JP2005180866A - Binary refrigerating device - Google Patents

Binary refrigerating device Download PDF

Info

Publication number
JP2005180866A
JP2005180866A JP2003425164A JP2003425164A JP2005180866A JP 2005180866 A JP2005180866 A JP 2005180866A JP 2003425164 A JP2003425164 A JP 2003425164A JP 2003425164 A JP2003425164 A JP 2003425164A JP 2005180866 A JP2005180866 A JP 2005180866A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
compressor
stage side
refrigerant circuit
side refrigerant
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003425164A
Other languages
Japanese (ja)
Inventor
Ichiro Kamimura
一朗 上村
Original Assignee
Sanyo Electric Co Ltd
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B7/00Compression machines, plant, or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plant or systems characterised by the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B9/00Compression machines, plant, or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plant, or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plant, or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Abstract

PROBLEM TO BE SOLVED: To provide a binary refrigerating device capable of efficiently providing an ultralow temperature in an evaporator of a low stage-side refrigerant circuit regardless of the condition of the outside air.
SOLUTION: This device comprises a high stage-side refrigerant circuit 7 including a compressor 2, a radiator 3, an expansion valve 4 as a pressure reducing device, an evaporator and the like; the low stage-side refrigerant circuit 13 including a compressor 8, a refrigerant pipe 9 as a radiator, an expansion valve 10 as a pressure reducing device, the evaporator 12, and the like; and a cascade heat exchanger 6 for heat-exchangeably cascade-connecting the evaporator of the circuit 7 to the radiator 9 of the circuit 13. Carbon dioxide is used as the refrigerant of the circuit 13. The carbon dioxide is condensed in the refrigerant pipe 9, and the volumetric flow rate of the refrigerant discharged from the compressor 2 of the circuit 7 is set larger than the volumetric flow rate of the refrigerant discharged from the compressor 8 of the circuit 13.
COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高段側冷媒回路と、低段側冷媒回路と、高段側冷媒回路の蒸発器と低段側冷媒回路の放熱器とを交熱的にカスケード接続するカスケード熱交換器とを備えた二元冷凍装置に関するものである。 The present invention includes a high stage side refrigerant circuit, a low stage side refrigerant circuit and a cascade heat exchanger to heat exchanging manner cascading a radiator evaporator and the low stage side refrigerant circuit of the high stage side refrigerant circuit it relates cascade refrigerating apparatus having.

従来の冷凍装置では、圧縮機、放熱器、減圧装置及び蒸発器から成る冷媒回路を備え、当該冷媒回路の蒸発器で冷媒が蒸発するときの冷却作用を利用して庫内などに収納された物品を冷凍保存する構成とされていた。 In the conventional refrigeration system includes a compressor, a radiator, comprising a refrigerant circuit consisting of means and an evaporator, the refrigerant in the evaporator of the refrigerant circuit is accommodated in such a refrigerator by using a cooling effect at the time of evaporation It has been configured to frozen goods. このような冷凍装置で、例えば、−30℃や−50℃の超低温を得ようとする場合、一元の冷凍装置では、蒸発器での蒸発温度を係る超低温領域とするためにコンプレッサの圧縮比が非常に高くなり、コンプレッサ自体の温度又は冷媒回路内に吐出される冷媒ガスの温度が高くなる関係上極めて困難となっていた。 In such a refrigeration system, for example, in order to obtain an ultra low temperature of -30 ° C. and -50 ° C., in one yuan of refrigeration system, the compression ratio of the compressor to the cryogenic region of the evaporation temperature of the evaporator is very high, the temperature of the refrigerant gas discharged into the temperature or the refrigerant circuit of the compressor itself has been a high the relationship on extremely difficult.

このため、高段側冷媒回路と低段側冷媒回路とをカスケード接続した二元冷凍装置を用いることが考えられる。 Therefore, it is conceivable to use a dual refrigeration system cascaded with the high stage side refrigerant circuit and a low stage side refrigerant circuit. この場合、高段側冷媒回路の蒸発器と低段側冷媒回路の放熱器とを交熱的に配設し、低段側冷媒回路の放熱器を流れる冷媒から高段側冷媒回路の蒸発器における冷媒の蒸発により吸熱させ、高段側冷媒回路の放熱器で低段側冷媒回路の蒸発器から汲み上げた熱を外部に捨てることで、低段側冷媒回路の蒸発器における冷媒の蒸発温度を超低温領域とする構成としていた。 In this case, the radiator of the evaporator and the low stage side refrigerant circuit of the high stage side refrigerant circuit and so as to perform heat exchange disposed, the evaporator of the high stage side refrigerant circuit from the refrigerant flowing through the condenser of the low stage side refrigerant circuit was endotherm by evaporation of the refrigerant in, by discarding the heat pumped from the evaporator of the low stage side refrigerant circuit in the radiator of the high stage side refrigerant circuit to the outside, the evaporation temperature of the refrigerant in the evaporator of the low stage side refrigerant circuit It had a structure in which a super-low temperature area. (例えば、非特許文献1参照)。 (E.g., see Non-Patent Document 1).

このような二元冷凍装置の低段側冷媒回路において冷媒は低温となるため、使用冷媒によっては粘性が著しく増加して、冷媒回路内を流れる冷媒の流量が低下する恐れがあった。 Since such refrigerant in the low stage side refrigerant circuit of a binary refrigerating apparatus comprising a low temperature, depending on the used coolant viscosity increased significantly, the flow rate of the refrigerant flowing in the refrigerant circuit may decrease.

また、二元冷凍装置により冷却される庫内の温度は略一定であるため、負荷も年間を通じて略一定となる。 Further, since the temperature in the refrigerator to be cooled by the two-stage refrigeration system is substantially constant, a substantially constant throughout the loading annually. このため、低段側冷媒回路も年間を通じて略一定の負荷で運転されるものとなるが、高段側冷媒回路では放熱器で外気と熱交換する構成とされているために、外気温度の変化により運転能力にも変化が生じる問題があった。 Therefore, although the present invention is operated at a substantially constant load through the low stage side refrigerant circuit per year, for the high stage side refrigerant circuit is configured to outside air heat exchange in the radiator, the outside air temperature change there is a problem that variation occurs in operating capacity by.

本発明は、係る従来の課題を解決するために、低段側冷媒回路の蒸発器において外気条件によらず効率的に所定の超低温を得ることができる二元冷凍装置を提供することを目的とする。 The present invention relates to solve the conventional problems, and aims to provide a two-stage refrigeration apparatus capable of efficiently predetermined cryogenic regardless of the ambient conditions in the evaporator of the low stage side refrigerant circuit to.

即ち、本発明の二元冷凍装置では、圧縮機、放熱器、減圧装置及び蒸発器などから成る高段側冷媒回路と、圧縮機、放熱器、減圧装置及び蒸発器などから成る低段側冷媒回路と、高段側冷媒回路の蒸発器と低段側冷媒回路の放熱器とを交熱的にカスケード接続するカスケード熱交換器とを備え、低段側冷媒回路の冷媒として二酸化炭素を用い、放熱器において当該二酸化炭素を凝縮させると共に、高段側冷媒回路の圧縮機から吐出される冷媒の体積流量を、低段側冷媒回路の圧縮機から吐出される冷媒の体積流量よりも多くしたことを特徴とするものである。 That is, a binary refrigerating apparatus of the present invention, a compressor, a radiator, a high stage side refrigerant circuit consisting of a pressure reducing unit and an evaporator, a compressor, a radiator, a low stage side refrigerant made of a pressure reducing unit and an evaporator comprising a circuit and a cascade heat exchanger to the radiator and the heat exchanging manner cascading evaporator and the low stage side refrigerant circuit of the high stage side refrigerant circuit, carbon dioxide is used as refrigerant in the low stage side refrigerant circuit, with condensing the carbon dioxide in the radiator, to the volumetric flow rate of the refrigerant discharged from the compressor of the high stage side refrigerant circuit, and more than the volume flow rate of the refrigerant discharged from the compressor of the low stage side refrigerant circuit the one in which the features.

請求項2の発明の二元冷凍装置では、上記発明において高段側冷媒回路の圧縮機の排除容積を、低段側冷媒回路の圧縮機の排除容積よりも大きくしたものである。 In two-stage refrigeration apparatus of the invention of claim 2, in which the displacement volume of the compressor of the high stage side refrigerant circuit in the above invention, was greater than the displacement volume of the compressor in the low stage side refrigerant circuit.

請求項3の発明の二元冷凍装置では、請求項1の発明において高段側冷媒回路の圧縮機の回転数を、低段側冷媒回路の圧縮機の回転数よりも高くしたことを特徴とするものである。 In two-stage refrigeration apparatus of the invention of claim 3, and characterized in that the rotational speed of the compressor of the high stage side refrigerant circuit in the invention of claim 1, and higher than the rotational speed of the compressor in the low stage side refrigerant circuit it is intended to.

請求項4の発明の二元冷凍装置では、上記各発明において高段側冷媒回路の圧縮機から吐出される冷媒の体積流量を、前記低段側冷媒回路の圧縮機から吐出される冷媒の体積流量の5倍以下としたことを特徴とするものである。 In two-stage refrigeration apparatus of the invention of claim 4, the volumetric flow rate of the refrigerant discharged from the compressor of the high stage side refrigerant circuit in the above inventions, the volume of the refrigerant discharged from the compressor of the low stage side refrigerant circuit it is characterized in that it has more than 5 times the flow rate.

請求項5の発明の二元冷凍装置では、上記各発明において高段側冷媒回路の冷媒として、R717、R290、R1270、R410A、R32、R134a又はR407Cを用いることを特徴とするものである。 In two-stage refrigeration apparatus of the invention of claim 5, as a refrigerant of the high stage side refrigerant circuit in the above inventions, is characterized in the use of R717, R290, R1270, R410A, R32, R134a or R407C.

本発明によれば、高段側冷媒回路と低段側冷媒回路とを所謂カスケード接続して成る冷凍装置の前記低段側冷媒回路の冷媒として二酸化炭素を用い、この二酸化炭素を放熱器にて凝縮させるようにしているので、低温において粘性が低く、熱運搬性能が非常に高い二酸化炭素の特性を利用し、低段側冷媒回路の蒸発器において効率的に極低温を得ることが可能となる。 According to the present invention, the carbon dioxide used as the refrigerant of the low stage side refrigerant circuit of a refrigeration apparatus comprising a high stage side refrigerant circuit and a low stage side refrigerant circuit and a so-called cascade connection, by the radiator to the carbon dioxide since so as to condense, low viscosity at low temperatures, the heat transport performance by utilizing a very high carbon dioxide characteristics, it is possible to obtain efficiently cryogenic in the evaporator of the low stage side refrigerant circuit .

特に、高段側冷媒回路の圧縮機から吐出される冷媒の体積流量を、低段側冷媒回路の圧縮機から吐出される冷媒の体積流量よりも多くしているので、外気条件により能力が変動する高段側冷媒回路により支障無く低段側冷媒回路の二酸化炭素を凝縮させることができるようになる。 In particular, the volumetric flow rate of the refrigerant discharged from the compressor of the high stage side refrigerant circuit, since the more than the volume flow rate of the refrigerant discharged from the compressor of the low stage side refrigerant circuit, the ability by the outside air conditions change it is possible to condense the carbon dioxide without any trouble low stage side refrigerant circuit by the high stage side refrigerant circuit.

また、請求項2の発明によれば、上記において高段側冷媒回路の圧縮機の排除容積を、低段側冷媒回路の圧縮機の排除容積よりも大きくしているので、両圧縮機を効率が良くなる所定の回転数で制御しながら、高段側冷媒回路の圧縮機から吐出される冷媒の体積流量を、低段側冷媒回路の圧縮機から吐出される冷媒の体積流量よりも多くすることができるようになる。 Further, according to the invention of claim 2, the displacement volume of the compressor of the high stage side refrigerant circuit in the above, since the greater than displacement volume of the compressor in the low stage side refrigerant circuit, efficiency of both the compressor while controlling a predetermined rotational speed is improved, the volumetric flow rate of the refrigerant discharged from the compressor of the high stage side refrigerant circuit, larger than the volumetric flow rate of the refrigerant discharged from the compressor of the low stage side refrigerant circuit it becomes possible. これにより、二元冷凍装置の運転効率を改善することができるようになる。 Thus, it is possible to improve the operating efficiency of the two-stage cascade refrigerating system.

また、請求項3の発明によれば、請求項1において高段側冷媒回路の圧縮機の回転数を、低段側冷媒回路の圧縮機の回転数よりも高くしているので、両圧縮機として排除容積が同一のものを利用した場合にも、高段側冷媒回路の圧縮機から吐出される冷媒の体積流量を、低段側冷媒回路の圧縮機から吐出される冷媒の体積流量よりも多くすることができるようになる。 Further, according to the invention of claim 3, the rotational speed of the compressor of the high stage side refrigerant circuit according to claim 1, since the higher than the rotational speed of the compressor in the low stage side refrigerant circuit, both the compressor even when the displacement volume is using the same ones as the volumetric flow rate of the refrigerant discharged from the compressor of the high stage side refrigerant circuit, than the volume flow rate of the refrigerant discharged from the compressor of the low stage side refrigerant circuit so that it is possible to increase.

また、請求項4の発明によれば、上記各発明において高段側冷媒回路の圧縮機から吐出される冷媒の体積流量を、低段側冷媒回路の圧縮機から吐出される冷媒の体積流量の5倍以下としているので、最も効率の良い範囲で二元冷凍装置を運転することができるようになる。 Further, according to the invention of claim 4, the volumetric flow rate of the refrigerant discharged from the compressor of the high stage side refrigerant circuit in the above inventions, the volumetric flow rate of the refrigerant discharged from the compressor of the low stage side refrigerant circuit since 5 times are less, it is possible to operate the two-stage cascade refrigerating system in the most efficient range.

そして、請求項5の発明の如く高段側冷媒回路の冷媒として、R717、R290、R1270、R410A、R32、R134a又はR407Cを用いることにより、高段側冷媒回路の圧縮機から吐出される冷媒の体積流量を、低段側冷媒回路の圧縮機から吐出される冷媒の体積流量の5倍以下として効率的な運転を実現できるようになる。 Then, as the refrigerant of the high stage side refrigerant circuit as in the invention of claim 5, R717, R290, R1270, R410A, by using R32, R134a or R407C, the refrigerant discharged from the compressor of the high stage side refrigerant circuit the volume flow will be able to realize the efficient operation as the following five times the volumetric flow rate of the refrigerant discharged from the compressor of the low stage side refrigerant circuit.

以下に図面に基づき本発明の実施形態を詳述する。 Detailing the embodiments of the present invention based on the drawings.

図1は、本発明の一実施例の二元冷凍装置1の冷媒回路図である。 Figure 1 is a refrigerant circuit diagram of a binary refrigerating apparatus 1 of one embodiment of the present invention. 実施例の二元冷凍装置1は、圧縮機2、放熱器3、減圧装置としての膨張弁4、及び、蒸発器5を順次環状に接続して成る高段側冷媒回路7と、圧縮機8、放熱器9、減圧装置としての膨張弁10、及び、蒸発器12を順次環状に配管接続して成る低段側冷媒回路13と、高段側冷媒回路7の蒸発器5と低段側冷媒回路13の放熱器9とを交熱的にカスケード接続するカスケード熱交換器6とから構成されている。 The two-stage refrigeration apparatus 1 of the embodiment, a compressor 2, radiator 3, the expansion valve 4 as a pressure reducing device, and a high stage side refrigerant circuit 7 formed by successively annularly connected to one another an evaporator 5, a compressor 8 , radiator 9, the expansion valve 10 as a pressure reducing device and a low stage side refrigerant circuit 13 formed by the pipe are successively annularly connected to one another the evaporator 12, the evaporator 5 and the low stage side refrigerant of the high-stage side refrigerant circuit 7 and it is configured with a radiator 9 of the circuit 13 from the cascade heat exchanger 6 for heat exchanging manner cascaded.

また、本発明の二元冷凍装置1では、高段側冷媒回路7の圧縮機2の排除容積を、低段側冷媒回路13の圧縮機8の排除容積より大きく設定している。 Further, the two-stage refrigeration apparatus 1 of the present invention, the displacement volume of the compressor 2 of the high stage side refrigerant circuit 7 is set larger than the displacement volume of the compressor 8 in the low stage side refrigerant circuit 13. これによって、高段側冷媒回路7の圧縮機2から吐出される冷媒の体積流量が、低段側冷媒回路13の圧縮機8から吐出される冷媒の体積流量よりも多くなるようにしている。 Thus, the volumetric flow rate of the refrigerant discharged from the compressor 2 of the high stage side refrigerant circuit 7 has to be larger than the volumetric flow rate of the refrigerant discharged from the compressor 8 in the low stage side refrigerant circuit 13.

そして、前記高段側冷媒回路7内には冷媒としてアンモニア(R717)、プロパン(R290)、プロピレン(R1270)やフッ素系冷媒のR410、R32、R134a、R407Cなどが所定量封入(実施例ではプロピレンとする)されると共に、低段側冷媒回路13内には冷媒として自然冷媒である二酸化炭素(CO 2 )が所定量封入されている。 Then, ammonia (R717) as a refrigerant in the high stage side refrigerant circuit 7, propane (R290), propylene (R1270) or fluorine-based refrigerants R410, R32, R134a, propylene at a predetermined filling amount (Example like R407C together are to), carbon dioxide in the low stage side refrigerant circuit 13 is a natural refrigerant as a refrigerant (CO 2) is a predetermined filling amount. この二酸化炭素冷媒は低温においても粘性が低く、熱運搬性能が非常に高いため、低段側冷媒回路13での使用に適している。 The carbon dioxide refrigerant has a low viscosity even at low temperatures, since the heat transport performance is very high, are suitable for use in the low stage side refrigerant circuit 13.

次に、二元冷凍装置1の動作を説明する。 Next, the operation of the two-stage refrigeration apparatus 1. 先ず、低段側冷媒回路13の蒸発器12において冷媒の蒸発温度がー30℃となるように運転する場合について説明する。 First, a case is described in which the operation in the evaporator 12 of the low stage side refrigerant circuit 13 as the evaporation temperature of the refrigerant is over 30 ° C..

ここで、低段側冷媒回路13の蒸発器12が冷却しなければならない冷凍庫内の負荷(冷凍負荷)が10kW、外気温度が+50℃の条件下で当該二元冷凍装置1を運転する場合、高段側冷媒回路7の凝縮負荷は14.77kWとなる(高段側冷媒回路7から低段側冷媒回路13の圧縮機2の入力が10kWに加算される)。 Here, when the load in the freezer evaporator 12 of the low stage side refrigerant circuit 13 has to cool (refrigeration load) is operated 10 kW, the two-stage refrigeration apparatus 1 under the conditions of the outside air temperature is + 50 ° C., condensing duty of the high stage side refrigerant circuit 7 becomes 14.77KW (input of the compressor 2 from the high stage side refrigerant circuit 7 low stage side refrigerant circuit 13 is added to 10 kW). また、高段側冷媒回路7の圧縮機2及び低段側冷媒回路13の圧縮機8は運転効率が良いとされるある所定の回転数、例えば60%の運転効率で定速で運転すると共に、高段側冷媒回路7の圧縮機2の排除容積を、低段側冷媒回路13の圧縮機8の排除容積より大きく設定している。 Further, the high pressure side compressor 8 of the compressor 2 and the low stage side refrigerant circuit 13 in the refrigerant circuit 7 is predetermined rotational speed operation efficiency is good, while operating at a constant speed, for example 60% operating efficiency the displacement volume of the compressor 2 of the high stage side refrigerant circuit 7 is set larger than the displacement volume of the compressor 8 in the low stage side refrigerant circuit 13.

そして、両冷媒回路7、13の圧縮機2、8が前述の如く定速で運転されると、高段側冷媒回路7の圧縮機2内に低温低圧の冷媒が吸い込まれ、圧縮されて高温高圧のガス冷媒(プロピレン)となり、圧縮機2から吐出される。 When the compressor 2,8 of both refrigerant circuits 7 and 13 are operated at a constant speed as described above, a low-temperature low-pressure refrigerant sucked into the compressor 2 of the high stage side refrigerant circuit 7, it is compressed hot high-pressure gas refrigerant (propylene), and discharged from the compressor 2. 圧縮機2から吐出された高温高圧の冷媒ガスは放熱器3に流入する。 Refrigerant gas discharged from the compressor 2 high-temperature high-pressure flows into the radiator 3. そこで冷媒ガスは外気と熱交換して凝縮する。 So the refrigerant gas is condensed by outside air heat exchanger. このとき、冷媒は外気に熱を捨てる。 At this time, the refrigerant discards heat into the outside air.

この放熱器3を出た冷媒は膨張弁4で絞られ、減圧された後、カスケード熱交換器6の蒸発器5に流入する。 Refrigerant discharged the radiator 3 is throttled by the expansion valve 4, after being reduced pressure and flows into the evaporator 5 of the cascade heat exchanger 6. 係るカスケード熱交換器6にて冷媒は放熱器9を通過する冷媒から熱を奪って蒸発膨張する。 The refrigerant in the cascade heat exchanger 6 according to evaporate expansion takes heat from the refrigerant passing through the radiator 9. このとき、冷媒の蒸発温度は+5℃となる。 In this case, the evaporation temperature of the refrigerant becomes + 5 ° C.. また、冷媒が蒸発する際の吸熱作用でカスケード熱交換器6の放熱器9が冷却される。 Further, the radiator 9 of the cascade heat exchanger 6 is cooled by the heat absorbing function when the refrigerant evaporates. そして、このカスケード熱交換器6を出た冷媒は圧縮機2に吸い込まれるサイクルを繰り返す。 The refrigerant exiting the cascade heat exchanger 6 repeats the cycle is sucked into the compressor 2.

一方、低段側冷媒回路13の圧縮機8に吸い込まれ、圧縮されて高温高圧となったガス冷媒(二酸化炭素)は、圧縮機8から吐出されて、カスケード熱交換器6の放熱器9に入り、そこでカスケード熱交換器6の蒸発器5を通過する冷媒に熱を奪われて放熱する。 On the other hand, is sucked into the compressor 8 in the low stage side refrigerant circuit 13, gas refrigerant becomes high temperature and high pressure compressed (carbon dioxide) is discharged from the compressor 8, the radiator 9 of the cascade heat exchanger 6 It enters, where it loses heat to the refrigerant passing through the evaporator 5 of the cascade heat exchanger 6 to dissipate heat. このとき、冷媒は+15℃程に冷却される。 At this time, the refrigerant is cooled to a degree + 15 ° C.. ここで、カスケード熱交換器6において冷媒(二酸化炭素)は凝縮し、液若しくは気/液混合状態となる。 Here, the refrigerant (carbon dioxide) is condensed in the cascade heat exchanger 6, a liquid or gas / liquid mixed state.

このカスケード熱交換器6内の放熱器9を出た冷媒は膨張弁10で絞られ、減圧される。 The refrigerant leaving the radiator 9 of the cascade heat exchanger 6 is throttled by the expansion valve 10 is decompressed. そして、蒸発器12に流入し、そこで蒸発膨張する。 Then, it flows into the evaporator 12, where it evaporates expansion. このとき、蒸発器12における冷媒の蒸発温度が前述の如くの−30℃程となる。 In this case, the evaporation temperature of the refrigerant in the evaporator 12 becomes extent -30 ° C. for as described above. この蒸発する際の吸熱作用で冷凍機器などの低温機器の庫内を冷却する。 The endothermic action at the time of evaporation to cool the inside of the refrigerator cold equipment such as refrigeration equipment.

上記条件で圧縮機2及び圧縮機8を運転することにより、図2に示す如く低段側冷媒回路13の圧縮機8の体積流量は4.68/m 3 h、高段側冷媒回路7の圧縮機2の体積流量は14.4/m 3 h、体積流量比は3.1(圧縮機2の体積流量/圧縮機8の体積流量)となる。 By operating the compressor 2 and the compressor 8 under the above conditions, the volume flow of the compressor 8 in the low stage side refrigerant circuit 13 as shown in FIG. 2 4.68 / m 3 h, the high stage side refrigerant circuit 7 volume flow of the compressor 2 14.4 / m 3 h, the volume flow ratio is 3.1 (the volume flow rate of the volume flow / compressor 8 of the compressor 2). この場合、低圧側冷媒回路13の成績係数(COP)は2.1と良好な数値を得ることができる。 In this case, the coefficient of performance of the low-pressure side refrigerant circuit 13 (COP) can be obtained good numerical and 2.1.

尚、上記凝縮負荷に対して、高段側冷媒回路7に図2に列挙する冷媒を封入した場合、高段側冷媒回路7の体積流量は図2に示すようになった。 Incidentally, with respect to the condensation duty, when sealed refrigerant listed in Figure 2 to the high stage side refrigerant circuit 7, the volume flow rate of the high stage side refrigerant circuit 7 are as shown in FIG. また、この時の成績係数(COP)は体積流量比が5以下である場合に、最も効率の良い範囲内で二元冷凍装置1を運転することができる。 Further, the coefficient of performance at this time (COP) can be volumetric flow ratio when 5 or less, to operate the two-stage cascade refrigerating apparatus 1 in the most efficient range. 従って、図2のR407Cから上に列挙された冷媒が高段側冷媒回路7に使用する冷媒として適している。 Accordingly, the refrigerant listed above from R407C in FIG 2 is suitable as a refrigerant used in the high stage side refrigerant circuit 7.

次に、低段側冷媒回路13の蒸発器12の蒸発温度が−50℃となるように運転する場合について説明する。 Next, the case where operating as the evaporation temperature of the evaporator 12 of the low stage side refrigerant circuit 13 is -50 ° C.. ここで、低段側冷媒回路13の蒸発器12が冷却しなければならない冷凍庫内の負荷(冷凍負荷)が10kW、外気温度が+50℃の条件下で当該二元冷凍装置1を運転する場合、高段側冷媒回路7の凝縮負荷は16.21kWとなる。 Here, when the load in the freezer evaporator 12 of the low stage side refrigerant circuit 13 has to cool (refrigeration load) is operated 10 kW, the two-stage refrigeration apparatus 1 under the conditions of the outside air temperature is + 50 ° C., condensing duty of the high stage side refrigerant circuit 7 becomes 16.21KW. また、前述の如く圧縮機2及び圧縮機8を効率の良い所定の回転数(実施例では60%の効率)で運転して、高段側冷媒回路7の圧縮機2の排除容積を、低段側冷媒回路13の圧縮機8の排除容積より大きくしている。 Also, operating at efficient predetermined rotational speed of the compressor 2 and the compressor 8 as described above (efficiency of 60% in the embodiment), the displacement volume of the compressor 2 of the high stage side refrigerant circuit 7, the low It is larger than the displacement volume of the compressor 8 of the stage side refrigerant circuit 13.

両冷媒回路7、13の圧縮機2、8が運転されると、高段側冷媒回路7の圧縮機2内に低温低圧の冷媒が吸い込まれ、圧縮されて高温高圧のガス冷媒(プロピレン)となり、圧縮機2から吐出される。 When the compressor 2,8 of both refrigerant circuits 7 and 13 is operated, the low-temperature low-pressure refrigerant is sucked into the compressor 2 of the high stage side refrigerant circuit 7, it is compressed high-temperature and high-pressure gas refrigerant (propylene) and , it is discharged from the compressor 2. 圧縮機2から吐出された高温高圧の冷媒ガスは放熱器3に流入する。 Refrigerant gas discharged from the compressor 2 high-temperature high-pressure flows into the radiator 3. そこで冷媒ガスは外気と熱交換して凝縮する。 So the refrigerant gas is condensed by outside air heat exchanger. このとき、冷媒は空気に熱を捨てる。 At this time, the refrigerant discards heat into the air.

この放熱器3を出た冷媒は膨張弁4で絞られ、減圧された後、カスケード熱交換器6の蒸発器5に流入する。 Refrigerant discharged the radiator 3 is throttled by the expansion valve 4, after being reduced pressure and flows into the evaporator 5 of the cascade heat exchanger 6. 係るカスケード熱交換器6にて冷媒は放熱器9を通過する冷媒から熱を奪って蒸発膨張する。 The refrigerant in the cascade heat exchanger 6 according to evaporate expansion takes heat from the refrigerant passing through the radiator 9. このとき、冷媒の蒸発温度は+5℃程となる。 In this case, the evaporation temperature of the refrigerant becomes extent + 5 ° C.. また、冷媒が蒸発する際の吸熱作用でカスケード熱交換器6の放熱器9が冷却される。 Further, the radiator 9 of the cascade heat exchanger 6 is cooled by the heat absorbing function when the refrigerant evaporates. そして、このカスケード熱交換器6を出た冷媒は圧縮機2に吸い込まれるサイクルを繰り返す。 The refrigerant exiting the cascade heat exchanger 6 repeats the cycle is sucked into the compressor 2.

一方、この場合における低段側冷媒回路13の動作を図3を参照して説明する。 On the other hand, the operation of the low stage side refrigerant circuit 13 in this case with reference to FIG. 図3はこの場合の2次元冷凍装置1の低段側冷媒回路13のモリエル線図を示している。 Figure 3 shows a Mollier diagram of the low stage side refrigerant circuit 13 of the two-dimensional refrigeration apparatus 1 in this case. 即ち、低段側冷媒回路13の圧縮機8に吸い込まれ(図3のAの状態)、圧縮されて高温高圧となったガス冷媒(二酸化炭素)は、圧縮機8から吐出されて(図3のBの状態:このとき、吐出冷媒温度は+127.8℃)、カスケード熱交換器6の放熱器9に入り、そこでカスケード熱交換器6の蒸発器5を通過する冷媒に熱を奪われて放熱する。 That is sucked into the compressor 8 in the low stage side refrigerant circuit 13 (state A in FIG. 3), is compressed with high temperature and high pressure gas refrigerant (carbon dioxide) is discharged from the compressor 8 (FIG. 3 state of B: At this time, the discharge refrigerant temperature of + 127.8 ° C.), enters the radiator 9 of the cascade heat exchanger 6, where refrigerant deprived of heat passing through the evaporator 5 of the cascade heat exchanger 6 heat dissipation to. このとき、冷媒は+15℃に冷却されて凝縮し、液若しくは気/液混合状態となる(図3のCの状態)。 At this time, the refrigerant is condensed is cooled to + 15 ° C., a liquid or gas / liquid mixed state (C state in FIG. 3).

このカスケード熱交換器6内の放熱器9を出た冷媒は膨張弁10で絞られ、減圧される(図3のDの状態)。 The refrigerant leaving the radiator 9 of the cascade heat exchanger 6 is throttled by the expansion valve 10 is decompressed (the state of D in FIG. 3). そして、蒸発器12に流入し、そこで蒸発膨張する。 Then, it flows into the evaporator 12, where it evaporates expansion. このとき、蒸発器12における冷媒の蒸発温度が前述の如くの−50℃となる。 In this case, the evaporation temperature of the refrigerant in the evaporator 12 becomes -50 ° C. for as described above. 冷媒は当該温度で蒸発し、この蒸発する際の吸熱作用で冷凍機器などの低温機器の庫内を冷却する。 The refrigerant is evaporated in the temperature, to cool the inside of the refrigerator cold equipment such as refrigeration equipment endothermic action when this evaporation.

上記条件で圧縮機2及び圧縮機8を運転することにより、図2に示す如く低段側冷媒回路13の圧縮機8の体積流量を8.64/m 3 h、高段側冷媒回路7の圧縮機2の体積流量が22.0/m 3 h、体積流量比は2.5(圧縮機2の体積流量/圧縮機8の体積流量)となる。 By operating the compressor 2 and the compressor 8 under the above conditions, the volume flow rate of 8.64 / m 3 h of the compressor 8 in the low stage side refrigerant circuit 13 as shown in FIG. 2, the high stage side refrigerant circuit 7 volume flow of the compressor 2 is 22.0 / m 3 h, the volume flow ratio is 2.5 (the volume flow rate of the volume flow / compressor 8 of the compressor 2). この場合、低段側冷媒回路13の成績係数(COP)は1.61と前記実施例同様に良好な数値を得ることができる。 In this case, the coefficient of performance of the low stage side refrigerant circuit 13 (COP) can be similarly Example 1.61 obtain good values.

更に、上記凝縮負荷に対して、高段側冷媒回路7に図2に列挙する冷媒を封入した場合、高段側冷媒回路7の体積流量は図2に示すようになった。 Furthermore, with respect to the condensation duty, when sealed refrigerant listed in Figure 2 to the high stage side refrigerant circuit 7, the volume flow rate of the high stage side refrigerant circuit 7 are as shown in FIG. また、この時の成績係数(COP)は体積流量比が5以下である場合に、最も効率の良い範囲内で二元冷凍装置1を運転することができる。 Further, the coefficient of performance at this time (COP) can be volumetric flow ratio when 5 or less, to operate the two-stage cascade refrigerating apparatus 1 in the most efficient range. 従って、図2のR407Cから上に列挙された冷媒が高段側冷媒回路7に使用する冷媒として適している。 Accordingly, the refrigerant listed above from R407C in FIG 2 is suitable as a refrigerant used in the high stage side refrigerant circuit 7.

このように、低段側冷媒回路13に低温においても粘性の低く、熱運搬性能が非常に高い二酸化炭素を冷媒として封入することで、低段側冷媒回路13の蒸発器12において効率的に超低温を得ることができるようになる。 Thus, even at a low temperature in the low stage side refrigerant circuit 13 of the viscous lower, by heat transportation performance encapsulate very high carbon dioxide as a refrigerant, efficient cryogenic in the evaporator 12 of the low stage side refrigerant circuit 13 it is possible to obtain.

また、高段側冷媒回路7の圧縮機2の排除容積を、低段側冷媒回路13の圧縮機8の排除容積よりも大きく設定することで、高段側冷媒回路7の圧縮機2から吐出される冷媒の体積流量を、低段側冷媒回路13の圧縮機8から吐出される冷媒の体積流量よりも多くしているので、外気が高温となるような条件下であっても、高段側冷媒回路7の体積流量を多くしているため、カスケード熱交換器6の放熱器9を通過する低段側冷媒回路13の冷媒は、当該カスケード熱交換器6の蒸発器5に熱を充分に与えて放熱することができるので、外気条件により高段側冷媒回路7の能力が低下しても、支障無く低段側冷媒回路13の二酸化炭素を凝縮させることができるようになる。 Further, the displacement volume of the compressor 2 of the high stage side refrigerant circuit 7, by setting larger than displacement volume of the compressor 8 in the low stage side refrigerant circuit 13, the discharge from the compressor 2 of the high stage side refrigerant circuit 7 the volumetric flow rate of the refrigerant, since more than the volume flow rate of the refrigerant discharged from the compressor 8 in the low stage side refrigerant circuit 13, even under the condition that the outside air is hot, high-stage due to the many volumetric flow side refrigerant circuit 7, the refrigerant in the low stage side refrigerant circuit 13 that passes through the radiator 9 of the cascade heat exchanger 6 is sufficiently heat the evaporator 5 of the cascade heat exchanger 6 it is possible to heat radiation given to, even if the reduced ability of the high stage side refrigerant circuit 7 by ambient conditions, it is possible to condense the carbon dioxide without any trouble low stage side refrigerant circuit 13.

一方、係る条件下で、高段側冷媒回路7の圧縮機2を、低段側冷媒回路13の圧縮機8の体積流量の5倍以下となるものは、高段側冷媒回路に封入する冷媒として図2のR407Cから上に記載された冷媒を使用した場合に限定される。 On the other hand, under conditions of the compressor 2 of the high stage side refrigerant circuit 7, which becomes equal to or less than five times the volumetric flow rate of the compressor 8 in the low stage side refrigerant circuit 13, the refrigerant sealed in the high stage side refrigerant circuit It is limited when using a refrigerant as described above from R407C in FIG. 2 as. 即ち、図2に記載のブタン(R600)やイソブタン(R600a)を使用した場合には、体積流量比が5以上となる。 That is, when using butane (R600) and isobutane (R600a) according to FIG. 2, the volumetric flow ratio is 5 or more. 体積流量比が5を超えると圧縮機の入力が増大するなど、成績係数も悪化してしまう。 Such as volumetric flow ratio is input to the compressor exceeds 5 increases, coefficient of performance even worse. これにより、体積流量比が5を超える冷媒は当該高段側冷媒回路7に封入する冷媒として適していない。 Accordingly, the refrigerant volume flow ratio is more than 5 is not suitable as a refrigerant sealed in the high stage side refrigerant circuit 7. 従って、本発明において使用に適した冷媒は図2のR407から上に記載の冷媒であり、当該冷媒を高段側冷媒回路7の冷媒として使用した際に、上述の如く高効率の運転を達成することが可能となる。 Accordingly, the refrigerant suitable for use in the present invention is a refrigerant described above from R407 in FIG. 2, when using the refrigerant as a refrigerant of the high stage side refrigerant circuit 7, achieving a highly efficient operation as described above it is possible to become.

尚、上記各実施例では、圧縮機2及び圧縮機8の回転数を一定とし、高段側冷媒回路7の圧縮機2の排除容積を、低段側冷媒回路13の圧縮機8の排除容積よりも大きく設定することにより、高段側冷媒回路7の圧縮機2から吐出される冷媒の体積流量を、低段側冷媒回路13の圧縮機8から吐出される冷媒の体積流量よりも多くするものとしたが、高段側冷媒回路7の圧縮機2の回転数を、低段側冷媒回路13の圧縮機8の回転数よりも高くすることにより、高段側冷媒回路7の圧縮機2から吐出される冷媒の体積流量を、低段側冷媒回路13の圧縮機8から吐出される冷媒の体積流量よりも多くするものとしても構わない。 In the above embodiments, displacement volume of the compressor 8 of the compressor 2 and the rotational speed of the compressor 8 is constant, the displacement volume of the compressor 2 of the high stage side refrigerant circuit 7, the low stage side refrigerant circuit 13 by setting larger than the volumetric flow rate of the refrigerant discharged from the compressor 2 of the high stage side refrigerant circuit 7, larger than the volumetric flow rate of the refrigerant discharged from the compressor 8 in the low stage side refrigerant circuit 13 Although the objects, the rotational speed of the compressor 2 of the high stage side refrigerant circuit 7, by higher than the rotational speed of the compressor 8 in the low stage side refrigerant circuit 13, the high stage side refrigerant circuit 7 compressor 2 volumetric flow rate of the refrigerant discharged from the one, but may be one that more than the volume flow rate of the refrigerant discharged from the compressor 8 in the low stage side refrigerant circuit 13.

この場合、両圧縮機2、8の排除容積が同一のものを使用した場合であっても、高段側冷媒回路7の圧縮機2の回転数を、低段側冷媒回路13の圧縮機8の回転数よりも高くして、低段側冷媒回路13の圧縮機8から吐出される冷媒の体積流量の5倍以下とすることで、上記各実施例の如く最も効率の良い範囲で二元冷凍装置1を運転することができるようになる。 In this case, even if the displacement volume of the two compressors 2 and 8 using the same thing, the rotational speed of the compressor 2 of the high stage side refrigerant circuit 7, the low stage side refrigerant circuit 13 compressor 8 of higher than the rotational speed, is set to lower than or equal to 5 times the volumetric flow rate of the refrigerant discharged from the compressor 8 in the low stage side refrigerant circuit 13 a binary in the most efficient range as the above embodiments it is possible to operate the refrigeration system 1.

尚、本実施例では低段側冷媒回路13に封入する冷媒として二酸化炭素を使用することで、二酸化炭素は低温となった場合にも粘性が低い性質を有するので、当該低段側冷媒回路13での使用に適している。 In the present embodiment by using carbon dioxide as the refrigerant sealed in the low stage side refrigerant circuit 13, since carbon dioxide has a low characteristic viscosity even when it becomes a low temperature, the low stage side refrigerant circuit 13 It is suitable for use in. また、当該二酸化炭素は不燃性の冷媒であるため、低圧側冷媒回路13に二酸化炭素を使用することで、二元冷凍装置1の安全性の向上を図ることができるようになる。 Further, the carbon dioxide because it is incombustible refrigerant, the use of carbon dioxide in the low-pressure side refrigerant circuit 13, it is possible to improve the safety two-stage refrigeration apparatus 1.

本実施例の二元冷凍装置の冷媒回路図である。 It is a refrigerant circuit diagram of a binary refrigerating apparatus of the present embodiment. 低段側冷媒回路の蒸発器での冷媒の蒸発温度を−30℃又はー50℃とする場合に高段側冷媒回路に封入する冷媒と、その際の圧縮機の体積流量比を示す図である。 A refrigerant sealed in the high stage side refrigerant circuit when the evaporation temperature of the refrigerant in the evaporator of the low stage side refrigerant circuit and -30 ° C. or over 50 ° C., a diagram showing the volumetric flow ratio of the compressor at that time is there. 実施例2の二元冷凍装置の低段側冷媒回路のモリエル線図である。 It is a Mollier diagram of the low stage side refrigerant circuit of a binary refrigerating apparatus of the second embodiment.

1 二元冷凍装置 2、8 圧縮機 3 放熱器 4、10 膨張弁 6 カスケード熱交換器 7 高段側冷媒回路 12 蒸発器 13 低段側冷媒回路 1 two-stage refrigeration system 2,8 compressor 3 radiator 4,10 expansion valve 6 cascade heat exchanger 7 the high stage side refrigerant circuit 12 evaporator 13 lower stage side refrigerant circuit

Claims (5)

  1. 圧縮機、放熱器、減圧装置及び蒸発器などから成る高段側冷媒回路と、 Compressor, a radiator, a high stage side refrigerant circuit consisting of a pressure reducing device and an evaporator,
    圧縮機、放熱器、減圧装置及び蒸発器などから成る低段側冷媒回路と、 Compressor, a radiator, a low stage side refrigerant circuit consisting of a pressure reducing device and an evaporator,
    前記高段側冷媒回路の蒸発器と前記低段側冷媒回路の放熱器とを交熱的にカスケード接続するカスケード熱交換器とを備え、 And a cascade heat exchanger to heat exchanging manner cascading a radiator evaporator and the low stage side refrigerant circuit of the high stage side refrigerant circuit,
    前記低段側冷媒回路の冷媒として二酸化炭素を用い、前記放熱器において当該二酸化炭素を凝縮させると共に、前記高段側冷媒回路の圧縮機から吐出される冷媒の体積流量を、前記低段側冷媒回路の圧縮機から吐出される冷媒の体積流量よりも多くしたことを特徴とする二元冷凍装置。 Carbon dioxide used as the refrigerant of the low stage side refrigerant circuit, with condensing the carbon dioxide in the radiator, the volumetric flow rate of the refrigerant discharged from the compressor of the high stage side refrigerant circuit, the low stage side refrigerant two-stage refrigeration apparatus, characterized in that the more than the volume flow rate of the refrigerant discharged from the compressor circuit.
  2. 前記高段側冷媒回路の圧縮機の排除容積を、前記低段側冷媒回路の圧縮機の排除容積よりも大きくしたことを特徴とする請求項1の二元冷凍装置。 The displacement volume of the compressor of the high stage side refrigerant circuit, the two-stage cascade refrigerating system of claim 1, characterized in that greater than displacement volume of the compressor in the low stage side refrigerant circuit.
  3. 前記高段側冷媒回路の圧縮機の回転数を、前記低段側冷媒回路の圧縮機の回転数よりも高くしたことを特徴とする請求項1の二元冷凍装置。 Wherein the rotational speed of the compressor of the high stage side refrigerant circuit, the two-stage cascade refrigerating system of claim 1, characterized in that higher than the rotational speed of the compressor in the low stage side refrigerant circuit.
  4. 前記高段側冷媒回路の圧縮機から吐出される冷媒の体積流量を、前記低段側冷媒回路の圧縮機から吐出される冷媒の体積流量の5倍以下としたことを特徴とする請求項1、請求項2又は請求項3の二元冷凍装置。 Claim 1, wherein the volume flow of the refrigerant discharged from the high stage side refrigerant circuit compressor, and more than 5 times the volumetric flow rate of the refrigerant discharged from the compressor of the low stage side refrigerant circuit , two-stage refrigeration system of claim 2 or claim 3.
  5. 前記高段側冷媒回路の冷媒として、R717、R290、R1270、R410A、R32、R134a又はR407Cを用いることを特徴とする請求項1、請求項2、請求項3又は請求項4の二元冷凍装置。 As the refrigerant of the high stage side refrigerant circuit, R717, R290, R1270, R410A, R32, claim 1, wherein the use of R134a or R407C, claim 2, two-stage refrigeration system of claim 3 or claim 4 .
JP2003425164A 2003-12-22 2003-12-22 Binary refrigerating device Pending JP2005180866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003425164A JP2005180866A (en) 2003-12-22 2003-12-22 Binary refrigerating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003425164A JP2005180866A (en) 2003-12-22 2003-12-22 Binary refrigerating device

Publications (1)

Publication Number Publication Date
JP2005180866A true true JP2005180866A (en) 2005-07-07

Family

ID=34785137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003425164A Pending JP2005180866A (en) 2003-12-22 2003-12-22 Binary refrigerating device

Country Status (1)

Country Link
JP (1) JP2005180866A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178072A (en) * 2005-12-28 2007-07-12 Sanden Corp Air conditioner for vehicle
JP2013002737A (en) * 2011-06-16 2013-01-07 Mitsubishi Electric Corp Refrigeration cycle device
JP2013088080A (en) * 2011-10-20 2013-05-13 Mitsubishi Electric Corp Binary refrigerating device
WO2014080436A1 (en) * 2012-11-20 2014-05-30 三菱電機株式会社 Refrigeration device
WO2014199445A1 (en) * 2013-06-11 2014-12-18 三菱電機株式会社 Refrigerating device
JP2015505029A (en) * 2012-01-26 2015-02-16 アルケマ フランス Cascade refrigeration system
WO2016185689A1 (en) * 2015-05-20 2016-11-24 パナソニックIpマネジメント株式会社 Air conditioning and hot water supplying system
US9599395B2 (en) 2010-11-15 2017-03-21 Mitsubishi Electric Corporation Refrigerating apparatus
US9964306B2 (en) 2008-11-27 2018-05-08 Borgwarner Beru Systems Gmbh Glow plug

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178072A (en) * 2005-12-28 2007-07-12 Sanden Corp Air conditioner for vehicle
US9964306B2 (en) 2008-11-27 2018-05-08 Borgwarner Beru Systems Gmbh Glow plug
US9599395B2 (en) 2010-11-15 2017-03-21 Mitsubishi Electric Corporation Refrigerating apparatus
JP2013002737A (en) * 2011-06-16 2013-01-07 Mitsubishi Electric Corp Refrigeration cycle device
JP2013088080A (en) * 2011-10-20 2013-05-13 Mitsubishi Electric Corp Binary refrigerating device
JP2015505029A (en) * 2012-01-26 2015-02-16 アルケマ フランス Cascade refrigeration system
WO2014080436A1 (en) * 2012-11-20 2014-05-30 三菱電機株式会社 Refrigeration device
CN104813120B (en) * 2012-11-20 2016-08-17 三菱电机株式会社 Refrigeration unit
JP5995990B2 (en) * 2012-11-20 2016-09-21 三菱電機株式会社 Refrigeration equipment
CN104813120A (en) * 2012-11-20 2015-07-29 三菱电机株式会社 Refrigeration device
WO2014199445A1 (en) * 2013-06-11 2014-12-18 三菱電機株式会社 Refrigerating device
JPWO2014199445A1 (en) * 2013-06-11 2017-02-23 三菱電機株式会社 Refrigeration equipment
WO2016185689A1 (en) * 2015-05-20 2016-11-24 パナソニックIpマネジメント株式会社 Air conditioning and hot water supplying system

Similar Documents

Publication Publication Date Title
Kim et al. Experiment and simulation on the performance of an autocascade refrigeration system using carbon dioxide as a refrigerant
Lee et al. Thermodynamic analysis of optimal condensing temperature of cascade-condenser in CO2/NH3 cascade refrigeration systems
US6698234B2 (en) Method for increasing efficiency of a vapor compression system by evaporator heating
US20070074536A1 (en) Refrigeration system with bypass subcooling and component size de-optimization
US20050044885A1 (en) Transcritical refrigeration cycle
US20020023447A1 (en) High efficiency very-low temperature mixed refrigerant system with rapid cool down
JP2001091074A (en) Cascade-type refrigerating device
JP2001221517A (en) Supercritical refrigeration cycle
US5729993A (en) Precooled vapor-liquid refrigeration cycle
US20100147006A1 (en) Refrigerant system with cascaded circuits and performance enhancement features
JP2002228275A (en) Supercritical steam compression refrigerating cycle
JP2000234811A (en) Refrigerating cycle device
JP2007278686A (en) Heat pump water heater
JP2007178042A (en) Supercritical vapor compression type refrigerating cycle and cooling and heating air conditioning facility and heat pump hot-water supply machine using it
JPH10318614A (en) Air conditioner
US20060201188A1 (en) HVAC system with powered subcooler
Bansal et al. Cascade systems: past, present, and future
JP2001004235A (en) Steam compression refrigeration cycle
JP2010156493A (en) Heating/cooling simultaneous operation type air conditioner
JP2001241780A (en) Refrigerating air conditioner
US20130180278A1 (en) Refrigerating apparatus
US7331196B2 (en) Refrigerating apparatus and refrigerator
US20040123608A1 (en) Non-azeotropic refrigerant mixture, refrigerating cycle and refrigerating device
JP2000346466A (en) Vapor compression type refrigerating cycle
US20100199694A1 (en) Refrigerant system with intercooler and liquid/vapor injection

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061023

A521 Written amendment

Effective date: 20061221

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070731