JP2012132578A - Refrigerating cycle device - Google Patents

Refrigerating cycle device Download PDF

Info

Publication number
JP2012132578A
JP2012132578A JP2010282779A JP2010282779A JP2012132578A JP 2012132578 A JP2012132578 A JP 2012132578A JP 2010282779 A JP2010282779 A JP 2010282779A JP 2010282779 A JP2010282779 A JP 2010282779A JP 2012132578 A JP2012132578 A JP 2012132578A
Authority
JP
Japan
Prior art keywords
temperature sensor
compressor
refrigerant
heat exchanger
discharge temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010282779A
Other languages
Japanese (ja)
Inventor
Yoshikazu Kawabe
義和 川邉
Akira Fujitaka
章 藤高
Kazuhiko Marumoto
一彦 丸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010282779A priority Critical patent/JP2012132578A/en
Publication of JP2012132578A publication Critical patent/JP2012132578A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem with controlling a degree of superheat at a suction port of a compressor, wherein using a pressure sensor is costly, the response is complicated, and decompostion of HFO refrigerant can be accelerated by a rise of discharge temperature of the compressor.SOLUTION: A refrigerating cycle device is provided with: a discharge temperature sensor 122 for detecting the temperature of a refrigerant discharged from the compressor 111; an outdoor heat exchange temperature sensor 123, which is a condensation temperature sensor for detecting the condensation temperature in an outdoor heat exchanger 112; and a low pressure side temperature sensor 124 for detecting the refrigerant temperature at a low pressure side port of an internal heat exchanger 121. A control device 125 regulates opening of an expansion valve 114 based on a rotation rate of the compressor 111 and an output value of the discharge temperature sensor 122, outdoor heat exchange temperature sensor 123 and the low pressure side temperature sensor 124. Thereby, the inexpensive device with high performance and high reliability is provided.

Description

本発明は、冷媒を用いてヒートポンプサイクルを構成して冷媒暖房をおこなう冷凍サイクル装置に関するもので、特に室内機と室外機を接続配管で繋いでサイクルを構成する装置において、炭素間に二重結合を有する冷媒を使用するに当たり、安価な構成で接続配管の圧力損失を小さくすると共に、圧縮機の温度上昇を抑えて冷媒の分解を防ぐことのできる技術を提供するものである。   The present invention relates to a refrigeration cycle apparatus that forms a heat pump cycle using a refrigerant and performs refrigerant heating, and particularly in an apparatus that forms a cycle by connecting an indoor unit and an outdoor unit with a connecting pipe, a double bond between carbons When using a refrigerant having the above, there is provided a technique capable of reducing the pressure loss of the connecting pipe with an inexpensive configuration and suppressing the temperature rise of the compressor to prevent the refrigerant from being decomposed.

近年は地球温暖化が大きな問題となり、温暖化係数の低い冷媒を使用しようという動きが顕著になってきており、自然冷媒や、炭素と炭素間に2重結合を有するハイドロフルオロオレフィンなどの冷媒が注目されている。   In recent years, global warming has become a major problem, and the movement to use refrigerants with low global warming potential has become prominent. Natural refrigerants and refrigerants such as hydrofluoroolefins having a double bond between carbon and carbon have been used. Attention has been paid.

ハイドロフルオロオレフィンは、R134aの代替冷媒として特に注目されており、自動車用エアコンディショナーへの実用化が推進されている。その温暖化係数(100年)はHFO−1234yfの場合4であり、R134aの1,300や、エアコンなどで使用されているR410Aの1730に比べてきわめて小さい。この温暖化係数が小さいという特性は、炭素間に2重結合を有し分解し易いことに起因している。   Hydrofluoroolefin has attracted particular attention as an alternative refrigerant for R134a, and its practical application to an air conditioner for automobiles is being promoted. The warming potential (100 years) is 4 in the case of HFO-1234yf, which is extremely smaller than 1,300 of R134a and 1730 of R410A used in air conditioners and the like. This characteristic that the warming coefficient is small is attributed to the fact that there is a double bond between carbon and it is easy to decompose.

HFO1234yfとR410Aを比較した場合、HFO−1234yfは熱物性的にR410Aより優れており、理論サイクルの性能は良い。その一方で、沸点が高く圧力損失が大きいために、分離型のルームエアコンでは性能の低下が著しい。また、分解し易いため極力高温にならないように運転することが望ましいなどの特徴がある。   When HFO1234yf and R410A are compared, HFO-1234yf is superior to R410A in terms of thermophysical properties, and the performance of the theoretical cycle is good. On the other hand, since the boiling point is high and the pressure loss is large, the performance of the separation type room air conditioner is remarkably reduced. Moreover, since it is easy to decompose | disassemble, it has the characteristics that it is desirable to drive | operate so that it may not become as high temperature as possible.

その圧力損失を小さくするため従来の技術では、ガス側連絡配管(ガス側接続配管)を流れる冷媒を湿り状態とする空気調和装置がある(例えば、特許文献1参照)。図4において、空気調和装置10は、室外機11と室内機12を液側連絡配管21とガス側連絡配管22で接続して構成されている。室外機11には、圧縮機31、室外熱交換器32、膨張弁33、閉鎖弁23、サイクル内部で熱交換をする内部熱交換器である液ガス熱交換器50が配備され、室内機12には室内熱交換器41、継手24が配備されている。   In order to reduce the pressure loss, in the conventional technology, there is an air conditioner that makes the refrigerant flowing through the gas side connecting pipe (gas side connecting pipe) wet (for example, see Patent Document 1). In FIG. 4, the air conditioner 10 is configured by connecting an outdoor unit 11 and an indoor unit 12 with a liquid side communication pipe 21 and a gas side communication pipe 22. The outdoor unit 11 is provided with a compressor 31, an outdoor heat exchanger 32, an expansion valve 33, a closing valve 23, and a liquid gas heat exchanger 50 that is an internal heat exchanger for exchanging heat within the cycle. Is provided with an indoor heat exchanger 41 and a joint 24.

空気調和装置10は、運転時に蒸発器である室内熱交換器41の出口(E点)が湿り状態となるよう制御されている。そして、圧縮機31の吸入(A点)で過熱度5℃の乾き状態となるように液ガス熱交換器50設け、室外機11に戻ってきた湿りの冷媒を凝縮器である室外熱交換器32を出た冷媒と熱交換している。   The air conditioner 10 is controlled so that the outlet (point E) of the indoor heat exchanger 41 that is an evaporator is in a wet state during operation. And the liquid gas heat exchanger 50 is provided so that it may become a dry state of 5 degreeC of superheat by the suction | inhalation (A point) of the compressor 31, and the outdoor heat exchanger which is a condenser with the wet refrigerant | coolant which returned to the outdoor unit 11 Heat is exchanged with the refrigerant that has exited 32.

特許文献1では、圧縮機31の吸入での過熱度を所定の値に制御する具体的な手段については言及していないが、この技術としては例えば、特許文献2に記載されているものがある。   Patent Document 1 does not mention a specific means for controlling the degree of superheat at the suction of the compressor 31 to a predetermined value, but as this technique, for example, there is one described in Patent Document 2 .

図5は、圧縮機1、凝縮器2、膨張弁3、水側熱交換器4を備え、水側熱交換器4で冷水を作り出す冷凍装置である。水側熱交換器4と圧縮機1の吸入口の間には、凝縮器2出口の冷媒と熱交換する吸入配管熱交換器5と冷媒の圧力および温度を検出するセンサ6が配置されている。   FIG. 5 is a refrigeration apparatus that includes a compressor 1, a condenser 2, an expansion valve 3, and a water-side heat exchanger 4, and produces cold water by the water-side heat exchanger 4. Between the water-side heat exchanger 4 and the suction port of the compressor 1, a suction pipe heat exchanger 5 for exchanging heat with the refrigerant at the outlet of the condenser 2 and a sensor 6 for detecting the pressure and temperature of the refrigerant are arranged. .

吸入配管熱交換器5は、図4における液ガス熱交換器50と同様の働きをし、水側熱交換器4を最大限利用しつつ圧縮機吸入口の過熱度を確保するためのものである。そして、センサ6で冷媒の圧力および温度を検出し、過熱度が所定の値となるよう膨張弁3の開度
を調節する。
The suction pipe heat exchanger 5 functions in the same manner as the liquid gas heat exchanger 50 in FIG. 4, and ensures the degree of superheat of the compressor suction port while making maximum use of the water-side heat exchanger 4. is there. And the pressure and temperature of a refrigerant | coolant are detected with the sensor 6, and the opening degree of the expansion valve 3 is adjusted so that a superheat degree may become a predetermined value.

特開2009−250592号公報JP 2009-250592 A 特開2005−83608号公報Japanese Patent Laid-Open No. 2005-83608

上記従来の技術では、圧縮機吸入口の過熱度が所定の値となるよう制御を行うものであって、圧力と温度を検出する必要があり、圧力検出のためのセンサが高価であるという課題があった。   In the above conventional technique, the control is performed so that the degree of superheat of the compressor suction port becomes a predetermined value, and it is necessary to detect the pressure and temperature, and the sensor for pressure detection is expensive. was there.

また、従来の技術では、圧縮機吸入口の過熱度が所定の値となるよう制御を行うが、圧縮機吸入口の過熱度は、応答が複雑で、湿り状態の場合には膨張弁の開度を閉めこんでいってもなかなか変化が現れなかったり、少しの開度操作量で大きな変化を生じたりしてハンチングを生じやすい。まして、空気調和機の場合、室内機の風量変化や、圧縮機の回転数変化などにより過渡状態においてはオーバーシュートを生じやすくなる。   In the conventional technology, control is performed so that the superheat degree of the compressor intake port becomes a predetermined value. However, the superheat degree of the compressor intake port is complicated in response, and in the wet state, the expansion valve is opened. Even if the degree is closed, hunting is likely to occur because a change does not appear easily or a large change occurs with a small amount of opening operation. Furthermore, in the case of an air conditioner, overshoot is likely to occur in a transient state due to changes in the air volume of the indoor unit, changes in the rotational speed of the compressor, and the like.

吸入の過熱度が取れ過ぎると、圧縮機の吐出温度が上昇しHFO−1234yfのような安定性に劣る冷媒では、温度上昇により冷媒の分解が加速する可能性がある。   If the superheat degree of the suction is taken too much, the discharge temperature of the compressor rises and the refrigerant having poor stability such as HFO-1234yf may accelerate the decomposition of the refrigerant due to the temperature rise.

従って本発明は、こうした課題を解決し、HFO−1234yfやHFO−1234zeなどのハイドロフルオロオレフィンを冷媒に使用する冷凍サイクル装置において、安価な構成で圧力損失を低減し優れた運転効率を実現すると共に、圧縮機の温度上昇を抑えることで冷媒の分解を防ぎ、信頼性の高い装置を提供するものである。   Accordingly, the present invention solves these problems, and in a refrigeration cycle apparatus using a hydrofluoroolefin such as HFO-1234yf or HFO-1234ze as a refrigerant, reduces the pressure loss and realizes excellent operation efficiency with an inexpensive configuration. By suppressing the temperature rise of the compressor, decomposition of the refrigerant is prevented and a highly reliable device is provided.

上記従来の課題を解決するために、本発明の冷凍サイクル装置は、ハイドロフルオロオレフィンを冷媒に使用し、圧縮機と、凝縮器と、膨張弁と、蒸発器と、凝縮器の出口の冷媒と蒸発器から戻ってきて圧縮機の吸入口へ吸い込まれる冷媒との間で熱交換を行う内部熱交換器と、圧縮機の吐出口に設けられた吐出温度センサと、凝縮器に設けられた凝縮温度センサと、内部熱交換器の低圧側入口に設けられた低圧側温度センサと、制御手段とを備え、制御手段は、凝縮温度センサ、低圧側温度センサ、吐出温度センサの出力を用いて膨張弁の開度を調整するものである。   In order to solve the above conventional problems, the refrigeration cycle apparatus of the present invention uses hydrofluoroolefin as a refrigerant, a compressor, a condenser, an expansion valve, an evaporator, and a refrigerant at the outlet of the condenser. An internal heat exchanger that exchanges heat with the refrigerant that returns from the evaporator and is sucked into the suction port of the compressor, a discharge temperature sensor that is provided at the discharge port of the compressor, and a condensation that is provided in the condenser A temperature sensor, a low-pressure side temperature sensor provided at a low-pressure side inlet of the internal heat exchanger, and a control means. The control means expands using outputs of the condensation temperature sensor, the low-pressure side temperature sensor, and the discharge temperature sensor. It adjusts the opening of the valve.

これにより、圧縮機の吸入口における冷媒の圧力を検出することなく、膨張弁の開度を調整することができる。   Thereby, the opening degree of an expansion valve can be adjusted, without detecting the pressure of the refrigerant | coolant in the inlet of a compressor.

また、本発明の冷凍サイクル装置は、上記の制御手段が、凝縮温度センサ、低圧側温度センサの出力と、圧縮機の回転数に基づいて、吐出温度センサの出力の目標値を決定し、吐出温度センサの出力が目標値に一致するよう膨張弁の開度を調整するものである。   In the refrigeration cycle apparatus of the present invention, the control means determines a target value of the output of the discharge temperature sensor based on the output of the condensation temperature sensor, the low-pressure side temperature sensor, and the rotation speed of the compressor, The opening of the expansion valve is adjusted so that the output of the temperature sensor matches the target value.

これにより、圧縮機の内部以外で冷媒の温度が最も高くなる圧縮機の吐出口に設けられた吐出温度センサの出力が目標値となるよう制御を行うので、確実に冷媒の温度上昇を抑えることができる。   As a result, control is performed so that the output of the discharge temperature sensor provided at the discharge port of the compressor where the temperature of the refrigerant becomes highest outside the inside of the compressor becomes the target value, so that the rise in the temperature of the refrigerant is surely suppressed. Can do.

本発明の冷凍サイクル装置は、冷媒の圧力を検出必要がない安価な構成で圧力損失を低減し優れた運転効率を実現するとともに、確実に冷媒の温度上昇を抑えることができるの
で、冷媒の分解を抑制して、信頼性の高い装置を提供することができる。
The refrigeration cycle apparatus of the present invention reduces pressure loss with an inexpensive configuration that does not require detection of the refrigerant pressure, achieves excellent operating efficiency, and can reliably suppress the temperature rise of the refrigerant. And a highly reliable device can be provided.

本発明の実施の形態1における冷凍サイクル装置のサイクル構成図Cycle configuration diagram of refrigeration cycle apparatus in Embodiment 1 of the present invention 本発明の実施の形態1における冷凍サイクル装置のP−h線図Ph diagram of the refrigeration cycle apparatus in Embodiment 1 of the present invention 本発明の実施の形態2における冷凍サイクル装置のサイクル構成図Cycle configuration diagram of refrigeration cycle apparatus in Embodiment 2 of the present invention 従来の冷凍サイクル装置のサイクル構成図Cycle configuration diagram of conventional refrigeration cycle equipment 従来の冷凍サイクル装置のサイクル構成図Cycle configuration diagram of conventional refrigeration cycle equipment

第1の発明は、ハイドロフルオロオレフィンを冷媒に使用し、圧縮機と、凝縮器と、膨張弁と、蒸発器と、凝縮器の出口の冷媒と蒸発器から戻ってきて圧縮機の吸入口へ吸い込まれる冷媒との間で熱交換を行う内部熱交換器と、圧縮機の吐出口に設けられた吐出温度センサと、凝縮器に設けられた凝縮温度センサと、内部熱交換器の低圧側入口に設けられた低圧側温度センサと、制御手段とを備え、制御手段は、凝縮温度センサ、低圧側温度センサ、吐出温度センサの出力を用いて膨張弁の開度を調整するものである。   The first invention uses hydrofluoroolefin as a refrigerant, returns from the compressor, the condenser, the expansion valve, the evaporator, the refrigerant at the outlet of the condenser, and the evaporator to the suction port of the compressor. An internal heat exchanger for exchanging heat with the sucked refrigerant, a discharge temperature sensor provided at the discharge port of the compressor, a condensation temperature sensor provided at the condenser, and a low-pressure side inlet of the internal heat exchanger The low-pressure side temperature sensor and the control means are provided, and the control means adjusts the opening degree of the expansion valve using the outputs of the condensing temperature sensor, the low-pressure side temperature sensor, and the discharge temperature sensor.

これにより、圧縮機の吸入口における冷媒の圧力を検出することなく、膨張弁の開度を調整することができる。   Thereby, the opening degree of an expansion valve can be adjusted, without detecting the pressure of the refrigerant | coolant in the inlet of a compressor.

従って、冷媒の圧力を検出する必要がないので、安価に構成することができる。このため、安価な構成で圧力損失を低減し優れた運転効率を実現するとともに、確実に冷媒の温度上昇を抑えることができるので、冷媒の分解を抑制して、信頼性の高い装置を提供することができる。   Therefore, since it is not necessary to detect the pressure of the refrigerant, it can be configured at low cost. For this reason, it is possible to reduce pressure loss with an inexpensive configuration and realize excellent operation efficiency, and to reliably suppress an increase in the temperature of the refrigerant. Therefore, it is possible to suppress the decomposition of the refrigerant and provide a highly reliable device. be able to.

第2の発明は、特に第1の発明において、制御手段が、凝縮温度センサ、低圧側温度センサの出力と、圧縮機の回転数に基づいて、吐出温度センサの出力の目標値を決定し、吐出温度センサの出力が目標値に一致するよう膨張弁の開度を調整するものである。   In a second aspect of the invention, in particular, in the first aspect of the invention, the control means determines a target value of the output of the discharge temperature sensor based on the output of the condensation temperature sensor, the low-pressure side temperature sensor, and the rotation speed of the compressor, The opening of the expansion valve is adjusted so that the output of the discharge temperature sensor matches the target value.

これにより、圧縮機の内部以外で冷媒の温度が最も高くなる圧縮機の吐出口に設けられた吐出温度センサの出力が目標値となるよう制御を行うので、確実に冷媒の温度上昇を抑えることができる。   As a result, control is performed so that the output of the discharge temperature sensor provided at the discharge port of the compressor where the temperature of the refrigerant becomes highest outside the inside of the compressor becomes the target value, so that the rise in the temperature of the refrigerant is surely suppressed. Can do.

従って、冷媒の分解を抑制し、信頼性の高い装置を提供することができる。   Therefore, decomposition of the refrigerant can be suppressed and a highly reliable device can be provided.

第3の発明は、特に第2の発明において、内部熱交換器の低圧側入口において冷媒が二相状態となるように、内部熱交換器の熱交換能力かつ/または吐出温度センサの目標値を設定するものである。   In a third aspect of the invention, particularly in the second aspect of the invention, the heat exchange capacity of the internal heat exchanger and / or the target value of the discharge temperature sensor are set so that the refrigerant is in a two-phase state at the low pressure side inlet of the internal heat exchanger. It is to set.

これにより、蒸発器出口から内部熱交換器の低圧側入口までの圧力損失を低減するとともに、圧縮機の吸入口での飽和温度を正確に検出することができる。   As a result, the pressure loss from the evaporator outlet to the low pressure side inlet of the internal heat exchanger can be reduced, and the saturation temperature at the compressor inlet can be accurately detected.

従って、高い運転効率を実現することができる。   Therefore, high driving efficiency can be realized.

第4の発明は、第2の発明において、吐出温度センサの出力が目標値よりも高い場合の膨張弁の開度操作量を、吐出温度センサの出力が目標値よりも低い場合の開度操作量よりも大きくするものである。   According to a fourth invention, in the second invention, the opening operation amount of the expansion valve when the output of the discharge temperature sensor is higher than the target value, and the opening operation when the output of the discharge temperature sensor is lower than the target value It must be larger than the amount.

これにより、冷媒の温度が過上昇するのを防ぎ、過上昇したときには速やかに降下させることができる。   Thereby, it can prevent that the temperature of a refrigerant | coolant rises excessively, and when it rises excessively, it can be dropped rapidly.

従って、より高い精度で冷媒の分解を抑制し、装置の信頼性を高めることができる。   Therefore, the decomposition of the refrigerant can be suppressed with higher accuracy, and the reliability of the apparatus can be improved.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態における冷凍サイクル装置である空気調和機のサイクル構成図を示すものである。
(Embodiment 1)
FIG. 1 shows a cycle configuration diagram of an air conditioner that is a refrigeration cycle apparatus according to a first embodiment of the present invention.

図1に示すように、第1の実施の形態における空気調和機は、室外機100と室内機101を、接続配管つまり液側接続配管126およびガス側接続配管127で接続して装置を構成されている。冷媒としては炭素間に二重結合を有し温暖化係数の小さな、ハイドロフルオロオレフィンであるHFO−1234yfを使用している。   As shown in FIG. 1, the air conditioner in the first embodiment is configured by connecting an outdoor unit 100 and an indoor unit 101 with connection pipes, that is, a liquid side connection pipe 126 and a gas side connection pipe 127. ing. As the refrigerant, HFO-1234yf, which is a hydrofluoroolefin having a double bond between carbons and having a small warming potential, is used.

室外機100は、圧縮機111、凝縮器である室外熱交換器112、室外送風機113、冷媒を減圧膨張させる膨張弁114、アキュムレータ117と、室外熱交換器112を出た高圧側の冷媒と室内機101から戻ってきた低圧側の冷媒との間で熱交換を行う内部熱交換器121と、圧縮機111から吐出される冷媒の温度を検出する吐出温度センサ122と、室外熱交換器112における凝縮温度を検出する凝縮温度センサである室外熱交温度センサ123と、内部熱交換器121の低圧側入口の冷媒温度を検出する低圧側温度センサ124と、圧縮機111の回転数と、吐出温度センサ122と室外熱交温度センサと低圧側温度センサ124の出力値に基づいて膨張弁114の開度を調整する制御装置125を備えている。   The outdoor unit 100 includes a compressor 111, an outdoor heat exchanger 112 that is a condenser, an outdoor fan 113, an expansion valve 114 that decompresses and expands the refrigerant, an accumulator 117, a refrigerant on the high-pressure side that exits the outdoor heat exchanger 112, and an indoor unit. An internal heat exchanger 121 that exchanges heat with the low-pressure refrigerant returned from the machine 101, a discharge temperature sensor 122 that detects the temperature of the refrigerant discharged from the compressor 111, and the outdoor heat exchanger 112. An outdoor heat exchanger temperature sensor 123 that is a condensation temperature sensor that detects the condensation temperature, a low-pressure temperature sensor 124 that detects the refrigerant temperature at the low-pressure inlet of the internal heat exchanger 121, the rotational speed of the compressor 111, and the discharge temperature. A control device 125 that adjusts the opening degree of the expansion valve 114 based on output values of the sensor 122, the outdoor heat exchange temperature sensor, and the low-pressure side temperature sensor 124 is provided.

そして、室内機101には蒸発器である室内熱交換器115、室内送風機116を備えている。   The indoor unit 101 includes an indoor heat exchanger 115 that is an evaporator and an indoor blower 116.

圧縮機111、室外熱交換器112、膨張弁114、液側接続配管126、室内熱交換器115、ガス側接続配管127、アキュムレータ117は、環状に配管で接続され冷凍サイクルを構成している。内部熱交換器121は、室外熱交換器112と膨張弁114との間の冷媒と、ガス側接続配管127とアキュムレータ117との間の冷媒が熱交換するように構成されている。   The compressor 111, the outdoor heat exchanger 112, the expansion valve 114, the liquid side connection pipe 126, the indoor heat exchanger 115, the gas side connection pipe 127, and the accumulator 117 are connected in a ring shape to form a refrigeration cycle. The internal heat exchanger 121 is configured such that heat is exchanged between the refrigerant between the outdoor heat exchanger 112 and the expansion valve 114 and the refrigerant between the gas side connection pipe 127 and the accumulator 117.

図1の内部熱交換器121のような位置で内部熱交換器121を使用する場合、従来は、圧縮機111の吸入の過熱度が制御対象として扱われ、圧縮機111の吸入口の圧力と温度を検出して過熱度を求めたり、複数箇所(例えば蒸発器の入口と出口)の温度検出を行い、その差を計算してから過熱度を推測して制御を行ったりしている。   When the internal heat exchanger 121 is used at a position such as the internal heat exchanger 121 in FIG. 1, conventionally, the superheat degree of the suction of the compressor 111 is treated as a control target, and the pressure of the suction port of the compressor 111 is The temperature is detected and the degree of superheat is obtained, or the temperature is detected at a plurality of locations (for example, the inlet and outlet of the evaporator), the difference is calculated, and then the degree of superheat is estimated and control is performed.

圧力を検出する場合、圧力センサは温度センサに比べとても高価である。本実施の形態では、温度センサのみの出力を用いて制御を行っているので、安価な構成が実現できる。   When detecting pressure, the pressure sensor is very expensive compared to the temperature sensor. In the present embodiment, since control is performed using the output of only the temperature sensor, an inexpensive configuration can be realized.

複数箇所(例えば蒸発器の入口と出口)の温度検出を行い、その差を計算してから過熱度を推測する方法では、応答が複雑で、過熱度が取れていない場合には乾き度がわからないため適切な操作量の決定が困難であり、過熱度が取れだすと少しの操作量で大きな変化を生じたりしてハンチングを生じやすく制御に高い精度は期待できない。本実施の形態では、圧縮機111の吸入における過熱度には着目せず、圧縮機111の回転数、吐出温度センサ122と室外熱交温度センサ123と低圧側温度センサ124の出力に基づいて制御を行うので、低圧側の情報だけではなく、高圧側の情報や圧縮機111の情報にも基づいており、精度の高い制御を行うことができる。   By detecting the temperature at multiple locations (for example, at the inlet and outlet of the evaporator) and calculating the difference between them, the response is complicated, and if the degree of superheat is not taken, the degree of dryness is not known. Therefore, it is difficult to determine an appropriate operation amount, and if the degree of superheat is taken out, a large change may occur with a small amount of operation, and hunting is likely to occur, and high control cannot be expected. In the present embodiment, attention is not paid to the degree of superheat in the suction of the compressor 111, and control is performed based on the rotation speed of the compressor 111, the outputs of the discharge temperature sensor 122, the outdoor heat exchanger temperature sensor 123, and the low pressure side temperature sensor 124. Therefore, based on not only the information on the low pressure side but also the information on the high pressure side and the information on the compressor 111, highly accurate control can be performed.

本実施の形態の制御装置125が行う膨張弁114の制御方法の原理について図2を用いて説明する。図2は本発明の実施の形態1における空気調和機のP−h線図で、説明のための概念図である。実際には圧力損失などがあるため、高圧がPhで一定、低圧がPlで一定になることはないが、便宜的に一定とする。   The principle of the control method of the expansion valve 114 performed by the control device 125 of the present embodiment will be described with reference to FIG. FIG. 2 is a Ph diagram of the air conditioner according to Embodiment 1 of the present invention, and is a conceptual diagram for explanation. Since there is actually a pressure loss, the high pressure is constant at Ph and the low pressure is not constant at Pl, but it is constant for convenience.

空気調和機が理想的な運転をしているとして、A点は圧縮機111の吸入口での冷媒の状態(圧力Pl、比エンタルピhl1)、B点は圧縮機111の吐出口での冷媒の状態(圧力Ph、比エンタルピhh1)、C点は内部熱交換器121の高圧側入口、D点は内部熱交換器121の高圧側出口、E点は蒸発器である室内熱交換器115の入口、F点は蒸発器である室内熱交換器115の出口および内部熱交換器121の低圧側入口の冷媒の状態をそれぞれ示しているとする。   Assuming that the air conditioner is operating ideally, point A is the state of the refrigerant at the inlet of the compressor 111 (pressure Pl, specific enthalpy hl1), and point B is the refrigerant at the outlet of the compressor 111. State (pressure Ph, specific enthalpy hh1), point C is the high-pressure side inlet of the internal heat exchanger 121, point D is the high-pressure side outlet of the internal heat exchanger 121, point E is the inlet of the indoor heat exchanger 115 which is an evaporator , F points respectively indicate the state of the refrigerant at the outlet of the indoor heat exchanger 115 as an evaporator and the low-pressure side inlet of the internal heat exchanger 121.

吐出温度センサ122は圧縮機111の吐出口での温度(吐出温度)T1を検出し、室外熱交温度センサ123は高圧Phの飽和温度、低圧側温度センサ124は低圧Plの飽和温度を検出する。本実施の形態では、低圧側温度センサ124が設けられた内部熱交換器121の低圧側入口はF点となるため、低圧Plの飽和温度が検出できる。   The discharge temperature sensor 122 detects the temperature (discharge temperature) T1 at the discharge port of the compressor 111, the outdoor heat exchange temperature sensor 123 detects the saturation temperature of the high pressure Ph, and the low pressure side temperature sensor 124 detects the saturation temperature of the low pressure Pl. . In the present embodiment, since the low pressure side inlet of the internal heat exchanger 121 provided with the low pressure side temperature sensor 124 is the F point, the saturation temperature of the low pressure Pl can be detected.

圧縮機111が理想的な断熱圧縮を行うならば、圧縮機111の吐出口の状態はI点となるが、現実的にはB点となっている。I点からB点へのシフト量は圧縮機効率によって決まり、圧縮機効率は圧縮機111の仕様や回転数に起因する固有の特性によって決まる。   If the compressor 111 performs ideal adiabatic compression, the state of the discharge port of the compressor 111 is point I, but in reality it is point B. The amount of shift from point I to point B is determined by the compressor efficiency, and the compressor efficiency is determined by the specific characteristics resulting from the specifications of the compressor 111 and the rotational speed.

空気調和機はそれぞれの装置ごとに、運転状況に応じて運転効率が最高となる圧縮機111の吸入の過熱度が決まっている。つまり、圧縮機111の吸入圧がPlで、吐出圧がPhの場合、圧縮機111の回転数が決まれば、運転効率が最高となる吸入口の状態A点、吐出口の状態B点が自動的に決まり、吐出温度T1を予測することができる。   In each air conditioner, the degree of superheat of the suction of the compressor 111 that maximizes the operation efficiency is determined according to the operation state. In other words, when the suction pressure of the compressor 111 is Pl and the discharge pressure is Ph, if the rotation speed of the compressor 111 is determined, the suction port state A and the discharge port state B point at which the operating efficiency is maximum are automatically set. The discharge temperature T1 can be predicted.

膨張弁114の開閉は、圧縮機111の吸入圧Pl、吐出圧Ph、圧縮機111の回転数が同じである場合、閉めれば圧縮機111の吸入の過熱度は大きくなり、吸入口の状態はA点からA2点に移動し、I点はI2点へ、B点はB2点へと移り吐出温度はT1からT2へ上昇する。開いた場合はその逆で、吐出温度はT1よりも低下する。   The expansion valve 114 is opened and closed when the suction pressure Pl, the discharge pressure Ph of the compressor 111, and the rotation speed of the compressor 111 are the same. If the compressor 111 is closed, the degree of superheat of the suction of the compressor 111 increases and the state of the suction port is Moving from point A to point A2, point I moves to point I2, point B moves to point B2, and the discharge temperature rises from T1 to T2. When it is opened, the opposite is true, and the discharge temperature is lower than T1.

次に、本実施の形態の制御装置125が行う膨張弁114のより具体的な制御方法について説明する。   Next, a more specific control method of the expansion valve 114 performed by the control device 125 of the present embodiment will be described.

まず、室外熱交温度センサ123で凝縮器となる室外熱交換器112の温度を検出する。そして、制御装置125は、予めメモリ等に保存された推定式、または、推定テーブルを用い、室外熱交温度センサ123の検出温度から、高圧Phを推定する。次に、低圧側温度センサ124で内部熱交換器121の低圧側入口の温度を検出する。そして、制御装置125は、予めメモリ等に保存された推定式、または、推定テーブルを用い、低圧側温度センサ124の検出温度から、低圧Plを推定する。   First, the outdoor heat exchanger temperature sensor 123 detects the temperature of the outdoor heat exchanger 112 serving as a condenser. And the control apparatus 125 estimates the high voltage | pressure Ph from the detected temperature of the outdoor heat exchanger temperature sensor 123 using the estimation formula preserve | saved previously at memory etc., or an estimation table. Next, the low pressure side temperature sensor 124 detects the temperature of the low pressure side inlet of the internal heat exchanger 121. Then, the control device 125 estimates the low pressure Pl from the detected temperature of the low pressure side temperature sensor 124 using an estimation formula or an estimation table stored in advance in a memory or the like.

次に、予めメモリ等に保存された推定式、または、推定テーブルを用い、推定された高圧Ph、低圧Plと、必要に応じて現在の圧縮機111の回転数とから、目標の吐出温度を算出する。そして、吐出温度センサ122の検出した吐出温度と目標の吐出温度とを比較する。   Next, the target discharge temperature is determined from the estimated high pressure Ph and low pressure Pl using the estimation formula or the estimation table stored in advance in a memory or the like and the current rotation speed of the compressor 111 as necessary. calculate. Then, the discharge temperature detected by the discharge temperature sensor 122 is compared with the target discharge temperature.

検出した吐出温度が目標の吐出温度よりも高い場合には、膨張弁114の開度を予め定められた第1の開度操作量だけ大きくし、膨張弁114を開くように制御する。検出した
吐出温度が目標の吐出温度よりも高い場合には、膨張弁114の開度を予め定められた第2の開度操作量だけ小さくし、膨張弁114を閉じるように制御する。本実施の形態では、第1の開度操作量は、第2の開度操作量より大きく設定されている。
When the detected discharge temperature is higher than the target discharge temperature, the opening of the expansion valve 114 is increased by a predetermined first opening operation amount, and the expansion valve 114 is controlled to open. When the detected discharge temperature is higher than the target discharge temperature, the opening degree of the expansion valve 114 is decreased by a predetermined second opening operation amount, and the expansion valve 114 is closed. In the present embodiment, the first opening operation amount is set to be larger than the second opening operation amount.

以上のように、本実施の形態の空気調和機は、制御装置125が、室外熱交温度センサ123の出力から高圧を、低圧側温度センサ124の出力から低圧を推定し、圧縮機111の回転数と予め記憶した装置の特性から目標の吐出温度を算出し、吐出温度センサ122の出力が目標の吐出温度に一致するよう膨張弁114の開度を調整することで、運転効率を最高状態にすることができる。   As described above, in the air conditioner of the present embodiment, the control device 125 estimates the high pressure from the output of the outdoor heat exchanger temperature sensor 123 and the low pressure from the output of the low pressure side temperature sensor 124, and rotates the compressor 111. The target discharge temperature is calculated from the number and the device characteristics stored in advance, and the opening degree of the expansion valve 114 is adjusted so that the output of the discharge temperature sensor 122 matches the target discharge temperature. can do.

ここで、制御対象が吐出温度であるため、吸入の過熱度を制御対象とし、その結果として吐出温度を制御する従来の技術とは異なり、確実に吐出温度の上昇を抑制することができる。   Here, since the control target is the discharge temperature, unlike the conventional technique in which the superheat degree of suction is set as the control target, and as a result, the discharge temperature is controlled, it is possible to reliably suppress an increase in the discharge temperature.

吐出温度が抑制されると、冷媒として使用しているHFO−1234yfの分解を抑制することができる。   When the discharge temperature is suppressed, decomposition of HFO-1234yf used as the refrigerant can be suppressed.

内部熱交換器を使用しない従来の空気調和機では、吐出温度制御を行う例は知られているが、低圧の推定を蒸発器の温度で行っている。HFO−1234yfなどを用いた場合、圧力損失が大きいため蒸発器の温度と圧縮機吸入口の飽和温度とは乖離し、特にガス側接続配管の長さによって、冷房運転時における蒸発器の温度と圧縮機吸入口の飽和温度との差は大きく変わってしまい正しい目標の吐出温度の設定ができない。しかし、本実施の形態では、ガス側接続配管127を通過する前の内部熱交換器121の低圧側入口の温度で低圧の推定を行うので、圧力損失の大きいHFO−1234yfなどを用いた場合でも、正しく吐出温度の目標値を設定することができる。   In a conventional air conditioner that does not use an internal heat exchanger, an example in which discharge temperature control is performed is known, but low pressure is estimated at the temperature of the evaporator. When HFO-1234yf or the like is used, since the pressure loss is large, the temperature of the evaporator and the saturation temperature of the compressor intake port are different from each other, and particularly depending on the length of the gas side connection pipe, The difference from the saturation temperature of the compressor inlet changes greatly, and the correct target discharge temperature cannot be set. However, in the present embodiment, since the low pressure is estimated based on the temperature of the low pressure side inlet of the internal heat exchanger 121 before passing through the gas side connection pipe 127, even when HFO-1234yf or the like having a large pressure loss is used. Therefore, the target value of the discharge temperature can be set correctly.

また、内部熱交換器を使用する場合には先にも述べたように圧縮機吸入口の過熱度が制御対象として扱われているため、内部熱交換器121の低圧側入口を二相状態にすることで、制御の精度を向上させようという考え方は、従来なかった。本実施の形態では、内部熱交換器121の低圧側入口の冷媒が二相状態とすることができるよう内部熱交換器121の熱交換能力は十分大きくし、吐出温度センサ122の目標出力値も内部熱交換器121の低圧側入口の冷媒が二相状態となるよう設定する。   In addition, when using an internal heat exchanger, as described above, the superheat degree of the compressor intake port is handled as a control target, so that the low pressure side inlet of the internal heat exchanger 121 is in a two-phase state. In the past, there was no idea of improving the control accuracy. In the present embodiment, the heat exchange capacity of the internal heat exchanger 121 is sufficiently large so that the refrigerant at the low-pressure side inlet of the internal heat exchanger 121 can be in a two-phase state, and the target output value of the discharge temperature sensor 122 is also set. It sets so that the refrigerant | coolant of the low voltage | pressure side inlet_port | entrance of the internal heat exchanger 121 may be in a two-phase state.

従って、蒸発器となる室内熱交換器115の出口から内部熱交換器121の低圧側入口までの冷媒は二相状態となり、乾きガスで流れる場合に比べて流速が低下し、圧力損失を低減し高い運転効率を実現することができる。加えて、ガス側接続配管127の圧力損失による、圧縮機111の吸入口の飽和温度の推定誤差を小さくすることができるので、吐出温度の目標値の精度も向上する。   Therefore, the refrigerant from the outlet of the indoor heat exchanger 115 serving as an evaporator to the low-pressure side inlet of the internal heat exchanger 121 is in a two-phase state, and the flow velocity is reduced and pressure loss is reduced as compared with the case of flowing with dry gas. High operating efficiency can be realized. In addition, since the estimation error of the saturation temperature of the suction port of the compressor 111 due to the pressure loss of the gas side connection pipe 127 can be reduced, the accuracy of the target value of the discharge temperature is also improved.

HFO−1234yfなどを使用する場合、圧力損失を低減しなければ使用に耐える吐出温度制御は行えない。ガス側接続配管127の内径を大きくすれば圧力損失を減らすことはできるが、施工が困難になる。長配管になれば、なおさらであり、圧力損失もまた増加してしまうため、本発明のように内部熱交換器121を使用し低圧側入口を二相状態とすることは極めて有効である。   When HFO-1234yf or the like is used, discharge temperature control that can withstand use cannot be performed unless pressure loss is reduced. If the inner diameter of the gas side connection pipe 127 is increased, the pressure loss can be reduced, but the construction becomes difficult. If the pipe is long, the pressure loss is further increased. Therefore, it is very effective to use the internal heat exchanger 121 and make the low-pressure side inlet into a two-phase state as in the present invention.

また、吐出温度センサ122の出力が目標値よりも高い場合の膨張弁114の開度操作量を、吐出温度センサ122の出力が目標値よりも低い場合の操作量よりも大きくしている。   Further, the opening operation amount of the expansion valve 114 when the output of the discharge temperature sensor 122 is higher than the target value is made larger than the operation amount when the output of the discharge temperature sensor 122 is lower than the target value.

これにより、圧縮機111の吸入の過熱度が一気に上昇して冷媒の温度が過上昇するの
を防ぎ、過上昇したときには速やかに降下させることができる。
Thereby, it is possible to prevent the superheat degree of the suction of the compressor 111 from rising at a stretch and the refrigerant temperature from being excessively increased, and to rapidly decrease the refrigerant temperature when it is excessively increased.

従って、より高い精度で冷媒の分解を抑制し、装置の信頼性を高めることができる。   Therefore, the decomposition of the refrigerant can be suppressed with higher accuracy, and the reliability of the apparatus can be improved.

なお、冷媒はHFO−1234yfを使用したが、HFO−1234zeであっても、HFO−1234yfあるいはHFO−1234zeを含む混合冷媒であっても同様の効果を奏するものである。   In addition, although HFO-1234yf was used as the refrigerant, the same effect can be obtained regardless of whether it is HFO-1234ze or a mixed refrigerant containing HFO-1234yf or HFO-1234ze.

(実施の形態2)
図3は、本発明の第2の実施の形態における冷凍サイクル装置である空気調和機のサイクル構成図を示すものである。
(Embodiment 2)
FIG. 3 is a cycle configuration diagram of an air conditioner that is a refrigeration cycle apparatus according to the second embodiment of the present invention.

図3に示すように、図1の空気調和機に対して、四方弁119、4つの逆止弁から構成される逆止弁ブリッジが追加されており、冷暖房が行える装置である。   As shown in FIG. 3, a check valve bridge composed of a four-way valve 119 and four check valves is added to the air conditioner of FIG.

逆止弁ブリッジは、室外熱交換器112と内部熱交換器121の高圧側との間に設けられた第1の逆止弁120a、膨張弁114と液側接続配管126との間に設けられた第2の逆止弁120b、液側接続配管126と内部熱交換器121の高圧側との間に設けられた第3の逆止弁120c、膨張弁114と室外熱交換器112の間に設けられた第4の逆止弁120dとから構成されている。   The check valve bridge is provided between the first check valve 120 a provided between the outdoor heat exchanger 112 and the high pressure side of the internal heat exchanger 121, the expansion valve 114, and the liquid side connection pipe 126. The second check valve 120b, the third check valve 120c provided between the liquid side connection pipe 126 and the high pressure side of the internal heat exchanger 121, and between the expansion valve 114 and the outdoor heat exchanger 112. The fourth check valve 120d is provided.

また、第1の逆止弁120aは、内部熱交換器121から室外熱交換器112への流れを防止し、第2の逆止弁120bは、液側接続配管126から膨張弁114への流れを防止する方向に設置されている。第3の逆止弁120cは、内部熱交換器121から液側接続配管126への流れを防止し、第4の逆止弁120dは、室外熱交換器112から膨張弁114への流れを防止する方向に設置されている。   The first check valve 120a prevents the flow from the internal heat exchanger 121 to the outdoor heat exchanger 112, and the second check valve 120b flows from the liquid side connection pipe 126 to the expansion valve 114. It is installed in the direction to prevent. The third check valve 120c prevents the flow from the internal heat exchanger 121 to the liquid side connection pipe 126, and the fourth check valve 120d prevents the flow from the outdoor heat exchanger 112 to the expansion valve 114. It is installed in the direction to do.

図3は冷房時の状態を示しており、暖房時には四方弁119が切り替えられ、逆止弁ブリッジの効果により内部熱交換器121は膨張弁114の上流側となる。そして、暖房時は室内熱交換器115が凝縮器となり、室内熱交温度センサ118が凝縮温度センサとなる。   FIG. 3 shows a state during cooling. During heating, the four-way valve 119 is switched, and the internal heat exchanger 121 is located upstream of the expansion valve 114 due to the effect of the check valve bridge. During heating, the indoor heat exchanger 115 serves as a condenser, and the indoor heat exchanger temperature sensor 118 serves as a condensation temperature sensor.

冷房運転時には、第1の実施の形態と同様に室外熱交換器112が凝縮器で室外熱交温度センサ123が凝縮温度センサである。   During the cooling operation, the outdoor heat exchanger 112 is a condenser and the outdoor heat exchanger temperature sensor 123 is a condensation temperature sensor as in the first embodiment.

その他の構成や効果については、実施の形態1と同様である。   Other configurations and effects are the same as those in the first embodiment.

また、冷媒はHFO−1234yfを使用したが、HFO−1234zeであっても、HFO−1234yfあるいはHFO−1234zeを含む混合冷媒であっても同様の効果を奏するものである。   Moreover, although HFO-1234yf was used as the refrigerant, even if it is HFO-1234ze or a mixed refrigerant containing HFO-1234yf or HFO-1234ze, the same effect can be obtained.

本発明にかかる冷凍サイクル装置は、低圧側の情報だけではなく、高圧側の情報や圧縮機の情報にも基づいており、精度の高い制御を行うことができる。また、圧力損失が大きく、冷媒自身が分解し易い冷媒に対し、安価な構成で、高い運転効率と高い信頼性を実現できる。その結果、炭素と炭素間に2重結合を有するハイドロフルオロオレフィンのような、分解しやすい冷媒も使用することができ、環境性に優れている。   The refrigeration cycle apparatus according to the present invention is based not only on information on the low pressure side but also on information on the high pressure side and information on the compressor, and can perform highly accurate control. Moreover, high operating efficiency and high reliability can be realized with a low-cost configuration for a refrigerant that has a large pressure loss and is easy to decompose. As a result, a refrigerant that is easily decomposed, such as a hydrofluoroolefin having a double bond between carbon and carbon, can be used, and the environment is excellent.

そして、本発明は、空気調和機だけに止まらず、セパレート型のショーケースや冷凍機、ヒートポンプ式の温水器などに広く適用することができ、効果をもたらすものである。   The present invention is not limited to an air conditioner, and can be widely applied to a separate type showcase, a refrigerator, a heat pump type water heater, and the like, and brings about an effect.

100 室外機
101 室内機
111 圧縮機
112 室外熱交換器
113 室外送風機
114 膨張弁
115 室内熱交換器
116 室内送風機
117 アキュムレータ
121 内部熱交換器
122 吐出温度センサ
123 室外熱交温度センサ
124 低圧側温度センサ
125 制御装置
126 液側接続配管
127 ガス側接続配管
120a 第1の逆止弁
120b 第2の逆止弁
120c 第3の逆止弁
120d 第4の逆止弁
DESCRIPTION OF SYMBOLS 100 Outdoor unit 101 Indoor unit 111 Compressor 112 Outdoor heat exchanger 113 Outdoor blower 114 Expansion valve 115 Indoor heat exchanger 116 Indoor blower 117 Accumulator 121 Internal heat exchanger 122 Discharge temperature sensor 123 Outdoor heat exchange temperature sensor 124 Low pressure side temperature sensor 125 Control Device 126 Liquid Side Connection Pipe 127 Gas Side Connection Pipe 120a First Check Valve 120b Second Check Valve 120c Third Check Valve 120d Fourth Check Valve

Claims (4)

ハイドロフルオロオレフィンを冷媒に使用し、圧縮機と、凝縮器と、膨張弁と、蒸発器と、前記凝縮器の出口の前記冷媒と前記蒸発器から戻ってきて前記圧縮機の吸入口へ吸い込まれる前記冷媒との間で熱交換を行う内部熱交換器と、前記圧縮機の吐出口に設けられた吐出温度センサと、前記凝縮器に設けられた凝縮温度センサと、前記内部熱交換器の低圧側入口に設けられた低圧側温度センサと、制御手段とを備え、前記制御手段は、前記凝縮温度センサ、前記低圧側温度センサ、前記吐出温度センサの出力を用いて前記膨張弁の開度を調整することを特徴とする冷凍サイクル装置。 Hydrofluoroolefin is used as the refrigerant, and the compressor, the condenser, the expansion valve, the evaporator, the refrigerant at the outlet of the condenser, and the refrigerant are returned from the evaporator and sucked into the suction port of the compressor. An internal heat exchanger for exchanging heat with the refrigerant, a discharge temperature sensor provided at a discharge port of the compressor, a condensation temperature sensor provided at the condenser, and a low pressure of the internal heat exchanger A low-pressure side temperature sensor provided at a side inlet; and a control unit, wherein the control unit controls an opening degree of the expansion valve using outputs of the condensation temperature sensor, the low-pressure side temperature sensor, and the discharge temperature sensor. A refrigeration cycle apparatus characterized by adjusting. 前記制御手段が、前記凝縮温度センサ、前記低圧側温度センサの出力と、前記圧縮機の回転数に基づいて、前記吐出温度センサの出力の目標値を決定し、前記吐出温度センサの出力が前記目標値に一致するよう前記膨張弁の開度を調整することを特徴とする請求項1に記載の冷凍サイクル装置。 The control means determines a target value of the output of the discharge temperature sensor based on the output of the condensing temperature sensor, the low pressure side temperature sensor, and the rotation speed of the compressor, and the output of the discharge temperature sensor is The refrigeration cycle apparatus according to claim 1, wherein the opening degree of the expansion valve is adjusted so as to coincide with a target value. 前記内部熱交換器の低圧側入口において前記冷媒が二相状態となるように、前記内部熱交換器の熱交換能力かつ/または前記吐出温度センサの目標値を設定することを特徴とする請求項2に記載の冷凍サイクル装置。 The heat exchange capacity of the internal heat exchanger and / or the target value of the discharge temperature sensor are set so that the refrigerant is in a two-phase state at the low pressure side inlet of the internal heat exchanger. 2. The refrigeration cycle apparatus according to 2. 前記吐出温度センサの出力が前記目標値よりも高い場合の前記膨張弁の開度操作量を、前記吐出温度センサの出力が前記目標値よりも低い場合の開度操作量よりも大きくすることを特徴とする請求項2に記載の冷凍サイクル装置。 The opening degree operation amount of the expansion valve when the output of the discharge temperature sensor is higher than the target value is made larger than the opening degree operation amount when the output of the discharge temperature sensor is lower than the target value. The refrigeration cycle apparatus according to claim 2, characterized in that:
JP2010282779A 2010-12-20 2010-12-20 Refrigerating cycle device Pending JP2012132578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010282779A JP2012132578A (en) 2010-12-20 2010-12-20 Refrigerating cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010282779A JP2012132578A (en) 2010-12-20 2010-12-20 Refrigerating cycle device

Publications (1)

Publication Number Publication Date
JP2012132578A true JP2012132578A (en) 2012-07-12

Family

ID=46648376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010282779A Pending JP2012132578A (en) 2010-12-20 2010-12-20 Refrigerating cycle device

Country Status (1)

Country Link
JP (1) JP2012132578A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014203354A1 (en) * 2013-06-19 2014-12-24 三菱電機株式会社 Refrigeration cycle device
WO2015140871A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Refrigeration cycle device
WO2015140874A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Air conditioning device
WO2015140883A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Air conditioner
WO2017022421A1 (en) * 2015-08-04 2017-02-09 株式会社デンソー Heat pump system
JP2017030724A (en) * 2015-08-04 2017-02-09 株式会社デンソー Heat pump system
CN108981101A (en) * 2018-06-28 2018-12-11 珠海格力电器股份有限公司 Control method and control device of electronic expansion valve and unit
WO2019198175A1 (en) * 2018-04-11 2019-10-17 三菱電機株式会社 Refrigeration cycle device
CN111765670A (en) * 2019-04-02 2020-10-13 开利公司 Electronic expansion valve, heat exchange system and method for controlling electronic expansion valve

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014203354A1 (en) * 2013-06-19 2014-12-24 三菱電機株式会社 Refrigeration cycle device
JPWO2014203354A1 (en) * 2013-06-19 2017-02-23 三菱電機株式会社 Refrigeration cycle equipment
US10001309B2 (en) 2014-03-17 2018-06-19 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2015140871A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Refrigeration cycle device
WO2015140874A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Air conditioning device
WO2015140883A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Air conditioner
CN106164604A (en) * 2014-03-17 2016-11-23 三菱电机株式会社 Conditioner
CN106164604B (en) * 2014-03-17 2019-01-22 三菱电机株式会社 Conditioner
JPWO2015140871A1 (en) * 2014-03-17 2017-04-06 三菱電機株式会社 Refrigeration cycle equipment
JPWO2015140874A1 (en) * 2014-03-17 2017-04-06 三菱電機株式会社 Air conditioner
JPWO2015140883A1 (en) * 2014-03-17 2017-04-06 三菱電機株式会社 Air conditioner
WO2017022421A1 (en) * 2015-08-04 2017-02-09 株式会社デンソー Heat pump system
JP2017030724A (en) * 2015-08-04 2017-02-09 株式会社デンソー Heat pump system
US11179999B2 (en) 2015-08-04 2021-11-23 Denso Corporation Heat pump system
WO2019198175A1 (en) * 2018-04-11 2019-10-17 三菱電機株式会社 Refrigeration cycle device
JPWO2019198175A1 (en) * 2018-04-11 2021-02-12 三菱電機株式会社 Refrigeration cycle equipment
US11371758B2 (en) 2018-04-11 2022-06-28 Mitsubishi Electric Corporation Refrigeration cycle apparatus
CN108981101A (en) * 2018-06-28 2018-12-11 珠海格力电器股份有限公司 Control method and control device of electronic expansion valve and unit
CN108981101B (en) * 2018-06-28 2020-06-05 珠海格力电器股份有限公司 Control method and control device of electronic expansion valve and unit
CN111765670A (en) * 2019-04-02 2020-10-13 开利公司 Electronic expansion valve, heat exchange system and method for controlling electronic expansion valve

Similar Documents

Publication Publication Date Title
JP2012132578A (en) Refrigerating cycle device
JP4931848B2 (en) Heat pump type outdoor unit for hot water supply
JP5871959B2 (en) Air conditioner
JP5213966B2 (en) Refrigeration cycle equipment
JP6595205B2 (en) Refrigeration cycle equipment
US10082324B2 (en) Refrigeration apparatus having leakage or charge deficiency determining feature
EP3312528B1 (en) Air conditioner
JP5430602B2 (en) Air conditioner
KR101901540B1 (en) Air conditioning device
JP2001221526A (en) Refrigerative air conditioner
JP4418936B2 (en) Air conditioner
WO2016208042A1 (en) Air-conditioning device
JP4273493B2 (en) Refrigeration air conditioner
JP2016114299A (en) Air conditioner
JP5881339B2 (en) Air conditioner
JP4245044B2 (en) Refrigeration equipment
JP2011196684A (en) Heat pump device and outdoor unit of the heat pump device
JP6758506B2 (en) Air conditioner
JP4767340B2 (en) Heat pump control device
JP2015014372A (en) Air conditioner
JP6537629B2 (en) Air conditioner
JP2010159967A (en) Heat pump device and outdoor unit for the heat pump device
JP2015087020A (en) Refrigeration cycle device
JP2013053849A (en) Heat pump device, and outdoor unit thereof
JP3661014B2 (en) Refrigeration equipment