が対向流である。図2は、実施の形態1に係る冷凍装置1の作用を示すグラフであり、図3は、比較例1に係る冷凍装置の作用を示すグラフである。本実施の形態1に係る流通方向が対向流である冷凍装置1(図2)の作用を、カスケード熱交換器7における流通方向が並行流である比較例1(図3)と比較して説明する。なお、熱源用熱媒体及び負荷用熱媒体は、いずれも、HFO1123のみの単一冷媒である。 Furthermore, in the first embodiment, the heat source heat medium and the load heat medium are counterflowing in the cascade heat exchanger 7. FIG. 2 is a graph showing the operation of the refrigeration apparatus 1 according to Embodiment 1, and FIG. 3 is a graph showing the operation of the refrigeration apparatus according to Comparative Example 1. The operation of the refrigeration apparatus 1 (FIG. 2) in which the flow direction according to the first embodiment is counterflow is described in comparison with Comparative Example 1 (FIG. 3) in which the flow direction in the cascade heat exchanger 7 is parallel flow. To do. Note that both the heat source heat medium and the load heat medium are a single refrigerant of only HFO1123.
 図2、図3において、横軸は熱媒体が流通する流れ方向を示し、縦軸は熱媒体の温度を示す。カスケード熱交換器7における流通方向が対向流である場合、図2に示すように、熱源用熱媒体の温度と負荷用熱媒体の温度との温度差ΔTfが、流れ方向において、均一である。従って、カスケード熱交換器7における熱交換性能が高い。これに対し、カスケード熱交換器7における流通方向が並行流である比較例1の場合、図3に示すように、熱源用熱媒体の温度と負荷用熱媒体の温度との温度差ΔTpが、流れ方向において、不均一である。このため、カスケード熱交換器7における熱交換性能が低い。 2 and 3, the horizontal axis indicates the flow direction in which the heat medium flows, and the vertical axis indicates the temperature of the heat medium. When the flow direction in the cascade heat exchanger 7 is a counter flow, as shown in FIG. 2, the temperature difference ΔTf between the temperature of the heat source heat medium and the temperature of the load heat medium is uniform in the flow direction. Therefore, the heat exchange performance in the cascade heat exchanger 7 is high. On the other hand, in the case of Comparative Example 1 in which the flow direction in the cascade heat exchanger 7 is a parallel flow, as shown in FIG. 3, the temperature difference ΔTp between the temperature of the heat source heat medium and the temperature of the load heat medium is Non-uniform in the flow direction. For this reason, the heat exchange performance in the cascade heat exchanger 7 is low.
 以上のとおり、本実施の形態1は、熱源用熱媒体と負荷用熱媒体とは、カスケード熱交換器7における流通方向が対向流であるため、カスケード熱交換器7における熱交換性能が高い。このため、カスケード熱交換器7の小型化を図ることができる。 As described above, in the first embodiment, the heat source heat medium and the load heat medium have a high heat exchange performance in the cascade heat exchanger 7 because the flow direction in the cascade heat exchanger 7 is counterflow. For this reason, size reduction of the cascade heat exchanger 7 can be achieved.
 (変形例)
 次に、本実施の形態1の変形例について説明する。変形例では、熱源用熱媒体及び負荷用熱媒体が、いずれも、HFO1123を含む混合冷媒である点で実施の形態1と相違し、それ以外は実施の形態1と共通する。即ち、変形例においても、熱源用熱媒体と負荷用熱媒体とは、カスケード熱交換器7における流通方向が対向流である。図4は、実施の形態1の変形例に係る冷凍装置100の作用を示すグラフであり、図5は、比較例2に係る冷凍装置の作用を示すグラフである。変形例に係るカスケード熱交換器7における流通方向が対向流である冷凍装置100(図4)の作用を、カスケード熱交換器7における流通方向が並行流である比較例2(図5)と比較して説明する。
(Modification)
Next, a modification of the first embodiment will be described. In the modified example, the heat source heat medium and the load heat medium are different from the first embodiment in that both are mixed refrigerants including HFO1123, and the other points are the same as in the first embodiment. That is, also in the modified example, the heat source heat medium and the load heat medium are counterflow in the cascade heat exchanger 7. FIG. 4 is a graph showing the operation of the refrigeration apparatus 100 according to the modification of the first embodiment, and FIG. 5 is a graph showing the operation of the refrigeration apparatus according to Comparative Example 2. The operation of the refrigeration apparatus 100 (FIG. 4) in which the flow direction in the cascade heat exchanger 7 according to the modification is a counter flow is compared with Comparative Example 2 (FIG. 5) in which the flow direction in the cascade heat exchanger 7 is a parallel flow. To explain.
 変形例では、前述の如く、熱源用熱媒体及び負荷用熱媒体のいずれも、HFO1123を含む混合冷媒である。HFO1123に添加する冷媒は、例えばR32冷媒である。HFO1123とR32冷媒との混合冷媒は、夫々沸点が異なるため、非共沸混合冷媒となる。この非共沸混合冷媒は、熱源熱媒体回路102及び負荷熱媒体回路103における熱媒体の流れ方向に対し、温度勾配が生じる。このため、単一冷媒よりも、熱源用熱媒体の温度と負荷用熱媒体の温度との温度差が、流れ方向において、不均一になり易い。 In the modified example, as described above, both the heat source heat medium and the load heat medium are mixed refrigerants including HFO1123. The refrigerant added to the HFO 1123 is, for example, R32 refrigerant. Since the mixed refrigerants of the HFO 1123 and the R32 refrigerant have different boiling points, they are non-azeotropic mixed refrigerants. This non-azeotropic refrigerant mixture has a temperature gradient with respect to the flow direction of the heat medium in the heat source heat medium circuit 102 and the load heat medium circuit 103. For this reason, the temperature difference between the temperature of the heat source heat medium and the temperature of the load heat medium is more likely to be non-uniform in the flow direction than the single refrigerant.
 図4、図5において、横軸は熱媒体が流通する流れ方向を示し、縦軸は熱媒体の温度を示す。カスケード熱交換器7における流通方向が対向流である場合、図4に示すように、熱源用熱媒体の温度と負荷用熱媒体の温度との温度差ΔTfが、流れ方向において、均一である。従って、カスケード熱交換器7における熱交換性能が高い。これに対し、カスケード熱交換器7における流通方向が並行流である比較例2の場合、図5に示すように、熱源用熱媒体の温度と負荷用熱媒体の温度との温度差ΔTpが、流れ方向において、不均一である。このため、カスケード熱交換器7における熱交換性能が低い。 4 and 5, the horizontal axis indicates the flow direction in which the heat medium flows, and the vertical axis indicates the temperature of the heat medium. When the flow direction in the cascade heat exchanger 7 is a counter flow, as shown in FIG. 4, the temperature difference ΔTf between the temperature of the heat source heat medium and the temperature of the load heat medium is uniform in the flow direction. Therefore, the heat exchange performance in the cascade heat exchanger 7 is high. In contrast, in the case of Comparative Example 2 in which the flow direction in the cascade heat exchanger 7 is a parallel flow, as shown in FIG. 5, the temperature difference ΔTp between the temperature of the heat source heat medium and the temperature of the load heat medium is Non-uniform in the flow direction. For this reason, the heat exchange performance in the cascade heat exchanger 7 is low.
 以上のとおり、変形例では、熱源用熱媒体と負荷用熱媒体とは、カスケード熱交換器7における流通方向が対向流であるため、熱源用熱媒体及び負荷用熱媒体のいずれもが、HFO1123を含む混合冷媒であっても、カスケード熱交換器7における熱交換性能が高い。このため、この変形例においても、カスケード熱交換器7の小型化を図ることができる。 As described above, in the modification, the heat source heat medium and the load heat medium are counterflow in the cascade heat exchanger 7, so that both the heat source heat medium and the load heat medium are HFO 1123. Even if it is a mixed refrigerant containing, the heat exchange performance in the cascade heat exchanger 7 is high. For this reason, also in this modification, the cascade heat exchanger 7 can be downsized.
 1 冷凍装置、2 熱源熱媒体回路、3 負荷熱媒体回路、4 室外空間、5 室内空間、6a 第1の延長配管、6b 第2の延長配管、7 カスケード熱交換器、21 圧縮機、22 熱源用熱交換器、22a 熱源用送風機、23 膨張部、31 ポンプ、32 負荷用熱交換器、32a 負荷用送風機、100 冷凍装置、102 熱源熱媒体回路、103 負荷熱媒体回路。 1 Refrigeration equipment, 2 Heat source heat medium circuit, 3 Load heat medium circuit, 4 Outdoor space, 5 Indoor space, 6a First extension pipe, 6b Second extension pipe, 7 Cascade heat exchanger, 21 Compressor, 22 Heat source Heat exchanger, 22a heat source blower, 23 expansion section, 31 pump, 32 load heat exchanger, 32a load blower, 100 refrigeration apparatus, 102 heat source heat medium circuit, 103 load heat medium circuit.

Claims (4)

  1.  熱源用熱媒体が流通し、圧縮機、熱源用熱交換器、膨張部、及び、前記熱源用熱媒体と負荷用熱媒体との間で熱交換を行うカスケード熱交換器が配管により接続された熱源熱媒体回路と、
     前記負荷用熱媒体が流通し、前記負荷用熱媒体を搬送するポンプ、負荷用熱交換器、及び前記カスケード熱交換器が配管により接続された負荷熱媒体回路と、を有し、
     前記熱源用熱媒体及び前記負荷用熱媒体のうち少なくとも一方が、HFO1123を含む冷媒である
     冷凍装置。
    The heat source heat medium is circulated, and the compressor, the heat source heat exchanger, the expansion unit, and the cascade heat exchanger that performs heat exchange between the heat source heat medium and the load heat medium are connected by piping. A heat source heat medium circuit;
    A load heat medium circuit in which the load heat medium flows, a pump that conveys the load heat medium, a load heat exchanger, and a load heat medium circuit to which the cascade heat exchanger is connected by piping;
    The refrigeration apparatus, wherein at least one of the heat source heat medium and the load heat medium is a refrigerant including HFO1123.
  2.  前記熱源用熱媒体と前記負荷用熱媒体とは、
     前記カスケード熱交換器における流通方向が対向流である
     請求項1記載の冷凍装置。
    The heat source heat medium and the load heat medium are:
    The refrigeration apparatus according to claim 1, wherein a flow direction in the cascade heat exchanger is a counter flow.
  3.  前記熱源用熱媒体が、HFO1123を含む冷媒であり、
     前記負荷用熱媒体が、水である
     請求項1又は2記載の冷凍装置。
    The heat medium for the heat source is a refrigerant containing HFO1123,
    The refrigeration apparatus according to claim 1, wherein the heat medium for load is water.
  4.  前記熱源用熱媒体が、HFO1123を含む冷媒であり、
     前記負荷用熱媒体が、不凍液である
     請求項1又は2記載の冷凍装置。
    The heat medium for the heat source is a refrigerant containing HFO1123,
    The refrigeration apparatus according to claim 1 or 2, wherein the load heat medium is an antifreeze.
PCT/JP2014/057030 2014-03-17 2014-03-17 Refrigeration device WO2015140872A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14886496.0A EP3128260A4 (en) 2014-03-17 2014-03-17 Refrigeration device
JP2016508332A JP6223545B2 (en) 2014-03-17 2014-03-17 Refrigeration equipment
PCT/JP2014/057030 WO2015140872A1 (en) 2014-03-17 2014-03-17 Refrigeration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/057030 WO2015140872A1 (en) 2014-03-17 2014-03-17 Refrigeration device

Publications (1)

Publication Number Publication Date
WO2015140872A1 true WO2015140872A1 (en) 2015-09-24

Family

ID=54143898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057030 WO2015140872A1 (en) 2014-03-17 2014-03-17 Refrigeration device

Country Status (3)

Country Link
EP (1) EP3128260A4 (en)
JP (1) JP6223545B2 (en)
WO (1) WO2015140872A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022009898A1 (en) * 2020-07-06 2022-01-13 ダイキン工業株式会社 Refrigeration device
WO2023248923A1 (en) * 2022-06-23 2023-12-28 パナソニックIpマネジメント株式会社 Freezing apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010131378A1 (en) * 2009-05-12 2010-11-18 三菱電機株式会社 Air conditioner
WO2012157764A1 (en) * 2011-05-19 2012-11-22 旭硝子株式会社 Working medium and heat-cycle system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6019837B2 (en) * 2011-12-21 2016-11-02 ダイキン工業株式会社 Heat pump system
FR2986309B1 (en) * 2012-01-26 2018-05-25 Arkema France CASCADE REFRIGERATION SYSTEM
US20150153076A1 (en) * 2012-08-23 2015-06-04 Mitsubishi Electric Corporation Refrigeration apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010131378A1 (en) * 2009-05-12 2010-11-18 三菱電機株式会社 Air conditioner
WO2012157764A1 (en) * 2011-05-19 2012-11-22 旭硝子株式会社 Working medium and heat-cycle system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3128260A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022009898A1 (en) * 2020-07-06 2022-01-13 ダイキン工業株式会社 Refrigeration device
JP2022014455A (en) * 2020-07-06 2022-01-19 ダイキン工業株式会社 Refrigerating device
JP7216151B2 (en) 2020-07-06 2023-01-31 ダイキン工業株式会社 refrigeration equipment
WO2023248923A1 (en) * 2022-06-23 2023-12-28 パナソニックIpマネジメント株式会社 Freezing apparatus

Also Published As

Publication number Publication date
EP3128260A4 (en) 2017-12-20
JP6223545B2 (en) 2017-11-01
JPWO2015140872A1 (en) 2017-04-06
EP3128260A1 (en) 2017-02-08

Similar Documents

Publication Publication Date Title
JP6125000B2 (en) Dual refrigeration equipment
EP3070417A1 (en) Refrigeration system
WO2012066763A1 (en) Freezer
US9970693B2 (en) Refrigeration cycle apparatus
JP2017145975A (en) Refrigeration cycle device, process of manufacture of refrigeration cycle device, drop-in method for refrigeration cycle device, and replace method for refrigeration cycle device
JP6554156B2 (en) Multistage heat pump having a two-stage expansion structure using CO2 refrigerant and its circulation method
WO2021065944A1 (en) Air conditioning apparatus
WO2015136706A1 (en) Refrigerating device
JP7193706B2 (en) refrigeration cycle equipment
JP2009300001A (en) Refrigerating cycle device
JP5277854B2 (en) Air conditioner
Gullo et al. Theoretical evaluation of supermarket refrigeration systems using R1234ze (E) as an alternative to high-global warming potential refrigerants
JP6223545B2 (en) Refrigeration equipment
JP6161787B2 (en) Refrigeration cycle equipment
JP5506638B2 (en) Refrigeration equipment
WO2014199445A1 (en) Refrigerating device
JP6509047B2 (en) Air conditioner
WO2015132951A1 (en) Refrigeration device
JP2005180866A (en) Binary refrigerating device
JP6091567B2 (en) Refrigerator and refrigeration equipment
JP5474140B2 (en) Refrigeration equipment
EP2889560A1 (en) Refrigerating device
JP2020003124A (en) Refrigeration cycle and hot water heat pump
WO2016169516A1 (en) Heat pump-type refrigeration and heating device, refrigerant and heat exchanger
WO2015140875A1 (en) Refrigeration device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14886496

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016508332

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014886496

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014886496

Country of ref document: EP