WO2022009898A1 - Refrigeration device - Google Patents

Refrigeration device Download PDF

Info

Publication number
WO2022009898A1
WO2022009898A1 PCT/JP2021/025511 JP2021025511W WO2022009898A1 WO 2022009898 A1 WO2022009898 A1 WO 2022009898A1 JP 2021025511 W JP2021025511 W JP 2021025511W WO 2022009898 A1 WO2022009898 A1 WO 2022009898A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
user
heat source
heat
refrigerating
Prior art date
Application number
PCT/JP2021/025511
Other languages
French (fr)
Japanese (ja)
Inventor
瞬 大久保
立美 土屋
翼 仲上
拓郎 山田
敏 徳野
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN202180048552.8A priority Critical patent/CN115885139A/en
Priority to EP21838192.9A priority patent/EP4177539A1/en
Publication of WO2022009898A1 publication Critical patent/WO2022009898A1/en
Priority to US18/088,991 priority patent/US20230135967A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/10Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point with several cooling stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • F25B2400/121Inflammable refrigerants using R1234
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser

Definitions

  • This disclosure relates to refrigeration equipment.
  • Patent Documents 1 and 2 A so-called dual freezing device having a dual refrigerant cycle of a heat transfer cycle on the user side and a heat transfer cycle on the heat source side has been proposed (Patent Documents 1 and 2).
  • the challenge is to provide a new multi-dimensional refrigeration system.
  • Item 1 The user-side heat transfer cycle that circulates the user-side refrigerant and A heat transfer cycle that circulates the heat source side refrigerant and a heat transfer cycle that circulates the heat source side refrigerant.
  • a cascade heat exchanger that exchanges heat between the refrigerant on the user side and the refrigerant on the heat source side. Equipped with The refrigerating apparatus, wherein the utilization-side refrigerant is a refrigerant having a boiling point of ⁇ 30 ° C. or higher and 25 ° C. or lower, and the heat source-side refrigerant is a refrigerant having a boiling point of ⁇ 55 ° C. or higher and lower than ⁇ 30 ° C.
  • the refrigerating apparatus according to Item 1 which is a steam compression refrigerating cycle having a heat source side compressor, a heat source side heat exchanger, a heat source side decompressing device, and a heat source side cascade heat exchanger.
  • Item 3. The heat transfer cycle on the user side Item 2.
  • the refrigerating apparatus according to Item 1 or 2 which is a steam compression refrigerating cycle having a user-side compressor, a user-side heat exchanger, a user-side decompression device, and a user-side cascade heat exchanger.
  • the refrigerating apparatus according to Item 1 or 2 which is a heat transfer cycle having a pump, a user-side heat exchanger, and a user-side cascade heat exchanger.
  • Item 5. Item 2. The refrigerating apparatus according to any one of Items 1 to 4, wherein the heat source side refrigerant and the user side refrigerant have a countercurrent flow in the cascade heat exchanger.
  • Item 6. Item 2. The freezing according to any one of Items 1 to 5, wherein the heat source side refrigerant is a refrigerant having a combustion speed of 10 cm / s or less, and the user side refrigerant is a refrigerant having a combustion speed of 3 cm / s or less.
  • Device. Item 7. Item 2.
  • Item 8. Item 6. The refrigerating apparatus according to any one of Items 1 to 5, wherein the heat source side refrigerant contains HFO-1123 and / or HFO-1132.
  • the heat source side refrigerant is R32, R452B or R454B
  • the utilization side refrigerant is at least one selected from the group consisting of R513A, R515A, R515B, R1224, R1234yf, R1234ze, R1233 and R1336.
  • the refrigerating apparatus according to any one of 7 to 7. Item 10.
  • the heat source side refrigerant is a refrigerant containing HFO-1132
  • the utilization side refrigerant is at least one selected from the group consisting of R513A, R515A, R515B, R471A, R1224, R1234yf, R1234ze, R1233 and R1336.
  • the refrigerating apparatus according to any one of Items 1 to 8.
  • Items 1 to 8. Air-conditioning equipment, refrigerators, freezers, water coolers, ice machines, refrigerating showcases, refrigerating showcases, refrigerating and refrigerating units, refrigerating and refrigerating warehouse refrigerators, in-vehicle air-conditioning equipment, turbo refrigerators or screw refrigerators, Item 1 to The refrigerating apparatus according to any one of 10.
  • the refrigeration equipment of the present disclosure is The user-side heat transfer cycle that circulates the user-side refrigerant and A heat transfer cycle that circulates the heat source side refrigerant and a heat transfer cycle that circulates the heat source side refrigerant.
  • a cascade heat exchanger that exchanges heat between the refrigerant on the user side and the refrigerant on the heat source side. Equipped with The utilization-side refrigerant is a refrigerant having a boiling point of ⁇ 30 ° C. or higher and 25 ° C. or lower, and the heat source-side refrigerant is a refrigerant having a boiling point of ⁇ 55 ° C. or higher and lower than ⁇ 30 ° C.
  • the heat source side refers to the outdoor unit side, and is also referred to as the high source side, high temperature side, and primary side. From the viewpoint of improving performance, it is preferable to use a refrigerant having excellent refrigerant characteristics on the heat source side.
  • the user side refers to the indoor unit side, and is also referred to as a low source side, a load side, a low temperature side, and a secondary side. From the viewpoint of directly cooling people and objects, it is preferable to use a highly safe refrigerant on the user side.
  • the refrigerating apparatus of the present disclosure is a so-called multi-dimensional refrigerating apparatus having at least a dual heat transfer cycle of a heat transfer cycle (load heat medium circuit) on the user side and a heat medium circuit on the heat source side.
  • the refrigerating apparatus of the present disclosure may include three or more heat transfer cycles.
  • the cascade heat exchanger has a heat source side cascade heat exchanger and a user side cascade heat exchanger in the case of cooling operation, and exchanges heat. Specifically, in the case of cooling operation, the refrigerant is condensed in the user-side cascade heat exchanger and the refrigerant is evaporated in the heat source-side cascade heat exchanger, so that heat is transferred from the user side to the heat source side.
  • the user-side heat transfer cycle circulates the user-side refrigerant.
  • the heat transfer cycle on the user side may be a steam compression type refrigeration cycle.
  • the user-side refrigeration cycle which is a steam compression type refrigeration cycle, has a user-side compressor, a user-side heat exchanger, a user-side decompression device, and a user-side cascade heat exchanger.
  • the heat transfer cycle on the user side may be a pump type heat transfer cycle.
  • the utilization side heat transfer cycle which is a pump type heat transfer cycle, includes a pump, a utilization side heat exchanger, and a utilization side cascade heat exchanger.
  • an expansion valve 13 or the like can be used as the user-side pressure reducing device.
  • another decompression device such as a capillary tube can be used as the decompression device on the user side.
  • the user side heat exchanger can also be used as a cold heat source.
  • the user-side cascade heat exchanger 12 and the user-side expansion valve 13 are used.
  • the liquid receiver 15 may be arranged in a pipe communicating with the water receiver 15.
  • the user-side heat transfer cycle has a user-side high-pressure pressure detecting means for detecting the high-pressure pressure of the user-side heat transfer cycle and a user-side low-pressure pressure detecting means for detecting the low-pressure pressure of the user-side heat transfer cycle. Is preferable. Further, it is preferable that the user-side heat transfer cycle has a user-side discharge temperature detecting means for detecting the temperature of the user-side refrigerant discharged from the user-side compressor.
  • the user-side high-pressure pressure detecting means and the user-side low-pressure pressure detecting means may be any means that substantially detect the pressure. That is, the user-side high-pressure pressure detecting means and the user-side low-pressure pressure detecting means may detect the pressure of the user-side refrigerant itself, or may detect other physical quantities that can be converted into the pressure of the user-side refrigerant.
  • the discharge temperature detecting means on the user side may be any means that substantially detects the temperature. That is, the user-side discharge temperature detecting means may detect the discharge temperature of the user-side refrigerant itself, or may detect another physical quantity that can be converted into the discharge temperature of the user-side refrigerant.
  • the user-side heat transfer cycle 10 includes a user-side high-pressure pressure sensor 21 which is a user-side high-pressure pressure detecting means, a user-side low-pressure pressure sensor 22 which is a user-side low-pressure pressure detecting means, and a user-side low-pressure pressure sensor 22. It has a user-side discharge temperature sensor 23 which is a user-side discharge temperature detecting means.
  • the user-side high-pressure pressure sensor 21 is preferably arranged in a pipe that communicates between the user-side cascade heat exchanger 12 and the user-side expansion valve 13.
  • the user-side low-pressure pressure sensor 22 is preferably arranged in a pipe that communicates between the user-side heat exchanger 14 and the user-side compressor 11.
  • the user-side discharge temperature sensor 23 is preferably arranged in a pipe that communicates between the user-side compressor 11 and the user-side condenser 12.
  • the user-side heat transfer cycle may not have some or all of these sensors if not required.
  • the refrigerating device of the present disclosure may further have a control device.
  • the detection signal of the user-side high-pressure pressure detecting means, the detection signal of the user-side low-pressure pressure detecting means, and the detection signal of the user-side discharge temperature detecting means are input to the control device.
  • the control device controls the overall operation of the refrigerating device of the present disclosure. All or part of the control device may be composed of, for example, a microcomputer or a microprocessor unit; updatable software such as firmware; or a program module executed by a command from a CPU or the like.
  • the user-side refrigerant has a boiling point of -30 ° C or higher and 25 ° C or lower.
  • the heat transfer cycle on the heat source side circulates the refrigerant on the heat source side.
  • the heat transfer cycle on the heat source side is preferably a steam compression refrigeration cycle.
  • the heat source side refrigeration cycle which is a steam compression type refrigeration cycle, includes a heat source side compressor, a heat source side heat exchanger, a heat source side decompression device, and a heat source side cascade heat exchanger.
  • the heat source side compressor is a variable capacity type.
  • An expansion valve or the like can be used as the heat source side decompression device.
  • another decompression device such as a capillary tube can be used.
  • the heat source side refrigerant is a refrigerant having a boiling point of ⁇ 55 ° C. or higher and lower than ⁇ 30 ° C.
  • the user-side condenser and the heat source-side evaporator are built in the cascade heat exchanger.
  • a non-co-boiling mixed refrigerant is used, in the cascade heat exchanger, the refrigerant on the user side of the condenser on the user side and the refrigerant on the heat source side of the evaporator on the heat source side exchange heat.
  • the heat source side refrigerant and the user side refrigerant have a countercurrent flow direction in the cascade heat exchanger from the viewpoint of preventing a decrease in heat exchange efficiency due to temperature glide.
  • the user-side evaporator and the heat source-side condenser are built in the cascade heat exchanger.
  • the refrigerant on the user side of the evaporator on the user side and the refrigerant on the heat source side of the condenser on the heat source side exchange heat.
  • the heat source side refrigerant and the user side refrigerant have a countercurrent flow direction in the cascade heat exchanger from the viewpoint of preventing a decrease in heat exchange efficiency due to temperature glide.
  • the efficiency of the refrigeration cycle is maintained within a preferable range by using a refrigerant having a boiling point of ⁇ 55 ° C. or higher and lower than ⁇ 30 ° C., which has a relatively high density and good performance, as the heat source side refrigerant.
  • a refrigerant having a boiling point of ⁇ 30 ° C. or higher and 25 ° C. or lower can be used as the user-side refrigerant.
  • a refrigerant having a boiling point of ⁇ 30 ° C. or higher and 25 ° C. or lower can be used.
  • the performance of the entire cycle is ensured within a good range without using a refrigerant having the same performance on the user side. can.
  • refrigerants Although some refrigerants have a boiling point of ⁇ 30 ° C. or higher and 25 ° C. or lower, they are excellent in terms of low GWP and low combustibility. Therefore, in the present disclosure, these refrigerants are appropriately used. You can also do it.
  • the GWP of the heat source side refrigerant is preferably 750 or less, more preferably 500 or less, further preferably 300 or less, and most preferably 150 or less.
  • the GWP of the user-side refrigerant is preferably 750 or less, more preferably 500 or less, further preferably 300 or less, and most preferably 150 or less.
  • the combustion rate of the heat source side refrigerant is preferably 10 cm / s or less, preferably 9 cm / s or less, in that a safer refrigerant can be used on the user side, which may cause human damage. It is more preferably present, more preferably 8 cm / s or less, and most preferably 7 cm / s or less.
  • the combustion speed of the refrigerant on the user side is preferably 5 cm / s or less, more preferably 3 cm / s or less, further preferably 2 cm / s or less, and 1.5 cm / s or less. Is the most preferable.
  • the saturation pressure of the refrigerant on the utilization side at 25 ° C. is preferably 0.0 MPaG or more, more preferably 0.01 MPaG or more, further preferably 0.03 MPaG or more, and more preferably 0.05 MPaG.
  • the saturation pressure of the refrigerant on the utilization side at 25 ° C. is preferably 5 MPaG or less, more preferably 4 MPaG or less, further preferably 3 MPaG or less, and most preferably 2 MPaG or less.
  • a refrigerant having a boiling point of -30 ° C or higher is used as the refrigerant on the user side so that the pressure does not exceed the pressure resistance limit of the piping. Can be maintained.
  • a refrigerant having a boiling point of ⁇ 30 ° C. or higher more preferably a refrigerant having a boiling point of ⁇ 25 ° C. or higher, and a refrigerant having a boiling point of ⁇ 20 ° C. or higher. More preferred.
  • the COP of the heat source side refrigerant is preferably 95% or more, more preferably 100% or more, as compared with R410A. , 101% or more, more preferably 102% or more.
  • the refrigerating capacity of the refrigerant on the heat source side is preferably 60% or more, more preferably 70% or more, as compared with R410A. , 80% or more, more preferably 90% or more, and most preferably 100% or more.
  • the heat source side refrigerant has a combustion speed of 10 cm / s or less.
  • the refrigerant on the user side is a refrigerant having a combustion speed of 3 cm / s or less.
  • the heat source side refrigerant is a refrigerant classified into the 2L class by the American Society for Heating, Refrigerating and Air Conditioning (ASHRAE), and the user side refrigerant is.
  • a combination of refrigerants classified into A1 class by ASHRAE can also be mentioned.
  • Examples of the heat source-side refrigerant include HFO-1123, HFO-1132, R32, and the like in the case of a refrigerant substantially composed of only a single compound.
  • Examples of the heat source side refrigerant include, in the case of a mixture of a plurality of compounds, at least two mixtures selected from the group consisting of HFO-1123, HFO-1132, R1234yf and R32, and R452B and R454B.
  • Specific examples of the heat source side refrigerant and the user side refrigerant include the combinations shown in the following table.
  • a mixture of HFO-1132 is, HFC32, HFO1234yf, HFO1234ze (E ), and at least one may include is selected from the group consisting of CO 2.
  • HFO-1132, HFO-1132 (E), HFO-1132 (z), and HFO-1132a are preferable, and HFO-1132 (E) is most preferable.
  • a mixture of HFO-1123 is, HFC32, HFO1234yf, HFO1234ze (E ), and at least one may include is selected from the group consisting of CO 2.
  • the heat source side refrigerant is R32, R452B or R454B
  • the user side refrigerant is a group consisting of R513A, R515A, R515B, R1224, R1234yf, R1234ze, R1233 and R1336.
  • Examples include combinations, which are at least one more selected. This combination is preferable in that the capacity of the refrigerant used on the heat source side is high.
  • the heat source side refrigerant is a refrigerant containing HFO-1132
  • the user side refrigerants are R513A, R515A, R515B, R471A, R1224, R1234yf, R1234ze, R1233 and R1336.
  • Examples include combinations, which are at least one selected from the group consisting of. This combination is preferable in that the GWP (CO 2 tons) of the entire system can be reduced.
  • HFO-1132 indicates any one of HFO-1132a, HFO-1132 (E) and HFO-1132 (Z).
  • R1224 indicates any one of HCFO-1224yd (E), HCFO-1224yd (Z), HCFO-1224zb (E), HCFO-1224zb (Z), HCFO-1224xe (E), and HCFO-1224xe (Z).
  • R1234 indicates any of HFO-1234yf, HFO-1234ze (E), and HFO-1234ze (Z).
  • R1233 indicates one of HCFO-1233zd (E), HCFO-1233zd (Z), and HCFO-1233xf.
  • R1336 indicates any one of HFO-1336mzz (E), HFO-1336mzz (Z), HFO-1336mcy, HFO-1336mcz (E), and HFO-1336mzz (Z).
  • HFOs and HCFOs are used as a refrigerant, the notation of HFO- and HCFO- may be omitted and described as R ⁇ such as R1234yf.
  • the refrigerating apparatus of the present disclosure is preferably an air conditioner, a refrigerator, a freezer, a water cooler, an ice machine, a refrigerating showcase, a refrigerating showcase, a refrigerating / refrigerating unit, a refrigerating / refrigerating warehouse refrigerator, an in-vehicle air conditioner, and a turbo refrigerator. Or it is a screw refrigerator.
  • the refrigerating apparatus of the present disclosure is more preferably a household air-conditioning device, a commercial air-conditioning device, an industrial air-conditioning device, or a multi-air-conditioning device for a building.
  • the refrigerating apparatus was operated by circulating the refrigerant on the user side and the refrigerant on the heat source side shown in Table 2 in the heat transfer cycle on the user side and the heat transfer cycle on the heat source side, respectively.
  • COP ratio and capacity ratio on the heat source side both are ratios to the value of R410A (%)
  • combustion speeds of the heat source side refrigerant and the user side refrigerant cm / s
  • the saturated vapor pressure (gauge) of the user side refrigerant at 25 ° C. Pressure) MPaG
  • a refrigerant having a boiling point of ⁇ 55 ° C. or higher and lower than ⁇ 30 ° C., which has a relatively high density and good performance is used as the heat source side refrigerant, so that the boiling point is increased as the user side refrigerant. It was found that even when a refrigerant having a temperature of ⁇ 30 ° C. or higher and 25 ° C. or lower was used, the refrigerating cycle efficiency was 100% or higher and the refrigerating capacity was 60% or higher, and the refrigerating cycle efficiency could be maintained within a preferable range.
  • the saturated vapor pressure can be set to atmospheric pressure or higher by using a refrigerant having a boiling point of 25 ° C or lower as the refrigerant on the user side. It was also found that the pressure can be maintained at a pressure that does not exceed the pressure resistance limit of the pipe by using a refrigerant having a boiling point of ⁇ 30 ° C. or higher as the refrigerant on the user side.
  • Refrigerator 10 User side heat transfer cycle 11: User side compressor 12: User side cascade heat exchanger 13: User side expansion valve 14: User side heat exchanger 15: User side liquid receiver 15a: Soluble plug 21: User side high pressure pressure sensor 22: User side low pressure pressure sensor 23: User side discharge temperature sensor 30: Heat source side heat transfer cycle 31: Heat source side compressor 32: Heat source side heat exchanger 33: Heat source side expansion valve 34: Heat source Side cascade heat exchanger 35: Cooling unit 40: Cascade heat exchanger 50: Control device

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

The present invention addresses the problem of providing a new multi-stage refrigeration device. To address the above problem, this refrigeration device comprises: a utilization-side heat transfer cycle that has a utilization-side compressor, a utilization-side heat exchanger, a utilization-side decompression device, and a utilization-side cascade heat exchanger, and circulates a utilization-side refrigerant; a heat source-side heat transfer cycle that has a heat source-side compressor, a heat source-side heat exchanger, a heat source-side decompression device, and a heat source-side cascade heat exchanger, and circulates a heat source-side refrigerant; a cascade heat exchanger that exchanges heat between the utilization-side refrigerant of the utilization-side condenser and the heat source-side refrigerant of the heat source-side evaporator; and a control device. The utilization-side refrigerant has a boiling point in the range of minus 30°C to plus 25°C, inclusive, and the heat source-side refrigerant has a boiling point of minus 55°C or more but less than minus 30°C.

Description

冷凍装置Refrigeration equipment
 本開示は冷凍装置に関する。 This disclosure relates to refrigeration equipment.
 利用側熱搬送サイクルと熱源側熱搬送サイクルとの、二元冷媒サイクルを備える、いわゆる二元冷凍装置が提案されている(特許文献1、2)。 A so-called dual freezing device having a dual refrigerant cycle of a heat transfer cycle on the user side and a heat transfer cycle on the heat source side has been proposed (Patent Documents 1 and 2).
国際公開第WO2015/140872号International Publication No. WO2015 / 140872 国際公開第WO2015/140873号International Publication No. WO2015 / 140873
 新たな多元冷凍装置を提供することを課題とする。 The challenge is to provide a new multi-dimensional refrigeration system.
項1.
 利用側冷媒を循環させる利用側熱搬送サイクルと、
 熱源側冷媒を循環させる熱源側熱搬送サイクルと、
 前記利用側冷媒と、前記熱源側冷媒とを熱交換させるカスケード熱交換器と、
を備え、
 前記利用側冷媒は、沸点が-30℃以上かつ25℃以下の冷媒であり、かつ前記熱源側冷媒は、沸点が-55℃以上かつ-30℃未満の冷媒である、冷凍装置。
項2.
 前記熱源側熱搬送サイクルが、
 熱源側圧縮機、熱源側熱交換器、熱源側減圧装置、及び熱源側カスケード熱交換器を有する、蒸気圧縮式冷凍サイクルである、項1に記載の冷凍装置。
項3.
 前記利用側熱搬送サイクルが、
 利用側圧縮機、利用側熱交換器、利用側減圧装置、及び利用側カスケード熱交換器を有する、蒸気圧縮式冷凍サイクルである、項1又は2に記載の冷凍装置。
項4.
 前記利用側熱搬送サイクルが、
 ポンプ、利用側熱交換器、及び利用側カスケード熱交換器を有する、熱搬送サイクルである、項1又は2に記載の冷凍装置。
項5.
 前記熱源側冷媒と前記利用側冷媒とは、前記カスケード熱交換器における流通方向が対向流である、項1~4のいずれか一項に記載の冷凍装置。
項6.
 前記熱源側冷媒が、燃焼速度が10cm/s以下の冷媒であり、かつ前記利用側冷媒が、燃焼速度が3cm/s以下の冷媒である、項1~5のいずれか一項に記載の冷凍装置。
項7.
 前記熱源側冷媒が、ASHRAEにて2Lクラスに区分される冷媒であり、かつ前記利用側冷媒が、ASHRAEにてA1クラスに区分される冷媒である、項1~6のいずれか一項に記載の冷凍装置。
項8.
 前記熱源側冷媒が、HFO-1123及び/又はHFO-1132を含む、項1~5のいずれか一項に記載の冷凍装置。
項9.
 前記熱源側冷媒が、R32、R452B又はR454Bであり、かつ前記利用側冷媒が、R513A、R515A、R515B、R1224、R1234yf、R1234ze、R1233及びR1336からなる群より選択される少なくとも一種である、項1~7のいずれかに記載の冷凍装置。
項10.
 前記熱源側冷媒が、HFO-1132を含む冷媒であり、かつ前記利用側冷媒が、R513A、R515A、R515B、R471A、R1224、R1234yf、R1234ze、R1233及びR1336からなる群より選択される少なくとも一種である、項1~8のいずれかに記載の冷凍装置。
項11.
 空調機器、冷蔵庫、冷凍庫、冷水機、製氷機、冷蔵ショーケース、冷凍ショーケース、冷凍冷蔵ユニット、冷凍冷蔵倉庫用冷凍機、車載用空調機器、ターボ冷凍機又はスクリュー冷凍機である、項1~10のいずれか一項に記載の冷凍装置。
項12.
 家庭用空調機器、業務用空調機器、産業用空調機器、又はビル用マルチ空調機器である、項1~10のいずれか一項に記載の冷凍装置。
Item 1.
The user-side heat transfer cycle that circulates the user-side refrigerant and
A heat transfer cycle that circulates the heat source side refrigerant and a heat transfer cycle that circulates the heat source side refrigerant.
A cascade heat exchanger that exchanges heat between the refrigerant on the user side and the refrigerant on the heat source side.
Equipped with
The refrigerating apparatus, wherein the utilization-side refrigerant is a refrigerant having a boiling point of −30 ° C. or higher and 25 ° C. or lower, and the heat source-side refrigerant is a refrigerant having a boiling point of −55 ° C. or higher and lower than −30 ° C.
Item 2.
The heat transfer cycle on the heat source side
Item 2. The refrigerating apparatus according to Item 1, which is a steam compression refrigerating cycle having a heat source side compressor, a heat source side heat exchanger, a heat source side decompressing device, and a heat source side cascade heat exchanger.
Item 3.
The heat transfer cycle on the user side
Item 2. The refrigerating apparatus according to Item 1 or 2, which is a steam compression refrigerating cycle having a user-side compressor, a user-side heat exchanger, a user-side decompression device, and a user-side cascade heat exchanger.
Item 4.
The heat transfer cycle on the user side
Item 2. The refrigerating apparatus according to Item 1 or 2, which is a heat transfer cycle having a pump, a user-side heat exchanger, and a user-side cascade heat exchanger.
Item 5.
Item 2. The refrigerating apparatus according to any one of Items 1 to 4, wherein the heat source side refrigerant and the user side refrigerant have a countercurrent flow in the cascade heat exchanger.
Item 6.
Item 2. The freezing according to any one of Items 1 to 5, wherein the heat source side refrigerant is a refrigerant having a combustion speed of 10 cm / s or less, and the user side refrigerant is a refrigerant having a combustion speed of 3 cm / s or less. Device.
Item 7.
Item 2. The item 1 to 6, wherein the heat source side refrigerant is a refrigerant classified into the 2L class by ASHRAE, and the user side refrigerant is a refrigerant classified into the A1 class by ASHRAE. Refrigerant.
Item 8.
Item 6. The refrigerating apparatus according to any one of Items 1 to 5, wherein the heat source side refrigerant contains HFO-1123 and / or HFO-1132.
Item 9.
Item 1. The heat source side refrigerant is R32, R452B or R454B, and the utilization side refrigerant is at least one selected from the group consisting of R513A, R515A, R515B, R1224, R1234yf, R1234ze, R1233 and R1336. The refrigerating apparatus according to any one of 7 to 7.
Item 10.
The heat source side refrigerant is a refrigerant containing HFO-1132, and the utilization side refrigerant is at least one selected from the group consisting of R513A, R515A, R515B, R471A, R1224, R1234yf, R1234ze, R1233 and R1336. , The refrigerating apparatus according to any one of Items 1 to 8.
Item 11.
Air-conditioning equipment, refrigerators, freezers, water coolers, ice machines, refrigerating showcases, refrigerating showcases, refrigerating and refrigerating units, refrigerating and refrigerating warehouse refrigerators, in-vehicle air-conditioning equipment, turbo refrigerators or screw refrigerators, Item 1 to The refrigerating apparatus according to any one of 10.
Item 12.
Item 2. The refrigerating device according to any one of Items 1 to 10, which is a household air-conditioning device, a commercial air-conditioning device, an industrial air-conditioning device, or a multi-air-conditioning device for a building.
 本開示によれば、沸点が低く、高圧力かつ高密度で冷凍能力が高い冷媒を安全に使用できるような新たな多元冷凍装置を提供できる。 According to the present disclosure, it is possible to provide a new multi-dimensional refrigerating apparatus capable of safely using a refrigerant having a low boiling point, high pressure, high density and high refrigerating capacity.
本開示の冷凍装置の構成を説明するための図である。It is a figure for demonstrating the structure of the refrigerating apparatus of this disclosure. 本開示の冷凍装置の構成を説明するための図である。It is a figure for demonstrating the structure of the refrigerating apparatus of this disclosure.
 本開示の冷凍装置は、
 利用側冷媒を循環させる利用側熱搬送サイクルと、
 熱源側冷媒を循環させる熱源側熱搬送サイクルと、
 前記利用側冷媒と、前記熱源側冷媒とを熱交換させるカスケード熱交換器と、
を備え、
 前記利用側冷媒は、沸点が-30℃以上かつ25℃以下の冷媒であり、かつ前記熱源側冷媒は、沸点が-55℃以上かつ-30℃未満の冷媒である、冷凍装置である。
The refrigeration equipment of the present disclosure is
The user-side heat transfer cycle that circulates the user-side refrigerant and
A heat transfer cycle that circulates the heat source side refrigerant and a heat transfer cycle that circulates the heat source side refrigerant.
A cascade heat exchanger that exchanges heat between the refrigerant on the user side and the refrigerant on the heat source side.
Equipped with
The utilization-side refrigerant is a refrigerant having a boiling point of −30 ° C. or higher and 25 ° C. or lower, and the heat source-side refrigerant is a refrigerant having a boiling point of −55 ° C. or higher and lower than −30 ° C.
 熱源側とは、室外機側を指し、高元側、高温側、1次側とも表記される。性能向上の観点から、熱源側においては優れた冷媒特性を持つ冷媒を用いることが好ましい。利用側とは、室内機側を指し、低元側、負荷側、低温側、2次側とも表記される。人や対象物を直接冷やす観点から、利用側においては安全性の高い冷媒を用いることが好ましい。 The heat source side refers to the outdoor unit side, and is also referred to as the high source side, high temperature side, and primary side. From the viewpoint of improving performance, it is preferable to use a refrigerant having excellent refrigerant characteristics on the heat source side. The user side refers to the indoor unit side, and is also referred to as a low source side, a load side, a low temperature side, and a secondary side. From the viewpoint of directly cooling people and objects, it is preferable to use a highly safe refrigerant on the user side.
 本開示の冷凍装置は、利用側熱搬送サイクル(負荷用熱媒体回路)と熱源側熱媒体回路との、二元熱搬送サイクルを少なくとも備える、いわゆる多元冷凍装置である。本開示の冷凍装置は、3つ以上の熱搬送サイクルを備えていてもよい。 The refrigerating apparatus of the present disclosure is a so-called multi-dimensional refrigerating apparatus having at least a dual heat transfer cycle of a heat transfer cycle (load heat medium circuit) on the user side and a heat medium circuit on the heat source side. The refrigerating apparatus of the present disclosure may include three or more heat transfer cycles.
 カスケード熱交換器は、後述の通り、冷房運転の場合、熱源側カスケード熱交換器と、利用側カスケード熱交換器とを有し、熱交換する。具体的には、冷房運転の場合、利用側カスケード熱交換器で冷媒が凝縮し、熱源側カスケード熱交換器で冷媒が蒸発する為、利用側から熱源側へと熱が移動する。 As described later, the cascade heat exchanger has a heat source side cascade heat exchanger and a user side cascade heat exchanger in the case of cooling operation, and exchanges heat. Specifically, in the case of cooling operation, the refrigerant is condensed in the user-side cascade heat exchanger and the refrigerant is evaporated in the heat source-side cascade heat exchanger, so that heat is transferred from the user side to the heat source side.
 利用側熱搬送サイクルは、利用側冷媒を循環させる。利用側熱搬送サイクルは、蒸気圧縮式冷凍サイクルであってもよい。蒸気圧縮式冷凍サイクルである利用側冷凍サイクルは、利用側圧縮機と、利用側熱交換器と、利用側減圧装置と、利用側カスケード熱交換器とを有する。 The user-side heat transfer cycle circulates the user-side refrigerant. The heat transfer cycle on the user side may be a steam compression type refrigeration cycle. The user-side refrigeration cycle, which is a steam compression type refrigeration cycle, has a user-side compressor, a user-side heat exchanger, a user-side decompression device, and a user-side cascade heat exchanger.
 また、利用側熱搬送サイクルは、ポンプ式熱搬送サイクルであってもよい。ポンプ式熱搬送サイクルである利用側熱搬送サイクルは、ポンプ、利用側熱交換器、及び利用側カスケード熱交換器を有する。 Further, the heat transfer cycle on the user side may be a pump type heat transfer cycle. The utilization side heat transfer cycle, which is a pump type heat transfer cycle, includes a pump, a utilization side heat exchanger, and a utilization side cascade heat exchanger.
 例えば、図1に示されるように、利用側減圧装置としては、膨張弁13等を使用することができる。あるいは、利用側減圧装置としては、キャピラリチューブ等の他の減圧装置を使用することもできる。また、利用側熱交換器は、冷熱源として使用することもできる。 For example, as shown in FIG. 1, an expansion valve 13 or the like can be used as the user-side pressure reducing device. Alternatively, another decompression device such as a capillary tube can be used as the decompression device on the user side. The user side heat exchanger can also be used as a cold heat source.
 例えば、運転状況の変化に応じて、利用側熱搬送サイクルの必要冷媒量が大きく変動する場合等においては、例えば図2に示されるように、利用側カスケード熱交換器12と利用側膨張弁13との間を連通する配管に、受液器15が配設されてもよい。 For example, when the required amount of refrigerant in the user-side heat transfer cycle fluctuates greatly according to changes in operating conditions, for example, as shown in FIG. 2, the user-side cascade heat exchanger 12 and the user-side expansion valve 13 are used. The liquid receiver 15 may be arranged in a pipe communicating with the water receiver 15.
 利用側熱搬送サイクルは、利用側熱搬送サイクルの高圧圧力を検出する利用側高圧圧力検出手段と、利用側熱搬送サイクルの低圧圧力を検出する利用側低圧圧力検出手段とを有していることが好ましい。また、利用側熱搬送サイクルは、利用側圧縮機から吐出される利用側冷媒の温度を検出する利用側吐出温度検出手段を有していることが好ましい。 The user-side heat transfer cycle has a user-side high-pressure pressure detecting means for detecting the high-pressure pressure of the user-side heat transfer cycle and a user-side low-pressure pressure detecting means for detecting the low-pressure pressure of the user-side heat transfer cycle. Is preferable. Further, it is preferable that the user-side heat transfer cycle has a user-side discharge temperature detecting means for detecting the temperature of the user-side refrigerant discharged from the user-side compressor.
 利用側高圧圧力検出手段及び利用側低圧圧力検出手段は、実質的に圧力を検出する手段であればよい。すなわち、利用側高圧圧力検出手段及び利用側低圧圧力検出手段は、利用側冷媒の圧力自体を検出してもよく、また、利用側冷媒の圧力に換算できる他の物理量を検出してもよい。 The user-side high-pressure pressure detecting means and the user-side low-pressure pressure detecting means may be any means that substantially detect the pressure. That is, the user-side high-pressure pressure detecting means and the user-side low-pressure pressure detecting means may detect the pressure of the user-side refrigerant itself, or may detect other physical quantities that can be converted into the pressure of the user-side refrigerant.
 利用側吐出温度検出手段は、実質的に温度を検出する手段であればよい。すなわち、利用側吐出温度検出手段は、利用側冷媒の吐出温度自体を検出してもよく、また、利用側冷媒の吐出温度に換算できる他の物理量を検出してもよい。 The discharge temperature detecting means on the user side may be any means that substantially detects the temperature. That is, the user-side discharge temperature detecting means may detect the discharge temperature of the user-side refrigerant itself, or may detect another physical quantity that can be converted into the discharge temperature of the user-side refrigerant.
 例えば、図1に示されるように、利用側熱搬送サイクル10は、利用側高圧圧力検出手段である利用側高圧圧力センサー21と、利用側低圧圧力検出手段である利用側低圧圧力センサー22と、利用側吐出温度検出手段である利用側吐出温度センサー23とを有する。利用側高圧圧力センサー21は、利用側カスケード熱交換器12と利用側膨張弁13との間を連通させる配管に配設されることが好ましい。利用側低圧圧力センサー22は、利用側熱交換器14と利用側圧縮機11との間を連通させる配管に配設されることが好ましい。利用側吐出温度センサー23は、利用側圧縮機11と利用側凝縮器12との間を連通させる配管に配設されることが好ましい。なお、利用側熱搬送サイクルは、必要のない場合はこれらのセンサーの一部又は全部を有していなくてもよい。 For example, as shown in FIG. 1, the user-side heat transfer cycle 10 includes a user-side high-pressure pressure sensor 21 which is a user-side high-pressure pressure detecting means, a user-side low-pressure pressure sensor 22 which is a user-side low-pressure pressure detecting means, and a user-side low-pressure pressure sensor 22. It has a user-side discharge temperature sensor 23 which is a user-side discharge temperature detecting means. The user-side high-pressure pressure sensor 21 is preferably arranged in a pipe that communicates between the user-side cascade heat exchanger 12 and the user-side expansion valve 13. The user-side low-pressure pressure sensor 22 is preferably arranged in a pipe that communicates between the user-side heat exchanger 14 and the user-side compressor 11. The user-side discharge temperature sensor 23 is preferably arranged in a pipe that communicates between the user-side compressor 11 and the user-side condenser 12. The user-side heat transfer cycle may not have some or all of these sensors if not required.
 本開示の冷凍装置は、さらに制御装置を有していてもよい。利用側高圧圧力検出手段の検出信号と、利用側低圧圧力検出手段の検出信号と、利用側吐出温度検出手段の検出信号とは、制御装置に入力される。制御装置は、本開示の冷凍装置の動作全般を制御する。制御装置を構成する全部又は一部は、例えば、マイコン若しくはマイクロプロセッサユニット等;ファームウェア等の更新可能なソフトウェア;又はCPU等からの指令によって実行されるプログラムモジュール等で構成されていてもよい。 The refrigerating device of the present disclosure may further have a control device. The detection signal of the user-side high-pressure pressure detecting means, the detection signal of the user-side low-pressure pressure detecting means, and the detection signal of the user-side discharge temperature detecting means are input to the control device. The control device controls the overall operation of the refrigerating device of the present disclosure. All or part of the control device may be composed of, for example, a microcomputer or a microprocessor unit; updatable software such as firmware; or a program module executed by a command from a CPU or the like.
 利用側冷媒は、沸点が-30℃以上かつ25℃以下の冷媒である。 The user-side refrigerant has a boiling point of -30 ° C or higher and 25 ° C or lower.
 熱源側熱搬送サイクルは、熱源側冷媒を循環させる。熱源側熱搬送サイクルは、好ましくは蒸気圧縮式冷凍サイクルである。蒸気圧縮式冷凍サイクルである熱源側冷凍サイクルは、熱源側圧縮機と、熱源側熱交換器と、熱源側減圧装置と、熱源側カスケード熱交換器とを有する。 The heat transfer cycle on the heat source side circulates the refrigerant on the heat source side. The heat transfer cycle on the heat source side is preferably a steam compression refrigeration cycle. The heat source side refrigeration cycle, which is a steam compression type refrigeration cycle, includes a heat source side compressor, a heat source side heat exchanger, a heat source side decompression device, and a heat source side cascade heat exchanger.
 熱源側圧縮機は、能力可変式である。熱源側減圧装置としては、膨張弁等を使用することができる。あるいは、熱源側減圧装置としては、キャピラリチューブ等の他の減圧装置を使用することもできる。 The heat source side compressor is a variable capacity type. An expansion valve or the like can be used as the heat source side decompression device. Alternatively, as the heat source side decompression device, another decompression device such as a capillary tube can be used.
 熱源側冷媒は、沸点が-55℃以上かつ-30℃未満の冷媒である。 The heat source side refrigerant is a refrigerant having a boiling point of −55 ° C. or higher and lower than −30 ° C.
 冷房運転の場合、利用側凝縮器及び熱源側蒸発器は、カスケード熱交換器に内蔵される。非共沸混合冷媒を使用する際、カスケード熱交換器において、利用側凝縮器の利用側冷媒と熱源側蒸発器の熱源側冷媒とが、熱交換を行う。熱源側冷媒と利用側冷媒とは、カスケード熱交換器における流通方向が対向流であることが、温度グライドによる熱交換効率低下防止という観点から好ましい。
 暖房運転の場合、利用側蒸発器及び熱源側凝縮器は、カスケード熱交換器に内蔵される。非共沸混合冷媒を使用する際、カスケード熱交換器において、利用側蒸発器の利用側冷媒と熱源側凝縮器の熱源側冷媒とが、熱交換を行う。熱源側冷媒と利用側冷媒とは、カスケード熱交換器における流通方向が対向流であることが、温度グライドによる熱交換効率低下防止という観点から好ましい。
In the case of cooling operation, the user-side condenser and the heat source-side evaporator are built in the cascade heat exchanger. When a non-co-boiling mixed refrigerant is used, in the cascade heat exchanger, the refrigerant on the user side of the condenser on the user side and the refrigerant on the heat source side of the evaporator on the heat source side exchange heat. It is preferable that the heat source side refrigerant and the user side refrigerant have a countercurrent flow direction in the cascade heat exchanger from the viewpoint of preventing a decrease in heat exchange efficiency due to temperature glide.
In the case of heating operation, the user-side evaporator and the heat source-side condenser are built in the cascade heat exchanger. When a non-co-boiling mixed refrigerant is used, in the cascade heat exchanger, the refrigerant on the user side of the evaporator on the user side and the refrigerant on the heat source side of the condenser on the heat source side exchange heat. It is preferable that the heat source side refrigerant and the user side refrigerant have a countercurrent flow direction in the cascade heat exchanger from the viewpoint of preventing a decrease in heat exchange efficiency due to temperature glide.
 本開示によれば、熱源側冷媒として、沸点が-55℃以上かつ-30℃未満の冷媒という、比較的密度が高く性能の良い冷媒を用いることにより、冷凍サイクルの効率を好ましい範囲内に維持しつつ、利用側冷媒として、沸点が-30℃以上かつ25℃以下の冷媒を用いることができる。このように、本開示によれば、熱源側に性能の高い冷媒を用いることにより、利用側にそれと同程度の性能の冷媒を使用しなくても、サイクル全体の性能を良好な範囲内に確保できる。なお、冷媒の中には、沸点が-30℃以上かつ25℃以下ではあるものの、低GWPや、低燃焼性の点で優れるものがあるので、本開示においては、それらの冷媒を適宜使用することもできる。 According to the present disclosure, the efficiency of the refrigeration cycle is maintained within a preferable range by using a refrigerant having a boiling point of −55 ° C. or higher and lower than −30 ° C., which has a relatively high density and good performance, as the heat source side refrigerant. However, as the user-side refrigerant, a refrigerant having a boiling point of −30 ° C. or higher and 25 ° C. or lower can be used. As described above, according to the present disclosure, by using a high-performance refrigerant on the heat source side, the performance of the entire cycle is ensured within a good range without using a refrigerant having the same performance on the user side. can. Although some refrigerants have a boiling point of −30 ° C. or higher and 25 ° C. or lower, they are excellent in terms of low GWP and low combustibility. Therefore, in the present disclosure, these refrigerants are appropriately used. You can also do it.
 本開示によれば、利用側冷媒としてそのような低GWPの点で優れる冷媒を使用することができるため、装置全体において性能を維持しながら使用される冷媒のGWPの合計を下げることが可能となる場合がある。この点で、熱源側冷媒のGWPは750以下であることが好ましく、500以下であることがより好ましく、300以下であることが更に好ましく、150以下であることが最も好ましい。また、利用側冷媒のGWPは750以下であることが好ましく、500以下であることがより好ましく、300以下であることが更に好ましく、150以下であることが最も好ましい。 According to the present disclosure, since it is possible to use such a refrigerant excellent in terms of low GWP as the refrigerant on the user side, it is possible to reduce the total GWP of the refrigerant used while maintaining the performance in the entire apparatus. May be. In this respect, the GWP of the heat source side refrigerant is preferably 750 or less, more preferably 500 or less, further preferably 300 or less, and most preferably 150 or less. The GWP of the user-side refrigerant is preferably 750 or less, more preferably 500 or less, further preferably 300 or less, and most preferably 150 or less.
 あるいは、利用側冷媒として上記のような低燃焼性の点で優れるものを使用することができるため、利用側熱搬送サイクルを人的被害が及びやすい区画に配置させることにより、装置全体において性能を維持しながら、冷媒が漏洩した場合における火災による人的被害のリスクをより低減できる場合がある。人的被害がもたらす可能性のある利用側に、より安全性の高い冷媒を用いることができるという点で、熱源側冷媒の燃焼速度は10cm/s以下であることが好ましく、9cm/s以下であることがより好ましく、8cm/s以下であることが更に好ましく、7cm/s以下であることが最も好ましい。また、利用側冷媒の燃焼速度は5cm/s以下であることが好ましく、3cm/s以下であることがより好ましく、2cm/s以下であることが更に好ましく、1.5cm/s以下であることが最も好ましい。 Alternatively, since it is possible to use a refrigerant having an excellent low combustibility as described above, by arranging the heat transfer cycle on the user side in a section where human damage is likely to occur, the performance of the entire device can be improved. While maintaining, it may be possible to further reduce the risk of human injury due to fire in the event of a refrigerant leak. The combustion rate of the heat source side refrigerant is preferably 10 cm / s or less, preferably 9 cm / s or less, in that a safer refrigerant can be used on the user side, which may cause human damage. It is more preferably present, more preferably 8 cm / s or less, and most preferably 7 cm / s or less. Further, the combustion speed of the refrigerant on the user side is preferably 5 cm / s or less, more preferably 3 cm / s or less, further preferably 2 cm / s or less, and 1.5 cm / s or less. Is the most preferable.
 本開示の冷凍装置を実使用に適したものとするためには、利用側冷媒として、沸点が25℃以下のものを用いることにより、その飽和蒸気圧を大気圧以上とすることができるため好ましい。この点で、利用側冷媒の25℃での飽和圧力は0.0MPaG以上であることが好ましく、0.01MPaG以上であることがより好ましく、0.03MPaG以上であることが更に好ましく、0.05MPaG以上であることが最も好ましい。また、利用側冷媒の25℃での飽和圧力は5MPaG以下であることが好ましく、4MPaG以下であることがより好ましく、3MPaG以下であることが更に好ましく、2MPaG以下であることが最も好ましい。 In order to make the refrigerating apparatus of the present disclosure suitable for actual use, it is preferable to use a refrigerant having a boiling point of 25 ° C. or lower as the refrigerant on the user side because the saturated vapor pressure can be set to atmospheric pressure or higher. .. In this respect, the saturation pressure of the refrigerant on the utilization side at 25 ° C. is preferably 0.0 MPaG or more, more preferably 0.01 MPaG or more, further preferably 0.03 MPaG or more, and more preferably 0.05 MPaG. The above is the most preferable. Further, the saturation pressure of the refrigerant on the utilization side at 25 ° C. is preferably 5 MPaG or less, more preferably 4 MPaG or less, further preferably 3 MPaG or less, and most preferably 2 MPaG or less.
 本開示の冷凍装置を実使用に適したものとするためには、利用側冷媒として、沸点が-30℃以上のものを用いることにより、その圧力を配管の耐圧限度を超えない程度の圧力に維持することができる。この点で、利用側冷媒として、沸点が-30℃以上のものを用いることが好ましく、沸点が-25℃以上のものを用いることがより好ましく、沸点が-20℃以上のものを用いることがさらに好ましい。 In order to make the refrigerating apparatus of the present disclosure suitable for actual use, a refrigerant having a boiling point of -30 ° C or higher is used as the refrigerant on the user side so that the pressure does not exceed the pressure resistance limit of the piping. Can be maintained. In this respect, it is preferable to use a refrigerant having a boiling point of −30 ° C. or higher, more preferably a refrigerant having a boiling point of −25 ° C. or higher, and a refrigerant having a boiling point of −20 ° C. or higher. More preferred.
 また、冷凍サイクル使用時の消費電力による地球環境への影響を低減する観点で、熱源側冷媒のCOPはR410Aと比較して95%以上であることが好ましく、100%以上であることがより好ましく、101%以上であることがさらに好ましく、102%以上であることがよりさらに好ましい。 Further, from the viewpoint of reducing the influence on the global environment due to the power consumption when using the refrigeration cycle, the COP of the heat source side refrigerant is preferably 95% or more, more preferably 100% or more, as compared with R410A. , 101% or more, more preferably 102% or more.
 機器サイズを小さくして機器製造による地球環境への影響を低減する観点では、熱源側冷媒の冷凍能力はR410Aと比較して60%以上であることが好ましく、70%以上であることがより好ましく、80%以上であることがさらに好ましく、90%以上であることがよりさらに好ましく、100%以上であることが最も好ましい。 From the viewpoint of reducing the size of the equipment and reducing the impact of manufacturing the equipment on the global environment, the refrigerating capacity of the refrigerant on the heat source side is preferably 60% or more, more preferably 70% or more, as compared with R410A. , 80% or more, more preferably 90% or more, and most preferably 100% or more.
 冷媒が漏洩した場合における火災による人的被害のリスクをより低減しようとする場合、熱源側冷媒及び利用側冷媒の組合せの例として、例えば、熱源側冷媒が、燃焼速度が10cm/s以下の冷媒であり、かつ利用側冷媒が、燃焼速度が3cm/s以下の冷媒である組合せが挙げられる。または、上記の場合の熱源側冷媒及び利用側冷媒の組合せの例として、熱源側冷媒が、アメリカ暖房冷凍空調学会(ASHRAE)にて2Lクラスに区分される冷媒であり、かつ利用側冷媒が、ASHRAEにてA1クラスに区分される冷媒である組合せも挙げられる。 When trying to further reduce the risk of human damage due to a fire when the refrigerant leaks, as an example of the combination of the heat source side refrigerant and the user side refrigerant, for example, the heat source side refrigerant has a combustion speed of 10 cm / s or less. And the refrigerant on the user side is a refrigerant having a combustion speed of 3 cm / s or less. Alternatively, as an example of the combination of the heat source side refrigerant and the user side refrigerant in the above case, the heat source side refrigerant is a refrigerant classified into the 2L class by the American Society for Heating, Refrigerating and Air Conditioning (ASHRAE), and the user side refrigerant is. A combination of refrigerants classified into A1 class by ASHRAE can also be mentioned.
 熱源側冷媒の例としては、単独の化合物のみから実質的になる冷媒の場合、HFO-1123、HFO-1132及びR32等が挙げられる。熱源側冷媒の例としては、複数の化合物の混合物である場合、HFO-1123、HFO-1132、R1234yf及びR32からなる群より選択される少なくとも二種の混合物、並びにR452B及びR454B等が挙げられる。なお、R452BはR32、R125及びR1234yfの混合物であり(R32:R125:R1234yf(質量比)=67:7:26)、R454BはR32及びR1234yfの混合物である(R32:R1234yf(質量比)=68.9:31.1)。
 熱源側冷媒及び利用側冷媒の具体例としては、例えば、以下の表に示す組合せが挙げられる。
Examples of the heat source-side refrigerant include HFO-1123, HFO-1132, R32, and the like in the case of a refrigerant substantially composed of only a single compound. Examples of the heat source side refrigerant include, in the case of a mixture of a plurality of compounds, at least two mixtures selected from the group consisting of HFO-1123, HFO-1132, R1234yf and R32, and R452B and R454B. R452B is a mixture of R32, R125 and R1234yf (R32: R125: R1234yf (mass ratio) = 67: 7: 26), and R454B is a mixture of R32 and R1234yf (R32: R1234yf (mass ratio) = 68). 9.9: 31.1).
Specific examples of the heat source side refrigerant and the user side refrigerant include the combinations shown in the following table.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 HFO-1132との混合物は、HFC32、HFO1234yf、HFO1234ze(E)、及びCOからなる群より選択される少なくとも一種を含んでもよい。
 上記において、HFO-1132としては、HFO-1132(E)、HFO-1132(z)、HFO-1132aが好ましく、HFO-1132(E)が最も好ましい。HFO-1123との混合物は、HFC32、HFO1234yf、HFO1234ze(E)、及びCOからなる群より選択される少なくとも一種を含んでもよい。
A mixture of HFO-1132 is, HFC32, HFO1234yf, HFO1234ze (E ), and at least one may include is selected from the group consisting of CO 2.
In the above, as HFO-1132, HFO-1132 (E), HFO-1132 (z), and HFO-1132a are preferable, and HFO-1132 (E) is most preferable. A mixture of HFO-1123 is, HFC32, HFO1234yf, HFO1234ze (E ), and at least one may include is selected from the group consisting of CO 2.
 熱源側冷媒及び利用側冷媒の組合せの例として、熱源側冷媒が、R32、R452B又はR454Bであり、かつ利用側冷媒が、R513A、R515A、R515B、R1224、R1234yf、R1234ze、R1233及びR1336からなる群より選択される少なくとも一種である、組合せが挙げられる。この組合せは、熱源側に使用する冷媒のCapacityが高いという点において好ましい。 As an example of the combination of the heat source side refrigerant and the user side refrigerant, the heat source side refrigerant is R32, R452B or R454B, and the user side refrigerant is a group consisting of R513A, R515A, R515B, R1224, R1234yf, R1234ze, R1233 and R1336. Examples include combinations, which are at least one more selected. This combination is preferable in that the capacity of the refrigerant used on the heat source side is high.
 熱源側冷媒及び利用側冷媒の組合せの例として、熱源側冷媒が、HFO-1132を含む冷媒であり、かつ利用側冷媒が、R513A、R515A、R515B、R471A、R1224、R1234yf、R1234ze、R1233及びR1336からなる群より選択される少なくとも一種である、組合せが挙げられる。この組合せは、システム全体のGWP(COトン)を低減できる点において好ましい。 As an example of the combination of the heat source side refrigerant and the user side refrigerant, the heat source side refrigerant is a refrigerant containing HFO-1132, and the user side refrigerants are R513A, R515A, R515B, R471A, R1224, R1234yf, R1234ze, R1233 and R1336. Examples include combinations, which are at least one selected from the group consisting of. This combination is preferable in that the GWP (CO 2 tons) of the entire system can be reduced.
 なお、本明細書において、HFO-1132は、HFO-1132a、HFO-1132(E)及びHFO-1132(Z)のいずれかを示す。R1224は、HCFO-1224yd(E)、HCFO-1224yd(Z)、HCFO-1224zb(E)、HCFO-1224zb(Z)、HCFO-1224xe(E)、及びHCFO-1224xe(Z)のいずれかを示す。R1234は、HFO-1234yf、HFO-1234ze(E)、及びHFO-1234ze(Z)のいずれかを示す。R1233は、HCFO-1233zd(E)、HCFO-1233zd(Z)、及びHCFO-1233xfのいずれかを示す。また、R1336は、HFO-1336mzz(E)、HFO-1336mzz(Z)、HFO-1336mcy、HFO-1336mcz(E)、及びHFO-1336mez(Z)のいずれかを示す。これらのHFOやHCFOを冷媒に用いる際、HFO-やHCFO-の表記を省略してR1234yfのようにR○○と表記することがある。 In addition, in this specification, HFO-1132 indicates any one of HFO-1132a, HFO-1132 (E) and HFO-1132 (Z). R1224 indicates any one of HCFO-1224yd (E), HCFO-1224yd (Z), HCFO-1224zb (E), HCFO-1224zb (Z), HCFO-1224xe (E), and HCFO-1224xe (Z). .. R1234 indicates any of HFO-1234yf, HFO-1234ze (E), and HFO-1234ze (Z). R1233 indicates one of HCFO-1233zd (E), HCFO-1233zd (Z), and HCFO-1233xf. Further, R1336 indicates any one of HFO-1336mzz (E), HFO-1336mzz (Z), HFO-1336mcy, HFO-1336mcz (E), and HFO-1336mzz (Z). When these HFOs and HCFOs are used as a refrigerant, the notation of HFO- and HCFO- may be omitted and described as R ○○ such as R1234yf.
 本開示の冷凍装置は、好ましくは、空調機器、冷蔵庫、冷凍庫、冷水機、製氷機、冷蔵ショーケース、冷凍ショーケース、冷凍冷蔵ユニット、冷凍冷蔵倉庫用冷凍機、車載用空調機器、ターボ冷凍機又はスクリュー冷凍機である。 The refrigerating apparatus of the present disclosure is preferably an air conditioner, a refrigerator, a freezer, a water cooler, an ice machine, a refrigerating showcase, a refrigerating showcase, a refrigerating / refrigerating unit, a refrigerating / refrigerating warehouse refrigerator, an in-vehicle air conditioner, and a turbo refrigerator. Or it is a screw refrigerator.
 本開示の冷凍装置は、より好ましくは、家庭用空調機器、業務用空調機器、産業用空調機器、又はビル用マルチ空調機器である。 The refrigerating apparatus of the present disclosure is more preferably a household air-conditioning device, a commercial air-conditioning device, an industrial air-conditioning device, or a multi-air-conditioning device for a building.
 以下、実施例を挙げて本開示を説明するが、本開示はこれらの実施例等に限定されるものではない。 Hereinafter, the present disclosure will be described with reference to examples, but the present disclosure is not limited to these examples and the like.
 システム全体のGWPについては、以下の式にて計算した。
 システム全体のGWP(CO2トン)=(熱源側冷媒のGWP)×(熱源側冷媒の充填量)+(利用側冷媒のGWP)×(利用側冷媒の充填量)
これらの数値が低い方が地球温暖化への影響が少ない。
The GWP of the entire system was calculated using the following formula.
GWP (CO 2 tons) of the entire system = (GWP of heat source side refrigerant) x (filling amount of heat source side refrigerant) + (GWP of user side refrigerant) x (filling amount of user side refrigerant)
The lower these numbers, the less the impact on global warming.
 表2に示す利用側冷媒及び熱源側冷媒を、図1に示される通り、それぞれ利用側熱搬送サイクル及び熱源側熱搬送サイクルにおいて循環させることにより、冷凍装置の運転を行なった。熱源側におけるCOP比及びCapacity比(いずれもR410Aの値に対する比率(%))、熱源側冷媒及び利用側冷媒の燃焼速度(cm/s)、並びに利用側冷媒の25℃における飽和蒸気圧(ゲージ圧)(MPaG)を求め、表2及び3に記載した。 As shown in FIG. 1, the refrigerating apparatus was operated by circulating the refrigerant on the user side and the refrigerant on the heat source side shown in Table 2 in the heat transfer cycle on the user side and the heat transfer cycle on the heat source side, respectively. COP ratio and capacity ratio on the heat source side (both are ratios to the value of R410A (%)), combustion speeds of the heat source side refrigerant and the user side refrigerant (cm / s), and the saturated vapor pressure (gauge) of the user side refrigerant at 25 ° C. Pressure) (MPaG) was determined and shown in Tables 2 and 3.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 比較例及び実施例で使用した各冷媒の沸点は以下の通りである。
  R410A:-51℃
  R32:-52℃
  R452B:-51℃
  R452B:-51℃
  R454C:-46℃
  R513A:-29℃
  R515B:-19℃
  R1234ze(E):-19℃
  R1336mcy:+1℃
  R1224yd(Z):+14℃
  R1336mzz(E):+7℃
The boiling points of each of the refrigerants used in Comparative Examples and Examples are as follows.
R410A: -51 ° C
R32: -52 ° C
R452B: -51 ° C
R452B: -51 ° C
R454C: -46 ° C
R513A: -29 ° C
R515B: -19 ° C
R1234ze (E): -19 ° C
R1336mcy: + 1 ° C
R1224yd (Z): + 14 ° C
R1336mzz (E): + 7 ° C
 図1に示される冷凍装置において、熱源側冷媒として、沸点が-55℃以上かつ-30℃未満の冷媒という、比較的密度が高く性能の良い冷媒を用いることにより、利用側冷媒として、沸点が-30℃以上かつ25℃以下の冷媒を用いた場合であっても、冷凍サイクルの効率がCOP100%以上かつ冷凍能力が60%以上となり、冷凍サイクル効率を好ましい範囲内に維持できることが判った。 In the refrigerating apparatus shown in FIG. 1, a refrigerant having a boiling point of −55 ° C. or higher and lower than −30 ° C., which has a relatively high density and good performance, is used as the heat source side refrigerant, so that the boiling point is increased as the user side refrigerant. It was found that even when a refrigerant having a temperature of −30 ° C. or higher and 25 ° C. or lower was used, the refrigerating cycle efficiency was 100% or higher and the refrigerating capacity was 60% or higher, and the refrigerating cycle efficiency could be maintained within a preferable range.
 また、利用側冷媒として、沸点が25℃以下のものを用いることにより、その飽和蒸気圧を大気圧以上とすることができることが判った。また、利用側冷媒として、沸点が-30℃以上のものを用いることにより、その圧力を配管の耐圧限度を超えない程度の圧力に維持することができることも判った。 It was also found that the saturated vapor pressure can be set to atmospheric pressure or higher by using a refrigerant having a boiling point of 25 ° C or lower as the refrigerant on the user side. It was also found that the pressure can be maintained at a pressure that does not exceed the pressure resistance limit of the pipe by using a refrigerant having a boiling point of −30 ° C. or higher as the refrigerant on the user side.
1:冷凍装置
10:利用側熱搬送サイクル
11:利用側圧縮機
12:利用側カスケード熱交換器
13:利用側膨張弁
14:利用側熱交換器
15:利用側受液器
15a:可溶栓
21:利用側高圧圧力センサー
22:利用側低圧圧力センサー
23:利用側吐出温度センサー
30:熱源側熱搬送サイクル
31:熱源側圧縮機
32:熱源側熱交換器
33:熱源側膨張弁
34:熱源側カスケード熱交換器
35:冷却部
40:カスケード熱交換器
50:制御装置
1: Refrigerator 10: User side heat transfer cycle 11: User side compressor 12: User side cascade heat exchanger 13: User side expansion valve 14: User side heat exchanger 15: User side liquid receiver 15a: Soluble plug 21: User side high pressure pressure sensor 22: User side low pressure pressure sensor 23: User side discharge temperature sensor 30: Heat source side heat transfer cycle 31: Heat source side compressor 32: Heat source side heat exchanger 33: Heat source side expansion valve 34: Heat source Side cascade heat exchanger 35: Cooling unit 40: Cascade heat exchanger 50: Control device

Claims (12)

  1.  利用側冷媒を循環させる利用側熱搬送サイクルと、
     熱源側冷媒を循環させる熱源側熱搬送サイクルと、
     前記利用側冷媒と、前記熱源側冷媒とを熱交換させるカスケード熱交換器と、
    を備え、
     前記利用側冷媒は、沸点が-30℃以上かつ25℃以下の冷媒であり、かつ前記熱源側冷媒は、沸点が-55℃以上かつ-30℃未満の冷媒である、冷凍装置。
    The user-side heat transfer cycle that circulates the user-side refrigerant and
    A heat transfer cycle that circulates the heat source side refrigerant and a heat transfer cycle that circulates the heat source side refrigerant.
    A cascade heat exchanger that exchanges heat between the refrigerant on the user side and the refrigerant on the heat source side.
    Equipped with
    The refrigerating apparatus, wherein the utilization-side refrigerant is a refrigerant having a boiling point of −30 ° C. or higher and 25 ° C. or lower, and the heat source-side refrigerant is a refrigerant having a boiling point of −55 ° C. or higher and lower than −30 ° C.
  2.  前記熱源側熱搬送サイクルが、
     熱源側圧縮機、熱源側熱交換器、熱源側減圧装置、及び熱源側カスケード熱交換器を有する、蒸気圧縮式冷凍サイクルである、請求項1に記載の冷凍装置。
    The heat transfer cycle on the heat source side
    The refrigerating apparatus according to claim 1, which is a steam compression refrigerating cycle having a heat source side compressor, a heat source side heat exchanger, a heat source side decompressing device, and a heat source side cascade heat exchanger.
  3.  前記利用側熱搬送サイクルが、
     利用側圧縮機、利用側熱交換器、利用側減圧装置、及び利用側カスケード熱交換器を有する、蒸気圧縮式冷凍サイクルである、請求項1又は2に記載の冷凍装置。
    The heat transfer cycle on the user side
    The refrigerating apparatus according to claim 1 or 2, which is a steam compression refrigerating cycle having a user-side compressor, a user-side heat exchanger, a user-side decompression device, and a user-side cascade heat exchanger.
  4.  前記利用側熱搬送サイクルが、
     ポンプ、利用側熱交換器、及び利用側カスケード熱交換器を有する、熱搬送サイクルである、項1又は2に記載の冷凍装置。
    The heat transfer cycle on the user side
    Item 2. The refrigerating apparatus according to Item 1 or 2, which is a heat transfer cycle having a pump, a user-side heat exchanger, and a user-side cascade heat exchanger.
  5.  前記熱源側冷媒と前記利用側冷媒とは、前記カスケード熱交換器における流通方向が対向流である、請求項1~4のいずれか一項に記載の冷凍装置。 The refrigerating apparatus according to any one of claims 1 to 4, wherein the heat source side refrigerant and the user side refrigerant have a countercurrent flow direction in the cascade heat exchanger.
  6.  前記熱源側冷媒が、燃焼速度が10cm/s以下の冷媒であり、かつ前記利用側冷媒が、燃焼速度が3cm/s以下の冷媒である、請求項1~5のいずれか一項に記載の冷凍装置。 The one according to any one of claims 1 to 5, wherein the heat source side refrigerant is a refrigerant having a combustion speed of 10 cm / s or less, and the user side refrigerant is a refrigerant having a combustion speed of 3 cm / s or less. Refrigerating equipment.
  7.  前記熱源側冷媒が、ASHRAEにて2Lクラスに区分される冷媒であり、かつ前記利用側冷媒が、ASHRAEにてA1クラスに区分される冷媒である、請求項1~6のいずれか一項に記載の冷凍装置。 The one according to any one of claims 1 to 6, wherein the heat source side refrigerant is a refrigerant classified into the 2L class by ASHRAE, and the user side refrigerant is a refrigerant classified into the A1 class by ASHRAE. The refrigeration equipment described.
  8.  前記熱源側冷媒が、HFO-1123及び/又はHFO-1132を含む、請求項1~5のいずれか一項に記載の冷凍装置。 The refrigerating apparatus according to any one of claims 1 to 5, wherein the heat source side refrigerant contains HFO-1123 and / or HFO-1132.
  9.  前記熱源側冷媒が、R32、R452B又はR454Bであり、かつ前記利用側冷媒が、R513A、R515A、R515B、R1224、R1234yf、R1234ze、R1233及びR1336からなる群より選択される少なくとも一種である、請求項1~7のいずれかに記載の冷凍装置。 The claim that the heat source side refrigerant is R32, R452B or R454B, and the utilization side refrigerant is at least one selected from the group consisting of R513A, R515A, R515B, R1224, R1234yf, R1234ze, R1233 and R1336. The refrigerating apparatus according to any one of 1 to 7.
  10.  前記熱源側冷媒が、HFO-1132を含む冷媒であり、かつ前記利用側冷媒が、R513A、R515A、R515B、R471A、R1224、R1234yf、R1234ze、R1233及びR1336からなる群より選択される少なくとも一種である、請求項1~8のいずれかに記載の冷凍装置。 The heat source side refrigerant is a refrigerant containing HFO-1132, and the utilization side refrigerant is at least one selected from the group consisting of R513A, R515A, R515B, R471A, R1224, R1234yf, R1234ze, R1233 and R1336. , The refrigerating apparatus according to any one of claims 1 to 8.
  11.  空調機器、冷蔵庫、冷凍庫、冷水機、製氷機、冷蔵ショーケース、冷凍ショーケース、冷凍冷蔵ユニット、冷凍冷蔵倉庫用冷凍機、車載用空調機器、ターボ冷凍機又はスクリュー冷凍機である、請求項1~10のいずれか一項に記載の冷凍装置。 Claim 1 which is an air conditioner, a refrigerator, a freezer, a water cooler, an ice machine, a refrigerated showcase, a refrigerated showcase, a refrigerating / refrigerating unit, a refrigerating / refrigerating warehouse refrigerator, an in-vehicle air conditioner, a turbo refrigerator or a screw refrigerator. The refrigerating apparatus according to any one of 10 to 10.
  12.  家庭用空調機器、業務用空調機器、産業用空調機器、又はビル用マルチ空調機器である、請求項1~10のいずれか一項に記載の冷凍装置。 The refrigerating device according to any one of claims 1 to 10, which is a home air-conditioning device, a commercial air-conditioning device, an industrial air-conditioning device, or a multi-air-conditioning device for a building.
PCT/JP2021/025511 2020-07-06 2021-07-06 Refrigeration device WO2022009898A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180048552.8A CN115885139A (en) 2020-07-06 2021-07-06 Refrigerating device
EP21838192.9A EP4177539A1 (en) 2020-07-06 2021-07-06 Refrigeration device
US18/088,991 US20230135967A1 (en) 2020-07-06 2022-12-27 Refrigeration device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020116676 2020-07-06
JP2020-116676 2020-07-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/088,991 Continuation US20230135967A1 (en) 2020-07-06 2022-12-27 Refrigeration device

Publications (1)

Publication Number Publication Date
WO2022009898A1 true WO2022009898A1 (en) 2022-01-13

Family

ID=79553204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025511 WO2022009898A1 (en) 2020-07-06 2021-07-06 Refrigeration device

Country Status (5)

Country Link
US (1) US20230135967A1 (en)
EP (1) EP4177539A1 (en)
JP (2) JP7216151B2 (en)
CN (1) CN115885139A (en)
WO (1) WO2022009898A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2615111A (en) * 2022-01-28 2023-08-02 Agilent Technologies Inc Cooling arrangements for analytical device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230375230A1 (en) * 2022-05-21 2023-11-23 Honeywell International Inc. Nonflammable refrigerants having low gwp, and systems for and methods of providing refrigeration

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05133649A (en) * 1991-11-13 1993-05-28 Matsushita Refrig Co Ltd Space heating/cooling equipment
WO2013018148A1 (en) * 2011-08-04 2013-02-07 三菱電機株式会社 Refrigeration device
JP2014196869A (en) * 2013-03-29 2014-10-16 パナソニックヘルスケア株式会社 Cascade refrigeration system
WO2015140872A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Refrigeration device
WO2015140873A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Refrigerating device and refrigerating device control method
JP2015529788A (en) * 2012-08-01 2015-10-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Use of E-1,1,1,4,4,4-hexafluoro-2-butene in heat pumps
JP2016166714A (en) * 2015-03-10 2016-09-15 パナソニックIpマネジメント株式会社 Heat generation unit
WO2019124402A1 (en) * 2017-12-18 2019-06-27 ダイキン工業株式会社 Coolant-containing composition, use for same, refrigerator having same, and method for operating refrigerator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5133649B2 (en) 2007-10-16 2013-01-30 京セラドキュメントソリューションズ株式会社 Electronic device and memory management program
CN112789457B (en) * 2018-09-28 2022-12-13 大金工业株式会社 Refrigerant charging method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05133649A (en) * 1991-11-13 1993-05-28 Matsushita Refrig Co Ltd Space heating/cooling equipment
WO2013018148A1 (en) * 2011-08-04 2013-02-07 三菱電機株式会社 Refrigeration device
JP2015529788A (en) * 2012-08-01 2015-10-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Use of E-1,1,1,4,4,4-hexafluoro-2-butene in heat pumps
JP2014196869A (en) * 2013-03-29 2014-10-16 パナソニックヘルスケア株式会社 Cascade refrigeration system
WO2015140872A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Refrigeration device
WO2015140873A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Refrigerating device and refrigerating device control method
JP2016166714A (en) * 2015-03-10 2016-09-15 パナソニックIpマネジメント株式会社 Heat generation unit
WO2019124402A1 (en) * 2017-12-18 2019-06-27 ダイキン工業株式会社 Coolant-containing composition, use for same, refrigerator having same, and method for operating refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2615111A (en) * 2022-01-28 2023-08-02 Agilent Technologies Inc Cooling arrangements for analytical device

Also Published As

Publication number Publication date
EP4177539A1 (en) 2023-05-10
JP2022014455A (en) 2022-01-19
JP7216151B2 (en) 2023-01-31
US20230135967A1 (en) 2023-05-04
CN115885139A (en) 2023-03-31
JP2022125358A (en) 2022-08-26

Similar Documents

Publication Publication Date Title
US10254016B2 (en) Refrigeration cycle apparatus and method for controlling refrigeration cycle apparatus
WO2012066763A1 (en) Freezer
WO2015071967A1 (en) Refrigeration system
US20230135967A1 (en) Refrigeration device
JP5908183B1 (en) Air conditioner
JP2013015264A (en) Air conditioner
TW200516222A (en) Refrigeration system using non-azeotropic refrigerants and non-azeotropic refrigerants for ultra low temperature to be used in said refrigeration system
WO2014199445A1 (en) Refrigerating device
JP5506638B2 (en) Refrigeration equipment
KR102504975B1 (en) Refrigeration system and method
CN110023684B (en) Method for determining pipe diameter, device for determining pipe diameter, and refrigeration device
WO2023047440A1 (en) Air conditioner
JP6725639B2 (en) Refrigeration cycle equipment
CN115181547B (en) Refrigerant, preparation method thereof and refrigeration system
CN114207080A (en) Non-azeotropic mixed refrigerant and refrigeration equipment using non-azeotropic mixed refrigerant
CN114207363A (en) Refrigeration system using non-azeotropic refrigerant mixture
EP3642541A1 (en) Refrigeration systems and methods
CN115584241A (en) Mixed refrigerant, refrigerating system and refrigerator
JP2021025700A (en) Air conditioner
Maogang et al. Available energy analysis of new tandem double-capillary tube refrigeration system for refrigerator-freezers
Kreveld Maintaining your cool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21838192

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021838192

Country of ref document: EP

Effective date: 20230206