WO2015140871A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2015140871A1
WO2015140871A1 PCT/JP2014/057029 JP2014057029W WO2015140871A1 WO 2015140871 A1 WO2015140871 A1 WO 2015140871A1 JP 2014057029 W JP2014057029 W JP 2014057029W WO 2015140871 A1 WO2015140871 A1 WO 2015140871A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
refrigeration cycle
refrigerant
cycle apparatus
disproportionation reaction
Prior art date
Application number
PCT/JP2014/057029
Other languages
French (fr)
Japanese (ja)
Inventor
拓也 伊藤
靖 大越
Original Assignee
三菱電機株式会社
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 旭硝子株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2014/057029 priority Critical patent/WO2015140871A1/en
Priority to JP2016508331A priority patent/JP6289611B2/en
Publication of WO2015140871A1 publication Critical patent/WO2015140871A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/195Pressures of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser

Definitions

  • the present invention relates to a refrigeration cycle apparatus that enables safe operation even when a working refrigerant whose main component is a refrigerant having a property of causing a disproportionation reaction is used.
  • HFO-1123 (CF 2 ⁇ CHF; 1, 1, 2 trifluoroethene (ethylene)), which is a kind of HFO refrigerant.
  • a refrigerant containing HFO-1123 “a heat cycle system in which the refrigerant contains HFO-1123 in a refrigerant circuit in which a compressor for circulating the refrigerant, a condenser, an expansion valve, and an evaporator are sequentially connected by piping” has been proposed (see, for example, Patent Document 1).
  • HFO-1123 has a property of causing a reaction called a disproportionation reaction (autolysis reaction).
  • the disproportionation reaction generates heat and HF (hydrogen fluoride) as shown in the following reaction formula.
  • CF 2 CHF ⁇ 1 / 2CF 4 + 3 / 2C + HF + 44.7 kcal / mol
  • the high pressure detection is aimed at protecting the compressor and protecting the refrigerant circuit from damage due to a rise in pressure in the refrigerant circuit.
  • a pressure sensor is provided.
  • HFO-1123 in order to suppress the disproportionation reaction, it is also necessary to suppress an increase in pressure at the place where the refrigerant liquid at the outlet of the condenser stays.
  • the present invention has been made to solve the above-described problems. Even when HFO-1123 is used, the HFO-1123 is unevenly distributed based on the pressure at the discharge pipe of the compressor and the outlet of the condenser. It aims at providing the refrigerating-cycle apparatus which can suppress the increase in the cost of a product and can suppress the increase in the weight of a product by controlling within the pressure range which does not react.
  • the refrigeration cycle apparatus has a refrigerant circuit in which at least a compressor, a condenser, an expansion valve, and an evaporator are sequentially connected by piping, and the refrigerant circuit is filled with a refrigerant containing HFO-1123.
  • the compressor When the compressor is started up, the refrigerant discharge rate determined by the refrigerant discharge gas temperature discharged from the compressor and the refrigerant outlet temperature of the refrigerant flowing out of the condenser is determined.
  • the rotation speed of the compressor is suppressed based on the leveling reaction pressure value.
  • the rotation speed of the compressor is suppressed based on the disproportionation reaction pressure value, the pressure is suppressed within a range in which the disproportionation reaction of HFO-1123 does not propagate. Is possible.
  • FIG. 1 is a schematic configuration diagram showing an example of a refrigerant circuit configuration of a refrigeration cycle apparatus (hereinafter referred to as refrigeration cycle apparatus 100A) according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart showing the flow of the disproportionation reaction suppression control process executed by the refrigeration cycle apparatus 100A.
  • FIG. 3 is a graph showing the pressure value at which the disproportionation reaction of HFO-1123 occurs.
  • the refrigeration cycle apparatus 100A will be described with reference to FIGS.
  • a working refrigerant whose main component is a refrigerant having a property of causing a disproportionation reaction is filled in a refrigerant circuit.
  • a working refrigerant mainly composed of a refrigerant having a property of causing a disproportionation reaction a single refrigerant of HFO-1123, a mixed refrigerant of HFO-1123 and R32, or a mixed refrigerant of HFO-1123 and HFO-1234yf Can be considered.
  • the content of R32 and HFO-1234yf is in the range of 20 to 50% by mass.
  • the content of HFO-1123 should not exceed mass%.
  • the refrigeration cycle apparatus 100A includes a compressor 1 for compressing refrigerant, a four-way valve 2 as refrigerant circuit switching means for switching refrigerant flow paths, a first heat exchanger 3 for exchanging heat with refrigerant and a heat medium such as air or water, It has an expansion valve 4 (an example of a pressure reducing mechanism) that controls the flow rate of the refrigerant, and a second heat exchanger 5 that exchanges heat between the refrigerant and a heat medium such as air or water.
  • the compressor 1, the four-way valve 2, the first heat exchanger 3, the expansion valve 4, and the second heat exchanger 5 are connected by a refrigerant pipe 30 to constitute a refrigerant circuit.
  • an inverter compressor of a type in which the number of revolutions is controlled by an inverter circuit and the capacity is controlled is used, and the number of revolutions can be controlled.
  • the inverter compressor include a rotary compressor, a scroll compressor, a screw compressor, and a reciprocating compressor.
  • the four-way valve 2 switches the refrigerant flow path according to a cooling / heating supply mode (for example, cooling operation mode) and a heating / heating supply mode (for example, heating operation mode).
  • the four-way valve 2 will be described as an example of the refrigerant circuit switching means.
  • the refrigerant circuit switching means may be configured by combining two refrigerant valves, for example, two two-way valves or three-way valves. Good.
  • the case where the four-way valve 2 is provided is shown as an example, when the refrigerant circuit configuration in which the refrigerant flow path is not switched is adopted as the refrigeration cycle apparatus 100A, it is not necessary to provide the refrigerant circuit switching means.
  • the first heat exchanger 3 functions as a condenser or an evaporator, and is configured in a format corresponding to a heat medium to exchange heat.
  • the first heat exchanger 3 can be configured by a cross fin type fin-and-tube heat exchanger.
  • the first heat exchanger 3 when exchanging heat with water, brine, or the like, includes a microchannel heat exchanger, a shell and tube heat exchanger, a heat pipe heat exchanger, and a double pipe heat exchanger. It can be constituted by a plate heat exchanger or the like.
  • the expansion valve 4 can adjust the refrigerant flow rate.
  • the expansion valve 4 having a structure with a variable throttle opening is described as an example.
  • the present invention is not limited to this, and a mechanical expansion valve that employs a diaphragm as a pressure receiving portion.
  • the pressure reducing mechanism may be constituted by a capillary tube.
  • the second heat exchanger 5 functions as an evaporator or a condenser, and is configured in a format corresponding to the heat medium to be heat exchanged.
  • the second heat exchanger 5 can be configured by a cross fin type fin-and-tube heat exchanger.
  • the second heat exchanger 5 includes a microchannel heat exchanger, a shell and tube heat exchanger, a heat pipe heat exchanger, and a double pipe heat exchange. And a plate heat exchanger.
  • the refrigeration cycle apparatus 100A has a discharge pressure sensor 10, a discharge temperature sensor 11, a condenser outlet pressure sensor 12, a condenser outlet temperature sensor 13, and a control device 20.
  • the discharge pressure sensor 10 is installed on the discharge side of the compressor 1 and measures the discharge gas pressure of the refrigerant discharged from the compressor 1.
  • the discharge temperature sensor 11 is installed on the discharge side of the compressor 1 and measures the discharge gas temperature of the refrigerant discharged from the compressor 1.
  • the condenser outlet pressure sensor 12 is installed between the first heat exchanger 3 and the expansion valve 4, and the refrigerant that has flowed out of the first heat exchanger 3 when the first heat exchanger 3 functions as a condenser. Measure the outlet pressure of the condenser.
  • the condenser outlet temperature sensor 13 is installed between the first heat exchanger 3 and the expansion valve 4, and the refrigerant that has flowed out of the first heat exchanger 3 when the first heat exchanger 3 functions as a condenser. Measure the outlet temperature of the condenser.
  • the control device 20 performs overall control of the entire refrigeration cycle apparatus 100A. Based on the measured values from the detectors (discharge pressure sensor 10, discharge temperature sensor 11, condenser outlet pressure sensor 12, condenser outlet temperature sensor 13), the control device 20 controls each actuator (compressor 1, four-way valve 2). , Drive parts such as the expansion valve 4 are controlled.
  • the control device 20 can be configured by hardware such as a circuit device that realizes the function, or can be configured by an arithmetic device such as a microcomputer or a CPU and software executed thereon.
  • the four-way valve 2 in the cooling / heating mode for supplying cooling from the second heat exchanger 5 (for example, cooling operation), the four-way valve 2 becomes a solid flow path, and the heating / heating supply mode for supplying warm from the second heat exchanger 5. In (for example, heating operation), the four-way valve 2 is switched to a dotted flow path. Therefore, in the cold supply mode, the compressor 1, the four-way valve 2, the first heat exchanger 3, the expansion valve 4, the second heat exchanger 5, and the compressor 1 are connected in an annular shape in this order. In the warm heat supply mode, the compressor 1, the four-way valve 2, the second heat exchanger 5, the expansion valve 4, the first heat exchanger 3, and the compressor 1 are annularly connected in this order.
  • the first heat exchanger 3 functions as a condenser
  • the second heat exchanger 5 functions as an evaporator.
  • the first heat exchanger 3 functions as an evaporator
  • the second heat exchanger 5 functions as a condenser.
  • HFO-1123 1, 1, 2 trifluoroethylene (HFO-1123) having a low GWP and a high operating pressure is used as a main component.
  • HFO-1123 undergoes a disproportionation reaction in which a substance (HF) having heat and toxicity is generated.
  • CF 2 CHF ⁇ 1 / 2CF 4 + 3 / 2C + HF + 44.7 kcal / mol
  • the refrigeration cycle apparatus 100A when the compressor 1 is started, a judgment value for the pressure value for each temperature at which the disproportionation reaction of HFO-1123 occurs is mounted in advance in the program of the control apparatus 20, and the discharge gas temperature The value of the disproportionation reaction pressure obtained from the condenser outlet temperature (hereinafter referred to as the disproportionation reaction pressure value) is calculated.
  • disproportionation reaction suppression control is performed to suppress an increase in the rotational speed of the compressor 1 so as not to exceed the disproportionation reaction pressure value.
  • the increase in the frequency of the compressor 1 is stopped, and when there is no decrease in the pressure after a certain time, control is performed to decrease the rotation speed of the compressor 1.
  • This control is performed at both the discharge part of the compressor 1 and the outlet part of the first heat exchanger 3 that functions as a condenser.
  • the controller 20 incorporates in advance a rotation speed increase pattern at the time of starting the compressor 1 as shown in FIG. 6 so that the discharge gas pressure or the condenser outlet pressure before the compressor 1 is started.
  • the startup pattern of the compressor 1 may be determined. Note that FIG. 6 will be described in Embodiment 2.
  • the control device 20 detects the discharge gas pressure P1 and the discharge gas temperature T1 from the pressure value measured by the discharge pressure sensor 10 and the temperature value measured by the discharge temperature sensor 11. (Step S101). Subsequently, the control device 20 detects the condenser outlet pressure P2 and the condenser outlet temperature T2 from the pressure value measured by the condenser outlet pressure sensor 12 and the temperature value measured by the condenser outlet temperature sensor 13 ( Step S102).
  • the control device 20 determines whether or not the discharge gas pressure P1 is larger than the lower limit value of the disproportionation reaction pressure value obtained from the discharge gas temperature T1 and the condenser outlet temperature T2 (step S103). When it is determined that the discharge gas pressure P1 is equal to or lower than the lower limit value of the disproportionation reaction pressure value (step S103; N), the control device 20 determines whether the condenser outlet pressure P2 is larger than the lower limit value of the disproportionation reaction pressure value. Is determined (step S104).
  • step S104 When it is determined that the condenser outlet pressure P2 is equal to or lower than the lower limit value of the disproportionation reaction pressure value (step S104; N), the control device 20 causes the HFO-1123 to disproportionate even when the compressor 1 is started. Therefore, the compressor 1 is controlled normally, and the process returns to step S101.
  • step S103 When it is determined that the discharge gas pressure P1 is larger than the lower limit value of the disproportionation reaction pressure value (step S103; Y), or when it is determined that the condenser outlet pressure P2 is larger than the lower limit value of the disproportionation reaction pressure value ( In step S104; Y), the control device 20 sets the increase amount of the rotation speed of the compressor 1 to 0 (step S105). In these cases, the control device 20 determines that there is a possibility that the HFO-1123 becomes equal to or higher than the disproportionation reaction pressure value at the time of starting the compressor 1, and controls to suppress an increase in the rotational speed of the compressor 1. To do.
  • the control device 20 determines whether or not a predetermined pressure decrease standby time has elapsed (step S106). If it is determined that the pressure drop standby time has not elapsed (step S106; N), the control device 20 returns to step S105 and keeps the increase amount of the rotation speed of the compressor 1 at zero.
  • the pressure drop standby time may be determined in advance according to the discharge gas pressure P1 and the condenser outlet pressure P2, and is not fixed uniformly.
  • step S106 determines that both the discharge gas pressure P1 and the condenser outlet pressure P2 are lower than the lower limit value of the disproportionation reaction pressure value. It is determined whether it is larger (step S107). Then, when it is determined that the discharge gas pressure P1 and the condenser outlet pressure P2 are larger than the lower limit value of the disproportionation reaction pressure value (step S107; Y), the control device 20 is still in the start-up of the compressor 1. It is determined that there is a possibility that HFO-1123 becomes equal to or higher than the disproportionation reaction pressure value, and control is performed to reduce the rotational speed of the compressor 1 (step S108).
  • step S107 when it is determined that the discharge gas pressure P1 and the condenser outlet pressure P2 are equal to or less than the disproportionation reaction pressure value (step S107; N), the control device 20 causes the HFO-1123 to disproportionate even when the compressor 1 is started. It is determined that the conversion reaction will not occur, the compressor 1 is normally controlled, and the process returns to step S101.
  • the refrigeration cycle apparatus 100A when the compressor 1 is started, the disproportionation reaction is suppressed so that the increase in the rotation speed of the compressor 1 is suppressed so as not to exceed the disproportionation reaction pressure value of HFO-1123. Take control. Therefore, according to the refrigeration cycle apparatus 100A, even when HFO-1123 is used, the refrigerant circuit is within a pressure range in which HFO-1123 does not disproportionately react based on the discharge gas pressure of the compressor 1 and the condenser outlet pressure. It becomes possible to control the pressure. Further, according to the refrigeration cycle apparatus 100A, it is possible to accurately suppress the disproportionation reaction of HFO-1123 by detecting the condenser outlet pressure.
  • the refrigeration cycle apparatus 100A can effectively utilize the pressure range in which the disproportionation reaction can be suppressed, even if a mixed refrigerant is used as the working refrigerant, the ratio of refrigerants other than HFO-1123 can be reduced. Therefore, according to the refrigeration cycle apparatus 100A, the mixing ratio of refrigerants other than HFO-1123 to be mixed can be minimized, an increase in product cost can be suppressed, and an increase in product weight (an increase in unit size). ) Can be suppressed.
  • FIG. FIG. 4 is a schematic configuration diagram showing an example of a refrigerant circuit configuration of a refrigeration cycle apparatus (hereinafter referred to as refrigeration cycle apparatus 100B) according to Embodiment 2 of the present invention.
  • FIG. 5 is a flowchart showing the flow of the disproportionation reaction suppression control process executed by the refrigeration cycle apparatus 100B.
  • FIG. 6 is a graph showing a startup pattern of the compressor 1 installed in the program of the control device 20 of the refrigeration cycle apparatus 100B.
  • the refrigeration cycle apparatus 100B will be described with reference to FIGS.
  • differences from the first embodiment will be mainly described, and the same parts as those in the first embodiment will be denoted by the same reference numerals and description thereof will be omitted.
  • the refrigeration cycle apparatus 100B includes an outside air temperature sensor 14 and a water outlet temperature sensor 15 in addition to the configuration of the refrigeration cycle apparatus 100A according to the first embodiment.
  • the outside air temperature sensor 14 is installed in the vicinity of the first heat exchanger 3 and measures the temperature of the outside air.
  • the water outlet temperature sensor 15 is installed at the water-side outlet of the second heat exchanger 5 and measures the temperature of the water that has flowed out of the second heat exchanger 5. That is, in the refrigeration cycle apparatus 100 ⁇ / b> B, the refrigerant and water (may be brine) are heat-exchanged by the second heat exchanger 5.
  • disproportionation reaction suppression control is executed in the same manner as the refrigeration cycle apparatus 100A according to the first embodiment.
  • the high pressure is assumed to be approximately the outside air temperature in the cooling operation. Therefore, in the refrigeration cycle apparatus 100B, the pressure after starting the compressor 1 is estimated from the outside air temperature before starting the compressor 1, and when the outside air temperature is high, the discharge gas pressure and the condenser outlet pressure are disproportionated.
  • Disproportionation reaction suppression control is performed to reduce the amount of increase in the rotational speed when the compressor 1 is started so that the generated pressure does not occur.
  • the control apparatus 20 determines whether or not the outside air temperature measured by the outside air temperature sensor 14 is larger than a predetermined determination value A (step S201). When it is determined that the outside air temperature is higher than the determination value A (step S201; Y), the control device 20 starts the compressor 1 with the start pattern A (step S202). In this case, the control device 20 determines that there is a possibility that the HFO-1123 becomes equal to or higher than the disproportionation reaction pressure value when the compressor 1 is started, and performs control to suppress an increase in the rotational speed of the compressor 1. Do.
  • the control device 20 determines whether or not the outside air temperature measured by the outside air temperature sensor 14 is larger than a predetermined determination value B. (Step S203). When it is determined that the outside air temperature is higher than the determination value B (step S203; Y), the control device 20 starts the compressor 1 with the start pattern B (step S204). In this case, the control device 20 determines that the HFO-1123 may be equal to or higher than the disproportionation reaction pressure value when the compressor 1 is started, although it is smaller than that in the start pattern A. Control is performed to suppress an increase in the rotational speed.
  • the determination value A is a temperature higher than the determination value B.
  • step S203 When it is determined that the outside air temperature is equal to or lower than the determination value B (step S203; N), the control device 20 starts the compressor 1 with the start pattern C (step S205). In this case, the control device 20 determines that the HFO-1123 does not cause a disproportionation reaction even when the compressor 1 is started up, increases the rotation speed of the compressor 1, and returns to step S201.
  • the startup pattern of the compressor 1 is determined based on the water outlet temperature before the startup of the compressor 1 (see FIG. 6). Specifically, in the refrigeration cycle apparatus 100B, the pressure after startup of the compressor 1 is estimated from the water outlet temperature before startup of the compressor 1, and when the water outlet temperature is high, the discharge gas pressure and the condenser outlet pressure Is controlled so as to reduce the amount of increase in the rotational speed at the start of the compressor 1 so that the pressure does not become the disproportionation reaction generation pressure.
  • the control device 20 determines the start pattern A from FIG. In this case, the control device 20 determines that there is a possibility that the HFO-1123 becomes equal to or higher than the disproportionation reaction pressure value when the compressor 1 is started, and performs control to suppress an increase in the rotational speed of the compressor 1. Do.
  • control device 20 determines the activation pattern B from FIG. 6 when the water outlet temperature is equal to or lower than the determination value A1 and greater than the predetermined determination value B1 before the compressor 1 is started. In this case, the control device 20 determines that the HFO-1123 may be equal to or higher than the disproportionation reaction pressure value when the compressor 1 is started, although it is smaller than that in the start pattern A. Control is performed to suppress an increase in the rotational speed.
  • the determination value A1 is a temperature higher than the determination value B1.
  • control apparatus 20 determines the starting pattern C from FIG. 6, when water outlet temperature is below the determination value B1 before the starting of the compressor 1.
  • the control device 20 determines that the HFO-1123 does not cause a disproportionation reaction even when the compressor 1 is started up, and increases the rotational speed of the compressor 1.
  • the refrigeration cycle apparatus 100B when the compressor 1 is started, the disproportionation reaction is suppressed so that the increase in the rotational speed of the compressor 1 is suppressed so as not to exceed the disproportionation reaction pressure value of HFO-1123. Take control. Therefore, according to the refrigeration cycle apparatus 100B, even when HFO-1123 is used, the pressure in the refrigerant circuit can be controlled within a pressure range in which HFO-1123 does not disproportionate based on the outside air temperature. . Further, according to the refrigeration cycle apparatus 100B, it is possible to accurately suppress the disproportionation reaction of HFO-1123 by detecting the water outlet temperature during the heating operation.
  • the disproportionation reaction suppression control in the refrigeration cycle apparatus 100A according to Embodiment 1 is incorporated, the disproportionation reaction of HFO-1123 can be suppressed with higher accuracy. . If it does in this way, it will become possible to exhibit the effect which 100A of refrigerating cycle devices concerning Embodiment 1 show similarly.
  • ⁇ Modification of refrigeration cycle apparatus 100B> The pressure at which the disproportionation reaction occurs is different between the case of using HF0-1123 alone and the case of a mixed refrigerant such as HFO-1234yf. Therefore, the outside air temperature that determines the startup pattern of the compressor 1 can be set by the control device 20, and the startup pattern can be changed between when the HFO-1123 is used alone and when the refrigerant is mixed with HFO-1234yf or the like. Like that.
  • FIG. 7 is a graph showing the disproportionation reaction region in the case of using HFO-1123 alone and in the case of a mixed refrigerant of HFO-1123 and HFO1234yf. From FIG. 7, it can be seen that the pressure at which the disproportionation reaction occurs is different between the case of using HF0-1123 alone and the case of the mixed refrigerant with HFO-1234yf or the like. Therefore, in the refrigeration cycle apparatus 100B, the start pattern of the compressor 1 is changed depending on whether the working refrigerant is HFO-1123 used alone or a mixed refrigerant of HFO-1123 and another refrigerant. Is possible. This content can also be applied to the refrigeration cycle apparatus 100A according to the first embodiment.
  • FIG. FIG. 8 is a flowchart showing the flow of the disproportionation reaction suppression control process executed by the refrigeration cycle apparatus according to Embodiment 3 of the present invention (hereinafter referred to as refrigeration cycle apparatus 100C, although not shown).
  • the refrigeration cycle apparatus 100C will be described based on FIG. In the third embodiment, differences from the first and second embodiments will be mainly described, and the same parts as those in the first and second embodiments will be denoted by the same reference numerals and the description thereof will be omitted.
  • the refrigerant circuit configuration of the refrigeration cycle apparatus 100C is the same as that of the refrigeration cycle apparatus 100A according to Embodiment 1.
  • the disproportionation reaction suppression control is executed in the same manner as the refrigeration cycle apparatus 100A according to the first embodiment. Specifically, in the refrigeration cycle apparatus 100 ⁇ / b> C, when the temperature and pressure are reached after the start of the compressor 1, the compressor 1 is stopped once and the expansion valve 4 is opened. By doing so, in the refrigeration cycle apparatus 100C, the pressure of the refrigerant in the refrigerant circuit is reduced, and the discharge gas pressure and the condenser outlet pressure of the compressor 1 are reduced. Thereafter, the refrigeration cycle apparatus 100 ⁇ / b> C restarts the compressor 1.
  • the control device 20 detects the discharge gas pressure P1 and the discharge gas temperature T1 from the pressure value measured by the discharge pressure sensor 10 and the temperature value measured by the discharge temperature sensor 11. (Step S301). Subsequently, the control device 20 detects the condenser outlet pressure P2 and the condenser outlet temperature T2 from the pressure value measured by the condenser outlet pressure sensor 12 and the temperature value measured by the condenser outlet temperature sensor 13 ( Step S302).
  • the control device 20 determines whether or not the discharge gas pressure P1 is larger than the lower limit value of the disproportionation reaction pressure value obtained from the discharge gas temperature T1 and the condenser outlet temperature T2 (step S303). When determining that the discharge gas pressure P1 is equal to or lower than the lower limit value of the disproportionation reaction pressure value (step S303; N), the control device 20 determines whether the condenser outlet pressure P2 is larger than the lower limit value of the disproportionation reaction pressure value. Is determined (step S304). When it is determined that the condenser outlet pressure P2 is equal to or lower than the lower limit value of the disproportionation reaction pressure value (step S304; N), the control device 20 causes the HFO-1123 to disproportionate even after the compressor 1 is started. Therefore, the compressor 1 is controlled normally, and the process returns to step S301.
  • step S303; Y When it is determined that the discharge gas pressure P1 is larger than the lower limit value of the disproportionation reaction pressure value (step S303; Y), or when it is determined that the condenser outlet pressure P2 is larger than the lower limit value of the disproportionation reaction pressure value ( In step S304; Y), the control device 20 stops the compressor 1 and opens the expansion valve 4 (step S305). In these cases, the control device 20 determines that there is a possibility that the HFO-1123 becomes equal to or higher than the disproportionation reaction pressure value after starting the compressor 1, stops the compressor 1, and opens the expansion valve 4. Control to do.
  • the control device 20 determines whether or not the pressure of the refrigerant in the refrigerant circuit has decreased below a predetermined pressure value (step S306). If it is determined that the pressure has not decreased (step S306; N), the control device 20 returns to step S305, and continues to stop the compressor 1 and open the expansion valve 4.
  • the predetermined pressure value may be determined as a pressure at which the refrigerant pressure in the refrigerant circuit does not cause a disproportionation reaction, and is not uniformly determined.
  • step S306 When it is determined that the pressure has decreased (step S306; Y), the control device 20 restarts the compressor 1 (step S307). That is, the controller 20 determines that the HFO-1123 does not cause a disproportionation reaction even after the compressor 1 is started up, controls the compressor 1 normally, and returns to step S101.
  • the refrigeration cycle apparatus 100C can effectively utilize the pressure range in which the disproportionation reaction can be suppressed, even if a mixed refrigerant is used as the working refrigerant, the ratio of refrigerants other than HFO-1123 can be reduced. Therefore, according to the refrigeration cycle apparatus 100C, the ratio of the refrigerant other than HFO-1123 to be mixed can be minimized, the increase in product cost can be suppressed, and the product weight can be increased (unit size increased). Can also be suppressed.
  • the refrigeration cycle apparatus has been described by dividing it into three embodiments.
  • the present invention is not limited thereto, and various modifications or changes can be made without departing from the scope and spirit of the present invention.
  • the refrigeration cycle apparatus described in each embodiment is applied to an apparatus equipped with a refrigeration cycle, such as an air conditioner (for example, a refrigeration apparatus, a room air conditioner, a packaged air conditioner, a multi air conditioner for buildings), a heat pump water heater, and the like. Can be used.
  • a refrigeration cycle such as an air conditioner (for example, a refrigeration apparatus, a room air conditioner, a packaged air conditioner, a multi air conditioner for buildings), a heat pump water heater, and the like. Can be used.

Abstract

A refrigeration cycle device (100A) wherein, when a compressor (1) is started, a control device (20) restricts the rotational frequency of the compressor (1) on the basis of a disproportionation reaction pressure value obtained from the discharge gas temperature of a refrigerant discharged from the compressor (1) and the condenser outlet temperature of the refrigerant discharged from a first heat exchanger (3) functioning as a condenser.

Description

冷凍サイクル装置Refrigeration cycle equipment
 本発明は、不均化反応を起こす性質を有する冷媒を主成分とした作動冷媒を使用する場合であっても安全な運転を可能とした冷凍サイクル装置に関するものである。 The present invention relates to a refrigeration cycle apparatus that enables safe operation even when a working refrigerant whose main component is a refrigerant having a property of causing a disproportionation reaction is used.
 近年、地球温暖化の観点から、低GWP冷媒の開発が進んでいる状況である。低GWP冷媒の候補として、HFO冷媒の一種であるHFO-1123(CF=CHF;1、1、2トリフルオロエテン(エチレン))が知られている。HFO-1123を含む冷媒を使用したものとして、「冷媒を循環させる圧縮機、凝縮器、膨張弁、蒸発器を順次配管で接続した冷媒回路にて、冷媒がHFO-1123を含む熱サイクルシステム」が提案されている(例えば、特許文献1参照)。 In recent years, from the viewpoint of global warming, the development of low GWP refrigerant is progressing. As a candidate for a low GWP refrigerant, HFO-1123 (CF 2 ═CHF; 1, 1, 2 trifluoroethene (ethylene)), which is a kind of HFO refrigerant, is known. Assuming that a refrigerant containing HFO-1123 is used, “a heat cycle system in which the refrigerant contains HFO-1123 in a refrigerant circuit in which a compressor for circulating the refrigerant, a condenser, an expansion valve, and an evaporator are sequentially connected by piping” Has been proposed (see, for example, Patent Document 1).
WO2012/157764号公報(第12-13頁、第1図)WO2012 / 157774 (pages 12-13, FIG. 1)
 ただし、HFO-1123は、不均化反応(自己分解反応)と呼ばれる反応を起こすという性質を有している。不均化反応により、以下の反応式のように熱とHF(フッ化水素)が生じる。
 CF=CHF→1/2CF+3/2C+HF+44.7kcal/mol
However, HFO-1123 has a property of causing a reaction called a disproportionation reaction (autolysis reaction). The disproportionation reaction generates heat and HF (hydrogen fluoride) as shown in the following reaction formula.
CF 2 = CHF → 1 / 2CF 4 + 3 / 2C + HF + 44.7 kcal / mol
 HFO-1123を含む冷媒を使用した熱サイクルシステムでは、不均化反応により、高温高圧の状態でエネルギーが投入されると発熱を伴う化学反応が進行し、急激な温度上昇に伴う急激な圧力上昇が発生し、爆発等の危険性を有するという問題があった。なお、HFO-1123は、急激なエネルギーが与えられた場合に不均化反応が発生するが、発生後周囲に伝搬するかどうかはガスの圧力に依存する。 In a heat cycle system using a refrigerant containing HFO-1123, a chemical reaction accompanied by heat generation proceeds when energy is input in a high temperature and high pressure state due to a disproportionation reaction, and a rapid pressure rise accompanying a sudden temperature rise Occurred, and there was a problem of danger of explosion. HFO-1123 undergoes a disproportionation reaction when abrupt energy is applied, but whether it propagates to the surroundings after generation depends on the gas pressure.
 また、HFO-1123を使用する場合において、不均化反応が発生しない領域を拡大させるには、HFO1234yf等の冷媒を混入する必要がある。しかしながら、密度の小さい冷媒をHFO-1123に混合させると、単位能力あたりの冷凍サイクル装置のサイズが大きくなり、製品のコストが大きくなることが課題となってしまう。 Further, when using HFO-1123, it is necessary to mix a refrigerant such as HFO1234yf in order to expand the region where the disproportionation reaction does not occur. However, when a refrigerant having a low density is mixed with HFO-1123, the size of the refrigeration cycle apparatus per unit capacity increases, resulting in an increase in product cost.
 また、従来の冷凍サイクル装置では、高圧圧力検知が圧縮機保護、冷媒回路の圧力上昇による破損保護を目的にしているため、冷凍サイクルにおいて圧力が最も高く、圧縮機に近い圧縮機吐出配管部に圧力センサーを設けている。しかしながら、HFO-1123を使用する場合において、不均化反応を抑制するには凝縮器出口の冷媒液が滞留している場所の圧力上昇も抑制する必要がある。 Moreover, in the conventional refrigeration cycle apparatus, the high pressure detection is aimed at protecting the compressor and protecting the refrigerant circuit from damage due to a rise in pressure in the refrigerant circuit. A pressure sensor is provided. However, when using HFO-1123, in order to suppress the disproportionation reaction, it is also necessary to suppress an increase in pressure at the place where the refrigerant liquid at the outlet of the condenser stays.
 本発明は、上記のような課題を解決するためになされたもので、HFO-1123を使用する場合においても、圧縮機の吐出配管部および凝縮器出口の圧力に基づいてHFO-1123が不均化反応しない圧力範囲内で制御することで、製品のコストの増加を抑制でき、製品の重量の増加を抑制することができる冷凍サイクル装置を提供することを目的とする。 The present invention has been made to solve the above-described problems. Even when HFO-1123 is used, the HFO-1123 is unevenly distributed based on the pressure at the discharge pipe of the compressor and the outlet of the condenser. It aims at providing the refrigerating-cycle apparatus which can suppress the increase in the cost of a product and can suppress the increase in the weight of a product by controlling within the pressure range which does not react.
 本発明に係る冷凍サイクル装置は、少なくとも圧縮機、凝縮器、膨張弁、蒸発器を順次配管で接続した冷媒回路を有し、前記冷媒回路にHFO-1123を含む冷媒が充填された冷凍サイクル装置であって、前記圧縮機の起動時において、前記圧縮機から吐出された前記冷媒の吐出ガス温度と、前記凝縮器から流出された前記冷媒の凝縮器出口温度と、から求められる前記冷媒の不均化反応圧力値に基づいて前記圧縮機の回転数抑制を行なうものである。 The refrigeration cycle apparatus according to the present invention has a refrigerant circuit in which at least a compressor, a condenser, an expansion valve, and an evaporator are sequentially connected by piping, and the refrigerant circuit is filled with a refrigerant containing HFO-1123. When the compressor is started up, the refrigerant discharge rate determined by the refrigerant discharge gas temperature discharged from the compressor and the refrigerant outlet temperature of the refrigerant flowing out of the condenser is determined. The rotation speed of the compressor is suppressed based on the leveling reaction pressure value.
 本発明に係る冷凍サイクル装置によれば、不均化反応圧力値に基づいて前記圧縮機の回転数抑制を行なうので、HFO-1123の不均化反応が伝播しない範囲での圧力に抑制することが可能となる。 According to the refrigeration cycle apparatus according to the present invention, since the rotation speed of the compressor is suppressed based on the disproportionation reaction pressure value, the pressure is suppressed within a range in which the disproportionation reaction of HFO-1123 does not propagate. Is possible.
本発明の実施の形態1に係る冷凍サイクル装置の冷媒回路構成の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the refrigerant circuit structure of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置が実行する不均化反応抑制制御処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the disproportionation reaction suppression control process which the refrigeration cycle apparatus which concerns on Embodiment 1 of this invention performs. HFO-1123の不均化反応が発生する圧力値を示すグラフである。It is a graph which shows the pressure value which disproportionation reaction of HFO-1123 generate | occur | produces. 本発明の実施の形態2に係る冷凍サイクル装置の冷媒回路構成の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the refrigerant circuit structure of the refrigerating-cycle apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る冷凍サイクル装置が実行する不均化反応抑制制御処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the disproportionation reaction suppression control process which the refrigeration cycle apparatus which concerns on Embodiment 2 of this invention performs. 本発明の実施の形態2に係る冷凍サイクル装置の制御装置のプログラムに搭載する圧縮機の起動パターンを示すグラフである。It is a graph which shows the starting pattern of the compressor mounted in the program of the control apparatus of the refrigerating-cycle apparatus which concerns on Embodiment 2 of this invention. HFO-1123単独使用の場合と、HFO-1123とHFO1234yfの混合冷媒の場合と、での不均化反応領域を示すグラフである。5 is a graph showing disproportionation reaction regions in the case of using HFO-1123 alone and in the case of a mixed refrigerant of HFO-1123 and HFO1234yf. 本発明の実施の形態3に係る冷凍サイクル装置が実行する不均化反応抑制制御処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the disproportionation reaction suppression control process which the refrigeration cycle apparatus which concerns on Embodiment 3 of this invention performs.
 以下、図面を適宜参照しながら本発明の実施の形態について説明する。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、図1を含め、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。さらに、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、これらの記載に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings as appropriate. In addition, in the following drawings including FIG. 1, the relationship of the size of each component may be different from the actual one. Further, in the following drawings including FIG. 1, the same reference numerals denote the same or equivalent parts, and this is common throughout the entire specification. Furthermore, the forms of the constituent elements shown in the entire specification are merely examples, and are not limited to these descriptions.
実施の形態1.
 図1は、本発明の実施の形態1に係る冷凍サイクル装置(以下、冷凍サイクル装置100Aと称する)の冷媒回路構成の一例を示す概略構成図である。図2は、冷凍サイクル装置100Aが実行する不均化反応抑制制御処理の流れを示すフローチャートである。図3は、HFO-1123の不均化反応が発生する圧力値を示すグラフである。図1~図3に基づいて、冷凍サイクル装置100Aについて説明する。
Embodiment 1 FIG.
FIG. 1 is a schematic configuration diagram showing an example of a refrigerant circuit configuration of a refrigeration cycle apparatus (hereinafter referred to as refrigeration cycle apparatus 100A) according to Embodiment 1 of the present invention. FIG. 2 is a flowchart showing the flow of the disproportionation reaction suppression control process executed by the refrigeration cycle apparatus 100A. FIG. 3 is a graph showing the pressure value at which the disproportionation reaction of HFO-1123 occurs. The refrigeration cycle apparatus 100A will be described with reference to FIGS.
 冷凍サイクル装置100Aは、不均化反応を起こす性質を有する冷媒を主成分とした作動冷媒が冷媒回路に充填されている。不均化反応を起こす性質を有する冷媒を主成分とした作動冷媒としては、HFO-1123の単体冷媒、HFO-1123とR32との混合冷媒、もしくは、HFO-1123とHFO-1234yfとの混合冷媒が考えられる。HFO-1123とR32との混合冷媒、もしくは、HFO-1123とHFO-1234yfとの混合冷媒を作動冷媒として使用する場合、R32、HFO-1234yfの含有量が20~50質量%の範囲内であるものとし、HFO-1123の含有量を質量%で超えないようにする。 In the refrigeration cycle apparatus 100A, a working refrigerant whose main component is a refrigerant having a property of causing a disproportionation reaction is filled in a refrigerant circuit. As a working refrigerant mainly composed of a refrigerant having a property of causing a disproportionation reaction, a single refrigerant of HFO-1123, a mixed refrigerant of HFO-1123 and R32, or a mixed refrigerant of HFO-1123 and HFO-1234yf Can be considered. When a mixed refrigerant of HFO-1123 and R32 or a mixed refrigerant of HFO-1123 and HFO-1234yf is used as a working refrigerant, the content of R32 and HFO-1234yf is in the range of 20 to 50% by mass. The content of HFO-1123 should not exceed mass%.
 冷凍サイクル装置100Aは、冷媒を圧縮する圧縮機1と、冷媒流路を切り替える冷媒回路切替手段としての四方弁2、冷媒と空気や水等の熱媒体で熱交換する第1熱交換器3、冷媒の流量を制御する膨張弁4(減圧機構の一例)、冷媒と空気や水等の熱媒体とで熱交換する第2熱交換器5を有している。そして、冷凍サイクル装置100Aでは、圧縮機1、四方弁2、第1熱交換器3、膨張弁4、第2熱交換器5が冷媒配管30で接続されて冷媒回路を構成している。 The refrigeration cycle apparatus 100A includes a compressor 1 for compressing refrigerant, a four-way valve 2 as refrigerant circuit switching means for switching refrigerant flow paths, a first heat exchanger 3 for exchanging heat with refrigerant and a heat medium such as air or water, It has an expansion valve 4 (an example of a pressure reducing mechanism) that controls the flow rate of the refrigerant, and a second heat exchanger 5 that exchanges heat between the refrigerant and a heat medium such as air or water. In the refrigeration cycle apparatus 100A, the compressor 1, the four-way valve 2, the first heat exchanger 3, the expansion valve 4, and the second heat exchanger 5 are connected by a refrigerant pipe 30 to constitute a refrigerant circuit.
 冷媒を圧縮する圧縮機1としては、インバータ回路により回転数が制御され容量制御されるタイプのインバータ圧縮機を用い、回転数制御を可能とする。インバータ圧縮機には、例えば、ロータリ圧縮機、スクロール圧縮機、スクリュー圧縮機、往復圧縮機等がある。 As the compressor 1 that compresses the refrigerant, an inverter compressor of a type in which the number of revolutions is controlled by an inverter circuit and the capacity is controlled is used, and the number of revolutions can be controlled. Examples of the inverter compressor include a rotary compressor, a scroll compressor, a screw compressor, and a reciprocating compressor.
 四方弁2は、冷熱供給モード(例えば、冷房運転モード)、温熱供給モード(例えば、暖房運転モード)に応じて、冷媒流路を切り替えるものである。
 なお、冷媒回路切替手段の一例として四方弁2を挙げて説明するが、冷媒回路を選択的に切り替えられるもの、例えば2つの二方弁又は三方弁を組み合わせて冷媒回路切替手段を構成してもよい。また、四方弁2を設けた場合を例に示すが、冷凍サイクル装置100Aとして冷媒流路を切り替えない冷媒回路構成を採用する場合には冷媒回路切替手段を設ける必要はない。
The four-way valve 2 switches the refrigerant flow path according to a cooling / heating supply mode (for example, cooling operation mode) and a heating / heating supply mode (for example, heating operation mode).
The four-way valve 2 will be described as an example of the refrigerant circuit switching means. However, the refrigerant circuit switching means may be configured by combining two refrigerant valves, for example, two two-way valves or three-way valves. Good. Moreover, although the case where the four-way valve 2 is provided is shown as an example, when the refrigerant circuit configuration in which the refrigerant flow path is not switched is adopted as the refrigeration cycle apparatus 100A, it is not necessary to provide the refrigerant circuit switching means.
 第1熱交換器3は、凝縮器又は蒸発器として機能し、熱交換する熱媒体に応じた形式で構成される。例えば、空気と熱交換する場合には、第1熱交換器3は、クロスフィン式のフィン・アンド・チューブ型熱交換器で構成することができる。また、水やブライン等と熱交換する場合には、第1熱交換器3は、マイクロチャネル熱交換器、シェルアンドチューブ式熱交換器、ヒートパイプ式熱交換器、二重管式熱交換器、プレート熱交換器等で構成することができる。 The first heat exchanger 3 functions as a condenser or an evaporator, and is configured in a format corresponding to a heat medium to exchange heat. For example, in the case of exchanging heat with air, the first heat exchanger 3 can be configured by a cross fin type fin-and-tube heat exchanger. In addition, when exchanging heat with water, brine, or the like, the first heat exchanger 3 includes a microchannel heat exchanger, a shell and tube heat exchanger, a heat pipe heat exchanger, and a double pipe heat exchanger. It can be constituted by a plate heat exchanger or the like.
 膨張弁4は、冷媒流量の調節等が行うことが可能なものである。なお、減圧機構の一例として、絞り開度が可変な構造である膨張弁4を例に挙げて説明しているが、これに限定するものではなく、受圧部にダイアフラムを採用した機械式膨張弁、または、キャピラリーチューブで減圧機構を構成してもよい。 The expansion valve 4 can adjust the refrigerant flow rate. As an example of the pressure reducing mechanism, the expansion valve 4 having a structure with a variable throttle opening is described as an example. However, the present invention is not limited to this, and a mechanical expansion valve that employs a diaphragm as a pressure receiving portion. Alternatively, the pressure reducing mechanism may be constituted by a capillary tube.
 第2熱交換器5は、蒸発器又は凝縮器として機能し、熱交換する熱媒体に応じた形式で構成される。例えば、空気と熱交換する場合には、第2熱交換器5は、クロスフィン式のフィン・アンド・チューブ型熱交換器で構成することができる。また、水やブライン等とで熱交換する場合には、第2熱交換器5は、マイクロチャネル熱交換器、シェルアンドチューブ式熱交換器、ヒートパイプ式熱交換器、二重管式熱交換器、プレート熱交換器等で構成することができる。 The second heat exchanger 5 functions as an evaporator or a condenser, and is configured in a format corresponding to the heat medium to be heat exchanged. For example, in the case of exchanging heat with air, the second heat exchanger 5 can be configured by a cross fin type fin-and-tube heat exchanger. When heat is exchanged with water or brine, the second heat exchanger 5 includes a microchannel heat exchanger, a shell and tube heat exchanger, a heat pipe heat exchanger, and a double pipe heat exchange. And a plate heat exchanger.
 また、冷凍サイクル装置100Aは、吐出圧力センサー10、吐出温度センサー11、凝縮器出口圧力センサー12、凝縮器出口温度センサー13、制御装置20を有している。 Further, the refrigeration cycle apparatus 100A has a discharge pressure sensor 10, a discharge temperature sensor 11, a condenser outlet pressure sensor 12, a condenser outlet temperature sensor 13, and a control device 20.
 吐出圧力センサー10は、圧縮機1の吐出側に設置され、圧縮機1から吐出された冷媒の吐出ガス圧力を測定する。
 吐出温度センサー11は、圧縮機1の吐出側に設置され、圧縮機1から吐出された冷媒の吐出ガス温度を測定する。
 凝縮器出口圧力センサー12は、第1熱交換器3と膨張弁4との間に設置され、第1熱交換器3が凝縮器として機能する際に、第1熱交換器3から流出した冷媒の凝縮器出口圧力を測定する。
 凝縮器出口温度センサー13は、第1熱交換器3と膨張弁4との間に設置され、第1熱交換器3が凝縮器として機能する際に、第1熱交換器3から流出した冷媒の凝縮器出口温度を測定する。
The discharge pressure sensor 10 is installed on the discharge side of the compressor 1 and measures the discharge gas pressure of the refrigerant discharged from the compressor 1.
The discharge temperature sensor 11 is installed on the discharge side of the compressor 1 and measures the discharge gas temperature of the refrigerant discharged from the compressor 1.
The condenser outlet pressure sensor 12 is installed between the first heat exchanger 3 and the expansion valve 4, and the refrigerant that has flowed out of the first heat exchanger 3 when the first heat exchanger 3 functions as a condenser. Measure the outlet pressure of the condenser.
The condenser outlet temperature sensor 13 is installed between the first heat exchanger 3 and the expansion valve 4, and the refrigerant that has flowed out of the first heat exchanger 3 when the first heat exchanger 3 functions as a condenser. Measure the outlet temperature of the condenser.
 制御装置20は、冷凍サイクル装置100Aの全体を統括制御するものである。制御装置20は、各検知器(吐出圧力センサー10、吐出温度センサー11、凝縮器出口圧力センサー12、凝縮器出口温度センサー13)からの測定値に基づき、各アクチュエータ(圧縮機1、四方弁2、膨張弁4等の駆動部品)の制御を行う。制御装置20は、その機能を実現する回路デバイスのようなハードウェアで構成することもできるし、マイコンやCPUのような演算装置と、その上で実行されるソフトウェアとにより構成することもできる。 The control device 20 performs overall control of the entire refrigeration cycle apparatus 100A. Based on the measured values from the detectors (discharge pressure sensor 10, discharge temperature sensor 11, condenser outlet pressure sensor 12, condenser outlet temperature sensor 13), the control device 20 controls each actuator (compressor 1, four-way valve 2). , Drive parts such as the expansion valve 4 are controlled. The control device 20 can be configured by hardware such as a circuit device that realizes the function, or can be configured by an arithmetic device such as a microcomputer or a CPU and software executed thereon.
 図1において、第2熱交換器5から冷熱を供給する冷熱供給モード(例えば、冷房運転)では、四方弁2は実線の流路となり、第2熱交換器5から温熱を供給する温熱供給モード(例えば、暖房運転)では、四方弁2は点線の流路に切り換えられる。したがって、冷熱供給モードでは、圧縮機1、四方弁2、第1熱交換器3、膨張弁4、第2熱交換器5、圧縮機1がこの順序で環状に接続される。また、温熱供給モードでは、圧縮機1、四方弁2、第2熱交換器5、膨張弁4、第1熱交換器3、圧縮機1がこの順序で環状に接続される。そのため、冷熱供給モードでは、第1熱交換器3が凝縮器として機能し、第2熱交換器5が蒸発器として機能する。また、温熱供給モードでは、第1熱交換器3が蒸発器として機能し、第2熱交換器5が凝縮器として機能する。 In FIG. 1, in the cooling / heating mode for supplying cooling from the second heat exchanger 5 (for example, cooling operation), the four-way valve 2 becomes a solid flow path, and the heating / heating supply mode for supplying warm from the second heat exchanger 5. In (for example, heating operation), the four-way valve 2 is switched to a dotted flow path. Therefore, in the cold supply mode, the compressor 1, the four-way valve 2, the first heat exchanger 3, the expansion valve 4, the second heat exchanger 5, and the compressor 1 are connected in an annular shape in this order. In the warm heat supply mode, the compressor 1, the four-way valve 2, the second heat exchanger 5, the expansion valve 4, the first heat exchanger 3, and the compressor 1 are annularly connected in this order. Therefore, in the cold heat supply mode, the first heat exchanger 3 functions as a condenser, and the second heat exchanger 5 functions as an evaporator. In the warm heat supply mode, the first heat exchanger 3 functions as an evaporator, and the second heat exchanger 5 functions as a condenser.
 次に、冷凍サイクル装置100Aに使用する作動冷媒について説明する。
 冷凍サイクル装置100Aに使用する作動冷媒として、低GWPかつ動作圧力が高い1、1、2トリフルオロエチレン(HFO-1123)を主成分として用いる。HFO-1123は、以下の反応式に示すように、熱と毒性をもつ物質(HF)が発生する不均化反応が起こる。
 CF=CHF→1/2CF+3/2C+HF+44.7kcal/mol
Next, the working refrigerant used for the refrigeration cycle apparatus 100A will be described.
As a working refrigerant used in the refrigeration cycle apparatus 100A, 1, 1, 2 trifluoroethylene (HFO-1123) having a low GWP and a high operating pressure is used as a main component. As shown in the following reaction formula, HFO-1123 undergoes a disproportionation reaction in which a substance (HF) having heat and toxicity is generated.
CF 2 = CHF → 1 / 2CF 4 + 3 / 2C + HF + 44.7 kcal / mol
 図3から、HFO-1123の不均化反応が発生する圧力値は、温度が高くなると低下する傾向にあることがわかる。また、R32もしくはHFO-1234yfを混合させると、HFO-1123の不均化反応が発生する圧力値が低下する傾向があることもわかっている。 3 that the pressure value at which the disproportionation reaction of HFO-1123 occurs tends to decrease as the temperature increases. It is also known that when R32 or HFO-1234yf is mixed, the pressure value at which the disproportionation reaction of HFO-1123 occurs tends to decrease.
 そこで、冷凍サイクル装置100Aでは、圧縮機1の起動時において、HFO-1123の不均化反応が発生する温度毎の圧力値の判定値をあらかじめ制御装置20のプログラムに搭載し、吐出ガス温度と凝縮器出口温度から求められる不均化反応圧力の値(以下、不均化反応圧力値と称する)を演算する。そして、冷凍サイクル装置100Aでは、圧縮機1の起動時において、不均化反応圧力値以上にならないように圧縮機1の回転数の上昇を抑制する不均化反応抑制制御を行なう。 Therefore, in the refrigeration cycle apparatus 100A, when the compressor 1 is started, a judgment value for the pressure value for each temperature at which the disproportionation reaction of HFO-1123 occurs is mounted in advance in the program of the control apparatus 20, and the discharge gas temperature The value of the disproportionation reaction pressure obtained from the condenser outlet temperature (hereinafter referred to as the disproportionation reaction pressure value) is calculated. In the refrigeration cycle apparatus 100A, when the compressor 1 is started, disproportionation reaction suppression control is performed to suppress an increase in the rotational speed of the compressor 1 so as not to exceed the disproportionation reaction pressure value.
 例えば、検知圧力が圧力判定値になった場合、圧縮機1の周波数の上昇を停止させ、一定時間後圧力の低下がない場合は、圧縮機1の回転数を低下させる制御を行なう。この制御は、圧縮機1の吐出部と凝縮器として機能する第1熱交換器3の出口部の両方にて行なう。また、制御装置20に、あらかじめ図6に示すような圧縮機1の起動時の回転数の増加パターンを組み込んでおき、圧縮機1の起動前の圧縮機1の吐出ガス圧力あるいは凝縮器出口圧力によって、圧縮機1の起動パターンを決定してもよい。なお、図6については、実施の形態2で説明する。 For example, when the detected pressure reaches the pressure determination value, the increase in the frequency of the compressor 1 is stopped, and when there is no decrease in the pressure after a certain time, control is performed to decrease the rotation speed of the compressor 1. This control is performed at both the discharge part of the compressor 1 and the outlet part of the first heat exchanger 3 that functions as a condenser. Further, the controller 20 incorporates in advance a rotation speed increase pattern at the time of starting the compressor 1 as shown in FIG. 6 so that the discharge gas pressure or the condenser outlet pressure before the compressor 1 is started. Thus, the startup pattern of the compressor 1 may be determined. Note that FIG. 6 will be described in Embodiment 2.
 以下、冷凍サイクル装置100Aの不均化反応抑制制御の具体的な制御フローについて図2を参照しながら説明する。ここで説明する不均化反応抑制制御の制御フローでは、第1熱交換器3が凝縮器として機能している場合を想定している。 Hereinafter, a specific control flow of the disproportionation reaction suppression control of the refrigeration cycle apparatus 100A will be described with reference to FIG. In the control flow of the disproportionation reaction suppression control described here, it is assumed that the first heat exchanger 3 functions as a condenser.
 冷凍サイクル装置100Aが運転を開始すると、制御装置20は、吐出圧力センサー10で測定された圧力値、吐出温度センサー11で測定された温度値から、吐出ガス圧力P1、吐出ガス温度T1を検知する(ステップS101)。
 続いて、制御装置20は、凝縮器出口圧力センサー12で測定された圧力値、凝縮器出口温度センサー13で測定された温度値から、凝縮器出口圧力P2、凝縮器出口温度T2を検知する(ステップS102)。
When the refrigeration cycle apparatus 100A starts operation, the control device 20 detects the discharge gas pressure P1 and the discharge gas temperature T1 from the pressure value measured by the discharge pressure sensor 10 and the temperature value measured by the discharge temperature sensor 11. (Step S101).
Subsequently, the control device 20 detects the condenser outlet pressure P2 and the condenser outlet temperature T2 from the pressure value measured by the condenser outlet pressure sensor 12 and the temperature value measured by the condenser outlet temperature sensor 13 ( Step S102).
 制御装置20は、吐出ガス圧力P1が、吐出ガス温度T1と凝縮器出口温度T2から求められる不均化反応圧力値の下限値よりも大きいかどうかを判断する(ステップS103)。
 吐出ガス圧力P1が不均化反応圧力値の下限値以下と判断すると(ステップS103;N)、制御装置20は、凝縮器出口圧力P2が不均化反応圧力値の下限値よりも大きいかどうかを判断する(ステップS104)。
 そして、凝縮器出口圧力P2が不均化反応圧力値の下限値以下と判断すると(ステップS104;N)、制御装置20は、圧縮機1の起動時においても、HFO-1123が不均化反応を起こさないと判断し、圧縮機1を通常に制御して、ステップS101に戻る。
The control device 20 determines whether or not the discharge gas pressure P1 is larger than the lower limit value of the disproportionation reaction pressure value obtained from the discharge gas temperature T1 and the condenser outlet temperature T2 (step S103).
When it is determined that the discharge gas pressure P1 is equal to or lower than the lower limit value of the disproportionation reaction pressure value (step S103; N), the control device 20 determines whether the condenser outlet pressure P2 is larger than the lower limit value of the disproportionation reaction pressure value. Is determined (step S104).
When it is determined that the condenser outlet pressure P2 is equal to or lower than the lower limit value of the disproportionation reaction pressure value (step S104; N), the control device 20 causes the HFO-1123 to disproportionate even when the compressor 1 is started. Therefore, the compressor 1 is controlled normally, and the process returns to step S101.
 吐出ガス圧力P1が不均化反応圧力値の下限値よりも大きいと判断(ステップS103;Y)、あるいは、凝縮器出口圧力P2が不均化反応圧力値の下限値よりも大きいと判断すると(ステップS104;Y)、制御装置20は、圧縮機1の回転数の増加量を0とする(ステップS105)。これらの場合、制御装置20は、圧縮機1の起動時において、HFO-1123が不均化反応圧力値以上になる可能性があると判断し、圧縮機1の回転数の上昇を抑制する制御を行なう。 When it is determined that the discharge gas pressure P1 is larger than the lower limit value of the disproportionation reaction pressure value (step S103; Y), or when it is determined that the condenser outlet pressure P2 is larger than the lower limit value of the disproportionation reaction pressure value ( In step S104; Y), the control device 20 sets the increase amount of the rotation speed of the compressor 1 to 0 (step S105). In these cases, the control device 20 determines that there is a possibility that the HFO-1123 becomes equal to or higher than the disproportionation reaction pressure value at the time of starting the compressor 1, and controls to suppress an increase in the rotational speed of the compressor 1. To do.
 続いて、制御装置20は、あらかじめ定めた圧力低下待機時間が経過したかどうかを判断する(ステップS106)。圧力低下待機時間が経過していないと判断すると(ステップS106;N)、制御装置20は、ステップS105に戻り、圧縮機1の回転数の増加量を0にしたままとする。なお、圧力低下待機時間は、吐出ガス圧力P1、凝縮器出口圧力P2に応じてあらかじめ定めておけばよく、一律に定まるものではない。 Subsequently, the control device 20 determines whether or not a predetermined pressure decrease standby time has elapsed (step S106). If it is determined that the pressure drop standby time has not elapsed (step S106; N), the control device 20 returns to step S105 and keeps the increase amount of the rotation speed of the compressor 1 at zero. The pressure drop standby time may be determined in advance according to the discharge gas pressure P1 and the condenser outlet pressure P2, and is not fixed uniformly.
 圧力低下待機時間が経過したと判断すると(ステップS106;Y)、制御装置20は、吐出ガス圧力P1、及び、凝縮器出口圧力P2のいずれもが、不均化反応圧力値の下限値よりも大きいかどうかを判断する(ステップS107)。
 そして、吐出ガス圧力P1、凝縮器出口圧力P2が不均化反応圧力値の下限値よりも大きいと判断すると(ステップS107;Y)、制御装置20は、まだ、圧縮機1の起動時において、HFO-1123が不均化反応圧力値以上になる可能性があると判断し、圧縮機1の回転数を低下させる制御を行なう(ステップS108)。
If it is determined that the pressure drop standby time has elapsed (step S106; Y), the controller 20 determines that both the discharge gas pressure P1 and the condenser outlet pressure P2 are lower than the lower limit value of the disproportionation reaction pressure value. It is determined whether it is larger (step S107).
Then, when it is determined that the discharge gas pressure P1 and the condenser outlet pressure P2 are larger than the lower limit value of the disproportionation reaction pressure value (step S107; Y), the control device 20 is still in the start-up of the compressor 1. It is determined that there is a possibility that HFO-1123 becomes equal to or higher than the disproportionation reaction pressure value, and control is performed to reduce the rotational speed of the compressor 1 (step S108).
 一方、吐出ガス圧力P1、凝縮器出口圧力P2が不均化反応圧力値以下と判断すると(ステップS107;N)、制御装置20は、圧縮機1の起動時においても、HFO-1123が不均化反応を起こさないと判断し、圧縮機1を通常に制御して、ステップS101に戻る。 On the other hand, when it is determined that the discharge gas pressure P1 and the condenser outlet pressure P2 are equal to or less than the disproportionation reaction pressure value (step S107; N), the control device 20 causes the HFO-1123 to disproportionate even when the compressor 1 is started. It is determined that the conversion reaction will not occur, the compressor 1 is normally controlled, and the process returns to step S101.
 以上のように、冷凍サイクル装置100Aでは、圧縮機1の起動時において、HFO-1123の不均化反応圧力値以上にならないように圧縮機1の回転数の上昇を抑制する不均化反応抑制制御を行なう。そのため、冷凍サイクル装置100Aによれば、HFO-1123を使用する場合においても、圧縮機1の吐出ガス圧力および凝縮器出口圧力に基づいてHFO-1123が不均化反応しない圧力範囲内に冷媒回路の圧力を制御することが可能になる。また、冷凍サイクル装置100Aによれば、凝縮器出口圧力も検知することで、精度良くHFO-1123の不均化反応を抑制することが可能となる。 As described above, in the refrigeration cycle apparatus 100A, when the compressor 1 is started, the disproportionation reaction is suppressed so that the increase in the rotation speed of the compressor 1 is suppressed so as not to exceed the disproportionation reaction pressure value of HFO-1123. Take control. Therefore, according to the refrigeration cycle apparatus 100A, even when HFO-1123 is used, the refrigerant circuit is within a pressure range in which HFO-1123 does not disproportionately react based on the discharge gas pressure of the compressor 1 and the condenser outlet pressure. It becomes possible to control the pressure. Further, according to the refrigeration cycle apparatus 100A, it is possible to accurately suppress the disproportionation reaction of HFO-1123 by detecting the condenser outlet pressure.
 さらに、冷凍サイクル装置100Aでは、不均化反応を抑制できる圧力範囲を有効に活用できるため、作動冷媒として混合冷媒を用いたとしても、HFO-1123以外の冷媒の比率を小さくすることができる。そのため、冷凍サイクル装置100Aによれば、混合させるHFO-1123以外の冷媒の混合比率を最小限とすることができ、製品のコストの増加を抑制でき、製品の重量の増加(ユニットサイズの大型化)を抑制することも可能になる。 Furthermore, since the refrigeration cycle apparatus 100A can effectively utilize the pressure range in which the disproportionation reaction can be suppressed, even if a mixed refrigerant is used as the working refrigerant, the ratio of refrigerants other than HFO-1123 can be reduced. Therefore, according to the refrigeration cycle apparatus 100A, the mixing ratio of refrigerants other than HFO-1123 to be mixed can be minimized, an increase in product cost can be suppressed, and an increase in product weight (an increase in unit size). ) Can be suppressed.
実施の形態2.
 図4は、本発明の実施の形態2に係る冷凍サイクル装置(以下、冷凍サイクル装置100Bと称する)の冷媒回路構成の一例を示す概略構成図である。図5は、冷凍サイクル装置100Bが実行する不均化反応抑制制御処理の流れを示すフローチャートである。図6は、冷凍サイクル装置100Bの制御装置20のプログラムに搭載する圧縮機1の起動パターンを示すグラフである。図4~図6に基づいて、冷凍サイクル装置100Bについて説明する。なお、実施の形態2では実施の形態1との相違点を中心に説明し、実施の形態1と同一部分には、同一符号を付して説明を省略するものとする。
Embodiment 2. FIG.
FIG. 4 is a schematic configuration diagram showing an example of a refrigerant circuit configuration of a refrigeration cycle apparatus (hereinafter referred to as refrigeration cycle apparatus 100B) according to Embodiment 2 of the present invention. FIG. 5 is a flowchart showing the flow of the disproportionation reaction suppression control process executed by the refrigeration cycle apparatus 100B. FIG. 6 is a graph showing a startup pattern of the compressor 1 installed in the program of the control device 20 of the refrigeration cycle apparatus 100B. The refrigeration cycle apparatus 100B will be described with reference to FIGS. In the second embodiment, differences from the first embodiment will be mainly described, and the same parts as those in the first embodiment will be denoted by the same reference numerals and description thereof will be omitted.
 冷凍サイクル装置100Bは、実施の形態1に係る冷凍サイクル装置100Aの構成に加え、外気温度センサー14、水出口温度センサー15を有している。 The refrigeration cycle apparatus 100B includes an outside air temperature sensor 14 and a water outlet temperature sensor 15 in addition to the configuration of the refrigeration cycle apparatus 100A according to the first embodiment.
 外気温度センサー14は、第1熱交換器3の近傍に設置され、外気の温度を測定する。
 水出口温度センサー15は、第2熱交換器5の水側出口に設置され、第2熱交換器5から流出された水の温度を測定する。
 つまり、冷凍サイクル装置100Bでは、第2熱交換器5で冷媒と水(ブラインでもよい)とが熱交換するようになっている。
The outside air temperature sensor 14 is installed in the vicinity of the first heat exchanger 3 and measures the temperature of the outside air.
The water outlet temperature sensor 15 is installed at the water-side outlet of the second heat exchanger 5 and measures the temperature of the water that has flowed out of the second heat exchanger 5.
That is, in the refrigeration cycle apparatus 100 </ b> B, the refrigerant and water (may be brine) are heat-exchanged by the second heat exchanger 5.
 冷凍サイクル装置100Bでも、実施の形態1に係る冷凍サイクル装置100Aと同様に、不均化反応抑制制御を実行する。例えば、冷凍サイクル装置100Bの第1熱交換器3が空冷式である場合、冷房運転において高圧圧力はほぼ外気温度にて想定される。そのため、冷凍サイクル装置100Bでは、圧縮機1の起動前の外気温度から、圧縮機1の起動後の圧力を推定、外気温度が高い場合には吐出ガス圧力及び凝縮器出口圧力が不均化反応発生圧力にならないように、圧縮機1の起動時の回転数の上昇量を小さくする不均化反応抑制制御を行なう。 Also in the refrigeration cycle apparatus 100B, disproportionation reaction suppression control is executed in the same manner as the refrigeration cycle apparatus 100A according to the first embodiment. For example, when the first heat exchanger 3 of the refrigeration cycle apparatus 100B is air-cooled, the high pressure is assumed to be approximately the outside air temperature in the cooling operation. Therefore, in the refrigeration cycle apparatus 100B, the pressure after starting the compressor 1 is estimated from the outside air temperature before starting the compressor 1, and when the outside air temperature is high, the discharge gas pressure and the condenser outlet pressure are disproportionated. Disproportionation reaction suppression control is performed to reduce the amount of increase in the rotational speed when the compressor 1 is started so that the generated pressure does not occur.
 以下、冷凍サイクル装置100Bの不均化反応抑制制御の具体的な制御フローについて図5を参照しながら説明する。ここで説明する不均化反応抑制制御の制御フローでは、第1熱交換器3が凝縮器として機能している場合を想定している。 Hereinafter, a specific control flow of the disproportionation reaction suppression control of the refrigeration cycle apparatus 100B will be described with reference to FIG. In the control flow of the disproportionation reaction suppression control described here, it is assumed that the first heat exchanger 3 functions as a condenser.
 冷凍サイクル装置100Bが運転を開始すると、制御装置20は、外気温度センサー14で測定された外気温度が、あらかじめ定めた判定値Aよりも大きいかどうかを判断する(ステップS201)。
 外気温度が判定値Aよりも大きいと判断すると(ステップS201;Y)、制御装置20は、圧縮機1を起動パターンAにて起動する(ステップS202)。この場合、制御装置20は、圧縮機1の起動時において、HFO-1123が不均化反応圧力値以上になる可能性があると判断し、圧縮機1の回転数の上昇を抑制する制御を行なう。
When the refrigeration cycle apparatus 100B starts operation, the control apparatus 20 determines whether or not the outside air temperature measured by the outside air temperature sensor 14 is larger than a predetermined determination value A (step S201).
When it is determined that the outside air temperature is higher than the determination value A (step S201; Y), the control device 20 starts the compressor 1 with the start pattern A (step S202). In this case, the control device 20 determines that there is a possibility that the HFO-1123 becomes equal to or higher than the disproportionation reaction pressure value when the compressor 1 is started, and performs control to suppress an increase in the rotational speed of the compressor 1. Do.
 外気温度が判定値A以下であると判断すると(ステップS201;N)、制御装置20は、外気温度センサー14で測定された外気温度が、あらかじめ定めた判定値Bよりも大きいかどうかを判断する(ステップS203)。
 外気温度が判定値Bよりも大きいと判断すると(ステップS203;Y)、制御装置20は、圧縮機1を起動パターンBにて起動する(ステップS204)。この場合、制御装置20は、圧縮機1の起動時において、起動パターンAのときよりも小さいもののHFO-1123が不均化反応圧力値以上になる可能性があると判断し、圧縮機1の回転数の上昇を抑制する制御を行なう。なお、判定値Aは、判定値Bよりも高い温度である。
If it is determined that the outside air temperature is equal to or lower than the determination value A (step S201; N), the control device 20 determines whether or not the outside air temperature measured by the outside air temperature sensor 14 is larger than a predetermined determination value B. (Step S203).
When it is determined that the outside air temperature is higher than the determination value B (step S203; Y), the control device 20 starts the compressor 1 with the start pattern B (step S204). In this case, the control device 20 determines that the HFO-1123 may be equal to or higher than the disproportionation reaction pressure value when the compressor 1 is started, although it is smaller than that in the start pattern A. Control is performed to suppress an increase in the rotational speed. The determination value A is a temperature higher than the determination value B.
 外気温度が判定値B以下であると判断すると(ステップS203;N)、制御装置20は、圧縮機1を起動パターンCにて起動する(ステップS205)。この場合、制御装置20は、圧縮機1の起動時においても、HFO-1123が不均化反応を起こさないと判断し、圧縮機1の回転数を増加して、ステップS201に戻る。 When it is determined that the outside air temperature is equal to or lower than the determination value B (step S203; N), the control device 20 starts the compressor 1 with the start pattern C (step S205). In this case, the control device 20 determines that the HFO-1123 does not cause a disproportionation reaction even when the compressor 1 is started up, increases the rotation speed of the compressor 1, and returns to step S201.
 また、冷凍サイクル装置100Bでは、暖房運転時においては、圧縮機1の起動前の水出口温度により圧縮機1の起動パターンを決定する(図6参照)。具体的には、冷凍サイクル装置100Bでは、圧縮機1の起動前の水出口温度から、圧縮機1の起動後の圧力を推定、水出口温度が高い場合には吐出ガス圧力及び凝縮器出口圧力が不均化反応発生圧力にならないように、圧縮機1の起動時の回転数の上昇量を小さくする不均化反応抑制制御を行なう。 Further, in the refrigeration cycle apparatus 100B, during the heating operation, the startup pattern of the compressor 1 is determined based on the water outlet temperature before the startup of the compressor 1 (see FIG. 6). Specifically, in the refrigeration cycle apparatus 100B, the pressure after startup of the compressor 1 is estimated from the water outlet temperature before startup of the compressor 1, and when the water outlet temperature is high, the discharge gas pressure and the condenser outlet pressure Is controlled so as to reduce the amount of increase in the rotational speed at the start of the compressor 1 so that the pressure does not become the disproportionation reaction generation pressure.
 例えば、制御装置20は、圧縮機1の起動前において水出口温度があらかじめ定めた判定値A1よりも高い場合、図6からの起動パターンAを決定する。この場合、制御装置20は、圧縮機1の起動時において、HFO-1123が不均化反応圧力値以上になる可能性があると判断し、圧縮機1の回転数の上昇を抑制する制御を行なう。 For example, when the water outlet temperature is higher than the predetermined determination value A1 before the compressor 1 is started, the control device 20 determines the start pattern A from FIG. In this case, the control device 20 determines that there is a possibility that the HFO-1123 becomes equal to or higher than the disproportionation reaction pressure value when the compressor 1 is started, and performs control to suppress an increase in the rotational speed of the compressor 1. Do.
 また、制御装置20は、圧縮機1の起動前において水出口温度が判定値A1以下であって、あらかじめ定めた判定値B1よりも大きい場合、図6から起動パターンBを決定する。この場合、制御装置20は、圧縮機1の起動時において、起動パターンAのときよりも小さいもののHFO-1123が不均化反応圧力値以上になる可能性があると判断し、圧縮機1の回転数の上昇を抑制する制御を行なう。なお、判定値A1は、判定値B1よりも高い温度である。 Further, the control device 20 determines the activation pattern B from FIG. 6 when the water outlet temperature is equal to or lower than the determination value A1 and greater than the predetermined determination value B1 before the compressor 1 is started. In this case, the control device 20 determines that the HFO-1123 may be equal to or higher than the disproportionation reaction pressure value when the compressor 1 is started, although it is smaller than that in the start pattern A. Control is performed to suppress an increase in the rotational speed. The determination value A1 is a temperature higher than the determination value B1.
 また、制御装置20は、圧縮機1の起動前において水出口温度が判定値B1以下である場合、図6からの起動パターンCを決定する。この場合、制御装置20は、圧縮機1の起動時においても、HFO-1123が不均化反応を起こさないと判断し、圧縮機1の回転数を増加する。 Moreover, the control apparatus 20 determines the starting pattern C from FIG. 6, when water outlet temperature is below the determination value B1 before the starting of the compressor 1. FIG. In this case, the control device 20 determines that the HFO-1123 does not cause a disproportionation reaction even when the compressor 1 is started up, and increases the rotational speed of the compressor 1.
 以上のように、冷凍サイクル装置100Bでは、圧縮機1の起動時において、HFO-1123の不均化反応圧力値以上にならないように圧縮機1の回転数の上昇を抑制する不均化反応抑制制御を行なう。そのため、冷凍サイクル装置100Bによれば、HFO-1123を使用する場合においても、外気温度に基づいてHFO-1123が不均化反応しない圧力範囲内に冷媒回路の圧力を制御することが可能になる。また、冷凍サイクル装置100Bによれば、暖房運転時においては、水出口温度も検知することで、精度良くHFO-1123の不均化反応を抑制することが可能となる。 As described above, in the refrigeration cycle apparatus 100B, when the compressor 1 is started, the disproportionation reaction is suppressed so that the increase in the rotational speed of the compressor 1 is suppressed so as not to exceed the disproportionation reaction pressure value of HFO-1123. Take control. Therefore, according to the refrigeration cycle apparatus 100B, even when HFO-1123 is used, the pressure in the refrigerant circuit can be controlled within a pressure range in which HFO-1123 does not disproportionate based on the outside air temperature. . Further, according to the refrigeration cycle apparatus 100B, it is possible to accurately suppress the disproportionation reaction of HFO-1123 by detecting the water outlet temperature during the heating operation.
 なお、冷凍サイクル装置100Bでは、実施の形態1に係る冷凍サイクル装置100Aでの不均化反応抑制制御を組み入れれば、より精度良くHFO-1123の不均化反応を抑制することが可能となる。このようにすれば、実施の形態1に係る冷凍サイクル装置100Aが奏する効果を同様に発揮することが可能になる。 In the refrigeration cycle apparatus 100B, if the disproportionation reaction suppression control in the refrigeration cycle apparatus 100A according to Embodiment 1 is incorporated, the disproportionation reaction of HFO-1123 can be suppressed with higher accuracy. . If it does in this way, it will become possible to exhibit the effect which 100A of refrigerating cycle devices concerning Embodiment 1 show similarly.
<冷凍サイクル装置100Bの変形例>
 HF0-1123単独使用の場合と、HFO-1234yf等との混合冷媒の場合と、では、不均化反応が発生する圧力が異なる。そのため、圧縮機1の起動パターンを決定する外気温度は、制御装置20にて設定可能とし、HFO-1123単独使用の場合と、HFO-1234yf等との混合冷媒の場合と、で起動パターン変更できるようにする。
<Modification of refrigeration cycle apparatus 100B>
The pressure at which the disproportionation reaction occurs is different between the case of using HF0-1123 alone and the case of a mixed refrigerant such as HFO-1234yf. Therefore, the outside air temperature that determines the startup pattern of the compressor 1 can be set by the control device 20, and the startup pattern can be changed between when the HFO-1123 is used alone and when the refrigerant is mixed with HFO-1234yf or the like. Like that.
 図7は、HFO-1123単独使用の場合と、HFO-1123とHFO1234yfの混合冷媒の場合と、での不均化反応領域を示すグラフである。図7から、HF0-1123単独使用の場合と、HFO-1234yf等との混合冷媒の場合と、では、不均化反応が発生する圧力が異なることがわかる。そこで、冷凍サイクル装置100Bでは、作動冷媒がHFO-1123単独使用の場合であるのか、HFO-1123と他の冷媒の混合冷媒であるのか、ということに応じて、圧縮機1の起動パターンの変更を可能にしている。なお、この内容は、実施の形態1に係る冷凍サイクル装置100Aにも適用することができる。 FIG. 7 is a graph showing the disproportionation reaction region in the case of using HFO-1123 alone and in the case of a mixed refrigerant of HFO-1123 and HFO1234yf. From FIG. 7, it can be seen that the pressure at which the disproportionation reaction occurs is different between the case of using HF0-1123 alone and the case of the mixed refrigerant with HFO-1234yf or the like. Therefore, in the refrigeration cycle apparatus 100B, the start pattern of the compressor 1 is changed depending on whether the working refrigerant is HFO-1123 used alone or a mixed refrigerant of HFO-1123 and another refrigerant. Is possible. This content can also be applied to the refrigeration cycle apparatus 100A according to the first embodiment.
実施の形態3.
 図8は、本発明の実施の形態3に係る冷凍サイクル装置(以下、図示はしないが冷凍サイクル装置100Cと称する)が実行する不均化反応抑制制御処理の流れを示すフローチャートである。図8に基づいて、冷凍サイクル装置100Cについて説明する。なお、実施の形態3では実施の形態1、2との相違点を中心に説明し、実施の形態1、2と同一部分には、同一符号を付して説明を省略するものとする。また、冷凍サイクル装置100Cの冷媒回路構成は、実施の形態1に係る冷凍サイクル装置100Aと同じである。
Embodiment 3 FIG.
FIG. 8 is a flowchart showing the flow of the disproportionation reaction suppression control process executed by the refrigeration cycle apparatus according to Embodiment 3 of the present invention (hereinafter referred to as refrigeration cycle apparatus 100C, although not shown). The refrigeration cycle apparatus 100C will be described based on FIG. In the third embodiment, differences from the first and second embodiments will be mainly described, and the same parts as those in the first and second embodiments will be denoted by the same reference numerals and the description thereof will be omitted. The refrigerant circuit configuration of the refrigeration cycle apparatus 100C is the same as that of the refrigeration cycle apparatus 100A according to Embodiment 1.
 冷凍サイクル装置100Cでも、実施の形態1に係る冷凍サイクル装置100Aと同様に、不均化反応抑制制御を実行する。具体的には、冷凍サイクル装置100Cでは、圧縮機1の起動後に不均化反応が発生する温度、圧力の状態になった場合には、圧縮機1を一度停止させ、膨張弁4を開ける。こうすることで、冷凍サイクル装置100Cでは、冷媒回路内の冷媒の圧力を低下させ、圧縮機1の吐出ガス圧力および凝縮器出口圧力を低下させる。その後、冷凍サイクル装置100Cは、圧縮機1を再起動させる。 Even in the refrigeration cycle apparatus 100C, the disproportionation reaction suppression control is executed in the same manner as the refrigeration cycle apparatus 100A according to the first embodiment. Specifically, in the refrigeration cycle apparatus 100 </ b> C, when the temperature and pressure are reached after the start of the compressor 1, the compressor 1 is stopped once and the expansion valve 4 is opened. By doing so, in the refrigeration cycle apparatus 100C, the pressure of the refrigerant in the refrigerant circuit is reduced, and the discharge gas pressure and the condenser outlet pressure of the compressor 1 are reduced. Thereafter, the refrigeration cycle apparatus 100 </ b> C restarts the compressor 1.
 以下、冷凍サイクル装置100Cの不均化反応抑制制御の具体的な制御フローについて図8を参照しながら説明する。ここで説明する不均化反応抑制制御の制御フローでは、第1熱交換器3が凝縮器として機能している場合を想定している。 Hereinafter, a specific control flow of the disproportionation reaction suppression control of the refrigeration cycle apparatus 100C will be described with reference to FIG. In the control flow of the disproportionation reaction suppression control described here, it is assumed that the first heat exchanger 3 functions as a condenser.
 冷凍サイクル装置100Cが運転を開始すると、制御装置20は、吐出圧力センサー10で測定された圧力値、吐出温度センサー11で測定された温度値から、吐出ガス圧力P1、吐出ガス温度T1を検知する(ステップS301)。
 続いて、制御装置20は、凝縮器出口圧力センサー12で測定された圧力値、凝縮器出口温度センサー13で測定された温度値から、凝縮器出口圧力P2、凝縮器出口温度T2を検知する(ステップS302)。
When the refrigeration cycle apparatus 100C starts operation, the control device 20 detects the discharge gas pressure P1 and the discharge gas temperature T1 from the pressure value measured by the discharge pressure sensor 10 and the temperature value measured by the discharge temperature sensor 11. (Step S301).
Subsequently, the control device 20 detects the condenser outlet pressure P2 and the condenser outlet temperature T2 from the pressure value measured by the condenser outlet pressure sensor 12 and the temperature value measured by the condenser outlet temperature sensor 13 ( Step S302).
 制御装置20は、吐出ガス圧力P1が、吐出ガス温度T1と凝縮器出口温度T2から求められる不均化反応圧力値の下限値よりも大きいかどうかを判断する(ステップS303)。
 吐出ガス圧力P1が不均化反応圧力値の下限値以下と判断すると(ステップS303;N)、制御装置20は、凝縮器出口圧力P2が不均化反応圧力値の下限値よりも大きいかどうかを判断する(ステップS304)。
 そして、凝縮器出口圧力P2が不均化反応圧力値の下限値以下と判断すると(ステップS304;N)、制御装置20は、圧縮機1の起動後においても、HFO-1123が不均化反応を起こさないと判断し、圧縮機1を通常に制御して、ステップS301に戻る。
The control device 20 determines whether or not the discharge gas pressure P1 is larger than the lower limit value of the disproportionation reaction pressure value obtained from the discharge gas temperature T1 and the condenser outlet temperature T2 (step S303).
When determining that the discharge gas pressure P1 is equal to or lower than the lower limit value of the disproportionation reaction pressure value (step S303; N), the control device 20 determines whether the condenser outlet pressure P2 is larger than the lower limit value of the disproportionation reaction pressure value. Is determined (step S304).
When it is determined that the condenser outlet pressure P2 is equal to or lower than the lower limit value of the disproportionation reaction pressure value (step S304; N), the control device 20 causes the HFO-1123 to disproportionate even after the compressor 1 is started. Therefore, the compressor 1 is controlled normally, and the process returns to step S301.
 吐出ガス圧力P1が不均化反応圧力値の下限値よりも大きいと判断(ステップS303;Y)、あるいは、凝縮器出口圧力P2が不均化反応圧力値の下限値よりも大きいと判断すると(ステップS304;Y)、制御装置20は、圧縮機1を停止し、膨張弁4を開放する(ステップS305)。これらの場合、制御装置20は、圧縮機1の起動後において、HFO-1123が不均化反応圧力値以上になる可能性があると判断し、圧縮機1を停止し、膨張弁4を開放する制御を行なう。 When it is determined that the discharge gas pressure P1 is larger than the lower limit value of the disproportionation reaction pressure value (step S303; Y), or when it is determined that the condenser outlet pressure P2 is larger than the lower limit value of the disproportionation reaction pressure value ( In step S304; Y), the control device 20 stops the compressor 1 and opens the expansion valve 4 (step S305). In these cases, the control device 20 determines that there is a possibility that the HFO-1123 becomes equal to or higher than the disproportionation reaction pressure value after starting the compressor 1, stops the compressor 1, and opens the expansion valve 4. Control to do.
 続いて、制御装置20は、冷媒回路内の冷媒の圧力があらかじめ定めた圧力値より低下したかどうかを判断する(ステップS306)。圧力が低下していないと判断すると(ステップS306;N)、制御装置20は、ステップS305に戻り、圧縮機1の停止、膨張弁4の開放を継続する。なお、あらかじめ定めた圧力値とは、冷媒回路内の冷媒の圧力が不均化反応を起こさない圧力として定めておけばよく、一律に定まるものではない。 Subsequently, the control device 20 determines whether or not the pressure of the refrigerant in the refrigerant circuit has decreased below a predetermined pressure value (step S306). If it is determined that the pressure has not decreased (step S306; N), the control device 20 returns to step S305, and continues to stop the compressor 1 and open the expansion valve 4. The predetermined pressure value may be determined as a pressure at which the refrigerant pressure in the refrigerant circuit does not cause a disproportionation reaction, and is not uniformly determined.
 圧力が低下したと判断すると(ステップS306;Y)、制御装置20は、圧縮機1を再起動する(ステップS307)。つまり、制御装置20は、圧縮機1の起動後においても、HFO-1123が不均化反応を起こさないと判断し、圧縮機1を通常に制御して、ステップS101に戻る。 When it is determined that the pressure has decreased (step S306; Y), the control device 20 restarts the compressor 1 (step S307). That is, the controller 20 determines that the HFO-1123 does not cause a disproportionation reaction even after the compressor 1 is started up, controls the compressor 1 normally, and returns to step S101.
 以上のように、冷凍サイクル装置100Cでは、圧縮機1の起動後において、HFO-1123の不均化反応圧力値以上にならないように圧縮機1の回転数の上昇を抑制する不均化反応抑制制御を行なう。そのため、冷凍サイクル装置100Cによれば、HFO-1123を使用する場合においても、圧縮機1の吐出ガス圧力および凝縮器出口圧力に基づいてHFO-1123が不均化反応しない圧力範囲内に冷媒回路の圧力を制御することが可能になる。また、冷凍サイクル装置100Aによれば、凝縮器出口圧力も検知することで、精度良くHFO-1123の不均化反応を抑制することが可能となる。 As described above, in the refrigeration cycle apparatus 100C, after the start-up of the compressor 1, disproportionation reaction suppression that suppresses the increase in the rotational speed of the compressor 1 so as not to exceed the disproportionation reaction pressure value of HFO-1123. Take control. Therefore, according to the refrigeration cycle apparatus 100C, even when HFO-1123 is used, the refrigerant circuit is within a pressure range in which HFO-1123 does not disproportionate based on the discharge gas pressure of the compressor 1 and the condenser outlet pressure. It becomes possible to control the pressure. Further, according to the refrigeration cycle apparatus 100A, it is possible to accurately suppress the disproportionation reaction of HFO-1123 by detecting the condenser outlet pressure.
 さらに、冷凍サイクル装置100Cでは、不均化反応を抑制できる圧力範囲を有効に活用できるため、作動冷媒として混合冷媒を用いたとしても、HFO-1123以外の冷媒の比率を小さくすることができる。そのため、冷凍サイクル装置100Cによれば、混合させるHFO-1123以外の冷媒の比率を最小限とすることができ、製品のコストの増加を抑制でき、製品の重量の増加(ユニットサイズの大型化)を抑制することも可能になる。 Furthermore, since the refrigeration cycle apparatus 100C can effectively utilize the pressure range in which the disproportionation reaction can be suppressed, even if a mixed refrigerant is used as the working refrigerant, the ratio of refrigerants other than HFO-1123 can be reduced. Therefore, according to the refrigeration cycle apparatus 100C, the ratio of the refrigerant other than HFO-1123 to be mixed can be minimized, the increase in product cost can be suppressed, and the product weight can be increased (unit size increased). Can also be suppressed.
 以上、本発明に係る冷凍サイクル装置を3つの実施の形態に分けて説明したが、これらに限定せず、本発明の範疇及び精神を逸脱することなく、さまざまに変形または変更可能である。また、各実施の形態で説明した内容を適宜組み合わせて冷凍サイクル装置を構成してもよい。 As described above, the refrigeration cycle apparatus according to the present invention has been described by dividing it into three embodiments. However, the present invention is not limited thereto, and various modifications or changes can be made without departing from the scope and spirit of the present invention. Moreover, you may comprise the refrigerating-cycle apparatus combining the content demonstrated in each embodiment suitably.
 なお、各実施の形態で説明した冷凍サイクル装置は、空気調和装置(例えば、冷凍装置、ルームエアコン、パッケージエアコン、ビル用マルチエアコン等)、ヒートポンプ給湯機等、冷凍サイクルを備えた装置に適用して利用することができる。 Note that the refrigeration cycle apparatus described in each embodiment is applied to an apparatus equipped with a refrigeration cycle, such as an air conditioner (for example, a refrigeration apparatus, a room air conditioner, a packaged air conditioner, a multi air conditioner for buildings), a heat pump water heater, and the like. Can be used.
 1 圧縮機、2 四方弁、3 第1熱交換器、4 膨張弁、5 第2熱交換器、10 吐出圧力センサー、11 吐出温度センサー、12 凝縮器出口圧力センサー、13 凝縮器出口温度センサー、14 外気温度センサー、15 水出口温度センサー、20 制御装置、30 冷媒配管、100A 冷凍サイクル装置、100B 冷凍サイクル装置、100C 冷凍サイクル装置。 1 compressor, 2 way valve, 3rd heat exchanger, 4 expansion valve, 5 second heat exchanger, 10 discharge pressure sensor, 11 discharge temperature sensor, 12 condenser outlet pressure sensor, 13 condenser outlet temperature sensor, 14 outside air temperature sensor, 15 water outlet temperature sensor, 20 control device, 30 refrigerant piping, 100A refrigeration cycle device, 100B refrigeration cycle device, 100C refrigeration cycle device.

Claims (6)

  1.  少なくとも圧縮機、凝縮器、膨張弁、蒸発器を順次配管で接続した冷媒回路を有し、前記冷媒回路にHFO-1123を含む冷媒が充填された冷凍サイクル装置であって、
     前記圧縮機の起動時において、前記圧縮機から吐出された前記冷媒の吐出ガス温度と、前記凝縮器から流出された前記冷媒の凝縮器出口温度と、から求められる前記冷媒の不均化反応圧力値に基づいて前記圧縮機の回転数抑制を行なう
     冷凍サイクル装置。
    A refrigeration cycle apparatus having a refrigerant circuit in which at least a compressor, a condenser, an expansion valve, and an evaporator are sequentially connected by piping, and the refrigerant circuit is filled with a refrigerant containing HFO-1123,
    At the time of starting the compressor, the refrigerant disproportionation reaction pressure obtained from the discharge gas temperature of the refrigerant discharged from the compressor and the condenser outlet temperature of the refrigerant discharged from the condenser A refrigeration cycle apparatus that suppresses the rotational speed of the compressor based on the value.
  2.  前記不均化反応圧力値以上にならないように前記圧縮機の回転数の上昇を抑制する
     請求項1に記載の冷凍サイクル装置。
    The refrigeration cycle apparatus according to claim 1, wherein an increase in the rotation speed of the compressor is suppressed so as not to exceed the disproportionation reaction pressure value.
  3.  前記不均化反応圧力値以上にならないように前記圧縮機の起動パターンを決定する
     請求項1又は2に記載の冷凍サイクル装置。
    The refrigeration cycle apparatus according to claim 1 or 2, wherein a startup pattern of the compressor is determined so as not to exceed the disproportionation reaction pressure value.
  4.  前記凝縮器が、前記冷媒と空気とで熱交換するものであり、
     前記圧縮機の起動前の外気温度により、前記圧縮機の起動後の圧力を推定し、前記不均化反応圧力値以上にならないように前記圧縮機の起動パターンを決定する
     請求項1~3のいずれか一項に記載の冷凍サイクル装置。
    The condenser exchanges heat between the refrigerant and air;
    The startup pattern of the compressor is determined so as not to exceed the disproportionation reaction pressure value by estimating the pressure after startup of the compressor based on the outside air temperature before startup of the compressor. The refrigeration cycle apparatus according to any one of the above.
  5.  前記蒸発器が、前記冷媒と水とで熱交換するものであり、
     前記圧縮機の起動前の水温度により、前記圧縮機の起動後の圧力を推定し、前記不均化反応圧力値以上にならないように前記圧縮機の起動パターンを決定する
     請求項1~4のいずれか一項に記載の冷凍サイクル装置。
    The evaporator exchanges heat between the refrigerant and water;
    The pressure after the start of the compressor is estimated from the water temperature before the start of the compressor, and the start pattern of the compressor is determined so as not to exceed the disproportionation reaction pressure value. The refrigeration cycle apparatus according to any one of the above.
  6.  前記圧縮機の起動後において、起動後の前記冷媒回路内の圧力が、前記不均化反応圧力値以上になるとき、
     前記圧縮機を停止させ、前記膨張弁を開放し、前記冷媒回路内の圧力を低下させてから、再び前記圧縮機を起動させる
     請求項1~5のいずれか一項に記載の冷凍サイクル装置。
    After starting the compressor, when the pressure in the refrigerant circuit after starting becomes equal to or greater than the disproportionation reaction pressure value,
    The refrigeration cycle apparatus according to any one of claims 1 to 5, wherein the compressor is stopped, the expansion valve is opened, the pressure in the refrigerant circuit is reduced, and then the compressor is started again.
PCT/JP2014/057029 2014-03-17 2014-03-17 Refrigeration cycle device WO2015140871A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/057029 WO2015140871A1 (en) 2014-03-17 2014-03-17 Refrigeration cycle device
JP2016508331A JP6289611B2 (en) 2014-03-17 2014-03-17 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/057029 WO2015140871A1 (en) 2014-03-17 2014-03-17 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2015140871A1 true WO2015140871A1 (en) 2015-09-24

Family

ID=54143897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057029 WO2015140871A1 (en) 2014-03-17 2014-03-17 Refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP6289611B2 (en)
WO (1) WO2015140871A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018139594A1 (en) * 2017-01-30 2018-08-02 ダイキン工業株式会社 Refrigeration device
CN109539380A (en) * 2018-11-23 2019-03-29 西安交通大学 A kind of Teat pump boiler compressor frequency control method
WO2019087630A1 (en) * 2017-10-30 2019-05-09 ダイキン工業株式会社 Air conditioner
CN109983284A (en) * 2016-12-29 2019-07-05 美国伊科有限公司 A kind of air-conditioning system and its control method based on frequency-changeable compressor
CN111771091A (en) * 2018-03-05 2020-10-13 松下知识产权经营株式会社 Refrigeration cycle device
WO2022004896A1 (en) * 2020-07-03 2022-01-06 ダイキン工業株式会社 Use as coolant in compressor, compressor, and refrigeration cycle device
WO2022014415A1 (en) * 2020-07-15 2022-01-20 ダイキン工業株式会社 Use as refrigerant for compressor, compressor, and refrigeration cycle device
WO2022210872A1 (en) * 2021-03-31 2022-10-06 ダイキン工業株式会社 Heat pump device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300022A (en) * 2008-06-16 2009-12-24 Mitsubishi Electric Corp Refrigerating cycle device
WO2009157320A1 (en) * 2008-06-24 2009-12-30 三菱電機株式会社 Refrigerating cycle apparatus, and air conditioning apparatus
JP2010008002A (en) * 2008-06-30 2010-01-14 Mitsubishi Electric Corp Refrigerating cycle apparatus
JP2012132578A (en) * 2010-12-20 2012-07-12 Panasonic Corp Refrigerating cycle device
WO2012157764A1 (en) * 2011-05-19 2012-11-22 旭硝子株式会社 Working medium and heat-cycle system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300022A (en) * 2008-06-16 2009-12-24 Mitsubishi Electric Corp Refrigerating cycle device
WO2009157320A1 (en) * 2008-06-24 2009-12-30 三菱電機株式会社 Refrigerating cycle apparatus, and air conditioning apparatus
JP2010008002A (en) * 2008-06-30 2010-01-14 Mitsubishi Electric Corp Refrigerating cycle apparatus
JP2012132578A (en) * 2010-12-20 2012-07-12 Panasonic Corp Refrigerating cycle device
WO2012157764A1 (en) * 2011-05-19 2012-11-22 旭硝子株式会社 Working medium and heat-cycle system

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109983284B (en) * 2016-12-29 2021-03-12 美国伊科有限公司 Air conditioning system based on variable frequency compressor and control method thereof
CN109983284A (en) * 2016-12-29 2019-07-05 美国伊科有限公司 A kind of air-conditioning system and its control method based on frequency-changeable compressor
WO2018139594A1 (en) * 2017-01-30 2018-08-02 ダイキン工業株式会社 Refrigeration device
WO2019087630A1 (en) * 2017-10-30 2019-05-09 ダイキン工業株式会社 Air conditioner
JP2019082279A (en) * 2017-10-30 2019-05-30 ダイキン工業株式会社 Air conditioner
CN111279138A (en) * 2017-10-30 2020-06-12 大金工业株式会社 Air conditioner
CN111279138B (en) * 2017-10-30 2021-06-11 大金工业株式会社 Air conditioner
CN111771091B (en) * 2018-03-05 2021-12-17 松下知识产权经营株式会社 Refrigeration cycle device
EP3764027A4 (en) * 2018-03-05 2021-05-19 Panasonic Intellectual Property Management Co., Ltd. Refrigeration cycle device
CN111771091A (en) * 2018-03-05 2020-10-13 松下知识产权经营株式会社 Refrigeration cycle device
CN109539380A (en) * 2018-11-23 2019-03-29 西安交通大学 A kind of Teat pump boiler compressor frequency control method
WO2022004896A1 (en) * 2020-07-03 2022-01-06 ダイキン工業株式会社 Use as coolant in compressor, compressor, and refrigeration cycle device
JP2022013931A (en) * 2020-07-03 2022-01-18 ダイキン工業株式会社 Use of refrigerant in compressor, compressor, and refrigeration cycle system
JP7377838B2 (en) 2020-07-03 2023-11-10 ダイキン工業株式会社 Use as refrigerant in compressors, compressors, and refrigeration cycle equipment
JP2022019597A (en) * 2020-07-15 2022-01-27 ダイキン工業株式会社 Use as refrigerant for compressor, compressor and refrigerant cycle device
JP7316324B2 (en) 2020-07-15 2023-07-27 ダイキン工業株式会社 Use as refrigerant in compressor, compressor and refrigeration cycle device
WO2022014415A1 (en) * 2020-07-15 2022-01-20 ダイキン工業株式会社 Use as refrigerant for compressor, compressor, and refrigeration cycle device
WO2022210872A1 (en) * 2021-03-31 2022-10-06 ダイキン工業株式会社 Heat pump device
JP2022157188A (en) * 2021-03-31 2022-10-14 ダイキン工業株式会社 Heat pump device
JP7280521B2 (en) 2021-03-31 2023-05-24 ダイキン工業株式会社 heat pump equipment
CN117120782A (en) * 2021-03-31 2023-11-24 大金工业株式会社 Heat pump device

Also Published As

Publication number Publication date
JPWO2015140871A1 (en) 2017-04-06
JP6289611B2 (en) 2018-03-07

Similar Documents

Publication Publication Date Title
JP6289611B2 (en) Refrigeration cycle equipment
JP6223546B2 (en) Refrigeration cycle equipment
JP4797727B2 (en) Refrigeration equipment
JP5475874B2 (en) Heat pump system
JP6297164B2 (en) Refrigeration cycle equipment
JP5908183B1 (en) Air conditioner
JP2019020112A (en) Air conditioning system
JP6192806B2 (en) Refrigeration equipment
JP6188916B2 (en) Refrigeration cycle equipment
JP6422590B2 (en) Heat source system
JP2010164270A (en) Multiple chamber type air conditioner
JP6672619B2 (en) Air conditioning system
JP6724937B2 (en) Air conditioner
JP6589946B2 (en) Refrigeration equipment
WO2019163099A1 (en) Hot water supply device
JP2017009269A5 (en)
JP5619492B2 (en) Air conditioner
WO2015140881A1 (en) Refrigeration cycle apparatus
KR20110054821A (en) Air conditioning system
JP6072311B2 (en) Refrigeration cycle apparatus, air conditioner, and circulating composition calculation method in refrigeration cycle apparatus
WO2023002522A1 (en) Air-conditioning device and method for installing air-conditioning device
JP2018179346A (en) Refrigeration cycle device and hot water generation device including the same
JP6561551B2 (en) Refrigeration equipment
JP2018054253A (en) Refrigeration device
JP2013100991A (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14886604

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016508331

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14886604

Country of ref document: EP

Kind code of ref document: A1