JP2010008002A - Refrigerating cycle apparatus - Google Patents

Refrigerating cycle apparatus Download PDF

Info

Publication number
JP2010008002A
JP2010008002A JP2008169748A JP2008169748A JP2010008002A JP 2010008002 A JP2010008002 A JP 2010008002A JP 2008169748 A JP2008169748 A JP 2008169748A JP 2008169748 A JP2008169748 A JP 2008169748A JP 2010008002 A JP2010008002 A JP 2010008002A
Authority
JP
Japan
Prior art keywords
refrigerant
boiling
compression element
boiling point
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008169748A
Other languages
Japanese (ja)
Other versions
JP2010008002A5 (en
JP4789978B2 (en
Inventor
Hideaki Maeyama
英明 前山
Minoru Ishii
稔 石井
Takeshi Fushiki
毅 伏木
Taro Kato
太郎 加藤
Fumihiko Ishizono
文彦 石園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008169748A priority Critical patent/JP4789978B2/en
Publication of JP2010008002A publication Critical patent/JP2010008002A/en
Publication of JP2010008002A5 publication Critical patent/JP2010008002A5/ja
Application granted granted Critical
Publication of JP4789978B2 publication Critical patent/JP4789978B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating cycle apparatus, restraining the occurrence of decomposition and polymerization due to chemical reaction of a refrigerant having double bond of carbon even when using a mixed refrigerant containing a high boiling point refrigerant and a low boiling point refrigerant having double bond of carbon in a composition. <P>SOLUTION: This refrigerating cycle apparatus using a mixed refrigerant containing a high boiling point refrigerant and a low boiling point refrigerant having double bond of carbon in a composition, includes: a refrigerant separator which separates the mixed refrigerant into a high boiling point component refrigerant and a low boiling point component refrigerant; a first expansion device, which pressure-reducing the high boiling point component refrigerant; a high and low pressure heat exchanger, which performs heat exchange between the high boiling point component refrigerant pressure-reduced by the first expansion device and the condensed mixed refrigerant; a first compression element, which compresses the high boiling point component refrigerant; a second expansion device, which pressure-reduces the low boiling point component refrigerant; an evaporator, which evaporates the low boiling point component refrigerant: a second compression element, which compresses the low boiling point component refrigerant; and a joining part where the compressed high boiling point component refrigerant and the low boiling point component refrigerant join each other. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、冷凍冷蔵機器や空気調和機器、もしくは給湯用機器などの冷凍サイクル装置に関し、特に冷媒として炭素の二重結合を有する冷媒を含んだ混合冷媒を使用する冷凍サイクル装置に関するものである。   The present invention relates to a refrigeration cycle apparatus such as a refrigeration apparatus, an air conditioning apparatus, or a hot water supply apparatus, and more particularly to a refrigeration cycle apparatus that uses a mixed refrigerant containing a refrigerant having a carbon double bond as a refrigerant.

地球の温暖化を防止する一環として、冷凍冷蔵機器や空気調和機器、もしくは給湯用機器などの冷凍サイクルを構成する装置に使用される冷媒(作動流体)を、現在特に冷凍空調用途で主として使用されているR410A(R32とR125の混合冷媒)やR134a等のHFC冷媒から、それらよりも地球温暖化係数(Global Warming PotentialよりGWPと表現される)が大幅に低い冷媒へ置き換える検討が進められている。   As part of preventing global warming, refrigerants (working fluids) used in refrigeration cycle equipment such as refrigeration and refrigeration equipment, air conditioning equipment, and hot water supply equipment are currently mainly used in refrigeration and air conditioning applications. Study is underway to replace the HFC refrigerants such as R410A (mixed refrigerant of R32 and R125) and R134a with refrigerants that have a significantly lower global warming potential (expressed as GWP than Global Warming Potential). .

その候補冷媒の一つとして、組成中に炭素の二重結合を有するハロゲン化炭化水素がある。その一例は、分子中に炭素の二重結合を1つ有する炭化水素であるプロピレン(R1270)の6個の水素のうち4個をフッ素に置き換えたもの(CF3CF=CH2)で、HFO−1234yfと呼ばれている。このような冷媒はHFC冷媒の一種ではあるが、炭素の二重結合を持つ不飽和炭化水素がオレフィンと呼ばれることから、従来の二重結合を持たないHFC冷媒と区別するために、オレフィンのOを用いてHFOと表現されることがある。   One of the candidate refrigerants is a halogenated hydrocarbon having a carbon double bond in its composition. One example is HPF-1234yf in which four of six hydrogens of propylene (R1270), a hydrocarbon having one carbon double bond in the molecule, are replaced with fluorine (CF3CF = CH2). being called. Although such a refrigerant is a kind of HFC refrigerant, an unsaturated hydrocarbon having a carbon double bond is called an olefin, and therefore, in order to distinguish it from a conventional HFC refrigerant having no double bond, the olefin O May be used to represent HFO.

このHFO−1234yf冷媒はGWPが4であり、GWPが2088であるR410Aや1430であるR134aに比べてGWPが極めて低く、地球温暖化防止への貢献が期待されている。   This HFO-1234yf refrigerant has a GWP of 4, and has a very low GWP compared to R410A with a GWP of 2088 and R134a with a 1430, and is expected to contribute to the prevention of global warming.

そしてHFO−1234yfは、冷媒としての熱物性がHFC冷媒であるR134aに極めて近いもので、現在R134a冷媒を単体で使用している自動車用空調装置(カーエアコン)では、冷媒をHFO−1234yfに置き換えても性能面での問題は顕在化しない。しかし、R134aよりも沸点が低いHFC混合冷媒R410AやR407Cを使用している家庭用や業務用の空調機器もしくは給湯機器では、HFO−1234yfの冷凍能力が低いので、同等の能力を維持しようとすると、体積流量(冷媒循環量)を増大させる必要が生じる。体積流量を増大させると、同一の回路(冷凍サイクル)では回路を流れる冷媒の流速が速くなるので、冷凍サイクルでの冷媒の圧力損失が大きくなり、冷凍サイクルの運転効率が悪化する。   HFO-1234yf is extremely close to R134a, which is a HFC refrigerant, as a heat physical property as a refrigerant. In an automotive air conditioner (car air conditioner) that currently uses the R134a refrigerant alone, the refrigerant is replaced with HFO-1234yf. However, performance problems do not become obvious. However, HFO-1234yf has a low refrigeration capacity in home and commercial air conditioning equipment or hot water supply equipment using HFC mixed refrigerants R410A and R407C having a boiling point lower than that of R134a. Therefore, it is necessary to increase the volume flow rate (refrigerant circulation amount). When the volumetric flow rate is increased, the flow rate of the refrigerant flowing through the circuit in the same circuit (refrigeration cycle) increases, so that the pressure loss of the refrigerant in the refrigeration cycle increases and the operating efficiency of the refrigeration cycle deteriorates.

そのため、冷媒HFO−1234yfを単体で使用しないで、HFO−1234yfよりも低沸点な冷媒(高圧冷媒)との混合冷媒として冷凍サイクルに用いることが考えられている。混合する冷媒の候補には、例えばR32、R41、R125等があり、1種類でなく、複数の冷媒と混合することも考えられる。   Therefore, it is considered that the refrigerant HFO-1234yf is not used alone but is used in the refrigeration cycle as a mixed refrigerant with a refrigerant (high-pressure refrigerant) having a boiling point lower than that of HFO-1234yf. The refrigerant candidates to be mixed include, for example, R32, R41, R125 and the like, and it is conceivable to mix with a plurality of refrigerants instead of one kind.

従来、HFC混合冷媒を使用してオゾン層破壊の環境問題発生を回避し、しかも運転効率の良い冷凍装置を得ることを目的として、圧縮機、凝縮器、主膨張装置、蒸発器が順に接続され、冷媒としてHFC混合冷媒を使用する冷凍装置に、凝縮器の出口に接続され、混合冷媒中の特定種類の冷媒の通過を容易とする機能膜が設けられて、高沸点冷媒を多く含む高沸点成分冷媒の液と主膨張装置に供給される低沸点冷媒を多く含む低沸点成分冷媒の液とに分離する冷媒分離器と、この冷媒分離器により分離された高沸点成分冷媒の液を減圧する副膨張装置と、この副膨張装置により減圧された高沸点成分冷媒を凝縮器の出口の高圧液と熱交換させる高低圧熱交換器と、この高低圧熱交換器により熱交換された高沸点成分冷媒を圧縮機に戻すバイパス回路とが設けられる冷凍装置が提案されている(例えば、特許文献1参照)。
特許第3334418号公報
Conventionally, a compressor, a condenser, a main expansion device, and an evaporator are connected in order for the purpose of obtaining a refrigeration system that avoids the environmental problem of ozone layer destruction using HFC mixed refrigerant and that has high operating efficiency. A high-boiling point that contains a large amount of high-boiling point refrigerant, provided with a functional film that is connected to the outlet of the condenser and facilitates passage of a specific type of refrigerant in the mixed refrigerant, in a refrigeration apparatus that uses an HFC mixed refrigerant as a refrigerant A refrigerant separator that separates into a component refrigerant liquid and a low-boiling component refrigerant liquid that contains a large amount of low-boiling-point refrigerant supplied to the main expansion device, and decompresses the high-boiling component refrigerant liquid separated by the refrigerant separator A sub-expansion device, a high-low pressure heat exchanger that exchanges heat between the high-boiling component refrigerant decompressed by the sub-expansion device and the high-pressure liquid at the outlet of the condenser, and a high-boiling component heat-exchanged by the high-low pressure heat exchanger Return the refrigerant to the compressor And scan circuit is provided refrigeration apparatus has been proposed (e.g., see Patent Document 1).
Japanese Patent No. 3334418

炭素の二重結合を有する物質は、物質の安定性に課題があり、環境や雰囲気によって、分解及び重合の可能性がある。一般に分解や重合の条件として、高温、高圧や触媒が挙げられる。   A substance having a carbon double bond has a problem in the stability of the substance, and may be decomposed and polymerized depending on the environment and atmosphere. Generally, the conditions for decomposition and polymerization include high temperature, high pressure and catalyst.

炭素の二重結合を有する物質を冷媒として用いる冷凍サイクルの圧縮機では、圧縮要素の摺動部において炭素の二重結合を有する冷媒の分解及び重合の懸念があり、これらを抑制する対策が必要である。   In a compressor of a refrigeration cycle using a substance having a carbon double bond as a refrigerant, there is a concern about decomposition and polymerization of the refrigerant having a carbon double bond in the sliding portion of the compression element, and measures to suppress these are necessary. It is.

上記特許文献1に記載された冷凍装置は、冷媒分離器のバイパス配管から流出した高沸点成分冷媒は副膨張装置で減圧された後、高低圧熱交換器において高圧側によって加熱されてアキュムレータ入口前で蒸発器からの低沸点成分冷媒と合流する。すなわち、圧縮機の手前(上流側)で合流するため、特に、密閉容器内が冷凍サイクルの高圧雰囲気となる圧縮機である場合には、炭素の二重結合を有する冷媒を含む混合冷媒を使用すると、混合冷媒中の炭素の二重結合を有する冷媒が圧縮機の摺動部において分解及び重合する可能性があり、冷媒の安定性が保てないという課題があった。   In the refrigeration apparatus described in Patent Document 1, the high boiling point component refrigerant flowing out from the bypass pipe of the refrigerant separator is depressurized by the secondary expansion device, and then heated by the high pressure side in the high and low pressure heat exchanger and before the accumulator inlet. And merges with the low boiling point component refrigerant from the evaporator. In other words, since it is merged before the compressor (upstream side), a mixed refrigerant containing a refrigerant having a carbon double bond is used particularly when the inside of the sealed container is a compressor that becomes a high-pressure atmosphere of a refrigeration cycle. Then, there is a problem that the refrigerant having a carbon double bond in the mixed refrigerant may be decomposed and polymerized in the sliding portion of the compressor, and the stability of the refrigerant cannot be maintained.

この発明は、上記のような課題を解決するためになされたもので、組成中に炭素の二重結合を有するハロゲン化炭化水素または組成中に炭素の二重結合を有する炭化水素の少なくともいずれかを含む高沸点冷媒と、前記高沸点冷媒より低沸点の少なくとも一つ以上の低沸点冷媒とを含む混合冷媒を用いる場合でも、冷媒の化学反応による分解や重合の発生を抑制することができる冷凍サイクルを提供することを目的とする。   The present invention has been made to solve the above-described problems, and is at least one of a halogenated hydrocarbon having a carbon double bond in the composition and a hydrocarbon having a carbon double bond in the composition. Refrigeration capable of suppressing the occurrence of decomposition and polymerization due to the chemical reaction of the refrigerant even when using a mixed refrigerant comprising a high-boiling refrigerant containing the refrigerant and at least one low-boiling refrigerant having a lower boiling point than the high-boiling refrigerant The purpose is to provide a cycle.

この発明に係る冷凍サイクル装置は、組成中に炭素の二重結合を有するハロゲン化炭化水素または組成中に炭素の二重結合を有する炭化水素の少なくともいずれかを含む高沸点冷媒と、前記高沸点冷媒より低沸点の少なくとも一つ以上の低沸点冷媒とを含む混合冷媒を用い、混合冷媒を凝縮する凝縮器の出口側に接続され、凝縮器にて凝縮された混合冷媒を高沸点冷媒が多く含まれる高沸点成分冷媒と低沸点冷媒が多く含まれる低沸点成分冷媒とに分離する冷媒分離器と、この冷媒分離器により分離された高沸点成分冷媒を減圧する第1の膨張装置と、凝縮器と冷媒分離器の間に配置され、第1の膨張装置により減圧された高沸点成分冷媒と凝縮器で凝縮し冷媒分離器に流入する前の混合冷媒とを熱交換させる高低圧熱交換器と、この高低圧熱交換器により熱交換された高沸点成分冷媒を圧縮する第1の圧縮要素と、記冷媒分離器により分離された低沸点成分冷媒を減圧する第2の膨張装置と、この第2の膨張装置により減圧された低沸点成分冷媒を空気と熱交換させて蒸発させる蒸発器と、この蒸発器により蒸発された低沸点成分冷媒を圧縮する第2の圧縮要素と、凝縮器の入口より上流側で、第1の圧縮要素で圧縮された高沸点成分冷媒と第2の圧縮要素で圧縮された低沸点成分冷媒とが合流する合流部と、を備えたものである。   The refrigeration cycle apparatus according to the present invention comprises a high-boiling refrigerant containing at least one of a halogenated hydrocarbon having a carbon double bond in the composition or a hydrocarbon having a carbon double bond in the composition, and the high boiling point A mixed refrigerant containing at least one low-boiling refrigerant having a lower boiling point than the refrigerant is connected to the outlet side of the condenser that condenses the mixed refrigerant, and the mixed refrigerant condensed in the condenser is mostly high-boiling refrigerant. A refrigerant separator that separates the high-boiling component refrigerant contained in the refrigerant into a low-boiling component refrigerant that contains a large amount of the low-boiling refrigerant; a first expansion device that depressurizes the high-boiling component refrigerant separated by the refrigerant separator; High-low pressure heat exchanger that is arranged between the condenser and the refrigerant separator and exchanges heat between the high-boiling component refrigerant decompressed by the first expansion device and the mixed refrigerant before being condensed in the condenser and flowing into the refrigerant separator And this high and low pressure A first compression element that compresses the high-boiling component refrigerant heat-exchanged by the exchanger, a second expansion device that depressurizes the low-boiling component refrigerant separated by the refrigerant separator, and the second expansion device. An evaporator that evaporates the low-boiling component refrigerant that has been depressurized by exchanging heat with air, a second compression element that compresses the low-boiling component refrigerant evaporated by the evaporator, and upstream of the inlet of the condenser, A merging portion where the high-boiling component refrigerant compressed by the first compression element and the low-boiling component refrigerant compressed by the second compression element merge.

この発明に係る冷凍サイクル装置は、冷媒分離器で凝縮器にて凝縮された炭素の二重結合を有する冷媒を含む混合冷媒を炭素の二重結合を有する高沸点冷媒が多く含まれる高沸点成分冷媒と低沸点冷媒が多く含まれる低沸点成分冷媒とに分離し、高低圧熱交換器で第1の膨張装置により減圧された高沸点成分冷媒と凝縮器で凝縮し冷媒分離器に流入する前の混合冷媒とを熱交換させ、第1の圧縮要素で高低圧熱交換器により熱交換された高沸点成分冷媒を圧縮し、第2の圧縮要素で蒸発器により蒸発された低沸点成分冷媒を圧縮する構成にしたので、安定性に課題のある炭素の二重結合を有する高沸点成分冷媒は第1の圧縮要素のみに吸入される。従って、第1の圧縮要素を、炭素の二重結合を有する冷媒が分解、重合し難い構成とすることで、安定性に課題のある高沸点成分冷媒中の炭素の二重結合を有する冷媒の化学反応による分解や重合の発生を抑制することができ、混合冷媒の安定性を保つことが可能な信頼性の高い冷凍サイクル装置を提供できる。   The refrigeration cycle apparatus according to the present invention is a high-boiling component containing a large amount of high-boiling refrigerant having a carbon double bond in a mixed refrigerant containing a refrigerant having a carbon double bond condensed in a condenser by a refrigerant separator. Before the refrigerant and the low-boiling-point refrigerant containing a large amount of low-boiling-point refrigerant are separated and condensed by the high-boiling-point refrigerant and the condenser decompressed by the first expansion device in the high-low pressure heat exchanger before flowing into the refrigerant separator The high-boiling component refrigerant heat-exchanged by the high-low pressure heat exchanger is compressed by the first compression element, and the low-boiling-point refrigerant evaporated by the evaporator is compressed by the second compression element. Since it is configured to compress, the high-boiling component refrigerant having a carbon double bond, which has a problem in stability, is sucked only into the first compression element. Therefore, the first compression element is configured such that the refrigerant having a carbon double bond is difficult to decompose and polymerize, so that the refrigerant having the carbon double bond in the high-boiling component refrigerant having a problem in stability. It is possible to provide a highly reliable refrigeration cycle apparatus capable of suppressing the occurrence of decomposition and polymerization due to a chemical reaction and maintaining the stability of the mixed refrigerant.

実施の形態1.
先ず、この実施の形態における冷凍サイクル装置100に使用される冷媒について説明する。この実施の形態で対象とする冷媒は、組成中に炭素の二重結合を有するハロゲン化炭化水素または組成中に炭素の二重結合を有する炭化水素の少なくともいずれかを含む高沸点冷媒と、この高沸点冷媒より低沸点な少なくとも一つ以上の低沸点冷媒とを含む混合冷媒である。
Embodiment 1 FIG.
First, the refrigerant | coolant used for the refrigerating-cycle apparatus 100 in this embodiment is demonstrated. The refrigerant targeted in this embodiment includes a high-boiling-point refrigerant containing at least one of a halogenated hydrocarbon having a carbon double bond in its composition or a hydrocarbon having a carbon double bond in its composition, It is a mixed refrigerant containing at least one low boiling point refrigerant having a lower boiling point than that of the high boiling point refrigerant.

既に述べたように、組成中に炭素の二重結合を有するハロゲン化炭化水素の一例は、分子中に炭素の二重結合を1つ有する炭化水素であるプロピレン(R1270)の6個の水素のうち4個をフッ素に置き換えたもの(CF3CF=CH2)で、HFO−1234yfと呼ばれている。このような冷媒はHFC冷媒の一種ではあるが、炭素の二重結合を持つ不飽和炭化水素がオレフィンと呼ばれることから、従来の二重結合を持たないHFC冷媒と区別するために、オレフィンのOを用いてHFOと表現されることがある。   As already mentioned, an example of a halogenated hydrocarbon having a carbon double bond in its composition is that of the six hydrogens of propylene (R1270), a hydrocarbon having one carbon double bond in the molecule. Of these, four are replaced with fluorine (CF3CF = CH2), which is called HFO-1234yf. Although such a refrigerant is a kind of HFC refrigerant, an unsaturated hydrocarbon having a carbon double bond is called an olefin, and therefore, in order to distinguish it from a conventional HFC refrigerant having no double bond, the olefin O May be used to represent HFO.

このHFO−1234yf冷媒はGWP(地球温暖化係数)が4であり、GWPが2088であるR410Aや1430であるR134aに比べてGWPが極めて低く、地球温暖化防止への貢献が期待されている。   This HFO-1234yf refrigerant has a GWP (global warming potential) of 4, and has an extremely low GWP compared to R410A with GWP of 2088 and R134a with 1430, and is expected to contribute to the prevention of global warming.

組成中に炭素の二重結合を有する炭化水素は、例えば、R1270(プロピレン)である。尚、R1270のGWPは3で、HFO−1234yfより小さいが、可燃性はHFO−1234yfより大きい。   The hydrocarbon having a carbon double bond in the composition is, for example, R1270 (propylene). In addition, although GWP of R1270 is 3, smaller than HFO-1234yf, combustibility is larger than HFO-1234yf.

そしてこの実施の形態における冷凍サイクル装置100に使用される高沸点冷媒は、組成中に炭素の二重結合を有するハロゲン化炭化水素または組成中に炭素の二重結合を有する炭化水素の少なくともいずれかを含むものとする。   The high-boiling refrigerant used in the refrigeration cycle apparatus 100 in this embodiment is at least one of a halogenated hydrocarbon having a carbon double bond in the composition and a hydrocarbon having a carbon double bond in the composition. Shall be included.

上記高沸点冷媒と混合する上記の高沸点冷媒より低沸点な低沸点冷媒の例は、HFC冷媒であるR32、R41、R125等である。また、自然冷媒の二酸化炭素を低沸点冷媒として混合してもよい。ただし、混合冷媒のGWPが所定の低い値(例えば150以下)を維持できるものとする。   Examples of the low boiling point refrigerant having a lower boiling point than the high boiling point refrigerant to be mixed with the high boiling point refrigerant are R32, R41, R125 and the like which are HFC refrigerants. Carbon dioxide, which is a natural refrigerant, may be mixed as a low boiling point refrigerant. However, it is assumed that the GWP of the mixed refrigerant can maintain a predetermined low value (for example, 150 or less).

低沸点冷媒としては、R32、R41、R125または二酸化炭素の少なくとも一つ以上を含むものとする。   The low boiling point refrigerant includes at least one of R32, R41, R125 or carbon dioxide.

組成中に炭素の二重結合を有する物質は、安定性に課題があり分解及び重合の可能性があることは既に述べたが、HFO−1234yfを例に、もう少し説明する。   Although it has already been described that a substance having a carbon double bond in the composition has a problem in stability and there is a possibility of decomposition and polymerization, a little more explanation will be given by taking HFO-1234yf as an example.

二重結合を有する物質は、分解及び重合の可能性があり、一般的に分解及び重合の条件となるのは、高温、高圧や触媒である。炭化水素に比べ、水素に代わるフッ素数の割合が多いものの方が、容易に重合する可能性がある。例えば、ロイ・J・プランケット(Roy J. Plunkett、1910年6月26日−1994年5月12日、米国の化学者)は、1938年にテトラフルオロエチレン(エチレンの水素4個がフッ素に全て置き換わったもの)がボンベ内で自然に重合反応を起こし、偶然にフッ素樹脂が生成していることを発見した。   A substance having a double bond has the possibility of decomposition and polymerization, and generally the conditions for decomposition and polymerization are high temperature, high pressure and a catalyst. Those having a larger proportion of the number of fluorine atoms instead of hydrocarbons may be more easily polymerized. For example, Roy J. Plunkett (June 26, 1910-May 12, 1994, an American chemist), in 1938, introduced tetrafluoroethylene (four hydrogens of ethylene into fluorine). It was discovered that all of them had undergone a polymerization reaction spontaneously in a cylinder, and a fluororesin was produced by chance.

HFO−1234yfは、分子中に炭素の二重結合を1つ有する炭化水素であるプロピレン(R1270)の6個の水素の中、4個がフッ素に置き換わったものであり、メカノケミカル反応等で、重合する可能性がかなり高いと考えられる。メカノケミカル反応とは、対象物質に衝撃や摩擦という機械的エネルギーを与えることにより、対象物質が活性化(メカノケミカル活性)されて起こる化学反応である。   HFO-1234yf is one in which six of the six hydrogen atoms of propylene (R1270), which is a hydrocarbon having one carbon double bond in its molecule, are replaced by fluorine. The possibility of polymerization is considered to be quite high. The mechanochemical reaction is a chemical reaction that occurs when the target substance is activated (mechanochemical activity) by applying mechanical energy such as impact or friction to the target substance.

以下、組成中に炭素の二重結合を有するハロゲン化炭化水素または組成中に炭素の二重結合を有する炭化水素の少なくともいずれかを含む高沸点冷媒と、高沸点冷媒より低沸点の少なくとも一つ以上の低沸点冷媒とを含む混合冷媒を使用する本実施の形態における冷凍サイクル装置の冷媒回路の一例について説明する。   Hereinafter, a high-boiling refrigerant containing at least one of a halogenated hydrocarbon having a carbon double bond in the composition or a hydrocarbon having a carbon double bond in the composition, and at least one having a lower boiling point than the high-boiling refrigerant An example of the refrigerant circuit of the refrigeration cycle apparatus in the present embodiment using the mixed refrigerant containing the above low boiling point refrigerant will be described.

図1乃至図3は実施の形態1を示す図で、図1はこの発明による冷凍サイクル装置100の冷媒回路図、図2は冷媒分離器6の縦拡大断面図、図3は第1の圧縮要素1aと第2の圧縮要素1bとが一つの密閉容器50内部に収納される圧縮機200を断面で示すモデル図である。   FIGS. 1 to 3 are diagrams showing Embodiment 1, FIG. 1 is a refrigerant circuit diagram of a refrigeration cycle apparatus 100 according to the present invention, FIG. 2 is a longitudinally enlarged sectional view of a refrigerant separator 6, and FIG. FIG. 3 is a model diagram showing a cross section of a compressor 200 in which an element 1a and a second compression element 1b are accommodated in one sealed container 50.

図1により、冷凍サイクル装置100の冷媒回路の一例を説明する。冷凍サイクル装置100の冷媒回路は、冷媒分離器6を起点とし、高沸点冷媒を多く含む高沸点成分冷媒20aが流れる第1の冷媒回路30aと、同じく冷媒分離器6を起点とし、低沸点冷媒を多く含む低沸点成分冷媒20bが流れる第2の冷媒回路30bと、合流部40から冷媒分離器6の間を混合冷媒20が流れる共通冷媒回路30cとを備える。   An example of the refrigerant circuit of the refrigeration cycle apparatus 100 will be described with reference to FIG. The refrigerant circuit of the refrigeration cycle apparatus 100 has the refrigerant separator 6 as a starting point, the first refrigerant circuit 30a through which the high-boiling component refrigerant 20a containing a large amount of high-boiling refrigerant flows, and the refrigerant separator 6 as the starting point. And a common refrigerant circuit 30c through which the mixed refrigerant 20 flows between the refrigerant separator 6 and the merging section 40.

第1の冷媒回路30aと第2の冷媒回路30bは、起点が冷媒分離器6、終点が合流部40となるように、共通冷媒回路30cに並列に接続される。   The first refrigerant circuit 30a and the second refrigerant circuit 30b are connected in parallel to the common refrigerant circuit 30c so that the starting point is the refrigerant separator 6 and the end point is the junction 40.

冷凍サイクル装置100の冷媒回路の全体の構成を説明する前に、先ず冷媒分離器6について説明する。   Before describing the overall configuration of the refrigerant circuit of the refrigeration cycle apparatus 100, the refrigerant separator 6 will be described first.

図2に示すように、冷媒分離器6は、共通冷媒回路30cに設けられる高低圧熱交換器15の高圧配管15aに接続される入口配管7を備える。また、冷媒分離器6は、第2の冷媒回路30bの第2の膨張装置3bに接続される出口配管8を備える。   As shown in FIG. 2, the refrigerant separator 6 includes an inlet pipe 7 connected to the high-pressure pipe 15a of the high-low pressure heat exchanger 15 provided in the common refrigerant circuit 30c. The refrigerant separator 6 also includes an outlet pipe 8 connected to the second expansion device 3b of the second refrigerant circuit 30b.

入口配管7と出口配管8の間にフランジ9が設けられて、このフランジ9に保持具10により保持された多孔質膜や中空糸膜からなる機能膜11が設けられている。すなわち、出口配管8は、機能膜11の下流側に設置されている。   A flange 9 is provided between the inlet pipe 7 and the outlet pipe 8, and a functional membrane 11 made of a porous membrane or a hollow fiber membrane held by the holder 10 is provided on the flange 9. That is, the outlet pipe 8 is installed on the downstream side of the functional film 11.

また、冷媒分離器6は、入口配管7の下流で上記機能膜11の上流側に、第1の冷媒回路30aの第1の膨張装置3aに接続されるバイパス配管12を備える。   The refrigerant separator 6 includes a bypass pipe 12 connected to the first expansion device 3a of the first refrigerant circuit 30a on the downstream side of the inlet pipe 7 and upstream of the functional membrane 11.

冷媒分離器6の機能膜11は、低沸点冷媒は容易に通過できるが、高沸点冷媒が通過し難い膜となっており、高沸点冷媒は、冷媒分離器6の機能膜11を容易に通過しない構成である。冷媒分離器6は、この機能膜11により、混合冷媒20を、高沸点冷媒を多く含む高沸点成分冷媒20aと低沸点冷媒を多く含む低沸点成分冷媒20bとに分離する。   The functional membrane 11 of the refrigerant separator 6 is a membrane through which low-boiling refrigerant can easily pass but high-boiling refrigerant is difficult to pass through, and the high-boiling refrigerant easily passes through the functional membrane 11 of the refrigerant separator 6. It is a configuration that does not. The refrigerant separator 6 separates the mixed refrigerant 20 into a high boiling point component refrigerant 20a containing a large amount of high boiling point refrigerant and a low boiling point component refrigerant 20b containing a large amount of low boiling point refrigerant.

尚、ここで冷媒分離器6は、機能膜11を利用して高沸点成分冷媒20aと低沸点成分冷媒20bを分離するものを示したが、高沸点冷媒と低沸点冷媒の密度差を利用するものでもよい。   Here, the refrigerant separator 6 uses the functional membrane 11 to separate the high-boiling component refrigerant 20a and the low-boiling component refrigerant 20b, but utilizes the density difference between the high-boiling refrigerant and the low-boiling refrigerant. It may be a thing.

例えば、冷媒分離器6を、凝縮器2で凝縮し高低圧熱交換器15を通過した高圧な混合冷媒を液冷媒とガス冷媒に分離する気液分離器に構成する。気液分離器内の混合冷媒が気液平衡が保持されている状態では、液冷媒は、ガス冷媒よりも高沸点冷媒を多く含む冷媒、すなわち上記した高沸点成分冷媒20aとなる傾向があり、逆にガス冷媒は、低沸点冷媒を多く含む冷媒、すなわち上記の低沸点成分冷媒20bとなる。   For example, the refrigerant separator 6 is configured as a gas-liquid separator that separates a high-pressure mixed refrigerant that has been condensed by the condenser 2 and passed through the high-low pressure heat exchanger 15 into a liquid refrigerant and a gas refrigerant. In a state where the mixed refrigerant in the gas-liquid separator is kept in gas-liquid equilibrium, the liquid refrigerant tends to be a refrigerant containing a higher boiling point refrigerant than the gas refrigerant, that is, the above-described high boiling point component refrigerant 20a. Conversely, the gas refrigerant becomes a refrigerant containing a large amount of low-boiling refrigerant, that is, the low-boiling component refrigerant 20b.

このような傾向を利用して、気液分離器で構成される冷媒分離器6から、液冷媒を主に第1の冷媒回路30aに、ガス冷媒を主に第2の冷媒回路30bに供給するように構成することで、混合冷媒を、高沸点冷媒を多く含む高沸点成分冷媒20aと低沸点冷媒を多く含む低沸点成分冷媒20bとに分離することもできる。   Utilizing such a tendency, the liquid refrigerant is mainly supplied to the first refrigerant circuit 30a and the gas refrigerant is mainly supplied to the second refrigerant circuit 30b from the refrigerant separator 6 constituted by the gas-liquid separator. With this configuration, the mixed refrigerant can be separated into a high-boiling component refrigerant 20a containing a large amount of high-boiling refrigerant and a low-boiling component refrigerant 20b containing a large amount of low-boiling refrigerant.

ここで先ず、混合冷媒20が流れる共通冷媒回路30cの構成を説明する。共通冷媒回路30cは、第1の圧縮要素1a(後述)で圧縮された高沸点冷媒を多く含む高沸点成分冷媒20aと、第2の圧縮要素1b(後述)で圧縮された低沸点冷媒を多く含む低沸点成分冷媒20bとが合流する合流部40を起点とし、この合流部40の下流側(冷媒の流れの下流側)に、合流部40で合流後の混合冷媒20を凝縮する凝縮器2を備える。   First, the configuration of the common refrigerant circuit 30c through which the mixed refrigerant 20 flows will be described. The common refrigerant circuit 30c has a high boiling point refrigerant 20a containing a large amount of high boiling point refrigerant compressed by the first compression element 1a (described later) and a large amount of low boiling point refrigerant compressed by the second compression element 1b (described later). Condenser 2 that condenses mixed refrigerant 20 after merging at merging portion 40 on the downstream side of this merging portion 40 (downstream side of the refrigerant flow), starting from merging portion 40 where low-boiling component refrigerant 20b that is included is merged. Is provided.

混合冷媒20を凝縮する凝縮器2の出口より下流側には、冷媒分離器6にて分離され第1の膨張装置3a(後述)により減圧された高沸点冷媒を多く含む高沸点成分冷媒20aを凝縮器2の出口後の混合冷媒20、すなわち凝縮後の高圧な混合冷媒20と熱交換させる高低圧熱交換器15を備える。   On the downstream side of the outlet of the condenser 2 that condenses the mixed refrigerant 20, a high-boiling component refrigerant 20a containing a large amount of high-boiling refrigerant separated by the refrigerant separator 6 and decompressed by a first expansion device 3a (described later) is provided. A high-low pressure heat exchanger 15 that exchanges heat with the mixed refrigerant 20 after the outlet of the condenser 2, that is, the high-pressure mixed refrigerant 20 after condensation is provided.

高低圧熱交換器15は、凝縮器2の出口後の混合冷媒20が流れる高圧配管15aと、第1の膨張装置3a(後述)により減圧された高沸点冷媒を多く含む高沸点成分冷媒20aが流れる低圧配管15bとを備える。これらの高圧配管15a、低圧配管15bが例えば、二重配管として構成され、中央部が低圧配管15b、その周囲が高圧配管15aとして、互いに熱交換させるようにする。中央部を高圧配管15a、その周囲を低圧配管15bとする二重配管で高低圧熱交換器15を構成してもよい。   The high-low pressure heat exchanger 15 includes a high-pressure pipe 15a through which the mixed refrigerant 20 after the outlet of the condenser 2 flows, and a high-boiling component refrigerant 20a containing a large amount of high-boiling refrigerant decompressed by a first expansion device 3a (described later). And a flowing low-pressure pipe 15b. These high-pressure pipes 15a and low-pressure pipes 15b are configured as, for example, double pipes, and the central portion is the low-pressure pipe 15b and the periphery thereof is the high-pressure pipe 15a so as to exchange heat with each other. The high and low pressure heat exchanger 15 may be constituted by a double pipe having a high pressure pipe 15a at the center and a low pressure pipe 15b around the center.

凝縮器2の出口側は、高低圧熱交換器15の高圧配管15a(上流側)と接続する。   The outlet side of the condenser 2 is connected to the high-pressure pipe 15 a (upstream side) of the high-low pressure heat exchanger 15.

高低圧熱交換器15の高圧配管15aの下流側は、凝縮器2にて凝縮された混合冷媒20の高圧液を、高沸点冷媒を多く含む高沸点成分冷媒20aの液と低沸点冷媒を多く含む低沸点成分冷媒20bの液とに分離する冷媒分離器6の入口配管7に接続する。   On the downstream side of the high-pressure pipe 15a of the high-low pressure heat exchanger 15, the high-pressure liquid of the mixed refrigerant 20 condensed in the condenser 2, the liquid of the high-boiling component refrigerant 20a containing a large amount of high-boiling refrigerant, and the low-boiling refrigerant are increased. It connects with the inlet piping 7 of the refrigerant | coolant separator 6 isolate | separated into the liquid of the low boiling point component refrigerant | coolant 20b containing.

共通冷媒回路30cは、合流部40から凝縮器2、高低圧熱交換器15、冷媒分離器6の入口配管7を経由して冷媒分離器6内の内部(混合冷媒20が高沸点冷媒を多く含む高沸点成分冷媒20aと低沸点冷媒を多く含む低沸点成分冷媒20bとに分離される前の空間)に至る部分である。   The common refrigerant circuit 30c is connected to the inside of the refrigerant separator 6 via the condenser 2, the high / low pressure heat exchanger 15, and the inlet pipe 7 of the refrigerant separator 6 (the mixed refrigerant 20 contains a large amount of high-boiling refrigerant). This is a portion that reaches a space before being separated into the high-boiling component refrigerant 20a containing the low-boiling-point refrigerant 20b and the low-boiling component refrigerant 20b containing many low-boiling refrigerants.

次に、第1の冷媒回路30aの構成を説明する。冷媒分離器6では、混合冷媒20中の高沸点冷媒の液は、冷媒分離器6の機能膜11を容易に通過しないので、高沸点冷媒を多く含む高沸点成分冷媒20aが、第1の冷媒回路30aの第1の膨張装置3aに接続されるバイパス配管12から第1の冷媒回路30aへ流出する。   Next, the configuration of the first refrigerant circuit 30a will be described. In the refrigerant separator 6, the high boiling point refrigerant liquid in the mixed refrigerant 20 does not easily pass through the functional film 11 of the refrigerant separator 6, so that the high boiling point component refrigerant 20 a containing a large amount of high boiling point refrigerant is used as the first refrigerant. The refrigerant flows out from the bypass pipe 12 connected to the first expansion device 3a of the circuit 30a to the first refrigerant circuit 30a.

バイパス配管12から第1の冷媒回路30aへ流出した高沸点冷媒を多く含む高沸点成分冷媒20aは、第1の膨張装置3aで減圧膨張する。   The high-boiling component refrigerant 20a containing a large amount of high-boiling refrigerant flowing out from the bypass pipe 12 to the first refrigerant circuit 30a is decompressed and expanded by the first expansion device 3a.

第1の膨張装置3aには、例えば、開度の変更が可能、すなわち絞り量を変化させ、第1の冷媒回路30aを流れる高沸点成分冷媒20aの流量を制御可能(調節可能)とする電子式膨張弁が使用される。   In the first expansion device 3a, for example, the opening degree can be changed, that is, the amount of throttle can be changed, and the flow rate of the high boiling point component refrigerant 20a flowing through the first refrigerant circuit 30a can be controlled (adjustable). A type expansion valve is used.

第1の膨張装置3aで減圧膨張した高沸点冷媒を多く含む低圧の高沸点成分冷媒20aは、高低圧熱交換器15の低圧配管15bに入り、高低圧熱交換器15の高圧配管15aを流れる凝縮後の混合冷媒20の高圧液と熱交換を行い、蒸発する。この時に高沸点成分冷媒20aの蒸発潜熱が高圧配管15aを流れる混合冷媒20によって回収される。   The low-pressure, high-boiling component refrigerant 20a containing a large amount of high-boiling refrigerant decompressed and expanded by the first expansion device 3a enters the low-pressure pipe 15b of the high-low pressure heat exchanger 15 and flows through the high-pressure pipe 15a of the high-low pressure heat exchanger 15. Heat exchange is performed with the high-pressure liquid of the mixed refrigerant 20 after condensation, and the refrigerant evaporates. At this time, the latent heat of vaporization of the high boiling point component refrigerant 20a is recovered by the mixed refrigerant 20 flowing through the high pressure pipe 15a.

高低圧熱交換器15により熱交換され蒸発した高沸点冷媒を多く含む高沸点成分冷媒20aは、その後に第1の圧縮要素1aに吸入され、そこで低圧から高圧に圧縮される。第1の圧縮要素1aで圧縮された高圧な高沸点成分冷媒20aは、第1の圧縮要素1aから合流部40に吐出される。   The high-boiling component refrigerant 20a containing a large amount of the high-boiling refrigerant heat-exchanged and evaporated by the high-low pressure heat exchanger 15 is then sucked into the first compression element 1a, where it is compressed from low pressure to high pressure. The high-pressure, high-boiling component refrigerant 20a compressed by the first compression element 1a is discharged from the first compression element 1a to the junction 40.

第1の冷媒回路30aは、冷媒分離器6のバイパス配管12から、第1の膨張装置3a、高低圧熱交換器15の低圧配管15b、第1の圧縮要素1aを経由して合流部40に至る部分である。   The first refrigerant circuit 30a passes from the bypass pipe 12 of the refrigerant separator 6 to the junction 40 via the first expansion device 3a, the low-pressure pipe 15b of the high-low pressure heat exchanger 15, and the first compression element 1a. It is a part to reach.

続いて、第2の冷媒回路30bの構成を説明する。冷媒分離器6では、混合冷媒20中の低沸点冷媒の液は、冷媒分離器6の機能膜11を容易に通過するので、低沸点冷媒を多く含む低沸点成分冷媒20bが、第2の冷媒回路30bの第2の膨張装置3bに接続される出口配管8から第2の冷媒回路30bへ流出する。   Next, the configuration of the second refrigerant circuit 30b will be described. In the refrigerant separator 6, the low boiling point refrigerant liquid in the mixed refrigerant 20 easily passes through the functional film 11 of the refrigerant separator 6. Therefore, the low boiling point refrigerant 20 b containing a large amount of low boiling point refrigerant is used as the second refrigerant. The refrigerant flows out from the outlet pipe 8 connected to the second expansion device 3b of the circuit 30b to the second refrigerant circuit 30b.

出口配管8から第2の冷媒回路30bへ流出した低沸点冷媒を多く含む低沸点成分冷媒20bは、第2の膨張装置3bで減圧膨張する。第2の膨張装置3bには、第1の膨張装置3aと同様に、例えば開度の変更が可能、すなわち絞り量を変化させ、第2の冷媒回路30bを流れる低沸点成分冷媒20bの流量を制御可能(調節可能)とする電子式膨張弁が使用される。   The low boiling point component refrigerant 20b containing a large amount of low boiling point refrigerant that has flowed out of the outlet pipe 8 into the second refrigerant circuit 30b is decompressed and expanded by the second expansion device 3b. Similarly to the first expansion device 3a, the second expansion device 3b can change, for example, the opening degree, that is, the amount of low-boiling component refrigerant 20b flowing through the second refrigerant circuit 30b can be changed by changing the throttle amount. An electronic expansion valve that can be controlled (adjustable) is used.

第2の膨張装置3bにより減圧膨張された低沸点冷媒を多く含む低圧の低沸点成分冷媒20bを、蒸発器4で空気と熱交換させて蒸発させる。   The low-pressure low-boiling component refrigerant 20b containing a large amount of low-boiling refrigerant decompressed and expanded by the second expansion device 3b is evaporated by exchanging heat with air in the evaporator 4.

蒸発器4により蒸発された低沸点冷媒を多く含む低沸点成分冷媒20bを第2の圧縮要素1bが吸入して圧縮する。第2の圧縮要素1bで圧縮された高圧な低沸点成分冷媒20bは、第2の圧縮要素1bから合流部40に吐出される。   The second compression element 1b sucks and compresses the low-boiling component refrigerant 20b containing a large amount of the low-boiling refrigerant evaporated by the evaporator 4. The high-pressure low-boiling component refrigerant 20b compressed by the second compression element 1b is discharged from the second compression element 1b to the junction 40.

第2の冷媒回路30bは、冷媒分離器6の出口配管8から、第2の膨張装置3b、蒸発器4、第2の圧縮要素1bを経由して合流部40に至る部分である。   The second refrigerant circuit 30b is a part from the outlet pipe 8 of the refrigerant separator 6 to the junction 40 via the second expansion device 3b, the evaporator 4, and the second compression element 1b.

次に、図に示す冷凍サイクル装置100の冷媒回路の動作を説明する。第1の圧縮要素1aで圧縮され吐出された高沸点冷媒を多く含む高沸点成分冷媒20aと、第2の圧縮要素1bで圧縮され吐出された低沸点冷媒を多く含む低沸点成分冷媒20bとが、合流部40で合流して混合冷媒20となり、この高温高圧なガス状態の混合冷媒20が共通冷媒回路30cの凝縮器2へ流入して、凝縮器2において常温の空気などによって冷却されて凝縮液化する。   Next, the operation of the refrigerant circuit of the refrigeration cycle apparatus 100 shown in the figure will be described. A high-boiling component refrigerant 20a containing a large amount of high-boiling refrigerant compressed and discharged by the first compression element 1a, and a low-boiling component refrigerant 20b containing a lot of low-boiling refrigerant compressed and discharged by the second compression element 1b The mixed refrigerant 20 is merged at the merging portion 40, and the mixed refrigerant 20 in a high-temperature and high-pressure gas state flows into the condenser 2 of the common refrigerant circuit 30c, where it is cooled and condensed by room temperature air or the like. Liquefaction.

凝縮器2で凝縮液化された混合冷媒20の高圧液は、高低圧熱交換器15の高圧配管15aに流入し、高低圧熱交換器15の低圧配管15bを流れる第1の膨張装置3aで減圧膨張した高沸点成分冷媒20aと熱交換する。これにより、第1の冷媒回路30aを流れる減圧された高沸点成分冷媒20aの蒸発潜熱を回収でき、分離して第1の冷媒回路30aに高沸点成分冷媒20aを流すことによる損失が減少される。   The high-pressure liquid of the mixed refrigerant 20 condensed and liquefied by the condenser 2 flows into the high-pressure pipe 15a of the high-low pressure heat exchanger 15 and is decompressed by the first expansion device 3a flowing through the low-pressure pipe 15b of the high-low pressure heat exchanger 15. Heat exchange is performed with the expanded high-boiling component refrigerant 20a. As a result, the latent heat of vaporization of the decompressed high boiling point component refrigerant 20a flowing through the first refrigerant circuit 30a can be recovered, and loss due to separation and flowing of the high boiling point component refrigerant 20a through the first refrigerant circuit 30a is reduced. .

凝縮器2で液化した混合冷媒20はさらに高低圧熱交換器15により、高低圧熱交換器15の低圧配管15bを流れる第1の膨張装置3aで減圧膨張した高沸点成分冷媒20aに熱を奪われ温度が低下、すなわち高沸点成分冷媒20aの蒸発潜熱を回収して、通常は過冷却となる。その後、入口配管7から冷媒分離器6に流入する。   The mixed refrigerant 20 liquefied in the condenser 2 is further deprived of heat by the high and low pressure heat exchanger 15 to the high boiling point component refrigerant 20a decompressed and expanded by the first expansion device 3a flowing through the low pressure pipe 15b of the high and low pressure heat exchanger 15. The crack temperature is lowered, that is, the latent heat of vaporization of the high-boiling component refrigerant 20a is recovered, and usually it is supercooled. Thereafter, the refrigerant flows into the refrigerant separator 6 from the inlet pipe 7.

そして、冷媒分離器6において機能膜11を通過した低沸点冷媒を多く含む低沸点成分冷媒20bが、出口配管8から第2の冷媒回路30bへ流出する。   Then, the low-boiling component refrigerant 20b containing a large amount of the low-boiling refrigerant that has passed through the functional membrane 11 in the refrigerant separator 6 flows out from the outlet pipe 8 to the second refrigerant circuit 30b.

また、冷媒分離器6のバイパス配管12から、機能膜11を通過できなかった混合冷媒20の残りである高沸点冷媒を多く含む高沸点成分冷媒20aが第1の冷媒回路30aへ流出する。   Further, the high-boiling component refrigerant 20a containing a large amount of the high-boiling refrigerant that is the remainder of the mixed refrigerant 20 that could not pass through the functional membrane 11 flows out from the bypass pipe 12 of the refrigerant separator 6 to the first refrigerant circuit 30a.

そして、出口配管8から流出した低沸点成分冷媒20bは、第2の膨張装置3bで減圧され、蒸発器4へ流入し、蒸発器4により低温を発生すると共に低沸点成分冷媒20bは蒸発してガス化し、第2の圧縮要素1bへ吸入される。   The low boiling point component refrigerant 20b flowing out from the outlet pipe 8 is decompressed by the second expansion device 3b, flows into the evaporator 4, generates a low temperature by the evaporator 4, and the low boiling point component refrigerant 20b evaporates. It is gasified and sucked into the second compression element 1b.

また、冷媒分離器6のバイパス配管12から第1の冷媒回路30aへ流出した高沸点成分冷媒20aは、第1の膨張装置3aで減圧された後、高低圧熱交換器15の低圧配管15bに流入する。そして、高低圧熱交換器15の高圧配管15aを流れる混合冷媒20の高圧液によって加熱され蒸発した後、第1の圧縮要素1aへ吸入される。   The high boiling point component refrigerant 20a flowing out from the bypass pipe 12 of the refrigerant separator 6 to the first refrigerant circuit 30a is depressurized by the first expansion device 3a, and then is supplied to the low pressure pipe 15b of the high / low pressure heat exchanger 15. Inflow. Then, after being heated and evaporated by the high-pressure liquid of the mixed refrigerant 20 flowing through the high-pressure pipe 15a of the high-low pressure heat exchanger 15, it is sucked into the first compression element 1a.

冷凍サイクル装置100は、所定の動作プログラムが組込まれたマイクロコンピュータで構成される制御部(図示せず)を備え、冷凍サイクル装置100の各部(第1の膨張装置3a、第2の膨張装置3bや第1の圧縮要素1a、第2の圧縮要素1b等)の制御を行う。   The refrigeration cycle apparatus 100 includes a control unit (not shown) configured by a microcomputer in which a predetermined operation program is incorporated, and each part (first expansion device 3a, second expansion device 3b) of the refrigeration cycle apparatus 100. And the first compression element 1a and the second compression element 1b).

制御部は、第1の冷媒回路30aを流れる高沸点成分冷媒20aが第1の圧縮要素1aへ吸入されるときの吸入圧力Ps1が、第2の冷媒回路30bを流れる低沸点成分冷媒20bが第2の圧縮要素1bへ吸入されるときの吸入圧力Ps2と同等か、それ以上になるように第1の膨張装置3aを制御する。   The control unit is configured such that the suction pressure Ps1 when the high-boiling-point refrigerant 20a flowing through the first refrigerant circuit 30a is sucked into the first compression element 1a is the low-boiling-point refrigerant 20b flowing through the second refrigerant circuit 30b. The first expansion device 3a is controlled so as to be equal to or higher than the suction pressure Ps2 when sucked into the second compression element 1b.

即ち、制御部は、第1の圧縮要素1aの吸入圧力Ps1と、第2の圧縮要素1bの吸入圧力Ps2との関係を、Ps1≧Ps2を満たすように第1の膨張装置3aを制御する。   That is, the control unit controls the first expansion device 3a so that the relationship between the suction pressure Ps1 of the first compression element 1a and the suction pressure Ps2 of the second compression element 1b satisfies Ps1 ≧ Ps2.

第2の圧縮要素1bに吸入圧力Ps2は、蒸発器4の蒸発圧力であり、蒸発器4にて蒸発器4を流れる低沸点成分冷媒20bと熱交換する空気の温度やその空気の送風状態、蒸発器4の容量や熱交換性能など外的要因にて決定される。このように外的要因にて決定されるPs2を制御部が検知し、Ps1≧Ps2となるように、第1の膨張装置3aを制御する。   The suction pressure Ps2 to the second compression element 1b is the evaporation pressure of the evaporator 4, and the temperature of the air that exchanges heat with the low-boiling component refrigerant 20b that flows through the evaporator 4 in the evaporator 4 and the air blowing state of the air, It is determined by external factors such as the capacity of the evaporator 4 and heat exchange performance. In this way, the control unit detects Ps2 determined by the external factor, and controls the first expansion device 3a so that Ps1 ≧ Ps2.

第2の冷媒回路30bを流れる冷媒循環量も、第2の圧縮要素1bの吸入圧力Ps2、すなわち蒸発器4の蒸発圧力を決定する因子であるので、制御部は、第1の膨張装置3aだけでなく、第2の膨張装置3bも合わせて制御して、Ps1≧Ps2となるようにしてもよい。   Since the refrigerant circulation amount flowing through the second refrigerant circuit 30b is also a factor that determines the suction pressure Ps2 of the second compression element 1b, that is, the evaporation pressure of the evaporator 4, the control unit is only the first expansion device 3a. Alternatively, the second expansion device 3b may also be controlled so that Ps1 ≧ Ps2.

蒸発器4に低沸点冷媒を多く含む低沸点成分冷媒20bを流すことにより、同一条件下で混合冷媒20を蒸発器4に流す時に比べて、蒸発温度(熱交換する空気の温度に相当)に対する蒸発圧力、すなわち第2の圧縮要素1bの吸入圧力Ps2を高くすることができる。第2の圧縮要素1bの吐出圧力は、凝縮器2における混合冷媒20の凝縮圧力(これも蒸発器4の蒸発圧力と同じで外的要因にて決定される)となるため、混合冷媒20を吸収して圧縮する場合に比べて圧縮比が低くなり、第2の圧縮要素1bの効率は上昇する。   By flowing the low-boiling component refrigerant 20b containing a large amount of low-boiling point refrigerant to the evaporator 4, compared to the case where the mixed refrigerant 20 is flowed to the evaporator 4 under the same conditions, the evaporation temperature (corresponding to the temperature of the air for heat exchange) can be reduced. The evaporation pressure, that is, the suction pressure Ps2 of the second compression element 1b can be increased. The discharge pressure of the second compression element 1b is the condensation pressure of the mixed refrigerant 20 in the condenser 2 (this is also the same as the evaporation pressure of the evaporator 4 and is determined by an external factor). The compression ratio becomes lower than when absorbing and compressing, and the efficiency of the second compression element 1b increases.

また、第1の圧縮要素1aの吸入圧力Ps1は、上記したようにPs1≧Ps2に制御され、第1の圧縮要素1aの吐出圧力は、同様に凝縮器2における混合冷媒20の凝縮圧力、すなわち第2の圧縮要素1bの吐出圧力と同じとなるので、第1の圧縮要素1aの圧縮比は、第2の圧縮要素1bの圧縮比と同等以下となり、第1の圧縮要素1aの効率も高くできる。そのため、冷凍サイクル装置100の運転効率が向上する。   Further, the suction pressure Ps1 of the first compression element 1a is controlled to Ps1 ≧ Ps2 as described above, and the discharge pressure of the first compression element 1a is similarly the condensation pressure of the mixed refrigerant 20 in the condenser 2, that is, Since it becomes the same as the discharge pressure of the 2nd compression element 1b, the compression ratio of the 1st compression element 1a becomes below or equal to the compression ratio of the 2nd compression element 1b, and the efficiency of the 1st compression element 1a is also high. it can. Therefore, the operation efficiency of the refrigeration cycle apparatus 100 is improved.

また、第1の冷媒回路30aを流れる第1の膨張装置3aで減圧された高沸点成分冷媒20aと凝縮器2で凝縮液化された混合冷媒20の高圧液とを高低圧熱交換器15で熱交換することにより、第1の冷媒回路30aを流れる高沸点成分冷媒20aの蒸発潜熱を回収できる。   Further, the high-boiling component refrigerant 20a decompressed by the first expansion device 3a flowing through the first refrigerant circuit 30a and the high-pressure liquid of the mixed refrigerant 20 condensed and liquefied by the condenser 2 are heated by the high-low pressure heat exchanger 15. By exchanging, the latent heat of vaporization of the high boiling point component refrigerant 20a flowing through the first refrigerant circuit 30a can be recovered.

このため、第1の冷媒回路30aに高沸点成分冷媒20aを流すことによる損失が減少する。第1の冷媒回路30aを流れる高沸点成分冷媒20aが冷凍能力として持つ蒸発潜熱も高低圧熱交換器15で回収され、混合冷媒20の過冷却化に寄与する。これにより、第1の冷媒回路30aによるエネルギーの損失発生を抑制することができ、上記した第1の圧縮要素1a、第2の圧縮要素1bの効率向上と合わせて、冷凍サイクル装置100の運転効率を一層向上させることができる。   For this reason, the loss by flowing the high boiling point component refrigerant 20a through the first refrigerant circuit 30a is reduced. The latent heat of vaporization of the high boiling point component refrigerant 20a flowing through the first refrigerant circuit 30a is also collected by the high / low pressure heat exchanger 15 and contributes to the supercooling of the mixed refrigerant 20. Thereby, generation | occurrence | production of the loss of energy by the 1st refrigerant circuit 30a can be suppressed, and the operating efficiency of the refrigerating-cycle apparatus 100 is combined with the efficiency improvement of the 1st compression element 1a mentioned above and the 2nd compression element 1b. Can be further improved.

また、混合冷媒20を圧縮する場合に比べて、高沸点成分冷媒20aを圧縮する第1の圧縮要素1aの圧縮比を低くできるので、第1の圧縮要素1aの吐出温度を低くすることができる。高沸点成分冷媒20a中に多く含まれる、組成中に炭素の二重結合を有する冷媒は、分解や重合を高温高圧化で起こし易いので、吐出温度を低くできることにより、組成中に炭素の二重結合を有する冷媒の分解や重合が抑制される。   Moreover, since the compression ratio of the 1st compression element 1a which compresses the high boiling point component refrigerant | coolant 20a can be made low compared with the case where the mixed refrigerant 20 is compressed, the discharge temperature of the 1st compression element 1a can be made low. . The refrigerant having a carbon double bond in the composition, which is contained in a large amount in the high-boiling component refrigerant 20a, easily causes decomposition and polymerization at a high temperature and a high pressure. Decomposition and polymerization of the refrigerant having a bond are suppressed.

次に、第1の圧縮要素1aと第2の圧縮要素1bを、圧縮機に組込む方法について説明する。その方法には、以下に示す二つの方法がある。
(1)第1の圧縮要素1aを有する第1の圧縮機(図示せず)と、第2の圧縮要素1bを有する第2の圧縮機(図示せず)と2台の圧縮機を設ける。
(2)第1の圧縮要素1aと第2の圧縮要素1bとが一つの密閉容器50(図3参照)内部に収納され、密閉容器50内部に収納された一つの電動機60(図3参照)にて第1の圧縮要素1aと第2の圧縮要素1bの両方が駆動される。
Next, a method for incorporating the first compression element 1a and the second compression element 1b into the compressor will be described. There are the following two methods.
(1) A first compressor (not shown) having a first compression element 1a, a second compressor (not shown) having a second compression element 1b, and two compressors are provided.
(2) The first compression element 1a and the second compression element 1b are housed in one sealed container 50 (see FIG. 3), and one electric motor 60 (see FIG. 3) housed in the sealed container 50. Thus, both the first compression element 1a and the second compression element 1b are driven.

上記(1)のケースでは、第1の圧縮機は、密閉容器(図示せず)内部に第1の圧縮要素1aと、これを駆動する電動機(図示せず)とを備え、密閉容器内部にて電動機が配置されている空間を高沸点成分冷媒20aの吸入圧力雰囲気(低圧雰囲気)とする、一般的に、低圧シェル形式と呼ばれている圧縮機とするのが好ましい。   In the case of (1) above, the first compressor includes the first compression element 1a inside the sealed container (not shown) and an electric motor (not shown) that drives the first compression element 1a. Therefore, it is preferable to use a compressor generally called a low-pressure shell type in which the space in which the electric motor is disposed is the suction pressure atmosphere (low-pressure atmosphere) of the high-boiling component refrigerant 20a.

このように構成することにより、第1の圧縮要素1aから吐出される高沸点成分冷媒20aの高温高圧な吐出ガスが電動機を通過しないため、熱・化学的に不安定なHFO−1234yfやプロピレン等の組成中に炭素の二重結合を有する冷媒を含む高沸点成分冷媒20aが、電動機の絶縁材料等の有機材料へ悪影響を及ぼしたり、逆に電動機の有機材料によって、炭素の二重結合を有する冷媒が分解や重合されたりする恐れがなくなる。第1の圧縮機を低圧シェル形式とし、有機材料を有する電動機に、高温高圧な炭素の二重結合を有する冷媒を触れさせないようにするのである。これにより組成中に炭素の二重結合を有する冷媒の分解や重合を抑制し、混合冷媒20の安定性を保つことができる。また、第1の圧縮機に収納される電動機の有機材料の安定性を保つことができる。   With this configuration, the high-temperature and high-pressure discharge gas of the high-boiling component refrigerant 20a discharged from the first compression element 1a does not pass through the electric motor, so that thermally and chemically unstable HFO-1234yf, propylene, etc. The high-boiling component refrigerant 20a containing a refrigerant having a carbon double bond in the composition of the above has an adverse effect on an organic material such as an insulating material of the electric motor, or conversely has a carbon double bond depending on the organic material of the electric motor. There is no risk of the refrigerant being decomposed or polymerized. The first compressor is of a low-pressure shell type so that a motor having an organic material does not come into contact with a refrigerant having a high-temperature and high-pressure carbon double bond. Thereby, decomposition | disassembly and superposition | polymerization of the refrigerant | coolant which has a carbon double bond in a composition can be suppressed, and the stability of the mixed refrigerant | coolant 20 can be maintained. Moreover, the stability of the organic material of the electric motor accommodated in the first compressor can be maintained.

密閉容器内部にて電動機が配置されている空間を高沸点成分冷媒20aの吸入圧力雰囲気とする圧縮機の具体的な例は、往復動式圧縮機(レシプロ式圧縮機)、スクロール圧縮機等である。   Specific examples of the compressor in which the space in which the electric motor is disposed inside the hermetic container is the suction pressure atmosphere of the high boiling point component refrigerant 20a are a reciprocating compressor (reciprocating compressor), a scroll compressor, and the like. is there.

上記(2)のケースでは、図3の圧縮機200に示すように、第1の圧縮要素1aと第2の圧縮要素1bとを、一つの密閉容器50内部に収納し、密閉容器50内部に収納した一つの電動機60にて第1の圧縮要素1aと第2の圧縮要素1bとの両方を駆動するのであるが、第1の圧縮要素1aで圧縮され吐出される高沸点冷媒を多く含む高沸点成分冷媒20aを、密閉容器50内には吐出せず、密閉容器50外に直接吐出するようにするのが好ましい。   In the case of (2) above, as shown in the compressor 200 in FIG. 3, the first compression element 1 a and the second compression element 1 b are accommodated in one sealed container 50, Both the first compression element 1a and the second compression element 1b are driven by the single electric motor 60 that is housed, but the high-boiling-point refrigerant that is compressed and discharged by the first compression element 1a is high. It is preferable that the boiling point component refrigerant 20a be discharged directly outside the sealed container 50 without being discharged into the sealed container 50.

上記(1)のケースと同様に、このように構成することにより、第1の圧縮要素1aから吐出される高沸点冷媒を多く含む高沸点成分冷媒20aの吐出ガスが、電動機60を通過しないため、熱・化学的に不安定な炭素の二重結合を有する冷媒を含む高沸点成分冷媒20aが、電動機の絶縁材料等の有機材料へ悪影響を及ぼしたり、逆に電動機の有機材料によって、炭素の二重結合を有する冷媒が分解や重合されたりする恐れがなくなる。これにより組成中に炭素の二重結合を有する冷媒の分解や重合を抑制し、混合冷媒20の安定性を保つことができる。また、圧縮機200に収納される電動機60の有機材料の安定性を保つことができる。   As in the case of (1) above, by configuring in this way, the discharge gas of the high-boiling component refrigerant 20a containing a large amount of high-boiling refrigerant discharged from the first compression element 1a does not pass through the electric motor 60. The high-boiling component refrigerant 20a containing a refrigerant having a thermally and chemically unstable carbon double bond adversely affects organic materials such as an insulating material of an electric motor. There is no possibility that the refrigerant having a double bond is decomposed or polymerized. Thereby, decomposition | disassembly and superposition | polymerization of the refrigerant | coolant which has a carbon double bond in a composition can be suppressed, and the stability of the mixed refrigerant | coolant 20 can be maintained. Moreover, the stability of the organic material of the electric motor 60 accommodated in the compressor 200 can be maintained.

図3のモデル図に示す圧縮機200は、例えば、2シリンダのロータリ圧縮機である。第1の圧縮要素1aで圧縮され吐出される炭素の二重結合を有する冷媒を含む高沸点成分冷媒20aを、密閉容器50内には吐出せずに、密閉容器50外に直接吐出するようにするが、第1の圧縮要素1aは、図示はしないが、そのシリンダ(圧縮室を構成する部品の一つ)から圧縮されたガス冷媒が一旦吐き出される吐出マフラーを備える。吐出マフラーは、吐出配管等により密閉容器50内と連通することなく密閉容器50外部の冷媒回路と接続する。   The compressor 200 shown in the model diagram of FIG. 3 is, for example, a two-cylinder rotary compressor. The high boiling point component refrigerant 20a including the refrigerant having a carbon double bond that is compressed and discharged by the first compression element 1a is not discharged into the sealed container 50 but directly discharged out of the sealed container 50. However, although not shown, the first compression element 1a includes a discharge muffler from which a compressed gas refrigerant is temporarily discharged from its cylinder (one of the components constituting the compression chamber). The discharge muffler is connected to a refrigerant circuit outside the sealed container 50 without communicating with the inside of the sealed container 50 by a discharge pipe or the like.

図3のモデル図に示す圧縮機200は、例えば、2シリンダのロータリ圧縮機であるが、少なくとも第1の圧縮要素1aをスイングロータリ方式(図示せず)とするのが好ましい。   The compressor 200 shown in the model diagram of FIG. 3 is, for example, a two-cylinder rotary compressor, but it is preferable that at least the first compression element 1a be a swing rotary system (not shown).

一般的なロータリ方式は、偏心回転運動する円筒のローリングピストンに、シリンダの受入溝を出入りする直方体のベーン先端部が接触して、吸入室と圧縮室を区画するが、スイングロータリ方式では、ローリングピストンとベーンが一体(スイング方式の場合はベーンと呼ばずにブレードと呼ぶ)的であり、ベーン一体ローリングピストンが、偏心揺動運動することで冷媒を圧縮する。一般的なロータリ方式では、ローリングピストンは自転を伴うが、スイングロータリ方式では、ローリングピストン(ベーン一体)は自転しない。   In the general rotary method, a cylindrical rolling piston that rotates eccentrically contacts the vane tip of a rectangular parallelepiped that enters and exits the receiving groove of the cylinder to partition the suction chamber and the compression chamber. The piston and the vane are integrated (in the case of the swing method, called a blade instead of a vane), and the vane-integrated rolling piston compresses the refrigerant by performing an eccentric oscillating motion. In the general rotary system, the rolling piston is accompanied by rotation, but in the swing rotary system, the rolling piston (vane integrated) does not rotate.

一般的なロータリ方式で摺動状態が最も厳しいのが、ベーン先端部とローリングピストンとの摺動部である。このような厳しい摺動部では、局所的に高温高圧(冷媒の圧力雰囲気よりもはるかに高い)雰囲気となり、また、摺動部の材料が鉄もしくはアルミニウム等の金属であり、摺動によりその金属表面は活性化されている。   The sliding state between the vane tip and the rolling piston has the most severe sliding state in a general rotary system. In such a severe sliding portion, the atmosphere is locally high temperature and high pressure (much higher than the pressure atmosphere of the refrigerant), and the material of the sliding portion is a metal such as iron or aluminum. The surface is activated.

このため、高温、高圧で、さらには炭素の二重結合を有する物質を分解や重合させる触媒と成り得る活性化された金属表面が存在しているので、炭素の二重結合を有する冷媒の分解や重合が発生し易くなる。しかし、スイングロータリ方式では、ベーンとローリングピストンが一体であり、このような摺動部は存在しない。そこで第1の圧縮要素1aを、ローリングピストンとベーンの厳しい摺動環境が発生しないスイングロータリ方式とすることで、高沸点成分冷媒20a中の炭素の二重結合を有する冷媒が、局所的な高温、高圧雰囲気下で摺動部の活性化された金属の触媒作用によって分解や重合することを抑制することができる。これにより混合冷媒20の安定性を保つことができる。   For this reason, there is an activated metal surface that can act as a catalyst to decompose and polymerize substances having carbon double bonds at high temperatures and pressures, so the decomposition of refrigerants having carbon double bonds. And polymerization tends to occur. However, in the swing rotary system, the vane and the rolling piston are integrated, and such a sliding portion does not exist. Therefore, by making the first compression element 1a a swing rotary system in which a severe sliding environment between the rolling piston and the vane does not occur, the refrigerant having a carbon double bond in the high boiling point component refrigerant 20a can be locally heated. It is possible to suppress decomposition and polymerization due to the catalytic action of the activated metal in the sliding portion under a high-pressure atmosphere. Thereby, the stability of the mixed refrigerant 20 can be maintained.

図3のモデル図に示す圧縮機200が、2シリンダのロータリ圧縮機で、第1の圧縮要素1a、第2の圧縮要素1bともにローリングピストンとベーンが摺動する一般的なロータリ方式である場合、炭素の二重結合を有する冷媒を含む高沸点成分冷媒20aと接触する第1の圧縮要素1aの最も状態が厳しい摺動部は、ベーンとローリングピストンとの摺動部である。   When the compressor 200 shown in the model diagram of FIG. 3 is a two-cylinder rotary compressor, the first compression element 1a and the second compression element 1b are of a general rotary system in which the rolling piston and the vane slide. The most severe sliding portion of the first compression element 1a in contact with the high boiling point component refrigerant 20a including the refrigerant having a carbon double bond is a sliding portion between the vane and the rolling piston.

そこで、ベーンとローリングピストンとの摺動部で、鉄もしくはアルミニウム等の活性化された金属の触媒作用による高沸点成分冷媒20a中の炭素の二重結合を有する冷媒の分解、重合を抑制するために、第1の圧縮要素1aのベーンとローリングピストンの少なくともいずれか一方に、炭素系やセラミック系のコーティングを施すのが有効である。   Therefore, in order to suppress the decomposition and polymerization of the refrigerant having a carbon double bond in the high boiling point component refrigerant 20a by the catalytic action of an activated metal such as iron or aluminum at the sliding portion between the vane and the rolling piston. In addition, it is effective to apply a carbon-based or ceramic-based coating to at least one of the vane and the rolling piston of the first compression element 1a.

この圧縮機200におけるローリングピストンの材質は、クロム等を含有した合金鋼である。   The material of the rolling piston in the compressor 200 is alloy steel containing chromium or the like.

また、この圧縮機200のベーンの材料には、高速度工具鋼が用いられている。   Further, high-speed tool steel is used as a material for the vanes of the compressor 200.

炭素系のコーティングには、例えば、DLC−Si(ダイヤモンドライクカーボン−シリコン)、DLC(ダイヤモンドライクカーボン)等がある。   Examples of the carbon-based coating include DLC-Si (diamond-like carbon-silicon) and DLC (diamond-like carbon).

また、セラミック系のコーティングには、CrN(窒化クロム)、TiN(窒化チタン)、TiCN(炭窒化チタン)、TiAlN(窒化チタンアルミ)、WC/C(タングステンカーバイドコーティング)、VC(バナジウムカーバイド)等がある。   For ceramic coating, CrN (chromium nitride), TiN (titanium nitride), TiCN (titanium carbonitride), TiAlN (titanium nitride aluminum), WC / C (tungsten carbide coating), VC (vanadium carbide), etc. There is.

このようなコーティングを、第1の圧縮要素1aのベーンとローリングピストンの少なくともいずれか一方に施して、少なくとも一方の摺動する表面を非金属化する、すなわち少なくともその摺動する表面に鉄もしくはアルミニウム等の金属を露出させない構成とすることにより、金属同士の直接接触による高温ができにくく、また、金属表面も活性化されにくくなるので、局所的な高温、高圧下の摺動部における活性化された金属の触媒作用による炭素の二重結合を有する冷媒の分解や重合が抑制でき、混合冷媒20の安定性を保つことができる。   Such a coating is applied to at least one of the vane and the rolling piston of the first compression element 1a to demetalize at least one sliding surface, that is, at least the sliding surface is made of iron or aluminum. By making the structure such that the metal is not exposed, the high temperature due to the direct contact between the metals is difficult, and the metal surface is also difficult to be activated, so it is activated at the sliding part under local high temperature and high pressure. The decomposition and polymerization of the refrigerant having a carbon double bond due to the catalytic action of the metal can be suppressed, and the stability of the mixed refrigerant 20 can be maintained.

以上のように、この実施の形態によれば、制御部が、第1の冷媒回路30aを流れる高沸点冷媒を多く含む高沸点成分冷媒20aの第1の圧縮要素1aへ吸入されるときの吸入圧力が、第2の冷媒回路30bを流れる低沸点冷媒を多く含む低沸点成分冷媒20bの第2の圧縮要素1bへ吸入されるときの吸入圧力と同等かそれ以上になるように第1の膨張装置3aと、必要となれば第2の膨張装置3bも合わせて制御する(第1の圧縮要素1aの吸入圧力をPs1、第2の圧縮要素1bの吸入圧力をPs2としたとき、制御部は、Ps1≧Ps2の関係を満たすように第1の膨張装置3aと、必要となれば第2の膨張装置3bも合わせて制御する)ことにより、第1の圧縮要素1aの圧縮比を低くして、第1の圧縮要素1aの効率を高めることができる。   As described above, according to this embodiment, the control unit sucks when the high-boiling-point refrigerant 20a containing a large amount of high-boiling refrigerant flowing through the first refrigerant circuit 30a is sucked into the first compression element 1a. The first expansion is performed so that the pressure is equal to or higher than the suction pressure when the low-boiling component refrigerant 20b containing a large amount of low-boiling-point refrigerant flowing through the second refrigerant circuit 30b is sucked into the second compression element 1b. The device 3a and, if necessary, the second expansion device 3b are also controlled (when the suction pressure of the first compression element 1a is Ps1 and the suction pressure of the second compression element 1b is Ps2, the control unit The first expansion device 3a and, if necessary, the second expansion device 3b are also controlled so as to satisfy the relationship of Ps1 ≧ Ps2, thereby reducing the compression ratio of the first compression element 1a. Improving the efficiency of the first compression element 1a Can.

また、第1の圧縮要素1aの圧縮比を低くすることで、第1の圧縮要素1aで圧縮されて吐出される高沸点成分冷媒20aの吐出ガス温度を低く抑えられるので、高沸点成分冷媒20a中の炭素の二重結合を有する冷媒の分解や重合の発生を抑制することができ、混合冷媒20の安定性を保つことが可能な信頼性の高い冷凍サイクル装置100を提供できる。   Also, by reducing the compression ratio of the first compression element 1a, the discharge gas temperature of the high-boiling component refrigerant 20a that is compressed and discharged by the first compression element 1a can be kept low, so the high-boiling component refrigerant 20a It is possible to provide a highly reliable refrigeration cycle apparatus 100 that can suppress decomposition and polymerization of a refrigerant having a carbon double bond therein and can maintain the stability of the mixed refrigerant 20.

また、第1の冷媒回路30aを流れる減圧された高沸点成分冷媒20aと凝縮器2で凝縮液化された高圧の混合冷媒20とを高低圧熱交換器15で熱交換することにより、第1の冷媒回路30aを流れる高沸点成分冷媒20aの蒸発潜熱を回収できるため、第1の冷媒回路30aに高沸点成分冷媒20aを流すことによる損失が減少する。第1の冷媒回路30aを流れる高沸点冷媒を多く含む高沸点成分冷媒20aが冷凍能力として持つ蒸発潜熱も高低圧熱交換器15で回収される。これにより、第1の冷媒回路30aによるエネルギーの損失発生を抑制することができる。   Further, the high-low pressure heat exchanger 15 exchanges heat between the decompressed high-boiling component refrigerant 20 a flowing through the first refrigerant circuit 30 a and the high-pressure mixed refrigerant 20 condensed and liquefied by the condenser 2, thereby Since the latent heat of vaporization of the high boiling point component refrigerant 20a flowing through the refrigerant circuit 30a can be recovered, loss due to flowing the high boiling point component refrigerant 20a through the first refrigerant circuit 30a is reduced. The latent heat of vaporization that the high-boiling component refrigerant 20a containing a large amount of high-boiling refrigerant flowing through the first refrigerant circuit 30a has as a refrigerating capacity is also recovered by the high-low pressure heat exchanger 15. Thereby, generation | occurrence | production of the loss of energy by the 1st refrigerant circuit 30a can be suppressed.

また、第1の圧縮要素1aを有する第1の圧縮機と、第2の圧縮要素1bを有する第2の圧縮機とを設け、第1の圧縮機は、密閉容器内部に第1の圧縮要素1aと、これを駆動する電動機(図示せず)とを備え、密閉容器内部にて電動機が配置されている空間を高沸点成分冷媒20aの吸入圧力雰囲気(圧力Ps1雰囲気)とすることにより、第1の圧縮要素1aから吐出される高沸点成分冷媒20aの吐出ガスが電動機を通過しないため、熱・化学的に不安定な高沸点成分冷媒20a中の炭素の二重結合を有する冷媒が、電動機の絶縁材料等の有機材料へ悪影響を及ぼしたり、逆に電動機の有機材料に炭素の二重結合を有する冷媒が分解や重合されたりする恐れがなくなり、混合冷媒20の安定性を保つことが可能な信頼性の高い冷凍サイクル装置100を提供することができる。   Moreover, the 1st compressor which has the 1st compression element 1a, and the 2nd compressor which has the 2nd compression element 1b are provided, and the 1st compressor has the 1st compression element inside the airtight container. 1a and an electric motor (not shown) for driving the same, and a space in which the electric motor is arranged inside the sealed container is used as an intake pressure atmosphere (pressure Ps1 atmosphere) of the high boiling point component refrigerant 20a. Since the discharge gas of the high boiling point component refrigerant 20a discharged from one compression element 1a does not pass through the electric motor, the refrigerant having a carbon double bond in the high boiling point component refrigerant 20a which is thermally and chemically unstable is the electric motor. It is possible to maintain the stability of the mixed refrigerant 20 without adversely affecting the organic material such as the insulating material or conversely decomposing and polymerizing the refrigerant having a carbon double bond in the organic material of the electric motor. Highly reliable frozen rhino It is possible to provide the Le device 100.

また、第1の圧縮要素1aと第2の圧縮要素1bとが一つの密閉容器50内部に収納され、密閉容器50内部に収納された一つの電動機60にて第1の圧縮要素1aと第2の圧縮要素1bとが駆動される場合は、第1の圧縮要素1aで圧縮され吐出される組成中に炭素の二重結合を有する冷媒を含む高沸点成分冷媒20aを、密閉容器50内には吐出せず密閉容器50外に直接吐出ように構成することにより、第1の圧縮要素1aから吐出される高沸点成分冷媒20aの吐出ガスが電動機60を通過しないため、熱・化学的に不安定な高沸点成分冷媒20a中の炭素の二重結合を有する冷媒が、電動機の絶縁材料等の有機材料へ悪影響を及ぼしたり、逆に電動機の有機材料に炭素の二重結合を有する冷媒が分解や重合されたりする恐れがなくなり、混合冷媒20の安定性を保つことが可能な信頼性の高い冷凍サイクル装置100を提供することができる。   In addition, the first compression element 1a and the second compression element 1b are accommodated in one sealed container 50, and the first compression element 1a and the second compression element 1a are stored in the single electric motor 60 accommodated in the sealed container 50. The high-boiling component refrigerant 20a containing a refrigerant having a carbon double bond in the composition compressed and discharged by the first compression element 1a is contained in the sealed container 50. Since the discharge gas of the high boiling point component refrigerant 20a discharged from the first compression element 1a does not pass through the electric motor 60 by being configured to discharge directly to the outside of the sealed container 50 without discharging, it is thermally and chemically unstable. The refrigerant having a carbon double bond in the high-boiling component refrigerant 20a adversely affects an organic material such as an insulating material of the motor, or conversely, the refrigerant having a carbon double bond in the organic material of the motor is decomposed. Without fear of being polymerized Ri, it is possible to provide a reliable and can maintain the stability of the mixed refrigerant 20 refrigeration cycle apparatus 100.

また、少なくとも高沸点成分冷媒20aを圧縮する第1の圧縮要素1aをスイングロータリ方式とすることにより、摺動状態の厳しいベーン先端部とローリングピストンとの摺動を回避できるため、ベーン摺動部の鉄もしくはアルミニウム等の活性化された金属の触媒作用による高沸点成分冷媒20a中の炭素の二重結合を有する冷媒の分解や重合の発生を抑制することができ、混合冷媒20の安定性を保つことが可能な信頼性の高い冷凍サイクル装置100を提供できる。   In addition, since the first compression element 1a that compresses at least the high-boiling component refrigerant 20a is of a swing rotary system, sliding between the vane tip portion and the rolling piston that are severely slid can be avoided. The decomposition of the refrigerant having a carbon double bond and the occurrence of polymerization in the high boiling point component refrigerant 20a due to the catalytic action of an activated metal such as iron or aluminum can be suppressed, and the stability of the mixed refrigerant 20 can be improved. A highly reliable refrigeration cycle apparatus 100 that can be maintained can be provided.

また、図3のモデル図に示す圧縮機200が、2シリンダのロータリ圧縮機で、第1の圧縮要素1aがベーンとローリングピストンが摺動する一般的なロータリ方式の場合、第1の圧縮要素1aのベーンとローリングピストンの少なくともいずれか一方に、炭素系やセラミック系のコーティングを施して、少なくとも一方の摺動する表面を非金属化する、すなわち少なくともその摺動する表面に鉄もしくはアルミニウム等の金属を露出させない構成とすることにより、金属同士の直接接触による高温ができにくく、また、金属表面も活性化されにくくなるので、局所的な高温、高圧下の摺動部における活性化された金属の触媒作用による高沸点成分冷媒20a中の炭素の二重結合を有する冷媒の分解や重合の発生を抑制することができ、混合冷媒20の安定性を保つことが可能な信頼性の高い冷凍サイクル装置100を提供できる。   When the compressor 200 shown in the model diagram of FIG. 3 is a two-cylinder rotary compressor and the first compression element 1a is a general rotary system in which a vane and a rolling piston slide, the first compression element At least one of the vane of 1a and the rolling piston is coated with a carbon-based or ceramic-based coating so that at least one sliding surface is nonmetalized, that is, at least the sliding surface is made of iron or aluminum. By adopting a structure that does not expose the metal, high temperatures due to direct contact between metals are less likely to be generated, and the metal surface is also less likely to be activated. The decomposition and polymerization of a refrigerant having a carbon double bond in the high boiling point component refrigerant 20a due to the catalytic action of It can provide high refrigeration cycle apparatus 100 reliability capable of maintaining the stability of the medium 20.

実施の形態2.
図4は冷凍サイクル装置300の冷媒回路図である。
Embodiment 2. FIG.
FIG. 4 is a refrigerant circuit diagram of the refrigeration cycle apparatus 300.

図4を参照しながら、上記実施の形態1と異なる形態の冷凍サイクル装置300の冷媒回路について説明する。なお、この冷凍サイクル装置300に使用される冷媒は、実施の形態1の混合冷媒20と同じであり、説明は省略する。また、実施の形態1の冷凍サイクル装置100と同一または相当な部品は、同一符号を付して、その説明は省略する。   A refrigerant circuit of a refrigeration cycle apparatus 300 having a form different from that of the first embodiment will be described with reference to FIG. Note that the refrigerant used in the refrigeration cycle apparatus 300 is the same as the mixed refrigerant 20 of the first embodiment, and a description thereof will be omitted. Also, the same or corresponding parts as those in the refrigeration cycle apparatus 100 of Embodiment 1 are denoted by the same reference numerals, and the description thereof is omitted.

冷凍サイクル装置300の冷媒回路は、冷媒分離器6を起点とし、高沸点冷媒を多く含む高沸点成分冷媒20aが流れる第1の冷媒回路30aと、同じく冷媒分離器6を起点とし、低沸点冷媒を多く含む低沸点成分冷媒20bが流れる第2の冷媒回路30bと、合流部40から冷媒分離器6の間を混合冷媒20が流れる共通冷媒回路30cとを備える。   The refrigerant circuit of the refrigeration cycle apparatus 300 has the refrigerant separator 6 as a starting point, the first refrigerant circuit 30a through which the high-boiling component refrigerant 20a containing a large amount of high-boiling refrigerant flows, and the refrigerant separator 6 as the starting point. And a common refrigerant circuit 30c through which the mixed refrigerant 20 flows between the refrigerant separator 6 and the merging section 40.

第1の冷媒回路30aと第2の冷媒回路30bは、起点が冷媒分離器6、終点が合流部40となるように、共通冷媒回路30cに並列に接続される。   The first refrigerant circuit 30a and the second refrigerant circuit 30b are connected in parallel to the common refrigerant circuit 30c so that the starting point is the refrigerant separator 6 and the end point is the junction 40.

冷媒分離器6の構成は、実施の形態1と同様であり、説明は省略する。   The configuration of the refrigerant separator 6 is the same as that in the first embodiment, and a description thereof will be omitted.

先ず、混合冷媒20が流れる共通冷媒回路30cの構成を説明する。共通冷媒回路30cは、第1の圧縮要素1aで圧縮された高沸点冷媒を多く含む高沸点成分冷媒20aと、第2の圧縮要素1bで圧縮された低沸点冷媒を多く含む低沸点成分冷媒20bとが合流する合流部40の下流側(冷媒の流れの下流側)に、合流部40で合流後の混合冷媒20を凝縮する凝縮器2を備える。   First, the configuration of the common refrigerant circuit 30c through which the mixed refrigerant 20 flows will be described. The common refrigerant circuit 30c includes a high-boiling component refrigerant 20a containing a large amount of high-boiling refrigerant compressed by the first compression element 1a and a low-boiling component refrigerant 20b containing a large amount of low-boiling refrigerant compressed by the second compression element 1b. The condenser 2 that condenses the mixed refrigerant 20 after joining at the joining portion 40 is provided on the downstream side of the joining portion 40 that joins (downstream of the refrigerant flow).

混合冷媒20を凝縮する凝縮器2の下流側に、冷媒分離器6が接続され、凝縮器2の出口が、凝縮器2にて凝縮された混合冷媒20の高圧液を、高沸点冷媒を多く含む高沸点成分冷媒20aの液と低沸点冷媒を多く含む低沸点成分冷媒20bの液とに分離する冷媒分離器6の入口配管7に接続する。   A refrigerant separator 6 is connected to the downstream side of the condenser 2 that condenses the mixed refrigerant 20, and the outlet of the condenser 2 uses a high-pressure liquid of the mixed refrigerant 20 condensed in the condenser 2, and a large amount of high-boiling refrigerant. The refrigerant is connected to an inlet pipe 7 of a refrigerant separator 6 that separates into a liquid of a high-boiling component refrigerant 20a containing and a liquid of a low-boiling component refrigerant 20b containing a large amount of low-boiling refrigerant.

共通冷媒回路30cは、合流部40から凝縮器2、冷媒分離器6の入口配管7を経由して冷媒分離器6内の内部(混合冷媒20が高沸点冷媒を多く含む高沸点成分冷媒20aと低沸点冷媒を多く含む低沸点成分冷媒20bとに分離する前の空間)に至る部分である。   The common refrigerant circuit 30c is connected to the inside of the refrigerant separator 6 from the junction 40 via the condenser 2 and the inlet pipe 7 of the refrigerant separator 6 (the high-boiling component refrigerant 20a in which the mixed refrigerant 20 contains a large amount of high-boiling refrigerant) This is the part that reaches the space before separation into the low-boiling component refrigerant 20b containing a large amount of low-boiling refrigerant.

次に、第1の冷媒回路30aの構成を説明する。冷媒分離器6では、混合冷媒20中の高沸点冷媒は、冷媒分離器6の機能膜11を容易に通過しないので、高沸点冷媒を多く含む高沸点成分冷媒20aが、第1の冷媒回路30aの第1の膨張装置3aに接続されるバイパス配管12から第1の冷媒回路30aへ流出する。   Next, the configuration of the first refrigerant circuit 30a will be described. In the refrigerant separator 6, the high boiling point refrigerant in the mixed refrigerant 20 does not easily pass through the functional film 11 of the refrigerant separator 6. Therefore, the high boiling point component refrigerant 20 a containing a large amount of high boiling point refrigerant is used as the first refrigerant circuit 30 a. Outflow from the bypass pipe 12 connected to the first expansion device 3a to the first refrigerant circuit 30a.

バイパス配管12から第1の冷媒回路30aへ流出した高沸点冷媒を多く含む高沸点成分冷媒20aの液は、第1の膨張装置3aで減圧膨張する。   The liquid of the high boiling point component refrigerant 20a containing a large amount of the high boiling point refrigerant flowing out from the bypass pipe 12 to the first refrigerant circuit 30a is decompressed and expanded by the first expansion device 3a.

第1の膨張装置3aにより減圧された高沸点冷媒を多く含む高沸点成分冷媒20aは、第1の蒸発器4aで空気と熱交換して蒸発する。   The high-boiling component refrigerant 20a containing a large amount of high-boiling refrigerant decompressed by the first expansion device 3a evaporates by exchanging heat with air in the first evaporator 4a.

第1の蒸発器4aにより蒸発した高沸点冷媒を多く含む高沸点成分冷媒20aを第1の圧縮要素1aが吸入して圧縮する。第1の圧縮要素1aで圧縮された高圧な高沸点成分冷媒20aは、第1の圧縮要素1aから合流部40に吐出される。   The first compression element 1a sucks and compresses the high-boiling component refrigerant 20a containing a large amount of the high-boiling refrigerant evaporated by the first evaporator 4a. The high-pressure, high-boiling component refrigerant 20a compressed by the first compression element 1a is discharged from the first compression element 1a to the junction 40.

第1の冷媒回路30aは、冷媒分離器6のバイパス配管12から、第1の膨張装置3a、第1の蒸発器4a、第1の圧縮要素1aを経由して合流部40に至る部分である。   The first refrigerant circuit 30a is a part from the bypass pipe 12 of the refrigerant separator 6 to the junction 40 via the first expansion device 3a, the first evaporator 4a, and the first compression element 1a. .

続いて、第2の冷媒回路30bの構成を説明する。冷媒分離器6では、混合冷媒20中の低沸点冷媒は、冷媒分離器6の機能膜11を容易に通過するので、低沸点冷媒を多く含む低沸点成分冷媒20bが、第2の冷媒回路30bの第2の膨張装置3bに接続される出口配管8から第2の冷媒回路30bへ流出する。   Next, the configuration of the second refrigerant circuit 30b will be described. In the refrigerant separator 6, the low-boiling point refrigerant in the mixed refrigerant 20 easily passes through the functional film 11 of the refrigerant separator 6, so that the low-boiling component refrigerant 20b containing a large amount of low-boiling point refrigerant becomes the second refrigerant circuit 30b. Outflow from the outlet pipe 8 connected to the second expansion device 3b to the second refrigerant circuit 30b.

出口配管8から第2の冷媒回路30bへ流出した低沸点冷媒を多く含む低沸点成分冷媒20bの液は、第2の膨張装置3bで減圧膨張する。   The liquid of the low boiling point component refrigerant 20b containing a large amount of the low boiling point refrigerant flowing out from the outlet pipe 8 to the second refrigerant circuit 30b is decompressed and expanded by the second expansion device 3b.

第2の膨張装置3bにより減圧された低沸点冷媒を多く含む低沸点成分冷媒20bは、第2の蒸発器4bで空気と熱交換して蒸発する。   The low-boiling component refrigerant 20b containing a large amount of low-boiling refrigerant decompressed by the second expansion device 3b evaporates by exchanging heat with air in the second evaporator 4b.

第2の蒸発器4bにより蒸発された低沸点冷媒を多く含む低沸点成分冷媒20bを第2の圧縮要素1bが吸入して圧縮する。第2の圧縮要素1bで圧縮された高圧な低沸点成分冷媒20bは、第2の圧縮要素1bから合流部40に吐出される。   The second compression element 1b sucks and compresses the low-boiling component refrigerant 20b containing a large amount of the low-boiling refrigerant evaporated by the second evaporator 4b. The high-pressure low-boiling component refrigerant 20b compressed by the second compression element 1b is discharged from the second compression element 1b to the junction 40.

第2の冷媒回路30bは、冷媒分離器6の出口配管8から、第2の膨張装置3b、第2の蒸発器4b、第2の圧縮要素1bを経由して合流部40に至る部分である。   The second refrigerant circuit 30b is a portion from the outlet pipe 8 of the refrigerant separator 6 to the junction 40 via the second expansion device 3b, the second evaporator 4b, and the second compression element 1b. .

第1の圧縮要素1aは組成中に炭素の二重結合を有する冷媒を含む高沸点成分冷媒20aを圧縮し、第2の圧縮要素1bは低沸点成分冷媒20bを圧縮する。   The 1st compression element 1a compresses the high boiling point component refrigerant | coolant 20a containing the refrigerant | coolant which has a carbon double bond in a composition, and the 2nd compression element 1b compresses the low boiling point component refrigerant | coolant 20b.

第1の圧縮要素1aと第2の圧縮要素1bを圧縮機に組込む方法は、実施の形態1と同様であるので、説明は省略する。   Since the method of incorporating the first compression element 1a and the second compression element 1b into the compressor is the same as that of the first embodiment, the description thereof is omitted.

本実施の形態では、組成中に炭素の二重結合を有する冷媒を含む高沸点成分冷媒20a、低沸点冷媒を多く含む低沸点成分冷媒20bに対応して、第1の圧縮要素1a、第2の圧縮要素1bそれぞれの材料や構成の使い分けが可能となる。   In the present embodiment, the first compression element 1a and the second compression element 2a correspond to the high-boiling component refrigerant 20a including a refrigerant having a carbon double bond in the composition and the low-boiling component refrigerant 20b including a large amount of low-boiling refrigerant. The material and configuration of each compression element 1b can be properly used.

そこで、第1の圧縮要素1aを実施の形態1で述べたような構成、すなわち組成中に炭素の二重結合を有する冷媒が分解、重合し難い構成とすることで、高沸点成分冷媒20a中の炭素の二重結合を有する冷媒の化学反応による分解や重合の発生を抑制することができ、混合冷媒20の安定性を保つことが可能な信頼性の高い冷凍サイクル装置300を提供できる。   Therefore, the first compression element 1a is configured as described in the first embodiment, that is, a configuration in which a refrigerant having a carbon double bond is difficult to decompose and polymerize in the composition. It is possible to provide a highly reliable refrigeration cycle apparatus 300 that can suppress the occurrence of decomposition and polymerization due to a chemical reaction of a refrigerant having a carbon double bond, and can maintain the stability of the mixed refrigerant 20.

実施の形態1を示す図で、冷凍サイクル装置100の冷媒回路図。FIG. 5 shows the first embodiment, and is a refrigerant circuit diagram of the refrigeration cycle apparatus 100. 冷凍サイクル装置100における冷媒分離器6の縦拡大断面図。FIG. 3 is a longitudinal enlarged cross-sectional view of the refrigerant separator 6 in the refrigeration cycle apparatus 100. 第1の圧縮要素1aと第2の圧縮要素1bとが一つの密閉容器50内部に収納される圧縮機200を断面で示すモデル図。The model figure which shows the compressor 200 by which the 1st compression element 1a and the 2nd compression element 1b are accommodated in the inside of one airtight container 50 in a cross section. 実施の形態2を示す図で、冷凍サイクル装置300の冷媒回路図。FIG. 5 shows the second embodiment, and is a refrigerant circuit diagram of the refrigeration cycle apparatus 300.

符号の説明Explanation of symbols

1a 第1の圧縮要素、1b 第2の圧縮要素、2 凝縮器、3a 第1の膨張装置、3b 第2の膨張装置、4 蒸発器、4a 第1の蒸発器、4b 第2の蒸発器、6 冷媒分離器、7 入口配管、8 出口配管、9 フランジ、10 保持具、11 機能膜、12 バイパス配管、15 高低圧熱交換器、15a 高圧配管、15b 低圧配管、20a 高沸点成分冷媒、20b 低沸点成分冷媒、30a 第1の冷媒回路、30b 第2の冷媒回路、30c 共通冷媒回路、40 合流部、50 密閉容器、60 電動機、100 冷凍サイクル装置、200 圧縮機、300 冷凍サイクル装置。   1a 1st compression element, 1b 2nd compression element, 2 condenser, 3a 1st expansion device, 3b 2nd expansion device, 4 evaporator, 4a 1st evaporator, 4b 2nd evaporator, 6 refrigerant separator, 7 inlet pipe, 8 outlet pipe, 9 flange, 10 retainer, 11 functional membrane, 12 bypass pipe, 15 high-low pressure heat exchanger, 15a high-pressure pipe, 15b low-pressure pipe, 20a high-boiling component refrigerant, 20b Low boiling point component refrigerant, 30a first refrigerant circuit, 30b second refrigerant circuit, 30c common refrigerant circuit, 40 junction, 50 sealed container, 60 electric motor, 100 refrigeration cycle apparatus, 200 compressor, 300 refrigeration cycle apparatus.

Claims (10)

組成中に炭素の二重結合を有するハロゲン化炭化水素または組成中に炭素の二重結合を有する炭化水素の少なくともいずれかを含む高沸点冷媒と、前記高沸点冷媒より低沸点の少なくとも一つ以上の低沸点冷媒とを含む混合冷媒を用い、
前記混合冷媒を凝縮する凝縮器の出口側に接続され、前記凝縮器にて凝縮された前記混合冷媒を前記高沸点冷媒が多く含まれる高沸点成分冷媒と前記低沸点冷媒が多く含まれる低沸点成分冷媒とに分離する冷媒分離器と、
この冷媒分離器により分離された前記高沸点成分冷媒を減圧する第1の膨張装置と、
前記凝縮器と前記冷媒分離器の間に配置され、前記第1の膨張装置により減圧された前記高沸点成分冷媒と前記凝縮器で凝縮し前記冷媒分離器に流入する前の前記混合冷媒とを熱交換させる高低圧熱交換器と、
この高低圧熱交換器により熱交換された前記高沸点成分冷媒を圧縮する第1の圧縮要素と、
前記冷媒分離器により分離された前記低沸点成分冷媒を減圧する第2の膨張装置と、
この第2の膨張装置により減圧された前記低沸点成分冷媒を空気と熱交換させて蒸発させる蒸発器と、
この蒸発器により蒸発された前記低沸点成分冷媒を圧縮する第2の圧縮要素と、
前記凝縮器の入口より上流側で、前記第1の圧縮要素で圧縮された高沸点成分冷媒と前記第2の圧縮要素で圧縮された前記低沸点成分冷媒とが合流する合流部と、
を備えたことを特徴とする冷凍サイクル装置。
A high-boiling-point refrigerant comprising at least one of a halogenated hydrocarbon having a carbon double bond in the composition or a hydrocarbon having a carbon double bond in the composition, and at least one or more having a lower boiling point than the high-boiling refrigerant A mixed refrigerant containing a low boiling point refrigerant of
Connected to the outlet side of the condenser for condensing the mixed refrigerant, the mixed refrigerant condensed in the condenser is a high boiling point component refrigerant containing a large amount of the high boiling point refrigerant and a low boiling point containing a large amount of the low boiling point refrigerant. A refrigerant separator that separates into component refrigerants;
A first expansion device that depressurizes the high-boiling component refrigerant separated by the refrigerant separator;
The high boiling point component refrigerant disposed between the condenser and the refrigerant separator and decompressed by the first expansion device, and the mixed refrigerant before being condensed in the condenser and flowing into the refrigerant separator. A high and low pressure heat exchanger for heat exchange;
A first compression element that compresses the high-boiling component refrigerant heat-exchanged by the high-low pressure heat exchanger;
A second expansion device that depressurizes the low-boiling-point component refrigerant separated by the refrigerant separator;
An evaporator for evaporating the low-boiling component refrigerant decompressed by the second expansion device by heat exchange with air;
A second compression element for compressing the low boiling point component refrigerant evaporated by the evaporator;
On the upstream side from the inlet of the condenser, a merging portion where the high boiling point component refrigerant compressed by the first compression element and the low boiling point component refrigerant compressed by the second compression element merge,
A refrigeration cycle apparatus comprising:
当該冷凍サイクル装置の運転制御を行う制御部を備え、
前記第1の圧縮要素の吸入圧力をPs1、前記第2の圧縮要素の吸入圧力をPs2としたとき、
前記制御部は、Ps1≧Ps2の関係を満たすように前記第1の膨張装置を制御することを特徴とする請求項1記載の冷凍サイクル装置。
A control unit that performs operation control of the refrigeration cycle apparatus includes:
When the suction pressure of the first compression element is Ps1, and the suction pressure of the second compression element is Ps2,
The refrigeration cycle apparatus according to claim 1, wherein the control unit controls the first expansion device to satisfy a relationship of Ps1 ≧ Ps2.
組成中に炭素の二重結合を有するハロゲン化炭化水素または組成中に炭素の二重結合を有する炭化水素の少なくともいずれかを含む高沸点冷媒と、前記高沸点冷媒より低沸点の少なくとも一つ以上の低沸点冷媒とを含む混合冷媒を用い、
前記混合冷媒を凝縮する凝縮器の出口側に接続され、前記凝縮器にて凝縮された前記混合冷媒を前記高沸点冷媒が多く含まれる高沸点成分冷媒と前記低沸点冷媒が多く含まれる低沸点成分冷媒とに分離する冷媒分離器と、
この冷媒分離器により分離された前記高沸点成分冷媒を減圧する第1の膨張装置と、
この第1の膨張装置により減圧された前記高沸点成分冷媒を空気と熱交換させて蒸発させる第1の蒸発器と、
この第1の蒸発器により蒸発された前記高沸点成分冷媒を圧縮する第1の圧縮要素と、
前記冷媒分離器により分離された前記低沸点成分冷媒を減圧する第2の膨張装置と、
この第2の膨張装置により減圧された前記低沸点成分冷媒を空気と熱交換させて蒸発させる第2の蒸発器と、
この第2の蒸発器により蒸発された前記低沸点成分冷媒を圧縮する第2の圧縮要素と、
前記凝縮器の入口より上流側で、前記第1の圧縮要素で圧縮された前記高沸点成分冷媒と前記第2の圧縮要素で圧縮された前記低沸点成分冷媒とが合流する合流部と、
を備えたことを特徴とする冷凍サイクル装置。
A high-boiling-point refrigerant comprising at least one of a halogenated hydrocarbon having a carbon double bond in the composition or a hydrocarbon having a carbon double bond in the composition; and at least one or more having a lower boiling point than the high-boiling refrigerant A mixed refrigerant containing a low boiling point refrigerant of
Connected to the outlet side of the condenser for condensing the mixed refrigerant, the mixed refrigerant condensed in the condenser is a high boiling point component refrigerant containing a lot of the high boiling point refrigerant and a low boiling point containing a lot of the low boiling point refrigerant. A refrigerant separator that separates into component refrigerants;
A first expansion device that depressurizes the high-boiling component refrigerant separated by the refrigerant separator;
A first evaporator for evaporating the high-boiling component refrigerant decompressed by the first expansion device by heat exchange with air;
A first compression element that compresses the high-boiling component refrigerant evaporated by the first evaporator;
A second expansion device that depressurizes the low-boiling-point component refrigerant separated by the refrigerant separator;
A second evaporator for evaporating the low boiling point component refrigerant decompressed by the second expansion device by heat exchange with air;
A second compression element for compressing the low-boiling component refrigerant evaporated by the second evaporator;
On the upstream side from the inlet of the condenser, a merging portion where the high-boiling component refrigerant compressed by the first compression element and the low-boiling component refrigerant compressed by the second compression element merge;
A refrigeration cycle apparatus comprising:
前記第1の圧縮要素を有する第1の圧縮機と、前記第2の圧縮要素を有する第2の圧縮機とを備えたことを特徴とする請求項1乃至3のいずれかに記載の冷凍サイクル装置。   The refrigeration cycle according to any one of claims 1 to 3, further comprising: a first compressor having the first compression element; and a second compressor having the second compression element. apparatus. 前記第1の圧縮機は、密閉容器内部に前記第1の圧縮要素と、これを駆動する電動機とを備え、前記密閉容器内部にて前記電動機が配置されている空間を前記高沸点成分冷媒の吸入圧力雰囲気とすることを特徴とする請求項4記載の冷凍サイクル装置。   The first compressor includes the first compression element and an electric motor that drives the first compression element in a sealed container, and a space in which the electric motor is disposed in the sealed container includes the high-boiling component refrigerant. The refrigeration cycle apparatus according to claim 4, wherein an intake pressure atmosphere is provided. 前記第1の圧縮要素と前記第2の圧縮要素とが一つの密閉容器内部に収納され、前記密閉容器内部に収納された一つの電動機にて前記第1の圧縮要素と前記第2の圧縮要素とが駆動されることを特徴とする請求項1乃至3のいずれかに記載の冷凍サイクル装置。   The first compression element and the second compression element are accommodated in a single sealed container, and the first compression element and the second compression element are stored in a single electric motor stored in the closed container. The refrigeration cycle apparatus according to any one of claims 1 to 3, wherein the refrigeration cycle apparatus is driven. 前記第1の圧縮要素で圧縮され吐出される前記高沸点成分冷媒を前記密閉容器内には吐出せず前記密閉容器外に直接吐出することを特徴とする請求項6記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to claim 6, wherein the high-boiling-point component refrigerant compressed and discharged by the first compression element is directly discharged outside the sealed container without being discharged into the sealed container. 少なくとも前記第1の圧縮要素は、スイングロータリ方式とすることを特徴とする請求項6又は請求項7記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to claim 6 or 7, wherein at least the first compression element is a swing rotary system. 前記第1の圧縮要素の摺動部を構成する部品の少なくとも一方は、少なくともその摺動する表面に鉄もしくはアルミニウムを露出させない構成することを特徴とする請求項1乃至8のいずれかに記載の冷凍サイクル装置。   9. The structure according to claim 1, wherein at least one of the parts constituting the sliding portion of the first compression element is configured not to expose iron or aluminum to at least a sliding surface thereof. 10. Refrigeration cycle equipment. 前記摺動部を構成する部品の表面にコーティング処理を施すことで摺動する表面に鉄もしくはアルミニウムを露出させない構成とすることを特徴とする請求項9記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to claim 9, wherein iron or aluminum is not exposed on a sliding surface by performing a coating process on a surface of a component constituting the sliding portion.
JP2008169748A 2008-06-30 2008-06-30 Refrigeration cycle equipment Active JP4789978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008169748A JP4789978B2 (en) 2008-06-30 2008-06-30 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008169748A JP4789978B2 (en) 2008-06-30 2008-06-30 Refrigeration cycle equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011058576A Division JP5220148B2 (en) 2011-03-16 2011-03-16 Refrigeration cycle equipment

Publications (3)

Publication Number Publication Date
JP2010008002A true JP2010008002A (en) 2010-01-14
JP2010008002A5 JP2010008002A5 (en) 2010-09-09
JP4789978B2 JP4789978B2 (en) 2011-10-12

Family

ID=41588714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008169748A Active JP4789978B2 (en) 2008-06-30 2008-06-30 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP4789978B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015140883A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Air conditioner
WO2015140871A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Refrigeration cycle device
WO2015174054A1 (en) 2014-05-12 2015-11-19 パナソニックIpマネジメント株式会社 Refrigeration cycle device
US9347446B2 (en) 2013-04-17 2016-05-24 Mitsubishi Electric Corporation Refrigerant compressor including a polymerization inhibitor contained therein
CN108302839A (en) * 2017-12-29 2018-07-20 青岛海尔空调器有限总公司 Air-conditioner system
CN108375248A (en) * 2017-12-29 2018-08-07 青岛海尔空调器有限总公司 Air-conditioner system
JPWO2020008520A1 (en) * 2018-07-03 2020-07-09 三菱電機株式会社 Air conditioners and compressors

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57166057U (en) * 1981-04-14 1982-10-19
JPH0542964U (en) * 1991-11-18 1993-06-11 サンデン株式会社 Refrigeration circuit for non-azeotropic mixed refrigerant
JP2000080991A (en) * 1998-09-04 2000-03-21 Sanyo Electric Co Ltd Vane, roller and coolant compressor using them
WO2007002625A2 (en) * 2005-06-24 2007-01-04 Honeywell International Inc. Compositions containing fluorine substituted olefins
JP2007536390A (en) * 2004-04-29 2007-12-13 ハネウェル・インターナショナル・インコーポレーテッド Composition comprising tetrafluoropropene and carbon dioxide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57166057U (en) * 1981-04-14 1982-10-19
JPH0542964U (en) * 1991-11-18 1993-06-11 サンデン株式会社 Refrigeration circuit for non-azeotropic mixed refrigerant
JP2000080991A (en) * 1998-09-04 2000-03-21 Sanyo Electric Co Ltd Vane, roller and coolant compressor using them
JP2007536390A (en) * 2004-04-29 2007-12-13 ハネウェル・インターナショナル・インコーポレーテッド Composition comprising tetrafluoropropene and carbon dioxide
WO2007002625A2 (en) * 2005-06-24 2007-01-04 Honeywell International Inc. Compositions containing fluorine substituted olefins

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9347446B2 (en) 2013-04-17 2016-05-24 Mitsubishi Electric Corporation Refrigerant compressor including a polymerization inhibitor contained therein
WO2015140883A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Air conditioner
WO2015140871A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Refrigeration cycle device
JPWO2015140871A1 (en) * 2014-03-17 2017-04-06 三菱電機株式会社 Refrigeration cycle equipment
JPWO2015140883A1 (en) * 2014-03-17 2017-04-06 三菱電機株式会社 Air conditioner
WO2015174054A1 (en) 2014-05-12 2015-11-19 パナソニックIpマネジメント株式会社 Refrigeration cycle device
US10591188B2 (en) 2014-05-12 2020-03-17 Panasonic Intellectual Property Management Co., Ltd. Refrigeration cycle device using working fluid containing 1,1,2-trifluoroethylene (R1123) and difluoromethane (R32)
CN108302839A (en) * 2017-12-29 2018-07-20 青岛海尔空调器有限总公司 Air-conditioner system
CN108375248A (en) * 2017-12-29 2018-08-07 青岛海尔空调器有限总公司 Air-conditioner system
WO2019128518A1 (en) * 2017-12-29 2019-07-04 青岛海尔空调器有限总公司 Air conditioner system
WO2019128519A1 (en) * 2017-12-29 2019-07-04 青岛海尔空调器有限总公司 Air conditioner system
JPWO2020008520A1 (en) * 2018-07-03 2020-07-09 三菱電機株式会社 Air conditioners and compressors

Also Published As

Publication number Publication date
JP4789978B2 (en) 2011-10-12

Similar Documents

Publication Publication Date Title
JP4789978B2 (en) Refrigeration cycle equipment
CN101978226B (en) Refrigeration apparatus
JP5674157B2 (en) Trans-chloro-3,3,3-trifluoropropene for use in cooler applications
WO2017115636A1 (en) Refrigeration cycle device
BR112016019572B1 (en) HEAT RECOVERY COOLING SYSTEM
JP6138957B2 (en) Refrigerant circulation device, refrigerant circulation method, and acid suppression method
JP2011094841A (en) Refrigerating device
US6962059B2 (en) Refrigerating cycle device
JP2001221517A (en) Supercritical refrigeration cycle
JP2001241780A (en) Refrigerating air conditioner
WO2002066907A1 (en) Refrigeration cycle device
Li et al. A comprehensive study of drop-in alternative mixtures for R134a in a mobile air-conditioning system
JP2010243148A (en) Refrigerating cycle device
JP6381890B2 (en) Refrigerant circulation device, refrigerant circulation method, and isomerization suppression method
JP2009300001A (en) Refrigerating cycle device
EP3575710A1 (en) Refrigeration device
JP2015083899A5 (en)
WO2016017277A1 (en) Air conditioner
JP5220148B2 (en) Refrigeration cycle equipment
JP2010106754A (en) Compressor unit
CN108368417A (en) Heat source machine and its method of operation
AU2006208885A1 (en) Heat pump
CN110234939A (en) Refrigerating plant
JP6899360B2 (en) Refrigeration cycle equipment
JP2015081726A (en) Refrigeration cycle device and air conditioner

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100728

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4789978

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250