WO2023002522A1 - Air-conditioning device and method for installing air-conditioning device - Google Patents

Air-conditioning device and method for installing air-conditioning device Download PDF

Info

Publication number
WO2023002522A1
WO2023002522A1 PCT/JP2021/026925 JP2021026925W WO2023002522A1 WO 2023002522 A1 WO2023002522 A1 WO 2023002522A1 JP 2021026925 W JP2021026925 W JP 2021026925W WO 2023002522 A1 WO2023002522 A1 WO 2023002522A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
air
indoor
conditioned space
heat exchanger
Prior art date
Application number
PCT/JP2021/026925
Other languages
French (fr)
Japanese (ja)
Inventor
宏亮 浅沼
祐治 本村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/026925 priority Critical patent/WO2023002522A1/en
Priority to GB2400494.7A priority patent/GB2622555A/en
Publication of WO2023002522A1 publication Critical patent/WO2023002522A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants

Definitions

  • the present disclosure relates to an air conditioner that air-conditions multiple spaces and an installation method for the air conditioner.
  • the heat generated by the outdoor unit is transferred to the indoor unit by circulating the refrigerant between the outdoor unit, which is the heat source unit installed outdoors, and the indoor unit installed indoors, thereby cooling or cooling air-conditioned spaces such as living rooms.
  • a direct expansion air conditioner for heating is known (for example, Patent Document 1).
  • Direct expansion air conditioners often use HFC (hydrofluorocarbon) refrigerants.
  • a repeater is connected between the outdoor unit and the indoor unit, and the repeater exchanges heat between the refrigerant supplied from the outdoor unit and a heat medium such as water.
  • An air conditioner that cools or heats is known (for example, Patent Document 2).
  • the present disclosure is intended to solve the above problems, and aims to provide an air conditioner and an air conditioner installation method that can ensure safety and reduce power consumption.
  • An air conditioner includes an outdoor unit including a compressor that circulates a refrigerant in a refrigerant circuit and an outdoor heat exchanger through which the refrigerant flows, a first indoor unit including a first indoor heat exchanger through which the refrigerant flows, A second indoor heat exchanger comprising a relay heat exchanger that exchanges heat between a heat medium different from the refrigerant and a pump that circulates the heat medium in the heat medium circuit, and a second indoor heat exchanger through which the heat medium flows. and a machine, wherein the first indoor unit is installed in the first air-conditioned space, the second indoor unit is installed in the second air-conditioned space, and the first air-conditioned space is filled with the refrigerant enclosed in the refrigerant circuit.
  • a method for installing an air conditioner according to the present disclosure includes an outdoor unit including a compressor for circulating refrigerant in a refrigerant circuit and an outdoor heat exchanger through which refrigerant flows, and a first indoor unit including a first indoor heat exchanger through which refrigerant flows.
  • a relay heat exchanger that exchanges heat between the machine, a heat medium different from the refrigerant, and a heat medium that is different from the refrigerant; a relay machine that has a pump that circulates the heat medium in the heat medium circuit; and a second indoor heat exchanger through which the heat medium flows. and a second indoor unit, wherein the volume of the air-conditioned space is the concentration of the refrigerant in the air-conditioned space when the total amount of refrigerant sealed in the refrigerant circuit leaks into the air-conditioned space.
  • the first indoor unit in which the refrigerant flows is installed in the first air-conditioned space, which is a large space
  • the second indoor unit in which the heat medium flows is installed in the first air-conditioned space.
  • FIG. 1 is a schematic configuration diagram of an air conditioner according to Embodiment 1.
  • FIG. 1 is a circuit diagram of an air conditioner according to Embodiment 1.
  • FIG. 2 is a schematic configuration diagram of an air conditioner according to Embodiment 2.
  • FIG. 2 is a circuit diagram of an air conditioner according to Embodiment 2.
  • FIG. 10 is a circuit diagram of an air conditioner according to Embodiment 3;
  • FIG. 1 is a schematic configuration diagram of an air conditioner 100 according to Embodiment 1.
  • the air conditioner 100 of the present embodiment air-conditions a plurality of air-conditioned spaces in a building such as a building.
  • the air conditioner 100 includes an outdoor unit 1, a plurality of first indoor units 2a to 2c, a plurality of second indoor units 3a to 3c, the outdoor unit 1 and the second indoor units 3a to 3c and a repeater 4 connected between them.
  • the repeater 4 exchanges heat between the refrigerant supplied from the outdoor unit 1 and the heat medium.
  • the air conditioner 100 of the present embodiment includes three first indoor units 2a to 2c and three second indoor units 3a to 3c. It may be one or two, or four or more.
  • the outdoor unit 1 and the first indoor units 2a to 2c, and the outdoor unit 1 and the relay unit 4 are connected by refrigerant pipes 5a and 5b through which refrigerant flows.
  • Each of the first indoor units 2a to 2c and the repeater 4 are connected in parallel to the outdoor unit 1.
  • the repeater 4 and the second indoor units 3a to 3c are connected by heat medium pipes 6a and 6b through which heat medium flows.
  • Each of the second indoor units 3a-3c is connected to the repeater 4 in parallel.
  • the heat generated by the outdoor unit 1 is transferred to the first indoor units 2a to 2c and the relay unit 4 by the refrigerant flowing through the refrigerant pipes 5a and 5b.
  • the heat converted by the repeater 4 is transferred to the second indoor units 3a to 3c by the heat medium flowing through the heat medium pipes 6a and 6b.
  • the first indoor units 2a to 2c of the air conditioner 100 directly cool or heat the air-conditioned space with the refrigerant supplied from the outdoor unit 1. Further, the second indoor units 3a to 3c cool or heat the air-conditioned space with a heat medium to which heat is transferred from the refrigerant supplied from the outdoor unit 1.
  • the refrigerant used in the air conditioner 100 is, for example, a single refrigerant such as R32, a pseudo-azeotropic mixture refrigerant such as R410A, or a refrigerant containing a double bond or CF 3 I in the chemical formula. refrigerants or mixtures thereof, natural refrigerants such as CF 3 I, CO 2 or propane.
  • the heat medium used in the air conditioner 100 is, for example, water, brine (antifreeze), a mixed solution of brine and water, or a mixed solution of water and an additive having a high anticorrosion effect.
  • the "heat medium” in the present disclosure is a heat medium other than a refrigerant and is non-toxic and non-flammable.
  • FIG. 2 is a circuit diagram of the air conditioner 100 according to Embodiment 1.
  • the air conditioner 100 includes a refrigerant circuit A in which refrigerant circulates and a heat medium circuit B in which a heat medium circulates.
  • the refrigerant circuit A is configured by connecting the outdoor unit 1, the first indoor units 2a to 2c, and the relay unit 4 by refrigerant pipes 5a and 5b.
  • the heat medium circuit B is configured by connecting the repeater 4 and the second indoor units 3a to 3b with heat medium pipes 6a and 6b.
  • the outdoor unit 1 includes a compressor 11, a channel switching valve 12, an outdoor heat exchanger 13, an outdoor fan 14, an accumulator 15, and an outdoor control device 16.
  • the compressor 11 sucks a low-temperature, low-pressure gas refrigerant, compresses it, and discharges a high-temperature, high-pressure gas refrigerant.
  • Refrigerant is circulated in the refrigerant circuit A by the compressor 11 .
  • the compressor 11 is, for example, a capacity-controllable inverter type compressor.
  • the channel switching valve 12 is, for example, a four-way valve.
  • the channel switching valve 12 switches the channel of the refrigerant discharged from the compressor 11 according to the operation of the first indoor units 2a-2c and the second indoor units 3a-3c.
  • the flow path switching valve 12 is switched to the flow path indicated by the solid line in FIG. 2 during the heating operation, and is switched to the flow path indicated by the broken line in FIG. 2 during the cooling operation.
  • the channel switching valve 12 may be a combination of a three-way valve and a two-way valve.
  • the outdoor heat exchanger 13 is, for example, a fin-tube heat exchanger.
  • the outdoor heat exchanger 13 exchanges heat between the air supplied by the outdoor fan 14 and the refrigerant.
  • the outdoor heat exchanger 13 functions as a condenser during cooling operation, and condenses and liquefies the refrigerant.
  • the outdoor heat exchanger 13 functions as an evaporator during heating operation, and evaporates and gasifies the refrigerant.
  • the outdoor fan 14 is, for example, a propeller fan.
  • the outdoor fan 14 supplies air around the outdoor unit 1 to the outdoor heat exchanger 13 .
  • the accumulator 15 is provided on the suction side of the compressor 11 and has a function of separating liquid refrigerant and gas refrigerant and a function of storing excess refrigerant.
  • the outdoor control device 16 controls the operations of the compressor 11, the flow path switching valve 12, and the outdoor fan 14.
  • the outdoor control device 16 is composed of a processing device having a memory for storing data and programs required for control and a CPU for executing the program, dedicated hardware such as ASIC or FPGA, or both.
  • the outdoor control device 16 drives the compressor 11 based on the detection results of a pressure sensor (not shown) that detects the refrigerant pressure and a temperature sensor (not shown) that detects the refrigerant temperature or the outside air temperature mounted on the outdoor unit 1.
  • the frequency, the flow path of the flow path switching valve 12, and the rotational speed of the outdoor fan 14 are controlled.
  • the outdoor control device 16 includes a first control device 24 mounted on the first indoor units 2a to 2c, a second control device 34 mounted on the second indoor units 3a to 3c, and a control device mounted on the repeater 4. 44 can be used for data communication.
  • the first indoor units 2a to 2c supply the heat generated by the outdoor unit 1 to the cooling load or heating load of the air-conditioned space.
  • Each of the first indoor units 2a-2c includes a first indoor heat exchanger 21, an expansion device 22, a first indoor fan 23, and a first controller 24.
  • the first indoor heat exchanger 21 is, for example, a fin-tube heat exchanger.
  • the first indoor heat exchanger 21 exchanges heat between the air supplied by the first indoor fan 23 and the refrigerant.
  • the first indoor heat exchanger 21 functions as a condenser during heating operation, and condenses and liquefies the refrigerant. Further, the first indoor heat exchanger 21 functions as an evaporator during cooling operation, and evaporates the refrigerant to gasify it.
  • the expansion device 22 is an electronic expansion valve whose opening is variably controlled.
  • the expansion device 22 is connected in series with the first indoor heat exchanger 21 and reduces the pressure of the refrigerant flowing out of the first indoor heat exchanger 21 or the refrigerant flowing into the first indoor heat exchanger 21 to expand the refrigerant.
  • the first indoor fan 23 is, for example, a cross-flow fan.
  • the first indoor fan 23 supplies air in the air-conditioned space to the first indoor heat exchanger 21 .
  • the condensation capacity or evaporation capacity of the first indoor heat exchanger 21 is controlled.
  • the first control device 24 controls the operations of the expansion device 22 and the first indoor fan 23 .
  • the first control device 24 is composed of a processing device having a memory that stores data and programs necessary for control and a CPU that executes the programs, dedicated hardware such as ASIC or FPGA, or both.
  • the first control device 24 detects the temperature sensor (not shown) that detects the temperature of the air-conditioned space, and the temperature sensor (not shown) that detects the temperature of the refrigerant at the outlet and inlet of the first indoor units 2a to 2c. Based on this, the opening degree of the expansion device 22 and the rotational speed of the first indoor fan 23 are controlled.
  • a temperature sensor is, for example, a thermistor. Note that the first control device 24 controls the opening degree of the expansion device 22 and the rotation speed of the first indoor fan 23 according to, for example, the difference between the temperature of the air-conditioned space and the target temperature.
  • the second indoor units 3a to 3c supply the heat converted by the repeater 4 to the cooling load or heating load of the air-conditioned space.
  • Each of the second indoor units 3a-3c includes a second indoor heat exchanger 31, a flow control valve 32, a second indoor fan 33, and a second controller .
  • the second indoor heat exchanger 31 is, for example, a fin-tube heat exchanger.
  • the second indoor heat exchanger 31 exchanges heat between the air supplied by the second indoor fan 33 and the heat medium.
  • the flow control valve 32 is an electromagnetic valve whose opening degree is variably controlled.
  • the flow rate adjustment valve 32 is connected in series with the second indoor heat exchanger 31 and adjusts the flow rate of the heat medium flowing through the second indoor heat exchanger 31 .
  • the second indoor fan 33 is, for example, a cross-flow fan.
  • the second indoor fan 33 supplies air in the air-conditioned space to the second indoor heat exchanger 31 .
  • the heating capacity or cooling capacity of the second indoor heat exchanger 31 is controlled by controlling the rotation speed of the second indoor fan 33 by the second control device 34 .
  • the second control device 34 controls the operation of the flow control valve 32 and the second indoor fan 33.
  • the second control device 34 is composed of a processing device having a memory that stores data and programs required for control and a CPU that executes the programs, dedicated hardware such as ASIC or FPGA, or both.
  • the second control device 34 detects the temperature sensor (not shown) that detects the temperature of the air-conditioned space, and the temperature sensor (not shown) that detects the temperature of the heat medium at the outlet and inlet of the second indoor units 3a to 3c. Based on, the opening degree of the flow control valve 32 and the rotation speed of the 2nd indoor fan 33 are controlled.
  • a temperature sensor is, for example, a thermistor.
  • the second control device 34 controls the degree of opening of the flow control valve 32 and the number of revolutions of the second indoor fan 33 according to, for example, the difference between the temperature of the air-conditioned space and the target temperature.
  • the second control device 34 uses the detection result of a pressure sensor (not shown) attached before and after the flow control valve 32 and the pre-stored Cv value corresponding to the degree of opening of the flow control valve 32 to determine the heat.
  • the flow rate of the medium may be calculated, and the opening degree of the flow control valve 32 may be controlled based on the calculation result.
  • the repeater 4 includes a repeater heat exchanger 41 , a throttle device 42 , a pump 43 and a control device 44 .
  • the relay heat exchanger 41 is, for example, a plate heat exchanger.
  • the relay heat exchanger 41 exchanges heat between the refrigerant supplied from the outdoor unit 1 and the heat medium circulated by the pump 43 . Thereby, the heat stored in the refrigerant supplied from the outdoor unit 1 is transferred to the heat medium.
  • the relay heat exchanger 41 functions as a condenser during heating operation, and condenses and liquefies the refrigerant. Further, the relay heat exchanger 41 functions as an evaporator during cooling operation, and evaporates the refrigerant to gasify it.
  • the throttle device 42 is an electronic expansion valve whose opening is variably controlled.
  • the expansion device 42 is connected in series with the relay heat exchanger 41 and decompresses and expands the refrigerant flowing out of the relay heat exchanger 41 or flowing into the relay heat exchanger 41 .
  • the pump 43 is, for example, a capacity-controllable inverter-type centrifugal pump.
  • the pump 43 has a motor driven by an inverter.
  • the pump 43 is arranged so that the flow of the refrigerant and the flow of the heat medium during the cooling operation are opposed to each other for cooling, but the flow of the refrigerant and the flow of the heat medium during the heating operation are opposite to each other. They may be arranged for opposing heating counterflow.
  • the control device 44 controls the operations of the throttle device 42 and the pump 43 .
  • the control device 44 is composed of a processing device having a memory that stores data and programs required for control and a CPU that executes the programs, dedicated hardware such as ASIC or FPGA, or both.
  • the control device 44 controls the opening degree of the expansion device 42 based on the detection result of a temperature sensor (not shown) that detects the refrigerant temperature at the refrigerant-side outlet and inlet of the relay heat exchanger 41 .
  • the control device 44 may control the opening degree of the throttle device 42 according to the operating capacities of the second indoor units 3a to 3c.
  • the control device 44 may perform data communication with the first control device 24 and control the expansion devices 42 in conjunction with the expansion devices 22 mounted on the first indoor units 2a to 2c.
  • the control device 44 controls the pump 43 based on the detection result of a pressure sensor (not shown) that detects the pressure of the heat medium attached to the outlet and inlet of the pump 43 and a graph that associates the performance value of the pump 43 and the like. control the drive frequency of the Alternatively, the control device 44 may control the drive frequency of the pump 43 according to the operating capacities of the second indoor units 3a-3c.
  • the air conditioner 100 of the present embodiment performs cooling operation or heating operation based on instructions from a remote control (not shown) or the like for the first indoor units 2a to 2c and the second indoor units 3a to 3c. Cooling operation and heating operation are realized by switching the channel switching valve 12 of the outdoor unit 1 . Solid arrows in FIG. 2 indicate the flow of refrigerant during heating operation, and broken arrows indicate the flow of refrigerant during cooling operation. The refrigerant flow in each operation will be described below.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows out from the outdoor unit 1 through the flow path switching valve 12, and flows through the refrigerant pipe 5a to the first indoor units 2a to 2c and the relay machine. 4 and 4.
  • the refrigerant that has flowed into the first indoor units 2a to 2c exchanges heat with the air supplied by the first indoor fan 23 in the first indoor heat exchanger 21, condenses, and liquefies.
  • the refrigerant dissipates heat to the air in the air-conditioned space, thereby heating the air-conditioned space in which the first indoor units 2a to 2c are installed.
  • the refrigerant flowing out of the first indoor heat exchanger 21 is decompressed by the expansion device 22, flows out of the first indoor units 2a to 2c, and flows into the outdoor unit 1 through the refrigerant pipe 5b.
  • the refrigerant that has flowed into the relay 4 exchanges heat with the heat medium circulated by the pump 43 in the relay heat exchanger 41, condenses, and liquefies. At this time, the refrigerant radiates heat to the heat medium, thereby heating the heat medium.
  • the refrigerant flowing out of the relay heat exchanger 41 is decompressed by the expansion device 42, flows out of the relay unit 4, joins the refrigerant flowing out of the first indoor units 2a to 2c in the refrigerant pipe 5b, and flows into the outdoor unit 1. .
  • the refrigerant that has flowed into the outdoor unit 1 flows into the outdoor heat exchanger 13 .
  • the refrigerant that has flowed into the outdoor heat exchanger 13 exchanges heat with the air supplied by the outdoor fan 14 to evaporate and gasify.
  • the refrigerant that has flowed out of the outdoor heat exchanger 13 is sucked into the compressor 11 again via the flow path switching valve 12 and the accumulator 15 .
  • the heat medium heated by the relay heat exchanger 41 flows into each of the second indoor units 3a to 3c through the heat medium pipe 6a.
  • the heat medium flowing into each of the second indoor units 3 a to 3 c exchanges heat with the air supplied by the second indoor fan 33 in the second indoor heat exchanger 31 .
  • the heat medium radiates heat to the air in the air-conditioned space, thereby heating the air-conditioned space in which the second indoor units 3a to 3c are installed.
  • the heat medium flowing out of the second indoor heat exchanger 31 passes through the flow control valve 32, flows out of the second indoor units 3a to 3c, and flows into the repeater 4 through the heat medium pipe 6b.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 passes through the flow path switching valve 12 and flows into the outdoor heat exchanger 13 .
  • the refrigerant that has flowed into the outdoor heat exchanger 13 exchanges heat with the air supplied by the outdoor fan 14, condenses, and liquefies.
  • the refrigerant flowing out of the outdoor heat exchanger 13 is divided into the first indoor units 2a to 2c and the relay unit 4 through the refrigerant pipe 5b.
  • the refrigerant that has flowed into each of the first indoor units 2a to 2c is depressurized by the expansion device 22 and flows into the first indoor heat exchanger 21 as a low-temperature gas-liquid two-phase refrigerant.
  • the refrigerant that has flowed into the first indoor heat exchanger 21 exchanges heat with the air supplied by the first indoor fan 23 to evaporate and gasify.
  • the air-conditioned spaces in which the first indoor units 2a to 2c are installed are cooled by the refrigerant absorbing heat from the air in the air-conditioned spaces.
  • the refrigerant that has flowed out of the first indoor heat exchanger 21 flows into the outdoor unit 1 through the refrigerant pipe 5a.
  • the refrigerant that has flowed into the repeater 4 exchanges heat with the heat medium circulated by the pump 43 in the repeater heat exchanger 41 to evaporate and gasify. At this time, the heat medium is cooled by the refrigerant absorbing heat from the heat medium.
  • the refrigerant flowing out of the relay heat exchanger 41 joins the refrigerant flowing out of the first indoor units 2a to 2c in the refrigerant pipe 5a and flows into the outdoor unit 1.
  • the refrigerant that has flowed into the outdoor unit 1 is sucked into the compressor 11 again via the flow path switching valve 12 and the accumulator 15 .
  • the heat medium cooled by the relay heat exchanger 41 flows into each of the second indoor units 3a to 3c through the heat medium pipe 6a.
  • the heat medium flowing into each of the second indoor units 3 a to 3 c exchanges heat with the air supplied by the second indoor fan 33 in the second indoor heat exchanger 31 .
  • the air-conditioned spaces in which the second indoor units 3a to 3c are installed are cooled by the heat medium absorbing heat from the air in the air-conditioned spaces.
  • the heat medium flowing out of the second indoor heat exchanger 31 passes through the flow control valve 32, flows out of the second indoor units 3a to 3c, and flows into the repeater 4 through the heat medium pipe 6b.
  • the building in which the air conditioner 100 is installed includes non-air-conditioned spaces 201, 202 and 203 that are not subject to air conditioning, a first air-conditioned space 301 that is subject to air conditioning, a second air-conditioned space 302, and 303.
  • the non-air-conditioned space 201 is, for example, a corridor or a machine room.
  • the non-air-conditioned spaces 202 and 203 are, for example, the ceiling space.
  • the first air-conditioned space 301 and the second air-conditioned spaces 302 and 303 are, for example, living rooms.
  • the volume of the first air-conditioned space 301 is larger than the volume of the second air-conditioned space 302, and the volume of the second air-conditioned space 302 is larger than the volume of the second air-conditioned space 303.
  • the first air-conditioned space 301 is a large space, and the second air-conditioned spaces 302 and 303 are narrow spaces.
  • a space of a size that causes the concentration of refrigerant in the space to be less than the reference value is defined as a "large space.”
  • a space having a size in which the average concentration of the refrigerant is equal to or higher than a reference value when the total amount of refrigerant charged in the refrigerant circuit A of the air conditioner 100 leaks is referred to as a “narrow space”.
  • a space in which the refrigerant concentration D is less than the reference value is defined as a large space, and a space in which the refrigerant concentration D is equal to or higher than the reference value is defined as a small space.
  • the reference value is the permissible concentration of the refrigerant, which is the maximum concentration of the refrigerant in air specified to reduce the risk of refrigerant leakage.
  • the risk of refrigerant leakage is the risk of toxicity, lack of oxygen, combustibility, or the like.
  • the reference value is, for example, 1/4 of the lower flammability limit (LFL) of the refrigerant used in the air conditioner 100 . Note that the reference value is not limited to 1/4 of LFL, and may be any value equal to or less than LFL. For example, when using a mildly flammable refrigerant such as R32, the reference value is set to 0.66 [kg/m 3 ] or the like.
  • the outdoor unit 1 is installed outdoors.
  • the repeater 4 is installed in a non-air-conditioned space 201 such as a machine room.
  • Refrigerant pipes 5a and 5b pass from the outdoor unit 1 through the non-air-conditioned spaces 201 and 202 and are connected to the first indoor units 2a to 2c installed in the first air-conditioned space 301.
  • FIG. Refrigerant pipes 5a and 5b are branched in non-air-conditioned space 201 and connected to repeater 4 .
  • the heat medium pipes 6a and 6b are connected from the repeater 4 through the non-air-conditioned spaces 201 and 203 to the second indoor units 3a-3c installed in the second air-conditioned spaces 302 and 303, respectively.
  • the first indoor units 2a to 2c are installed in the first air-conditioned space 301, which is a large space.
  • the refrigerant concentration in the first air-conditioned space 301 does not exceed the reference value, so the risk of toxicity, lack of oxygen, or flammability can be reduced. can be done. Therefore, for the first indoor units 2a to 2c installed in a large space, it is possible to omit safety measures such as ventilation and refrigerant leakage sensors and refrigerant cutoff valves.
  • the second indoor unit 3a is installed in the second air-conditioned space 303, which is a narrow space. Also, the second indoor units 3b and 3c are installed in the second air-conditioned space 302, which is also a narrow space. Since the heat medium flows through the second indoor units 3a to 3c, even if the heat medium leaks from the second indoor units 3a to 3c, there is no risk of toxicity, lack of oxygen, or flammability. Also, even if the refrigerant of the air conditioner 100 leaks, the leakage will occur in another space, and the refrigerant will not leak to the second air-conditioned spaces 302 and 303 .
  • the repeater 4 is preferably installed so that the distance from the outdoor unit 1 to the repeater 4 is shorter than the distance from the outdoor unit 1 to the first indoor units 2a to 2c.
  • the repeater 4 and the second indoor units 3a to 3c are arranged such that the distance from the repeater 4 to the second indoor units 3a to 3c is shorter than the distance from the outdoor unit 1 to the first indoor units 2a to 2c.
  • the first indoor unit through which the refrigerant flows is installed in a large space
  • the second indoor unit through which a heat medium other than the refrigerant flows is installed in a narrow space.
  • safety can be ensured even when flammable or toxic refrigerants are used.
  • the air conditioner 100 of the present embodiment by selecting installation of the first indoor unit in which the refrigerant flows or the second indoor unit in which the heat medium flows according to the volume of the air-conditioned space, safety is ensured and consumption is reduced. It is possible to achieve both reduction of electric power.
  • Embodiment 2 A second embodiment will be described.
  • Embodiment 1 above a configuration in which the air conditioner 100 includes one repeater 4 has been described, but Embodiment 2 differs from Embodiment 1 in that it includes a plurality of repeaters 4 .
  • FIG. 3 is a schematic configuration diagram of an air conditioner 100A according to Embodiment 2.
  • the air conditioner 100A of the present embodiment includes an outdoor unit 1, a plurality of first indoor units 2a to 2c, a plurality of second indoor units 3a to 3c, and an outdoor unit 1 and the second indoor units 3a to 3c. and a plurality of repeaters 4a and 4b connected between them.
  • the air conditioner 100A includes two repeaters 4a and 4b in FIG. 3, the number of repeaters may be three or more.
  • the outdoor unit 1 and the first indoor units 2a to 2c, and the outdoor unit 1 and the repeaters 4a and 4a are connected by refrigerant pipes 5a and 5b through which refrigerant flows, respectively.
  • Each of the first indoor units 2a to 2c and repeaters 4a and 4b are connected in parallel to the outdoor unit 1.
  • the relay unit 4a and the second indoor unit 3a, and the relay unit 4b and the second indoor units 3b and 3c are connected by heat medium pipes 6a and 6b through which the heat medium flows, respectively.
  • the second indoor units 3b and 3c are connected in parallel with the repeater 4b.
  • the heat generated in the outdoor unit 1 is supplied to the first indoor units 2a to 2c and the repeaters 4a and 4b by refrigerant flowing through the refrigerant pipes 5a and 5b.
  • the heat converted by the repeaters 4a and 4b is supplied to the second indoor units 3a to 3c by the heat medium flowing through the heat medium pipes 6a and 6b.
  • the repeaters 4 a and 4 b are installed in the non-air-conditioned space 203 .
  • the repeaters 4 a and 4 b are installed in the non-air-conditioned space 203 .
  • the non-air-conditioned space 203 is adjacent to the second air-conditioned spaces 302 and 303 in which the second indoor units 3a to 3c are installed.
  • the length of the heat medium pipes 6a and 6b connecting the repeaters 4a and 4b and the second indoor units 3a to 3c can be shortened.
  • the pumps 43 of the repeaters 4a and 4b can be miniaturized, and the housing sizes of the repeaters 4a and 4b can also be miniaturized.
  • FIG. 4 is a circuit diagram of the air conditioner 100A according to the second embodiment.
  • the configurations of the outdoor unit 1, the first indoor units 2a-2c, and the second indoor units 3a-3c are the same as in the first embodiment.
  • the repeaters 4a and 4b each include a repeater heat exchanger 41, a throttle device 42, a pump 43, and a control device 44, like the repeater 4 of the first embodiment.
  • the repeaters 4a and 4b of the air conditioner 100A of the present embodiment operate individually according to the operating states of the connected second indoor units 3a to 3c. For example, when the second indoor unit 3a is in operation and the second indoor units 3b and 3c are stopped, the throttle device 42 and the pump 43 of the relay unit 4a connected to the second indoor unit 3a are operated, 2 Stop the expansion device 42 and the pump 43 of the repeater 4b connected to the indoor units 3b and 3c. Alternatively, when the second indoor unit 3a is stopped and the second indoor units 3b and 3c are in operation, the expansion device 42 and the pump 43 of the repeater 4a are stopped, and the expansion device 42 and the pump 43 of the repeater 4b are stopped. to operate.
  • the repeater 4b since the second indoor units 3b and 3c connected to the repeater 4b are installed in the same second air-conditioned space 302, by interlocking the operating states of the second indoor units 3b and 3c, the repeater It is also possible to suppress the start/stop frequency of 4b.
  • the air-conditioning apparatus 100A of the present embodiment can obtain the same effects as those of the first embodiment. It is possible to reduce power consumption and improve comfort with the second indoor units 3a to 3c.
  • Embodiment 3 A third embodiment will be described. Embodiment 3 differs from Embodiment 2 in the configuration of the second indoor units 3a to 3c of the air conditioner 100B.
  • a schematic configuration of an air conditioner 100B of the embodiment is the same as that of the air conditioner 100A of the second embodiment shown in FIG.
  • FIG. 5 is a circuit diagram of an air conditioner 100B according to the third embodiment.
  • the configurations of the outdoor unit 1, the first indoor units 2a to 2c, and the repeaters 4a and 4b are the same as those of the second embodiment.
  • the second indoor units 3a to 3c of the present embodiment are not equipped with the flow control valves 32.
  • the amount of heat medium supplied to the second indoor units 3a to 3c is adjusted by controlling the output of the pumps 43 provided in the repeaters 4a and 4b.
  • the second control device 34 of the second indoor units 3a to 3c includes a temperature sensor (not shown) that detects the temperature of the air-conditioned space or the temperature of the heat medium at the outlet and inlet of the second indoor units 3a to 3c. The detection results are transmitted to the controllers 44 of the repeaters 4a and 4b. As a result, the controllers 44 of the repeaters 4a and 4b can control the drive frequency of the pumps 43 according to the air conditioning loads of the second air conditioned spaces 302 and 303.
  • the air conditioner 100B of the present embodiment can obtain the same effects as those of the second embodiment, and by omitting the flow rate adjustment valves 32 of the second indoor units 3a to 3c, the second The configuration of the two indoor units 3a to 3c can be simplified. As a result, it is possible to reduce the size and cost of the second indoor units 3a to 3c.
  • the present disclosure is not limited to the above embodiments, and can be variously modified or combined without departing from the gist of the present disclosure.
  • the ratio between the number of first indoor units and the number of second indoor units is not limited, and may be set according to the air-conditioned space in the building.
  • the ratio of the first indoor unit is large, the capacity loss can be reduced because the amount required for heat exchange with the heat medium is reduced. Also, the power of the pump 43 of the repeater 4 can be suppressed.
  • the ratio of the second indoor unit is large, the amount of refrigerant charged into the refrigerant circuit A can be reduced.
  • the air conditioners of Embodiments 1 to 3 above are configured to perform either cooling operation or heating operation in all the indoor units. It is good also as a structure which can perform cooling/heating simultaneous operation mixed with.
  • the repeater 4 may include a plate heat exchanger that exchanges heat between the primary side refrigerant supplied from the outdoor unit 1 and the secondary side refrigerant.
  • the repeater 4 exchanges heat between the primary-side refrigerant supplied from the outdoor unit 1 and the secondary-side refrigerant, and heat-exchanges between the secondary-side refrigerant and the heat medium.
  • a compressor in the refrigerant circuit through which the secondary side refrigerant flows in addition to the air conditioning function, it is possible to provide a hot water supply function capable of discharging hot water at a high temperature. In this case, exhaust heat recovery may be performed in the heat medium circuit B to perform air conditioning.
  • the outdoor unit 1, the first indoor units 2a to 2c, the second indoor units 3a to 3c, and the repeater 4 are each provided with a control device, but the configuration is limited to this. not a thing
  • a control device may be provided in a management room of the building to control each device.
  • any one of the outdoor unit 1, the first indoor units 2a to 2c, the second indoor units 3a to 3c, and the repeater 4 may be provided with a control device to control other devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

An air-conditioning device comprising an outdoor unit, which is provided with a compressor for circulating a refrigerant in a refrigerant circuit, and an outdoor heat exchanger through which the refrigerant flows, a first indoor unit, which is provided with a first indoor heat exchanger through which the refrigerant flows, a relay device, which is provided with a relay heat exchanger for exchanging heat between the refrigerant and a heat medium different from the refrigerant, and a pump for circulating the heat medium in a heat medium circuit, and a second indoor unit, which is provided with a second indoor heat exchanger through which the heat medium flows, wherein the first indoor unit is installed in a first air-conditioned space, the second indoor unit is installed in a second air-conditioned space, the first air-conditioned space has such a volume that even when the total amount of refrigerant sealed in the refrigerant circuit leaks into the first air-conditioned space, the concentration of the refrigerant in the first air-conditioned space is less than a reference value, and the volume of the second air-conditioned space is less than the volume of the first air-conditioned space.

Description

空気調和装置及び空気調和装置の設置方法Air conditioner and installation method of air conditioner
 本開示は、複数の空間を空調する空気調和装置及び空気調和装置の設置方法に関する。 The present disclosure relates to an air conditioner that air-conditions multiple spaces and an installation method for the air conditioner.
 従来、室外に設置した熱源機である室外機と室内に設置した室内機との間に冷媒を循環させることにより室外機で生成した熱を室内機に搬送し、居室などの空調空間を冷房又は暖房する直接膨張式の空気調和装置が知られている(例えば特許文献1)。直接膨張式の空気調和装置では、HFC(ハイドロフルオロカーボン)系の冷媒が多く使われている。 Conventionally, the heat generated by the outdoor unit is transferred to the indoor unit by circulating the refrigerant between the outdoor unit, which is the heat source unit installed outdoors, and the indoor unit installed indoors, thereby cooling or cooling air-conditioned spaces such as living rooms. A direct expansion air conditioner for heating is known (for example, Patent Document 1). Direct expansion air conditioners often use HFC (hydrofluorocarbon) refrigerants.
 また、室外機と室内機との間に中継機を接続し、中継機において室外機から供給された冷媒と水などの熱媒体とを熱交換し、熱媒体を室内機に循環させて空調空間を冷房又は暖房する空気調和装置が知られている(例えば特許文献2)。 In addition, a repeater is connected between the outdoor unit and the indoor unit, and the repeater exchanges heat between the refrigerant supplied from the outdoor unit and a heat medium such as water. An air conditioner that cools or heats is known (for example, Patent Document 2).
特開平02-118372号公報JP-A-02-118372 国際公開第2012/077156号WO2012/077156
 従来の直接膨張式の空気調和装置では、可燃性又は毒性を有する冷媒が居室に設置された室内機内を循環するため、冷媒が居室に漏洩した場合に安全性を確保することを目的として、換気並びに冷媒漏洩センサ及び冷媒遮断弁などの取り付けが必要となる。その結果、装置のコストアップ及び消費電力の増加を招いていた。 In conventional direct expansion air conditioners, flammable or toxic refrigerant circulates inside the indoor unit installed in the living room. Also, it is necessary to install a refrigerant leakage sensor, a refrigerant cutoff valve, and the like. As a result, the cost and power consumption of the device are increased.
 また、中継機を備える空気調和装置では、水などの有害でない熱媒体が居室に設置された室内機内を循環するため、安全性が確保される。ただし、ビル用マルチエアコンのように多くの室内機が中継機に接続される場合、中継機が大型となる。また、水などの熱媒体を搬送するためのポンプの動力も大きくなり、機器の消費電力の増加を招いていた。 In addition, in an air conditioner equipped with a repeater, safety is ensured because a non-toxic heat medium such as water circulates inside the indoor unit installed in the living room. However, when a large number of indoor units are connected to a repeater, such as a multi air conditioner for buildings, the repeater becomes large. In addition, the power of the pump for conveying the heat medium such as water also increases, leading to an increase in the power consumption of the equipment.
 本開示は、上記課題を解決するためのものであり、安全性の確保と消費電力の削減とを両立できる空気調和装置及び空気調和装置の設置方法を提供することを目的とする。 The present disclosure is intended to solve the above problems, and aims to provide an air conditioner and an air conditioner installation method that can ensure safety and reduce power consumption.
 本開示に係る空気調和装置は、冷媒回路に冷媒を循環させる圧縮機、及び冷媒が流れる室外熱交換器を備える室外機と、冷媒が流れる第1室内熱交換器を備える第1室内機と、冷媒とは異なる熱媒体と冷媒とを熱交換する中継熱交換器、及び熱媒体回路に熱媒体を循環させるポンプを備える中継機と、熱媒体が流れる第2室内熱交換器を備える第2室内機と、を備え、第1室内機は、第1空調空間に設置され、第2室内機は、第2空調空間に設置されており、第1空調空間は、冷媒回路に封入される冷媒の総量が第1空調空間に漏洩した場合も、第1空調空間における冷媒の濃度が基準値未満となる容積を有し、第2空調空間の容積は、第1空調空間の容積よりも小さい。
 本開示に係る空気調和装置の設置方法は、冷媒回路に冷媒を循環させる圧縮機、及び冷媒が流れる室外熱交換器を備える室外機と、冷媒が流れる第1室内熱交換器を備える第1室内機と、冷媒とは異なる熱媒体と冷媒とを熱交換する中継熱交換器、及び熱媒体回路に熱媒体を循環させるポンプを備える中継機と、熱媒体が流れる第2室内熱交換器を備える第2室内機と、を備える空気調和装置の設置方法であって、空調空間の容積が、冷媒回路に封入される冷媒の総量が空調空間に漏洩した場合に、空調空間における冷媒の濃度が基準値未満となるか否かを判定する工程と、冷媒の濃度が基準値未満となる場合は空調空間に第1室内機を設置し、冷媒の濃度が基準値以上となる場合は空調空間に第2室内機を設置する工程と、を含む。
An air conditioner according to the present disclosure includes an outdoor unit including a compressor that circulates a refrigerant in a refrigerant circuit and an outdoor heat exchanger through which the refrigerant flows, a first indoor unit including a first indoor heat exchanger through which the refrigerant flows, A second indoor heat exchanger comprising a relay heat exchanger that exchanges heat between a heat medium different from the refrigerant and a pump that circulates the heat medium in the heat medium circuit, and a second indoor heat exchanger through which the heat medium flows. and a machine, wherein the first indoor unit is installed in the first air-conditioned space, the second indoor unit is installed in the second air-conditioned space, and the first air-conditioned space is filled with the refrigerant enclosed in the refrigerant circuit. Even if the total amount leaks into the first air-conditioned space, the first air-conditioned space has a volume at which the concentration of the refrigerant is less than the reference value, and the volume of the second air-conditioned space is smaller than the volume of the first air-conditioned space.
A method for installing an air conditioner according to the present disclosure includes an outdoor unit including a compressor for circulating refrigerant in a refrigerant circuit and an outdoor heat exchanger through which refrigerant flows, and a first indoor unit including a first indoor heat exchanger through which refrigerant flows. a relay heat exchanger that exchanges heat between the machine, a heat medium different from the refrigerant, and a heat medium that is different from the refrigerant; a relay machine that has a pump that circulates the heat medium in the heat medium circuit; and a second indoor heat exchanger through which the heat medium flows. and a second indoor unit, wherein the volume of the air-conditioned space is the concentration of the refrigerant in the air-conditioned space when the total amount of refrigerant sealed in the refrigerant circuit leaks into the air-conditioned space. a step of determining whether the refrigerant concentration is less than the reference value; installing the first indoor unit in the air-conditioned space when the concentration of the refrigerant is less than the reference value; and installing two indoor units.
 本開示の空気調和装置および空気調和装置の設置方法によれば、冷媒が流れる第1室内機を大空間である第1空調空間に設置し、熱媒体が流れる第2室内機を第1空調空間より小さい第2空調空間に設置することで、冷媒漏洩時の安全性の確保と消費電力の削減とを両立することができる。 According to the air conditioner and the installation method of the air conditioner of the present disclosure, the first indoor unit in which the refrigerant flows is installed in the first air-conditioned space, which is a large space, and the second indoor unit in which the heat medium flows is installed in the first air-conditioned space. By installing it in the second air-conditioned space, which is smaller, it is possible to both ensure safety in the event of refrigerant leakage and reduce power consumption.
実施の形態1に係る空気調和装置の概略構成図である。1 is a schematic configuration diagram of an air conditioner according to Embodiment 1. FIG. 実施の形態1に係る空気調和装置の回路図である。1 is a circuit diagram of an air conditioner according to Embodiment 1. FIG. 実施の形態2に係る空気調和装置の概略構成図である。2 is a schematic configuration diagram of an air conditioner according to Embodiment 2. FIG. 実施の形態2に係る空気調和装置の回路図である。2 is a circuit diagram of an air conditioner according to Embodiment 2. FIG. 実施の形態3に係る空気調和装置の回路図である。FIG. 10 is a circuit diagram of an air conditioner according to Embodiment 3;
 以下、図面に基づいて実施の形態について説明する。なお、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。また、明細書全文に示す構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。さらに、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。 Embodiments will be described below based on the drawings. In addition, in each figure, the same reference numerals denote the same or corresponding parts, and this is common throughout the specification. Also, the forms of the constituent elements shown in the entire specification are merely examples and are not limited to these descriptions. Furthermore, in the drawings below, the size relationship of each component may differ from the actual size.
 実施の形態1.
 図1は、実施の形態1に係る空気調和装置100の概略構成図である。本実施の形態の空気調和装置100は、例えばビルなどの建物内の複数の空調空間の空調を行うものである。図1に示すように、空気調和装置100は、室外機1と、複数の第1室内機2a~2cと、複数の第2室内機3a~3cと、室外機1と第2室内機3a~3cとの間に接続された中継機4とを備えている。中継機4は、室外機1から供給される冷媒と熱媒体とで熱交換を行うものである。本実施の形態の空気調和装置100は、3台の第1室内機2a~2c及び3台の第2室内機3a~3cを備えているが、第1室内機及び第2室内機の数は1台又は2台でもよいし、4台以上でもよい。
Embodiment 1.
FIG. 1 is a schematic configuration diagram of an air conditioner 100 according to Embodiment 1. FIG. The air conditioner 100 of the present embodiment air-conditions a plurality of air-conditioned spaces in a building such as a building. As shown in FIG. 1, the air conditioner 100 includes an outdoor unit 1, a plurality of first indoor units 2a to 2c, a plurality of second indoor units 3a to 3c, the outdoor unit 1 and the second indoor units 3a to 3c and a repeater 4 connected between them. The repeater 4 exchanges heat between the refrigerant supplied from the outdoor unit 1 and the heat medium. The air conditioner 100 of the present embodiment includes three first indoor units 2a to 2c and three second indoor units 3a to 3c. It may be one or two, or four or more.
 室外機1と第1室内機2a~2c、及び、室外機1と中継機4は、冷媒が流れる冷媒配管5a及び5bで接続されている。各第1室内機2a~2c及び中継機4は、室外機1に対して並列に接続されている。また、中継機4と第2室内機3a~3cは、熱媒体が流れる熱媒体配管6a及び6bで接続されている。各第2室内機3a~3cは中継機4と並列に接続されている。室外機1で生成された熱は、冷媒配管5a及び5bを流れる冷媒によって第1室内機2a~2c及び中継機4に搬送される。また中継機4で変換された熱は、熱媒体配管6a及び6bを流れる熱媒体によって第2室内機3a~3cに搬送される。 The outdoor unit 1 and the first indoor units 2a to 2c, and the outdoor unit 1 and the relay unit 4 are connected by refrigerant pipes 5a and 5b through which refrigerant flows. Each of the first indoor units 2a to 2c and the repeater 4 are connected in parallel to the outdoor unit 1. As shown in FIG. Further, the repeater 4 and the second indoor units 3a to 3c are connected by heat medium pipes 6a and 6b through which heat medium flows. Each of the second indoor units 3a-3c is connected to the repeater 4 in parallel. The heat generated by the outdoor unit 1 is transferred to the first indoor units 2a to 2c and the relay unit 4 by the refrigerant flowing through the refrigerant pipes 5a and 5b. The heat converted by the repeater 4 is transferred to the second indoor units 3a to 3c by the heat medium flowing through the heat medium pipes 6a and 6b.
 空気調和装置100の第1室内機2a~2cは、室外機1から供給される冷媒により空調空間を直接冷房又は暖房するものである。また、第2室内機3a~3cは、室外機1から供給される冷媒から熱を伝達された熱媒体により空調空間を冷房又は暖房するものである。すなわち、空気調和装置100は、室外機1から供給される冷媒を直接的に利用する第1室内機と、間接的に利用する第2室内機との両方を備えている。 The first indoor units 2a to 2c of the air conditioner 100 directly cool or heat the air-conditioned space with the refrigerant supplied from the outdoor unit 1. Further, the second indoor units 3a to 3c cool or heat the air-conditioned space with a heat medium to which heat is transferred from the refrigerant supplied from the outdoor unit 1. FIG. That is, the air conditioner 100 includes both a first indoor unit that directly uses the refrigerant supplied from the outdoor unit 1 and a second indoor unit that indirectly uses the refrigerant.
 空気調和装置100で用いられる冷媒は、例えばR32等の単一冷媒、R410A等の擬似共沸混合冷媒、化学式内に二重結合又はCFIを含む地球温暖化係数が比較的小さいとされている冷媒又はその混合物、CFI、CO又はプロパン等の自然冷媒である。空気調和装置100で用いられる熱媒体は、例えば水、ブライン(不凍液)、ブラインと水の混合液、又は水と防食効果が高い添加剤の混合液等である。なお本開示における「熱媒体」は、冷媒以外の熱媒体であって、毒性及び可燃性を有さないものとする。 The refrigerant used in the air conditioner 100 is, for example, a single refrigerant such as R32, a pseudo-azeotropic mixture refrigerant such as R410A, or a refrigerant containing a double bond or CF 3 I in the chemical formula. refrigerants or mixtures thereof, natural refrigerants such as CF 3 I, CO 2 or propane. The heat medium used in the air conditioner 100 is, for example, water, brine (antifreeze), a mixed solution of brine and water, or a mixed solution of water and an additive having a high anticorrosion effect. Note that the "heat medium" in the present disclosure is a heat medium other than a refrigerant and is non-toxic and non-flammable.
 図2は、実施の形態1に係る空気調和装置100の回路図である。図2に示すように、空気調和装置100は、冷媒が循環する冷媒回路Aと、熱媒体が循環する熱媒体回路Bとを備えている。冷媒回路Aは、室外機1と、第1室内機2a~2c及び中継機4とが冷媒配管5a及び5bにより接続されて構成される。熱媒体回路Bは、中継機4と第2室内機3a~3bとが熱媒体配管6a及び6bで接続されて構成される。 FIG. 2 is a circuit diagram of the air conditioner 100 according to Embodiment 1. FIG. As shown in FIG. 2, the air conditioner 100 includes a refrigerant circuit A in which refrigerant circulates and a heat medium circuit B in which a heat medium circulates. The refrigerant circuit A is configured by connecting the outdoor unit 1, the first indoor units 2a to 2c, and the relay unit 4 by refrigerant pipes 5a and 5b. The heat medium circuit B is configured by connecting the repeater 4 and the second indoor units 3a to 3b with heat medium pipes 6a and 6b.
 室外機1は、圧縮機11と、流路切替弁12と、室外熱交換器13と、室外ファン14と、アキュムレータ15と、室外制御装置16とを備える。圧縮機11は、低温低圧のガス冷媒を吸入し、圧縮して高温高圧のガス冷媒を吐出する。圧縮機11によって、冷媒回路Aに冷媒が循環する。圧縮機11は、例えば容量制御可能なインバータタイプの圧縮機である。 The outdoor unit 1 includes a compressor 11, a channel switching valve 12, an outdoor heat exchanger 13, an outdoor fan 14, an accumulator 15, and an outdoor control device 16. The compressor 11 sucks a low-temperature, low-pressure gas refrigerant, compresses it, and discharges a high-temperature, high-pressure gas refrigerant. Refrigerant is circulated in the refrigerant circuit A by the compressor 11 . The compressor 11 is, for example, a capacity-controllable inverter type compressor.
 流路切替弁12は、例えば四方弁である。流路切替弁12は、第1室内機2a~2c及び第2室内機3a~3cの運転に応じて圧縮機11から吐出された冷媒の流路を切替える。流路切替弁12は、暖房運転時は図2に実線で示す流路に切り替えられ、冷房運転時は図2に破線で示す流路に切り替えられる。なお、流路切替弁12は、三方弁又は二方弁を組み合わせたものでもよい。 The channel switching valve 12 is, for example, a four-way valve. The channel switching valve 12 switches the channel of the refrigerant discharged from the compressor 11 according to the operation of the first indoor units 2a-2c and the second indoor units 3a-3c. The flow path switching valve 12 is switched to the flow path indicated by the solid line in FIG. 2 during the heating operation, and is switched to the flow path indicated by the broken line in FIG. 2 during the cooling operation. In addition, the channel switching valve 12 may be a combination of a three-way valve and a two-way valve.
 室外熱交換器13は、例えばフィンチューブ式の熱交換器である。室外熱交換器13は、室外ファン14によって供給される空気と冷媒との間で熱交換を行う。室外熱交換器13は、冷房運転時には凝縮器として機能し、冷媒を凝縮して液化させる。また、室外熱交換器13は、暖房運転時には蒸発器として機能し、冷媒を蒸発してガス化させる。 The outdoor heat exchanger 13 is, for example, a fin-tube heat exchanger. The outdoor heat exchanger 13 exchanges heat between the air supplied by the outdoor fan 14 and the refrigerant. The outdoor heat exchanger 13 functions as a condenser during cooling operation, and condenses and liquefies the refrigerant. In addition, the outdoor heat exchanger 13 functions as an evaporator during heating operation, and evaporates and gasifies the refrigerant.
 室外ファン14は、例えばプロペラファンである。室外ファン14は、室外機1の周辺の空気を室外熱交換器13に供給する。室外ファン14の回転数が室外制御装置16によって制御されることで、室外熱交換器13の凝縮能力又は蒸発能力が制御される。アキュムレータ15は、圧縮機11の吸入側に設けられ、液冷媒とガス冷媒とを分離する機能と、余剰冷媒を貯留する機能とを有している。 The outdoor fan 14 is, for example, a propeller fan. The outdoor fan 14 supplies air around the outdoor unit 1 to the outdoor heat exchanger 13 . By controlling the rotation speed of the outdoor fan 14 by the outdoor control device 16, the condensation capacity or evaporation capacity of the outdoor heat exchanger 13 is controlled. The accumulator 15 is provided on the suction side of the compressor 11 and has a function of separating liquid refrigerant and gas refrigerant and a function of storing excess refrigerant.
 室外制御装置16は、圧縮機11、流路切替弁12及び室外ファン14の動作を制御する。室外制御装置16は、制御に必要なデータ及びプログラムを記憶するメモリと、プログラムを実行するCPUとを備える処理装置、又はASIC又はFPGAなどの専用のハードウェアもしくはその両方で構成される。室外制御装置16は、室外機1に搭載された冷媒圧力を検知する圧力センサ(不図示)及び冷媒温度又は外気温度を検知する温度センサ(不図示)の検知結果に基づき、圧縮機11の駆動周波数、流路切替弁12の流路、及び室外ファン14の回転数を制御する。室外制御装置16は、第1室内機2a~2cに搭載される第1制御装置24、第2室内機3a~3cに搭載される第2制御装置34、及び中継機4に搭載される制御装置44との間でデータ通信を行うことができる。 The outdoor control device 16 controls the operations of the compressor 11, the flow path switching valve 12, and the outdoor fan 14. The outdoor control device 16 is composed of a processing device having a memory for storing data and programs required for control and a CPU for executing the program, dedicated hardware such as ASIC or FPGA, or both. The outdoor control device 16 drives the compressor 11 based on the detection results of a pressure sensor (not shown) that detects the refrigerant pressure and a temperature sensor (not shown) that detects the refrigerant temperature or the outside air temperature mounted on the outdoor unit 1. The frequency, the flow path of the flow path switching valve 12, and the rotational speed of the outdoor fan 14 are controlled. The outdoor control device 16 includes a first control device 24 mounted on the first indoor units 2a to 2c, a second control device 34 mounted on the second indoor units 3a to 3c, and a control device mounted on the repeater 4. 44 can be used for data communication.
 第1室内機2a~2cは、空調空間の冷房負荷又は暖房負荷に対し、室外機1によって生成された熱を供給する。各第1室内機2a~2cは、第1室内熱交換器21と、絞り装置22と、第1室内ファン23と、第1制御装置24とを備えている。第1室内熱交換器21は、例えばフィンチューブ式の熱交換器である。第1室内熱交換器21は、第1室内ファン23により供給される空気と冷媒との間で熱交換を行う。第1室内熱交換器21は、暖房運転時には凝縮器として機能し、冷媒を凝縮して液化させる。また、第1室内熱交換器21は、冷房運転時には蒸発器として機能し、冷媒を蒸発してガス化させる。 The first indoor units 2a to 2c supply the heat generated by the outdoor unit 1 to the cooling load or heating load of the air-conditioned space. Each of the first indoor units 2a-2c includes a first indoor heat exchanger 21, an expansion device 22, a first indoor fan 23, and a first controller 24. The first indoor heat exchanger 21 is, for example, a fin-tube heat exchanger. The first indoor heat exchanger 21 exchanges heat between the air supplied by the first indoor fan 23 and the refrigerant. The first indoor heat exchanger 21 functions as a condenser during heating operation, and condenses and liquefies the refrigerant. Further, the first indoor heat exchanger 21 functions as an evaporator during cooling operation, and evaporates the refrigerant to gasify it.
 絞り装置22は、開度が可変に制御される電子式膨張弁である。絞り装置22は、第1室内熱交換器21と直列に接続され、第1室内熱交換器21から流出する冷媒又は第1室内熱交換器21に流入する冷媒を減圧して膨張させる。 The expansion device 22 is an electronic expansion valve whose opening is variably controlled. The expansion device 22 is connected in series with the first indoor heat exchanger 21 and reduces the pressure of the refrigerant flowing out of the first indoor heat exchanger 21 or the refrigerant flowing into the first indoor heat exchanger 21 to expand the refrigerant.
 第1室内ファン23は、例えばクロスフローファンである。第1室内ファン23は、空調空間の空気を第1室内熱交換器21に供給する。第1室内ファン23の回転数が第1制御装置24によって制御されることで、第1室内熱交換器21の凝縮能力又は蒸発能力が制御される。 The first indoor fan 23 is, for example, a cross-flow fan. The first indoor fan 23 supplies air in the air-conditioned space to the first indoor heat exchanger 21 . By controlling the rotational speed of the first indoor fan 23 by the first controller 24, the condensation capacity or evaporation capacity of the first indoor heat exchanger 21 is controlled.
 第1制御装置24は、絞り装置22及び第1室内ファン23の動作を制御する。第1制御装置24は、制御に必要なデータ及びプログラムを記憶するメモリと、プログラムを実行するCPUとを備える処理装置、又はASIC又はFPGAなどの専用のハードウェアもしくはその両方で構成される。第1制御装置24は、空調空間の温度を検知する温度センサ(不図示)、並びに第1室内機2a~2cの出口及び入口における冷媒の温度を検知する温度センサ(不図示)の検知結果に基づき、絞り装置22の開度及び第1室内ファン23の回転数を制御する。温度センサは、例えばサーミスタである。なお、第1制御装置24は、例えば空調空間の温度と目標温度との差に応じて、絞り装置22の開度及び第1室内ファン23の回転数を制御する。 The first control device 24 controls the operations of the expansion device 22 and the first indoor fan 23 . The first control device 24 is composed of a processing device having a memory that stores data and programs necessary for control and a CPU that executes the programs, dedicated hardware such as ASIC or FPGA, or both. The first control device 24 detects the temperature sensor (not shown) that detects the temperature of the air-conditioned space, and the temperature sensor (not shown) that detects the temperature of the refrigerant at the outlet and inlet of the first indoor units 2a to 2c. Based on this, the opening degree of the expansion device 22 and the rotational speed of the first indoor fan 23 are controlled. A temperature sensor is, for example, a thermistor. Note that the first control device 24 controls the opening degree of the expansion device 22 and the rotation speed of the first indoor fan 23 according to, for example, the difference between the temperature of the air-conditioned space and the target temperature.
 第2室内機3a~3cは、空調空間の冷房負荷又は暖房負荷に対し、中継機4によって変換された熱を供給する。各第2室内機3a~3cは、第2室内熱交換器31と、流量調整弁32と、第2室内ファン33と、第2制御装置34とを備えている。第2室内熱交換器31は、例えばフィンチューブ式の熱交換器である。第2室内熱交換器31は、第2室内ファン33により供給される空気と熱媒体との間で熱交換を行う。 The second indoor units 3a to 3c supply the heat converted by the repeater 4 to the cooling load or heating load of the air-conditioned space. Each of the second indoor units 3a-3c includes a second indoor heat exchanger 31, a flow control valve 32, a second indoor fan 33, and a second controller . The second indoor heat exchanger 31 is, for example, a fin-tube heat exchanger. The second indoor heat exchanger 31 exchanges heat between the air supplied by the second indoor fan 33 and the heat medium.
 流量調整弁32は、開度が可変に制御される電磁弁である。流量調整弁32は、第2室内熱交換器31と直列に接続され、第2室内熱交換器31を流れる熱媒体の流量を調整する。 The flow control valve 32 is an electromagnetic valve whose opening degree is variably controlled. The flow rate adjustment valve 32 is connected in series with the second indoor heat exchanger 31 and adjusts the flow rate of the heat medium flowing through the second indoor heat exchanger 31 .
 第2室内ファン33は、例えばクロスフローファンである。第2室内ファン33は、空調空間の空気を第2室内熱交換器31に供給する。第2室内ファン33の回転数が第2制御装置34によって制御されることで、第2室内熱交換器31の暖房能力又は冷房能力が制御される。 The second indoor fan 33 is, for example, a cross-flow fan. The second indoor fan 33 supplies air in the air-conditioned space to the second indoor heat exchanger 31 . The heating capacity or cooling capacity of the second indoor heat exchanger 31 is controlled by controlling the rotation speed of the second indoor fan 33 by the second control device 34 .
 第2制御装置34は、流量調整弁32及び第2室内ファン33の動作を制御する。第2制御装置34は、制御に必要なデータ及びプログラムを記憶するメモリと、プログラムを実行するCPUとを備える処理装置、又はASIC又はFPGAなどの専用のハードウェアもしくはその両方で構成される。第2制御装置34は、空調空間の温度を検知する温度センサ(不図示)、並びに第2室内機3a~3cの出口及び入口における熱媒体の温度を検知する温度センサ(不図示)の検知結果に基づき、流量調整弁32の開度及び第2室内ファン33の回転数を制御する。温度センサは、例えばサーミスタである。なお、第2制御装置34は、例えば空調空間の温度と目標温度との差に応じて、流量調整弁32の開度及び第2室内ファン33の回転数を制御する。もしくは、第2制御装置34は、流量調整弁32の前後に取り付けられた圧力センサ(不図示)の検知結果と、予め記憶された流量調整弁32の開度に応じたCv値とから、熱媒体の流量を算出し、算出結果に基づいて流量調整弁32の開度を制御してもよい。 The second control device 34 controls the operation of the flow control valve 32 and the second indoor fan 33. The second control device 34 is composed of a processing device having a memory that stores data and programs required for control and a CPU that executes the programs, dedicated hardware such as ASIC or FPGA, or both. The second control device 34 detects the temperature sensor (not shown) that detects the temperature of the air-conditioned space, and the temperature sensor (not shown) that detects the temperature of the heat medium at the outlet and inlet of the second indoor units 3a to 3c. Based on, the opening degree of the flow control valve 32 and the rotation speed of the 2nd indoor fan 33 are controlled. A temperature sensor is, for example, a thermistor. The second control device 34 controls the degree of opening of the flow control valve 32 and the number of revolutions of the second indoor fan 33 according to, for example, the difference between the temperature of the air-conditioned space and the target temperature. Alternatively, the second control device 34 uses the detection result of a pressure sensor (not shown) attached before and after the flow control valve 32 and the pre-stored Cv value corresponding to the degree of opening of the flow control valve 32 to determine the heat. The flow rate of the medium may be calculated, and the opening degree of the flow control valve 32 may be controlled based on the calculation result.
 中継機4は、中継熱交換器41と、絞り装置42と、ポンプ43と、制御装置44とを備えている。中継熱交換器41は、例えばプレート式熱交換器である。中継熱交換器41は、室外機1から供給された冷媒とポンプ43により循環される熱媒体との間で熱交換を行う。これにより、室外機1から供給される冷媒に蓄えられた熱が熱媒体に伝達される。中継熱交換器41は、暖房運転時には凝縮器として機能し、冷媒を凝縮して液化させる。また、中継熱交換器41は、冷房運転時には蒸発器として機能し、冷媒を蒸発してガス化させる。 The repeater 4 includes a repeater heat exchanger 41 , a throttle device 42 , a pump 43 and a control device 44 . The relay heat exchanger 41 is, for example, a plate heat exchanger. The relay heat exchanger 41 exchanges heat between the refrigerant supplied from the outdoor unit 1 and the heat medium circulated by the pump 43 . Thereby, the heat stored in the refrigerant supplied from the outdoor unit 1 is transferred to the heat medium. The relay heat exchanger 41 functions as a condenser during heating operation, and condenses and liquefies the refrigerant. Further, the relay heat exchanger 41 functions as an evaporator during cooling operation, and evaporates the refrigerant to gasify it.
 絞り装置42は、開度が可変に制御される電子式膨張弁である。絞り装置42は、中継熱交換器41と直列に接続され、中継熱交換器41から流出する冷媒又は中継熱交換器41に流入する冷媒を減圧して膨張させる。 The throttle device 42 is an electronic expansion valve whose opening is variably controlled. The expansion device 42 is connected in series with the relay heat exchanger 41 and decompresses and expands the refrigerant flowing out of the relay heat exchanger 41 or flowing into the relay heat exchanger 41 .
 ポンプ43は、例えば容量制御可能なインバータ式の遠心ポンプである。ポンプ43は、インバータによって駆動されるモータを有しており、モータを動力源として駆動し、熱媒体に圧力を加え、熱媒体回路B内を循環させる。なお、図2では、ポンプ43は、冷房運転時の冷媒の流れと熱媒体の流れが対向する冷房対向流となるよう配置されているが、暖房運転時の冷媒の流れと熱媒体の流れが対向する暖房対向流となるよう配置されてもよい。 The pump 43 is, for example, a capacity-controllable inverter-type centrifugal pump. The pump 43 has a motor driven by an inverter. In FIG. 2, the pump 43 is arranged so that the flow of the refrigerant and the flow of the heat medium during the cooling operation are opposed to each other for cooling, but the flow of the refrigerant and the flow of the heat medium during the heating operation are opposite to each other. They may be arranged for opposing heating counterflow.
 制御装置44は、絞り装置42及びポンプ43の動作を制御する。制御装置44は、制御に必要なデータ及びプログラムを記憶するメモリと、プログラムを実行するCPUとを備える処理装置、又はASIC又はFPGAなどの専用のハードウェアもしくはその両方で構成される。制御装置44は、中継熱交換器41の冷媒側の出口及び入口における冷媒温度を検知する温度センサ(不図示)の検知結果に基づき絞り装置42の開度を制御する。もしくは制御装置44は、第2室内機3a~3cの運転容量に応じて絞り装置42の開度を制御してもよい。制御装置44は、第1制御装置24とデータ通信を行い、第1室内機2a~2cに搭載される絞り装置22と連動して絞り装置42を制御してもよい。また、制御装置44は、ポンプ43の出口及び入口に取り付けられた熱媒体の圧力を検知する圧力センサ(不図示)の検知結果と、ポンプ43の能力値などを関連付けたグラフとに基づきポンプ43の駆動周波数を制御する。もしくは、制御装置44は、第2室内機3a~3cの運転容量に応じてポンプ43の駆動周波数を制御してもよい。 The control device 44 controls the operations of the throttle device 42 and the pump 43 . The control device 44 is composed of a processing device having a memory that stores data and programs required for control and a CPU that executes the programs, dedicated hardware such as ASIC or FPGA, or both. The control device 44 controls the opening degree of the expansion device 42 based on the detection result of a temperature sensor (not shown) that detects the refrigerant temperature at the refrigerant-side outlet and inlet of the relay heat exchanger 41 . Alternatively, the control device 44 may control the opening degree of the throttle device 42 according to the operating capacities of the second indoor units 3a to 3c. The control device 44 may perform data communication with the first control device 24 and control the expansion devices 42 in conjunction with the expansion devices 22 mounted on the first indoor units 2a to 2c. In addition, the control device 44 controls the pump 43 based on the detection result of a pressure sensor (not shown) that detects the pressure of the heat medium attached to the outlet and inlet of the pump 43 and a graph that associates the performance value of the pump 43 and the like. control the drive frequency of the Alternatively, the control device 44 may control the drive frequency of the pump 43 according to the operating capacities of the second indoor units 3a-3c.
 本実施の形態の空気調和装置100は、第1室内機2a~2c及び第2室内機3a~3cに対するリモコン(不図示)等からの指示に基づいて、冷房運転又は暖房運転を実施する。冷房運転と暖房運転は、室外機1の流路切替弁12を切り替えることで実現する。図2における実線矢印は暖房運転時の冷媒の流れを示し、破線矢印は冷房運転時の冷媒の流れを示す。各運転における冷媒の流れについて以下に説明する。 The air conditioner 100 of the present embodiment performs cooling operation or heating operation based on instructions from a remote control (not shown) or the like for the first indoor units 2a to 2c and the second indoor units 3a to 3c. Cooling operation and heating operation are realized by switching the channel switching valve 12 of the outdoor unit 1 . Solid arrows in FIG. 2 indicate the flow of refrigerant during heating operation, and broken arrows indicate the flow of refrigerant during cooling operation. The refrigerant flow in each operation will be described below.
 暖房運転では、圧縮機11から吐出された高温高圧のガス冷媒が、流路切替弁12を通って室外機1から流出し、冷媒配管5aを通って第1室内機2a~2cと、中継機4とに分流される。第1室内機2a~2cに流入した冷媒は、第1室内熱交換器21において、第1室内ファン23によって供給される空気と熱交換して凝縮し、液化する。このとき冷媒が空調空間の空気に放熱することによって、第1室内機2a~2cが設置された空調空間がそれぞれ暖房される。第1室内熱交換器21から流出した冷媒は、絞り装置22で減圧され第1室内機2a~2cから流出し、冷媒配管5bを通って室外機1に流入する。 In the heating operation, the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows out from the outdoor unit 1 through the flow path switching valve 12, and flows through the refrigerant pipe 5a to the first indoor units 2a to 2c and the relay machine. 4 and 4. The refrigerant that has flowed into the first indoor units 2a to 2c exchanges heat with the air supplied by the first indoor fan 23 in the first indoor heat exchanger 21, condenses, and liquefies. At this time, the refrigerant dissipates heat to the air in the air-conditioned space, thereby heating the air-conditioned space in which the first indoor units 2a to 2c are installed. The refrigerant flowing out of the first indoor heat exchanger 21 is decompressed by the expansion device 22, flows out of the first indoor units 2a to 2c, and flows into the outdoor unit 1 through the refrigerant pipe 5b.
 中継機4に流入した冷媒は、中継熱交換器41において、ポンプ43によって循環される熱媒体と熱交換して凝縮し、液化する。このとき冷媒が熱媒体に放熱することによって、熱媒体が加熱される。中継熱交換器41から流出した冷媒は、絞り装置42で減圧され中継機4から流出し、冷媒配管5bにて第1室内機2a~2cから流出した冷媒と合流し、室外機1に流入する。 The refrigerant that has flowed into the relay 4 exchanges heat with the heat medium circulated by the pump 43 in the relay heat exchanger 41, condenses, and liquefies. At this time, the refrigerant radiates heat to the heat medium, thereby heating the heat medium. The refrigerant flowing out of the relay heat exchanger 41 is decompressed by the expansion device 42, flows out of the relay unit 4, joins the refrigerant flowing out of the first indoor units 2a to 2c in the refrigerant pipe 5b, and flows into the outdoor unit 1. .
 室外機1に流入した冷媒は、室外熱交換器13に流入する。室外熱交換器13に流入した冷媒は、室外ファン14によって供給される空気と熱交換して蒸発し、ガス化する。室外熱交換器13から流出した冷媒は、流路切替弁12及びアキュムレータ15を経由して圧縮機11に再度吸入される。 The refrigerant that has flowed into the outdoor unit 1 flows into the outdoor heat exchanger 13 . The refrigerant that has flowed into the outdoor heat exchanger 13 exchanges heat with the air supplied by the outdoor fan 14 to evaporate and gasify. The refrigerant that has flowed out of the outdoor heat exchanger 13 is sucked into the compressor 11 again via the flow path switching valve 12 and the accumulator 15 .
 また、中継熱交換器41で加熱された熱媒体は、熱媒体配管6aを通って各第2室内機3a~3cに流入する。各第2室内機3a~3cに流入した熱媒体は、第2室内熱交換器31において、第2室内ファン33によって供給される空気と熱交換する。このとき熱媒体が空調空間の空気に放熱することによって、第2室内機3a~3cが設置された空調空間がそれぞれ暖房される。第2室内熱交換器31から流出した熱媒体は、流量調整弁32を通って第2室内機3a~3cから流出し、熱媒体配管6bを通って中継機4に流入する。 Also, the heat medium heated by the relay heat exchanger 41 flows into each of the second indoor units 3a to 3c through the heat medium pipe 6a. The heat medium flowing into each of the second indoor units 3 a to 3 c exchanges heat with the air supplied by the second indoor fan 33 in the second indoor heat exchanger 31 . At this time, the heat medium radiates heat to the air in the air-conditioned space, thereby heating the air-conditioned space in which the second indoor units 3a to 3c are installed. The heat medium flowing out of the second indoor heat exchanger 31 passes through the flow control valve 32, flows out of the second indoor units 3a to 3c, and flows into the repeater 4 through the heat medium pipe 6b.
 また、冷房運転では、圧縮機11から吐出された高温高圧のガス冷媒が、流路切替弁12を通って室外熱交換器13に流入する。室外熱交換器13に流入した冷媒は、室外ファン14により供給される空気と熱交換して凝縮し、液化する。室外熱交換器13から流出した冷媒は、冷媒配管5bを通って第1室内機2a~2cと、中継機4とに分流される。 Also, in cooling operation, the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 passes through the flow path switching valve 12 and flows into the outdoor heat exchanger 13 . The refrigerant that has flowed into the outdoor heat exchanger 13 exchanges heat with the air supplied by the outdoor fan 14, condenses, and liquefies. The refrigerant flowing out of the outdoor heat exchanger 13 is divided into the first indoor units 2a to 2c and the relay unit 4 through the refrigerant pipe 5b.
 各第1室内機2a~2cに流入した冷媒は、絞り装置22にて減圧され、低温の気液二相冷媒となって第1室内熱交換器21に流入する。第1室内熱交換器21に流入した冷媒は、第1室内ファン23によって供給される空気と熱交換して蒸発し、ガス化する。このとき、冷媒が空調空間の空気から吸熱することによって、第1室内機2a~2c設置された空調空間がそれぞれ冷房される。第1室内熱交換器21から流出した冷媒は、冷媒配管5aを通って室外機1に流入する。 The refrigerant that has flowed into each of the first indoor units 2a to 2c is depressurized by the expansion device 22 and flows into the first indoor heat exchanger 21 as a low-temperature gas-liquid two-phase refrigerant. The refrigerant that has flowed into the first indoor heat exchanger 21 exchanges heat with the air supplied by the first indoor fan 23 to evaporate and gasify. At this time, the air-conditioned spaces in which the first indoor units 2a to 2c are installed are cooled by the refrigerant absorbing heat from the air in the air-conditioned spaces. The refrigerant that has flowed out of the first indoor heat exchanger 21 flows into the outdoor unit 1 through the refrigerant pipe 5a.
 中継機4に流入した冷媒は、中継熱交換器41において、ポンプ43によって循環される熱媒体と熱交換して蒸発し、ガス化する。このとき、冷媒が熱媒体から吸熱することによって、熱媒体が冷却される。中継熱交換器41から流出した冷媒は、冷媒配管5aにて第1室内機2a~2cから流出した冷媒と合流し、室外機1に流入する。室外機1に流入した冷媒は、流路切替弁12及びアキュムレータ15を経由して圧縮機11に再度吸入される。 The refrigerant that has flowed into the repeater 4 exchanges heat with the heat medium circulated by the pump 43 in the repeater heat exchanger 41 to evaporate and gasify. At this time, the heat medium is cooled by the refrigerant absorbing heat from the heat medium. The refrigerant flowing out of the relay heat exchanger 41 joins the refrigerant flowing out of the first indoor units 2a to 2c in the refrigerant pipe 5a and flows into the outdoor unit 1. FIG. The refrigerant that has flowed into the outdoor unit 1 is sucked into the compressor 11 again via the flow path switching valve 12 and the accumulator 15 .
 また、中継熱交換器41で冷却された熱媒体は、熱媒体配管6aを通って各第2室内機3a~3cに流入する。各第2室内機3a~3cに流入した熱媒体は、第2室内熱交換器31において、第2室内ファン33によって供給される空気と熱交換する。このとき熱媒体が空調空間の空気から吸熱することによって、第2室内機3a~3cが設置された空調空間がそれぞれ冷房される。第2室内熱交換器31から流出した熱媒体は、流量調整弁32を通って第2室内機3a~3cから流出し、熱媒体配管6bを通って中継機4に流入する。 Also, the heat medium cooled by the relay heat exchanger 41 flows into each of the second indoor units 3a to 3c through the heat medium pipe 6a. The heat medium flowing into each of the second indoor units 3 a to 3 c exchanges heat with the air supplied by the second indoor fan 33 in the second indoor heat exchanger 31 . At this time, the air-conditioned spaces in which the second indoor units 3a to 3c are installed are cooled by the heat medium absorbing heat from the air in the air-conditioned spaces. The heat medium flowing out of the second indoor heat exchanger 31 passes through the flow control valve 32, flows out of the second indoor units 3a to 3c, and flows into the repeater 4 through the heat medium pipe 6b.
 次に、再び図1を参照して、空気調和装置100の第1室内機2a~2c、第2室内機3a~3c及び中継機4の設置方法について説明する。図1に示すように、空気調和装置100が設置される建物は、空調の対象とならない非空調空間201、202及び203と、空調の対象となる第1空調空間301、第2空調空間302及び303とを備えている。非空調空間201は、例えば廊下又は機械室である。非空調空間202及び203は、例えば天井裏である。第1空調空間301、並びに第2空調空間302及び303は、例えば居室である。 Next, referring to FIG. 1 again, a method of installing the first indoor units 2a to 2c, the second indoor units 3a to 3c, and the repeater 4 of the air conditioner 100 will be described. As shown in FIG. 1, the building in which the air conditioner 100 is installed includes non-air-conditioned spaces 201, 202 and 203 that are not subject to air conditioning, a first air-conditioned space 301 that is subject to air conditioning, a second air-conditioned space 302, and 303. The non-air-conditioned space 201 is, for example, a corridor or a machine room. The non-air-conditioned spaces 202 and 203 are, for example, the ceiling space. The first air-conditioned space 301 and the second air-conditioned spaces 302 and 303 are, for example, living rooms.
 ここで、第1空調空間301の容積は第2空調空間302の容積よりも大きく、第2空調空間302の容積は、第2空調空間303の容積よりも大きいものとする。また、第1空調空間301は大空間であり、第2空調空間302及び303は狭小空間である。本開示では、空気調和装置100の冷媒回路Aに封入される冷媒の総量(総冷媒量)が漏洩した場合も、空間内の冷媒濃度が基準値未満となる大きさの空間を「大空間」とする。また、空気調和装置100の冷媒回路Aに封入される総冷媒量が漏洩した場合に、冷媒の平均濃度が基準値以上となる大きさの空間を「狭小空間」とする。 Here, the volume of the first air-conditioned space 301 is larger than the volume of the second air-conditioned space 302, and the volume of the second air-conditioned space 302 is larger than the volume of the second air-conditioned space 303. Also, the first air-conditioned space 301 is a large space, and the second air-conditioned spaces 302 and 303 are narrow spaces. In the present disclosure, even if the total amount of refrigerant (total amount of refrigerant) enclosed in the refrigerant circuit A of the air conditioner 100 leaks, a space of a size that causes the concentration of refrigerant in the space to be less than the reference value is defined as a "large space." and In addition, a space having a size in which the average concentration of the refrigerant is equal to or higher than a reference value when the total amount of refrigerant charged in the refrigerant circuit A of the air conditioner 100 leaks is referred to as a “narrow space”.
 1つの空間で全ての冷媒が漏洩した際の冷媒濃度D[kg/m]は、空気調和装置100の冷媒回路Aに封入される総冷媒量M[kg]と、各空調空間の容積Q[m]とから下記の式(1)で算出される。
 D=M/Q [kg/m] ・・・(1)
The refrigerant concentration D [kg/m 3 ] when all the refrigerant leaks in one space is the total amount of refrigerant M [kg] enclosed in the refrigerant circuit A of the air conditioner 100 and the volume Q of each air-conditioned space. [m 3 ] is calculated by the following formula (1).
D=M/Q [kg/m 3 ] (1)
 そして、冷媒濃度Dが基準値未満となる空間を大空間とし、基準値以上となる空間を狭小空間とする。基準値は、冷媒の許容濃度であり、冷媒漏洩時のリスクを低減するために規定される空気中の冷媒の最大濃度である。冷媒漏洩時のリスクとは、毒性、酸欠又は可燃性などによるリスクである。基準値は、例えば空気調和装置100に用いられる冷媒の燃焼下限濃度(LFL: Lower Flammability Limit)の1/4である。なお、基準値はLFLの1/4に限定されるものではなく、LFL以下であればよい。例えば、R32のような微燃性冷媒を使用する場合、基準値は、0.66[kg/m]等に設定される。 A space in which the refrigerant concentration D is less than the reference value is defined as a large space, and a space in which the refrigerant concentration D is equal to or higher than the reference value is defined as a small space. The reference value is the permissible concentration of the refrigerant, which is the maximum concentration of the refrigerant in air specified to reduce the risk of refrigerant leakage. The risk of refrigerant leakage is the risk of toxicity, lack of oxygen, combustibility, or the like. The reference value is, for example, 1/4 of the lower flammability limit (LFL) of the refrigerant used in the air conditioner 100 . Note that the reference value is not limited to 1/4 of LFL, and may be any value equal to or less than LFL. For example, when using a mildly flammable refrigerant such as R32, the reference value is set to 0.66 [kg/m 3 ] or the like.
 図1に示すように、室外機1は、屋外に設置される。中継機4は、機械室などの非空調空間201に設置される。また、冷媒配管5a及び5bは、室外機1から非空調空間201及び202を通り、第1空調空間301に設置される第1室内機2a~2cに接続される。また、冷媒配管5a及び5bは、非空調空間201で分岐され、中継機4に接続される。熱媒体配管6a及び6bは、中継機4から、非空調空間201及び203を通り、第2空調空間302及び303に設置される第2室内機3a~3cに接続される。室外機1、中継機4及び冷媒配管5a及び5bを、屋外又は通常は人がいない非空調空間に設置することで、冷媒漏洩時のリスクを削減することができる。 As shown in FIG. 1, the outdoor unit 1 is installed outdoors. The repeater 4 is installed in a non-air-conditioned space 201 such as a machine room. Refrigerant pipes 5a and 5b pass from the outdoor unit 1 through the non-air-conditioned spaces 201 and 202 and are connected to the first indoor units 2a to 2c installed in the first air-conditioned space 301. FIG. Refrigerant pipes 5a and 5b are branched in non-air-conditioned space 201 and connected to repeater 4 . The heat medium pipes 6a and 6b are connected from the repeater 4 through the non-air-conditioned spaces 201 and 203 to the second indoor units 3a-3c installed in the second air-conditioned spaces 302 and 303, respectively. By installing the outdoor unit 1, the repeater 4, and the refrigerant pipes 5a and 5b outdoors or in a non-air-conditioned space where there are usually no people, the risk of refrigerant leakage can be reduced.
 また、第1室内機2a~2cは、大空間である第1空調空間301に設置される。これにより、仮に第1室内機2a~2cから冷媒が漏洩した場合も、第1空調空間301内の冷媒濃度は基準値を超えないため、毒性、酸欠又は可燃性などによるリスクを低減することができる。そのため、大空間に設置された第1室内機2a~2cについては、換気並びに冷媒漏洩センサ及び冷媒遮断弁などの安全対策を省略することができる。 Also, the first indoor units 2a to 2c are installed in the first air-conditioned space 301, which is a large space. As a result, even if the refrigerant leaks from the first indoor units 2a to 2c, the refrigerant concentration in the first air-conditioned space 301 does not exceed the reference value, so the risk of toxicity, lack of oxygen, or flammability can be reduced. can be done. Therefore, for the first indoor units 2a to 2c installed in a large space, it is possible to omit safety measures such as ventilation and refrigerant leakage sensors and refrigerant cutoff valves.
 第2室内機3aは、狭小空間である第2空調空間303に設置される。また、第2室内機3b及び3cは、同じく狭小空間である第2空調空間302に設置される。第2室内機3a~3cには熱媒体が流れているため、仮に第2室内機3a~3cから熱媒体が漏洩した場合も、毒性、酸欠又は可燃性などによるリスクは発生しない。また、仮に空気調和装置100の冷媒が漏洩した場合も別の空間での漏洩となり、第2空調空間302及び303へ冷媒が漏洩することがない。 The second indoor unit 3a is installed in the second air-conditioned space 303, which is a narrow space. Also, the second indoor units 3b and 3c are installed in the second air-conditioned space 302, which is also a narrow space. Since the heat medium flows through the second indoor units 3a to 3c, even if the heat medium leaks from the second indoor units 3a to 3c, there is no risk of toxicity, lack of oxygen, or flammability. Also, even if the refrigerant of the air conditioner 100 leaks, the leakage will occur in another space, and the refrigerant will not leak to the second air-conditioned spaces 302 and 303 .
 また、中継機4は、室外機1から中継機4までの距離が、室外機1から第1室内機2a~2cまでの距離よりも短くなるように設置されるとよい。また、中継機4及び第2室内機3a~3cは、中継機4から第2室内機3a~3cまでの距離が、室外機1から第1室内機2a~2cまでの距離よりも短くなるように設置されるとよい。これにより、熱媒体回路Bにおける熱媒体の搬送動力を抑制することができ、消費電力を削減することができる。 Also, the repeater 4 is preferably installed so that the distance from the outdoor unit 1 to the repeater 4 is shorter than the distance from the outdoor unit 1 to the first indoor units 2a to 2c. In addition, the repeater 4 and the second indoor units 3a to 3c are arranged such that the distance from the repeater 4 to the second indoor units 3a to 3c is shorter than the distance from the outdoor unit 1 to the first indoor units 2a to 2c. should be installed in As a result, power for transporting the heat medium in the heat medium circuit B can be suppressed, and power consumption can be reduced.
 以上のように、本実施の形態の空気調和装置100では、冷媒が流れる第1室内機を大空間に設置し、狭小空間には冷媒以外の熱媒体が流れる第2室内機を設置することで、可燃性又は毒性を有する冷媒を使用する場合でも、安全性を確保できる。また、第1室内機において冷媒漏洩センサ及び冷媒遮断弁等を省略できるとともに、狭小空間にのみ第2室内機を設置することで、第2室内機の数の削減及び中継機4のポンプ43の動力を最小化することができ、消費電力の削減を図ることができる。すなわち、本実施の形態の空気調和装置100では、空調空間の容積に応じて冷媒が流れる第1室内機又は熱媒体が流れる第2室内機の設置を選定することで、安全性の確保と消費電力の削減とを両立することができる。 As described above, in the air conditioner 100 of the present embodiment, the first indoor unit through which the refrigerant flows is installed in a large space, and the second indoor unit through which a heat medium other than the refrigerant flows is installed in a narrow space. , safety can be ensured even when flammable or toxic refrigerants are used. In addition, it is possible to omit the refrigerant leakage sensor and the refrigerant cutoff valve in the first indoor unit, and by installing the second indoor unit only in a narrow space, the number of the second indoor units can be reduced and the pump 43 of the relay unit 4 can be reduced. Power can be minimized, and power consumption can be reduced. That is, in the air conditioner 100 of the present embodiment, by selecting installation of the first indoor unit in which the refrigerant flows or the second indoor unit in which the heat medium flows according to the volume of the air-conditioned space, safety is ensured and consumption is reduced. It is possible to achieve both reduction of electric power.
 実施の形態2.
 実施の形態2について説明する。上記実施の形態1では、空気調和装置100が1台の中継機4を備える構成について説明したが、実施の形態2では、複数台の中継機4を備える点で実施の形態1と相違する。
Embodiment 2.
A second embodiment will be described. In Embodiment 1 above, a configuration in which the air conditioner 100 includes one repeater 4 has been described, but Embodiment 2 differs from Embodiment 1 in that it includes a plurality of repeaters 4 .
 図3は、実施の形態2に係る空気調和装置100Aの概略構成図である。本実施の形態の空気調和装置100Aは、室外機1と、複数の第1室内機2a~2cと、複数の第2室内機3a~3cと、室外機1と第2室内機3a~3cとの間に接続された複数の中継機4a及び4bとを備えている。なお、図3では、空気調和装置100Aが2台の中継機4a及び4bを備えているが、中継機の数は3台以上でもよい。 FIG. 3 is a schematic configuration diagram of an air conditioner 100A according to Embodiment 2. FIG. The air conditioner 100A of the present embodiment includes an outdoor unit 1, a plurality of first indoor units 2a to 2c, a plurality of second indoor units 3a to 3c, and an outdoor unit 1 and the second indoor units 3a to 3c. and a plurality of repeaters 4a and 4b connected between them. Although the air conditioner 100A includes two repeaters 4a and 4b in FIG. 3, the number of repeaters may be three or more.
 室外機1と第1室内機2a~2c、及び、室外機1と中継機4a及び4aとは、冷媒が流れる冷媒配管5a及び5bでそれぞれ接続されている。各第1室内機2a~2c及び中継機4a及び4bは、室外機1に対して並列に接続されている。また、中継機4aと第2室内機3a、及び、中継機4bと第2室内機3b及び3cは、熱媒体が流れる熱媒体配管6a及び6bでそれぞれ接続されている。第2室内機3b及び3cは中継機4bと並列に接続されている。室外機1で生成された熱は、冷媒配管5a及び5bを流れる冷媒によって第1室内機2a~2c、中継機4a及び4bに供給される。また中継機4a及び4bで変換された熱は、熱媒体配管6a及び6bを流れる熱媒体によって第2室内機3a~3cに供給される。 The outdoor unit 1 and the first indoor units 2a to 2c, and the outdoor unit 1 and the repeaters 4a and 4a are connected by refrigerant pipes 5a and 5b through which refrigerant flows, respectively. Each of the first indoor units 2a to 2c and repeaters 4a and 4b are connected in parallel to the outdoor unit 1. As shown in FIG. Further, the relay unit 4a and the second indoor unit 3a, and the relay unit 4b and the second indoor units 3b and 3c are connected by heat medium pipes 6a and 6b through which the heat medium flows, respectively. The second indoor units 3b and 3c are connected in parallel with the repeater 4b. The heat generated in the outdoor unit 1 is supplied to the first indoor units 2a to 2c and the repeaters 4a and 4b by refrigerant flowing through the refrigerant pipes 5a and 5b. The heat converted by the repeaters 4a and 4b is supplied to the second indoor units 3a to 3c by the heat medium flowing through the heat medium pipes 6a and 6b.
 また、図3に示すように、中継機4a及び4bは、非空調空間203に設置される。これにより、中継機4a又は4bから冷媒が漏洩した場合も、第2空調空間302及び303に冷媒が漏洩することを防ぐことができる。 Also, as shown in FIG. 3 , the repeaters 4 a and 4 b are installed in the non-air-conditioned space 203 . As a result, it is possible to prevent the refrigerant from leaking to the second air-conditioned spaces 302 and 303 even if the refrigerant leaks from the repeater 4a or 4b.
 また、非空調空間203は、第2室内機3a~3cが設置される第2空調空間302及び303に隣接している。これにより、中継機4a及び4bと第2室内機3a~3cとを接続する熱媒体配管6a及び6bの長さを短くすることができる。熱媒体配管6a及び6bの長さを短くすることで、配管内で発生する圧力損失を減少させ、中継機4a及び4bのポンプ43の搬送動力を抑制することができる。これにより、中継機4a及び4bのポンプ43を小型化でき、中継機4a及び4bの筐体サイズも小型化することができる。また、熱媒体回路Bに封入される熱媒体の総量を減少させることも可能となり、熱媒体の熱容量を減らし、第2室内機3a~3cから温風又は冷風が出始めるまでの起動時間の短縮に繋げることもできる。 Also, the non-air-conditioned space 203 is adjacent to the second air-conditioned spaces 302 and 303 in which the second indoor units 3a to 3c are installed. As a result, the length of the heat medium pipes 6a and 6b connecting the repeaters 4a and 4b and the second indoor units 3a to 3c can be shortened. By shortening the length of the heat medium pipes 6a and 6b, it is possible to reduce the pressure loss generated in the pipes and suppress the transfer power of the pumps 43 of the repeaters 4a and 4b. As a result, the pumps 43 of the repeaters 4a and 4b can be miniaturized, and the housing sizes of the repeaters 4a and 4b can also be miniaturized. In addition, it is possible to reduce the total amount of the heat medium enclosed in the heat medium circuit B, reduce the heat capacity of the heat medium, and shorten the startup time until hot air or cold air starts to be emitted from the second indoor units 3a to 3c. can also be connected to
 図4は、実施の形態2に係る空気調和装置100Aの回路図である。室外機1、第1室内機2a~2c、及び第2室内機3a~3cの構成は、実施の形態1と同じである。また、中継機4a及び4bは、実施の形態1の中継機4と同様に、中継熱交換器41と、絞り装置42と、ポンプ43と、制御装置44とをそれぞれ備えている。 FIG. 4 is a circuit diagram of the air conditioner 100A according to the second embodiment. The configurations of the outdoor unit 1, the first indoor units 2a-2c, and the second indoor units 3a-3c are the same as in the first embodiment. Further, the repeaters 4a and 4b each include a repeater heat exchanger 41, a throttle device 42, a pump 43, and a control device 44, like the repeater 4 of the first embodiment.
 本実施の形態の空気調和装置100Aの中継機4a及び4bは、接続された第2室内機3a~3cの運転状態に応じて個別に動作する。例えば、第2室内機3aが運転し、第2室内機3b及び3cが停止している場合は、第2室内機3aに接続された中継機4aの絞り装置42及びポンプ43を動作させ、第2室内機3b及び3cに接続された中継機4bの絞り装置42及びポンプ43を停止させる。もしくは、第2室内機3aが停止し、第2室内機3b及び3cが運転している場合は、中継機4aの絞り装置42及びポンプ43を停止させ、中継機4bの絞り装置42及びポンプ43を動作させる。 The repeaters 4a and 4b of the air conditioner 100A of the present embodiment operate individually according to the operating states of the connected second indoor units 3a to 3c. For example, when the second indoor unit 3a is in operation and the second indoor units 3b and 3c are stopped, the throttle device 42 and the pump 43 of the relay unit 4a connected to the second indoor unit 3a are operated, 2 Stop the expansion device 42 and the pump 43 of the repeater 4b connected to the indoor units 3b and 3c. Alternatively, when the second indoor unit 3a is stopped and the second indoor units 3b and 3c are in operation, the expansion device 42 and the pump 43 of the repeater 4a are stopped, and the expansion device 42 and the pump 43 of the repeater 4b are stopped. to operate.
 また、中継機4bに接続された第2室内機3b及び3cは、同一の第2空調空間302に設置されているため、第2室内機3b及び3cの運転状態を連動させることで、中継機4bの発停頻度を抑制することも可能である。 Further, since the second indoor units 3b and 3c connected to the repeater 4b are installed in the same second air-conditioned space 302, by interlocking the operating states of the second indoor units 3b and 3c, the repeater It is also possible to suppress the start/stop frequency of 4b.
 以上のように、本実施の形態の空気調和装置100Aは、実施の形態1と同様の効果を得ることができるとともに、複数の中継機を備えることで、上記のような中継機の小型化、消費電力の削減、及び第2室内機3a~3cによる快適性の向上を図ることができる。 As described above, the air-conditioning apparatus 100A of the present embodiment can obtain the same effects as those of the first embodiment. It is possible to reduce power consumption and improve comfort with the second indoor units 3a to 3c.
 実施の形態3.
 実施の形態3について説明する。実施の形態3では、空気調和装置100Bの第2室内機3a~3cの構成において実施の形態2と相違する。実施の形態の空気調和装置100Bの概略構成は、図3に示す実施の形態2の空気調和装置100Aと同じである。
Embodiment 3.
A third embodiment will be described. Embodiment 3 differs from Embodiment 2 in the configuration of the second indoor units 3a to 3c of the air conditioner 100B. A schematic configuration of an air conditioner 100B of the embodiment is the same as that of the air conditioner 100A of the second embodiment shown in FIG.
 図5は、実施の形態3に係る空気調和装置100Bの回路図である。室外機1、第1室内機2a~2c及び中継機4a及び4bの構成は、実施の形態2と同じである。また、図5に示すように、本実施の形態の第2室内機3a~3cは流量調整弁32を備えていない。本実施の形態では、中継機4a及び4bが備えるポンプ43の出力を制御することで、第2室内機3a~3cに供給される熱媒体量が調整される。 FIG. 5 is a circuit diagram of an air conditioner 100B according to the third embodiment. The configurations of the outdoor unit 1, the first indoor units 2a to 2c, and the repeaters 4a and 4b are the same as those of the second embodiment. Further, as shown in FIG. 5, the second indoor units 3a to 3c of the present embodiment are not equipped with the flow control valves 32. As shown in FIG. In the present embodiment, the amount of heat medium supplied to the second indoor units 3a to 3c is adjusted by controlling the output of the pumps 43 provided in the repeaters 4a and 4b.
 具体的には、第2室内機3a~3cの第2制御装置34は、空調空間の温度又は第2室内機3a~3cの出口及び入口の熱媒体温度を検知する温度センサ(不図示)の検知結果を中継機4a及び4bの制御装置44に送信する。これにより、中継機4a及び4bの制御装置44は、第2空調空間302及び303の空調負荷に応じて、ポンプ43の駆動周波数を制御することができる。 Specifically, the second control device 34 of the second indoor units 3a to 3c includes a temperature sensor (not shown) that detects the temperature of the air-conditioned space or the temperature of the heat medium at the outlet and inlet of the second indoor units 3a to 3c. The detection results are transmitted to the controllers 44 of the repeaters 4a and 4b. As a result, the controllers 44 of the repeaters 4a and 4b can control the drive frequency of the pumps 43 according to the air conditioning loads of the second air conditioned spaces 302 and 303. FIG.
 以上のように、本実施の形態の空気調和装置100Bは、実施の形態2と同様の効果を得ることができるとともに、第2室内機3a~3cの流量調整弁32を省略することで、第2室内機3a~3cの構成を簡略化できる。これにより、第2室内機3a~3cの小型化及びコスト削減を図ることができる。 As described above, the air conditioner 100B of the present embodiment can obtain the same effects as those of the second embodiment, and by omitting the flow rate adjustment valves 32 of the second indoor units 3a to 3c, the second The configuration of the two indoor units 3a to 3c can be simplified. As a result, it is possible to reduce the size and cost of the second indoor units 3a to 3c.
 以上が実施の形態の説明であるが、本開示は、上記の実施の形態に限定されるものではなく、本開示の主旨を逸脱しない範囲で種々に変形又は組み合わせることが可能である。例えば、第1室内機の数と第2室内機の数との比率に制限はなく、建物における空調空間に応じて各々設定すればよい。第1室内機の比率が大きい場合は、熱媒体と熱交換を必要とする量が減るため能力ロスが低減できる。また中継機4のポンプ43の動力を抑制することもできる。一方、第2室内機の比率が大きい場合は、冷媒回路Aに封入する冷媒量を減らすことができる。 Although the embodiments have been described above, the present disclosure is not limited to the above embodiments, and can be variously modified or combined without departing from the gist of the present disclosure. For example, the ratio between the number of first indoor units and the number of second indoor units is not limited, and may be set according to the air-conditioned space in the building. When the ratio of the first indoor unit is large, the capacity loss can be reduced because the amount required for heat exchange with the heat medium is reduced. Also, the power of the pump 43 of the repeater 4 can be suppressed. On the other hand, when the ratio of the second indoor unit is large, the amount of refrigerant charged into the refrigerant circuit A can be reduced.
 上記実施の形態1~3の空気調和装置は、全ての室内機で冷房運転又は暖房運転の何れかを実行する構成だったが、冷房運転を実行する室内機と暖房運転を実行する室内機とが混在する冷暖房同時運転が可能な構成としてもよい。 The air conditioners of Embodiments 1 to 3 above are configured to perform either cooling operation or heating operation in all the indoor units. It is good also as a structure which can perform cooling/heating simultaneous operation mixed with.
 また、中継機4は中継熱交換器41に加え、室外機1から供給される一次側冷媒と、二次側冷媒とを熱交換するプレート式熱交換器を備えてもよい。この場合、中継機4では、室外機1から供給される一次側冷媒と二次側冷媒との熱交換、及び二次側冷媒と熱媒体との熱交換が行われる。また、二次側冷媒が流れる冷媒回路に圧縮機を設けることで、空調機能に加え、高温出湯可能な給湯機能を設けることができる。この場合は、熱媒体回路Bで排熱回収を行って空調を実施してもよい。 In addition to the relay heat exchanger 41, the repeater 4 may include a plate heat exchanger that exchanges heat between the primary side refrigerant supplied from the outdoor unit 1 and the secondary side refrigerant. In this case, the repeater 4 exchanges heat between the primary-side refrigerant supplied from the outdoor unit 1 and the secondary-side refrigerant, and heat-exchanges between the secondary-side refrigerant and the heat medium. Further, by providing a compressor in the refrigerant circuit through which the secondary side refrigerant flows, in addition to the air conditioning function, it is possible to provide a hot water supply function capable of discharging hot water at a high temperature. In this case, exhaust heat recovery may be performed in the heat medium circuit B to perform air conditioning.
 また、上記実施の形態では、室外機1、第1室内機2a~2c、第2室内機3a~3c、及び中継機4のそれぞれに制御装置を設ける構成としたが、この構成に限定されるものではない。例えば、室外機1、第1室内機2a~2c、第2室内機3a~3c、及び中継機4とは別に、建物の管理室などに制御装置を備えて各機器を制御してもよい。もしくは、室外機1、第1室内機2a~2c、第2室内機3a~3c、及び中継機4の何れかが制御装置を備えてその他の機器を制御してもよい。 Further, in the above-described embodiment, the outdoor unit 1, the first indoor units 2a to 2c, the second indoor units 3a to 3c, and the repeater 4 are each provided with a control device, but the configuration is limited to this. not a thing For example, apart from the outdoor unit 1, the first indoor units 2a to 2c, the second indoor units 3a to 3c, and the repeater 4, a control device may be provided in a management room of the building to control each device. Alternatively, any one of the outdoor unit 1, the first indoor units 2a to 2c, the second indoor units 3a to 3c, and the repeater 4 may be provided with a control device to control other devices.
 1 室外機、2a、2b、2c 第1室内機、3a、3b、3c 第2室内機、4、4a、4b 中継機、5a、5b 冷媒配管、6a、6b 熱媒体配管、11 圧縮機、12 流路切替弁、13 室外熱交換器、14 室外ファン、15 アキュムレータ、16 室外制御装置、21 第1室内熱交換器、22 絞り装置、23 第1室内ファン、24 第1制御装置、31 第2室内熱交換器、32 流量調整弁、33 第2室内ファン、34 第2制御装置、41 中継熱交換器、42 絞り装置、43 ポンプ、44 制御装置、100、100A、100B 空気調和装置、201、202、203 非空調空間、301 第1空調空間、302、303 第2空調空間。 1 outdoor unit 2a, 2b, 2c first indoor unit 3a, 3b, 3c second indoor unit 4, 4a, 4b repeater 5a, 5b refrigerant pipe 6a, 6b heat medium pipe 11 compressor 12 Channel switching valve, 13 outdoor heat exchanger, 14 outdoor fan, 15 accumulator, 16 outdoor control device, 21 first indoor heat exchanger, 22 expansion device, 23 first indoor fan, 24 first control device, 31 second indoor heat exchanger, 32 flow control valve, 33 second indoor fan, 34 second control device, 41 relay heat exchanger, 42 throttle device, 43 pump, 44 control device, 100, 100A, 100B air conditioner, 201, 202, 203 non-air-conditioned space, 301 first air-conditioned space, 302, 303 second air-conditioned space.

Claims (9)

  1.  冷媒回路に冷媒を循環させる圧縮機、及び前記冷媒が流れる室外熱交換器を備える室外機と、
     前記冷媒が流れる第1室内熱交換器を備える第1室内機と、
     前記冷媒とは異なる熱媒体と前記冷媒とを熱交換する中継熱交換器、及び熱媒体回路に前記熱媒体を循環させるポンプを備える中継機と、
     前記熱媒体が流れる第2室内熱交換器を備える第2室内機と、を備え、
     前記第1室内機は、第1空調空間に設置され、
     前記第2室内機は、第2空調空間に設置されており、
     前記第1空調空間は、前記冷媒回路に封入される前記冷媒の総量が前記第1空調空間に漏洩した場合も、前記第1空調空間における前記冷媒の濃度が基準値未満となる容積を有し、
     前記第2空調空間の容積は、前記第1空調空間の容積よりも小さい、空気調和装置。
    an outdoor unit comprising a compressor that circulates a refrigerant in a refrigerant circuit and an outdoor heat exchanger through which the refrigerant flows;
    a first indoor unit comprising a first indoor heat exchanger through which the refrigerant flows;
    a relay machine comprising a relay heat exchanger that exchanges heat between the refrigerant and a heat medium different from the refrigerant, and a pump that circulates the heat medium in a heat medium circuit;
    a second indoor unit comprising a second indoor heat exchanger through which the heat medium flows;
    The first indoor unit is installed in the first air-conditioned space,
    The second indoor unit is installed in a second air-conditioned space,
    The first air-conditioned space has a volume such that the concentration of the refrigerant in the first air-conditioned space is less than a reference value even when the total amount of the refrigerant sealed in the refrigerant circuit leaks into the first air-conditioned space. ,
    The air conditioner, wherein the volume of the second air-conditioned space is smaller than the volume of the first air-conditioned space.
  2.  前記第2空調空間は、前記冷媒回路に封入される前記冷媒の前記総量が前記第2空調空間に漏洩した場合に、前記第2空調空間における前記冷媒の濃度が前記基準値以上となる容積を有する請求項1に記載の空気調和装置。 The second air-conditioned space has a volume such that the concentration of the refrigerant in the second air-conditioned space is equal to or greater than the reference value when the total amount of the refrigerant sealed in the refrigerant circuit leaks into the second air-conditioned space. The air conditioner according to claim 1, comprising:
  3.  前記基準値は、前記冷媒の燃焼下限濃度以下の値である請求項1又は2に記載の空気調和装置。 The air conditioner according to claim 1 or 2, wherein the reference value is a value equal to or lower than the lower combustion limit concentration of the refrigerant.
  4.  前記第2室内機は、前記第2室内熱交換器に接続された流量調整弁を備え、
     前記流量調整弁によって前記第2室内熱交換器へ流れる前記熱媒体の量が調整される請求項1~3の何れか一項に記載の空気調和装置。
    The second indoor unit comprises a flow control valve connected to the second indoor heat exchanger,
    The air conditioner according to any one of claims 1 to 3, wherein the amount of the heat medium flowing to the second indoor heat exchanger is adjusted by the flow control valve.
  5.  前記ポンプによって前記第2室内熱交換器へ流れる前記熱媒体の量が調整される請求項1~3の何れか一項に記載の空気調和装置。 The air conditioner according to any one of claims 1 to 3, wherein the pump adjusts the amount of the heat medium flowing to the second indoor heat exchanger.
  6.  前記中継機を2台備え、
     2台の前記中継機には、前記第2室内機がそれぞれ接続され、
     2台の前記中継機は、接続された前記第2室内機の運転状態に応じて個別に動作する請求項1~5の何れか一項に記載の空気調和装置。
    Equipped with two repeaters,
    The second indoor unit is connected to each of the two repeaters,
    The air conditioner according to any one of claims 1 to 5, wherein the two repeaters operate individually according to the operating state of the connected second indoor unit.
  7.  前記中継機は、前記室外機から前記中継機までの距離が、前記室外機から前記第1室内機までの距離よりも短くなるよう設置される請求項1~6の何れか一項に記載の空気調和装置。 The repeater according to any one of claims 1 to 6, wherein the distance from the outdoor unit to the repeater is shorter than the distance from the outdoor unit to the first indoor unit. Air conditioner.
  8.  前記冷媒は、可燃性又は毒性を有し、前記熱媒体は、前記可燃性又は前記毒性を有さない請求項1~7の何れか一項に記載の空気調和装置。 The air conditioner according to any one of claims 1 to 7, wherein the refrigerant is flammable or toxic, and the heat medium is neither flammable nor toxic.
  9.  冷媒回路に冷媒を循環させる圧縮機、及び前記冷媒が流れる室外熱交換器を備える室外機と、
     前記冷媒が流れる第1室内熱交換器を備える第1室内機と、
     前記冷媒とは異なる熱媒体と前記冷媒とを熱交換する中継熱交換器、及び熱媒体回路に前記熱媒体を循環させるポンプを備える中継機と、
     前記熱媒体が流れる第2室内熱交換器を備える第2室内機と、を備える空気調和装置の設置方法であって、
     空調空間の容積が、前記冷媒回路に封入される前記冷媒の総量が前記空調空間に漏洩した場合に、前記空調空間における前記冷媒の濃度が基準値未満となるか否かを判定する工程と、
     前記冷媒の前記濃度が前記基準値未満となる場合は前記空調空間に前記第1室内機を設置し、前記冷媒の前記濃度が前記基準値以上となる場合は前記空調空間に前記第2室内機を設置する工程と、を含む空気調和装置の設置方法。
    an outdoor unit comprising a compressor that circulates a refrigerant in a refrigerant circuit and an outdoor heat exchanger through which the refrigerant flows;
    a first indoor unit comprising a first indoor heat exchanger through which the refrigerant flows;
    a relay machine comprising a relay heat exchanger that exchanges heat between the refrigerant and a heat medium different from the refrigerant, and a pump that circulates the heat medium in a heat medium circuit;
    A method for installing an air conditioner comprising a second indoor unit comprising a second indoor heat exchanger through which the heat medium flows,
    a step of determining whether the concentration of the refrigerant in the air-conditioned space is less than a reference value when the total amount of the refrigerant sealed in the refrigerant circuit leaks into the air-conditioned space;
    When the concentration of the refrigerant is less than the reference value, the first indoor unit is installed in the air-conditioned space, and when the concentration of the refrigerant is equal to or higher than the reference value, the second indoor unit is installed in the air-conditioned space. and a method for installing an air conditioner.
PCT/JP2021/026925 2021-07-19 2021-07-19 Air-conditioning device and method for installing air-conditioning device WO2023002522A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/026925 WO2023002522A1 (en) 2021-07-19 2021-07-19 Air-conditioning device and method for installing air-conditioning device
GB2400494.7A GB2622555A (en) 2021-07-19 2021-07-19 Air-conditioning device and method for installing air-conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/026925 WO2023002522A1 (en) 2021-07-19 2021-07-19 Air-conditioning device and method for installing air-conditioning device

Publications (1)

Publication Number Publication Date
WO2023002522A1 true WO2023002522A1 (en) 2023-01-26

Family

ID=84980215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026925 WO2023002522A1 (en) 2021-07-19 2021-07-19 Air-conditioning device and method for installing air-conditioning device

Country Status (2)

Country Link
GB (1) GB2622555A (en)
WO (1) WO2023002522A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080257A1 (en) * 2011-11-30 2013-06-06 三菱電機株式会社 Method for selecting heat medium of use-side heat exchanger during construction of air conditioning system
JP2021046952A (en) * 2019-09-17 2021-03-25 東芝キヤリア株式会社 Air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080257A1 (en) * 2011-11-30 2013-06-06 三菱電機株式会社 Method for selecting heat medium of use-side heat exchanger during construction of air conditioning system
JP2021046952A (en) * 2019-09-17 2021-03-25 東芝キヤリア株式会社 Air conditioner

Also Published As

Publication number Publication date
GB202400494D0 (en) 2024-02-28
GB2622555A (en) 2024-03-20

Similar Documents

Publication Publication Date Title
US9459013B2 (en) Air-conditioning apparatus with safety measure for ventilation of inflammable refrigerant from heat exchanger
JP5306449B2 (en) Air conditioner
JP5465333B2 (en) Outdoor unit and air conditioner
JP5452629B2 (en) Air conditioner
JP5474048B2 (en) Air conditioner
US9273875B2 (en) Air conditioning apparatus having indoor, outdoor, and relay units
US20110185754A1 (en) Air-conditioning apparatus
WO2012172613A1 (en) Air conditioner
WO2014091572A1 (en) Air conditioner device
EP2806228B1 (en) Air conditioner
WO2013171781A1 (en) Air conditioning device
JP5677461B2 (en) Refrigeration cycle apparatus parts replacement method and refrigeration cycle apparatus
WO2014083683A1 (en) Air conditioning device
WO2011099074A1 (en) Refrigeration cycle device
JPWO2020004108A1 (en) Air conditioning system
US9746222B2 (en) Air-conditioning apparatus
WO2011064830A1 (en) Air-conditioning device
WO2014141381A1 (en) Air conditioning apparatus
JPWO2011117922A1 (en) Air conditioner
WO2023002522A1 (en) Air-conditioning device and method for installing air-conditioning device
US20240219064A1 (en) Air-conditioning apparatus and method for installing air-conditioning apparatus
WO2023119552A1 (en) Air conditioner
WO2023007803A1 (en) Air-conditioning device
WO2023105617A1 (en) Air-conditioning device
US20170067674A1 (en) Expansion device and refrigeration cycle apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950878

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18563033

Country of ref document: US

ENP Entry into the national phase

Ref document number: 202400494

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20210719

NENP Non-entry into the national phase

Ref country code: DE