WO2015139344A1 - 一种静电聚焦微通道板光电倍增管 - Google Patents

一种静电聚焦微通道板光电倍增管 Download PDF

Info

Publication number
WO2015139344A1
WO2015139344A1 PCT/CN2014/074998 CN2014074998W WO2015139344A1 WO 2015139344 A1 WO2015139344 A1 WO 2015139344A1 CN 2014074998 W CN2014074998 W CN 2014074998W WO 2015139344 A1 WO2015139344 A1 WO 2015139344A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
electrode
ring
electron multiplier
photomultiplier tube
Prior art date
Application number
PCT/CN2014/074998
Other languages
English (en)
French (fr)
Inventor
刘术林
刘虎林
司曙光
钱森
田进寿
孙建宁
赵天池
赛小锋
王贻芳
王志宏
韦永林
苏德坦
衡月昆
曹俊
Original Assignee
中国科学院高能物理研究所
中国科学院西安光学精密机械研究所
北方夜视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院高能物理研究所, 中国科学院西安光学精密机械研究所, 北方夜视技术股份有限公司 filed Critical 中国科学院高能物理研究所
Publication of WO2015139344A1 publication Critical patent/WO2015139344A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/06Electrode arrangements
    • H01J43/18Electrode arrangements using essentially more than one dynode
    • H01J43/24Dynodes having potential gradient along their surfaces
    • H01J43/246Microchannel plates [MCP]

Definitions

  • the invention relates to a vacuum photodetector device, in particular to a photomultiplier tube, in particular to photomultiplying photoelectrons generated by a large-sized photocathode through an electrostatic focusing electrode onto an electron multiplier composed of a microchannel plate assembly. tube.
  • the invention is an electrostatic focusing microchannel plate photomultiplier tube which is proposed for the above defects.
  • an electrostatic focusing microchannel plate photomultiplier tube which comprises: a spherical or ellipsoidal vacuum vessel constructed of a photocathode formed on its inner surface for receiving photons and generating photoelectrons, an electron formed by a microchannel plate assembly for receiving photoelectrons emitted from the photocathode and generating multiplied electrons a multiplier for focusing a photoelectron on a focusing electrode on an active area of the electron multiplier for collecting an anode of the multiplying electron generated by the electron multiplier for supplying power to the photocathode, focusing An electrode, an electron multiplier, a supply electrode of the anode, and a support column supporting the same, the focus electrode, the electron multiplier and the anode are placed in a glass vacuum vessel, and the signal lead of the anode
  • the electron multiplier is an MCP assembly, which is composed of two pairs of microchannel plates placed side by side with a certain gap and an electric field applied in the gap, and is placed on both sides of the anode in a vertical arrangement. This structure facilitates exhaust during manufacturing and independently controls the MCP and its gap voltage, achieving high gain and good single-photoelectron spectrum of the electron multiplier.
  • the electrons coming out of the first microchannel plate are accelerated and properly focused, so that the second microchannel plate is saturated as early as possible, thereby improving the peak in the single photoelectron spectrum.
  • the ratio of valley ratio and gain is effectively adjusted by changing the thickness of the electrodes and insulating spacers of the two microchannel plates.
  • the thickness of the gap in the microchannel plate assembly is determined by the input and output electrodes of the microchannel plate. And the thickness of the insulating spacer is determined, and the total thickness is between 60 ⁇ m and 500 ⁇ m.
  • the gap voltage of the microchannel plate assembly is adjustable at 50 1000V without discharging and sparking.
  • a focusing electrode is designed on the periphery of the microchannel plate assembly, the focusing electrode is a thin metal ring band, vertical Surrounded by the periphery of the electron multiplier, its center is concentric with the microchannel plate.
  • a thin metal ring is provided as an auxiliary focusing electrode on the periphery of the focusing electrode, and is in the same plane and concentric with the focusing electrodes.
  • the anodes are designed to be two identical structural units, and the multiplicative electrons of the two sets of microchannel plates are respectively received.
  • the anode structural unit is designed as an anode structure of a metal grid plus a metal foil, or a microstrip line anode structure is employed.
  • the above anode is actually a double anode.
  • a single anode structure can be used, that is, a single anode is designed as two metal grids. Net plus an anode piece
  • the micro-belt anode structure is formed on both sides of a substrate, and the serpentine conductive layers on both sides are connected to the matched wires and fed into the anode signal line.
  • a support column In order to support the focusing electrode, the microchannel plate assembly, and the anode, a support column is specially designed, and the support column supports the electron multiplier to the inner center of the glass vacuum container, and the shape is designed to be a cylinder with a circular cross section. Or rectangle.
  • the outer surface of the upper end of the support column is insulated, the length of which is 15 ⁇ 35mm, and the outer part of the lower end is a conductive layer, for example, by metal cladding or plating.
  • the fixed three-jaw is connected to the cathode, and is electrically connected from the lower end to a prescribed pin of the glass stem.
  • the majority of the photoelectrons generated by the photocathode are focused by the electrostatic focusing electrode and the specially designed support column to the effective area of the microchannel plate assembly, which reduces the transit time difference of photoelectrons coming from different regions;
  • the microchannel plate assembly used is Two pairs of microchannel plates placed side by side with a certain gap and an electric multiplier formed by applying an electric field in the gap, by independently adjusting the voltage of each stage of the microchannel plate assembly, achieving high gain and good single photoelectron spectrum;
  • the photoelectrons are finally collected by the microstrip line anode or the grid structure anode and are drawn from the signal line.
  • the special design of this anode effectively reduces signal distortion.
  • FIG. 1 is a schematic view showing the structure of a first embodiment of a photomultiplier tube of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing the upper end of a support column of the first embodiment of the photomultiplier tube of the present invention.
  • Figure 3 is an assembled view of the entire assembly of the first embodiment of the photomultiplier tube of the present invention.
  • Figure 4 is a cross-sectional view showing the microchannel plate assembly of the first embodiment of the photomultiplier tube of the present invention.
  • Figure 5 is a front elevational view of the assembly with the auxiliary focusing electrode and its support column employed in the present invention.
  • Figure 6 is a cross-sectional view of a microchannel plate and an anode assembly with an auxiliary focusing electrode for use in the present invention.
  • Fig. 7 is a schematic view showing the structure of a microstrip line anode in the first embodiment of the photomultiplier tube of the present invention.
  • Fig. 8 is a support column in the first embodiment.
  • Figure 9 is a configuration diagram of a microchannel plate and an anode assembly in a second embodiment of the present invention.
  • Figure 10 is a front elevational view of a microchannel plate and anode assembly in a second embodiment of the present invention.
  • Figure 11 is a front elevational view showing the fixed connection of the components and the support columns in the second embodiment of the present invention.
  • Figure 12 is a single photoelectron spectrum of the photomultiplier tube of the present invention.
  • Figure 13 is a photoelectron spectrum obtained by direct series connection of two MCPs.
  • Figure 14 is a comparison of anode light signals
  • the photomultiplier tube of the first embodiment of the present invention mainly comprises a spherical or ellipsoidal vacuum vessel 1 made of glass, a photocathode 5 attached to the inner surface of the glass, a focusing electrode 2, an electron multiplier 3,
  • the anode 6 (see FIG. 2) and the support column 4, the focusing electrode 2, the electron multiplier 3, and the anode 6 are integrally formed by the ceramic skeleton 7 (as shown in FIG. 2), the central axes of the three are coaxial, and are fixed by the support column 4.
  • the support column 4 is fixed by the three claws 10 and the lower glass stem 11.
  • the electron multiplier of the present invention is constructed by placing two pairs of microchannel plates juxtaposed in parallel with a certain gap and applying an electric field in the gap, and placing them on both sides of the anode 6 in a vertical arrangement (see Fig. 2).
  • Fig. 3 shows that the electron multiplier 3 (actually the microchannel plate assembly), the anode, and the focusing electrode are integrally formed by the ceramic bobbin 7 and the compression spring 18, wherein the lead ends 9 of the respective electrode rings are led out from the ceramic skeleton gap.
  • the gap between the two microchannel plates is determined by the thickness of the microchannel plate electrode ring 91 and the insulating ring spacer 8.
  • the thickness of the insulating ring spacer 8 can be To achieve 20 ⁇ (such as fluorophlogopite), the thickness of the electrode ring can also be 20 ⁇ , so that the minimum gap between the two microchannel plates can be 60 ⁇ .
  • a thicker layer can be used.
  • the electrode ring has a thickness of 0.1 mm.
  • the insulating ring spacer 8 can be made of a ceramic ring with a thickness of 0.3 mm, thereby obtaining a gap of 500 ⁇ m between the microchannel plates. It can be seen that the gap of the microchannel plate is adjusted by the thickness of the electrode ring 91 and the insulating ring spacer, and is controlled between 60 ⁇ m and 500 ⁇ m.
  • an electric field can be applied in the gap to control the size of the electron beam spot from the output surface of one MCP to the input surface of another MCP, thereby improving the gain of the electron multiplier and improving the peak-to-valley ratio of the single photoelectrons. . This voltage is adjusted according to the gap size and vacuum hygiene. When the gap is small, the applied voltage is small.
  • the focusing electrode 2 is designed on the periphery of the microchannel plate assembly, and the focusing electrode is a thin metal ring band, vertical Straight around the periphery of the electron multiplier, the center of which is concentric with the microchannel plate.
  • a thin metal ring 15 is disposed on the periphery of the focusing electrodes as an auxiliary focusing electrode (as shown in FIGS. 5 and 6), and The focusing electrodes are in the same plane and are concentric.
  • Such auxiliary focusing electrodes are often used in smaller size photomultiplier tubes, such as 8 ⁇ , 9 ⁇ tubes.
  • the anode 6 Since the gains of the two sets of microchannel plates may be different, by adjusting the voltage, as much as possible to ensure the same gain, the anode 6 is designed to be two identical structural units, respectively receiving the multiplicative electrons of the two sets of microchannel plates.
  • the anode 6 is fabricated into a microstrip line anode structure (as shown in Figure 7), which includes a serpentine conductive layer 12, a dielectric layer 13, and a metal ground plane. 14 composition, by precisely designing the thickness of the serpentine conductive layer 12, the thickness, the thickness of the dielectric layer 13 material (considering its dielectric constant), the characteristic impedance can be calculated, and then connected with the impedance matching wire, thereby reducing the high frequency The reflection of the signal during transmission yields a better photoelectron signal.
  • the design and manufacture of the microstrip line anode it is a general technique for those skilled in the art, and will not be explained too much here.
  • a support column 4 is specially designed, and the support column supports the electron multiplier 3 and the anode 6, the focusing electrode 2 to the inner center of the glass vacuum container, and its shape Designed to be cylindrical (see Figure 8).
  • the inside of the supporting column as an insulating material with a hole 19, passing the voltage lead and the signal line through The inner hole 19 of the support column is taken out.
  • the outer surface 17 of the upper end of the stem is an insulating layer, which is in the 8 ⁇ glass bulb.
  • the length is designed to be 15 ⁇ 20mm, the design length is 24 ⁇ 35mm for the 20-inch glass bulb, and the outer cladding is the metal cladding 16 at the lower end, and the metal cladding is electrically connected to the photocathode 5 through the fixed three-claw 10,
  • the pins at the lower end corresponding to the glass stem 11 are electrically connected, so that the voltages fed by the pins are maintained at the same potential.
  • the support column body material is selected from a ceramic cylinder, and the outer surface conductive layer (metal layer) can be plated or vacuum-coated, and the metal film layer ensures that electrons hit there can be led out.
  • the structure of the photomultiplier tube of the second embodiment of the present invention is the same as that of the first embodiment except that the internal focusing electrode, the microchannel plate assembly, the anode, and the structure of the support column are partially changed, and are represented by the microchannel plate and its anode jig. Variationally, as shown in FIG.
  • the fixture 82 includes a ceramic skeleton 107, an anode sheet 200, an insulating ring 201, a metal grid 202, a first electrode ring 203, a microchannel plate 105, Second electrode ring 204, insulating ring spacer 205, third electrode ring 206, microchannel plate 105, pressure ring electrode ring 207, fixed cover plate 108, gland focus ring 104, and skeleton cover
  • the plate 103 (the other side of the skeleton 107 has a symmetrical structure, and the structure of one side of the skeleton 107 shown in Fig. 9).
  • the anode sheet 200, the insulating ring 201, the metal grid 202, the insulating ring 201, the first electrode ring 203, the microchannel plate 105, the second electrode ring 204, and the insulating ring spacer 205 are sequentially mounted.
  • the third electrode ring 206, the microchannel plate 105, the pressure ring electrode ring 207, the fixed cover 108, and the gland focus ring 104 are then fixed by screws into the grooves of the ceramic skeleton 107 through the screw holes 102.
  • the two microchannel plates and the anode clamps 82 are superposed and fixed together by screws through the screw holes 102 to form a microchannel plate and an anode assembly 10A (see Fig. 10).
  • the microchannel plate and the anode clamp 82 are such that the microchannel plate has an electron collecting surface, that is, the microchannel plate has a 2 ⁇ electron collecting solid angle, and the two microchannel plates and the anode jig 82 are superposed to form a microchannel plate and an anode assembly. 10 ⁇ , the assembly 10A has two electron collecting faces, that is, the component 10A has an electron collecting solid angle of 4 ⁇ .
  • the thickness of the insulating ring spacer 205 is 20-300 ⁇ m.
  • the thickness is relatively thin, for example, within the range of ⁇ , the fluorine gold mica should be selected, and the value is exceeded. It is also possible to select ceramics, considering that the thickness of the metal electrode ring can be processed to a minimum of 20 ⁇ m, so that the thickness of the two microchannel plate gaps is the sum of the thicknesses of the second electrode ring 204, the insulating ring spacer 205, and the third electrode ring 206.
  • the anode structural unit here is composed of a metal grid 202 and an anode sheet 200.
  • a metal focusing electrode ring 106 is wound around the microchannel plate and anode assembly 10A and fixed in the skeleton cover 103, and ensures that the plane in which the focusing electrode ring is located and the center cross section of the microchannel plate and anode assembly 10A are In a plane and concentric, the microchannel plate with the metal focusing electrode ring and the anode assembly 10A are fixed by screws to the support column 101 through the skeleton cover hole 102 (see FIG. 11), and the support frame 101 is a rectangular cross section.
  • the layer is coated with a conductive material such as a stainless steel sheath, the bare portion of which together with the length of the cover portion is the same as in the first embodiment.
  • the lower end of the support post 101 is soldered to the fixed base 100, and the details thereof are comparable to those of the conventional photomultiplier tube, and will not be described here.
  • the gland focus ring 104 in this embodiment corresponds to the focus electrode ring 2 in the embodiment 1
  • the focus ring 106 corresponds to the auxiliary focus electrode ring 15 in the embodiment 1.
  • two anodes are used, or one anode may be used, and a single anode structure is adopted, that is, a single anode is designed to be composed of two metal grids and one anode piece, or micro sides are formed on both sides of one substrate.
  • a wire anode structure With a wire anode structure, the serpentine conductive layer on both sides is connected to the matched wire and fed into the signal line.
  • a single photoelectron spectrum (Fig. 12) is obtained, wherein Fig. 12(a) is a single photoelectron spectrum obtained by a group of MCP+ metal grids + metal foils in Example 1, and the voltage of the entire module is 2000V.
  • Fig. 13(a) is a group of MCP+ anodes with a gain of 5.7 X 10 5 , no steps can be detected, so no single photoelectrons can be detected. I can't talk about the peak-to-valley ratio.
  • Figure 13 (b) shows another set of MCP+ anodes with a gain of 1.8 X 105. No steps can be detected, so single photoelectrons are not detected, even at the signal terminals. Added amplifier.
  • the photoelectron signal obtained by the present invention has low frequency reflection, as shown in Fig. 14 (a), and the conventional metal anode structure used in the early stage has a significant signal oscillation, as shown in Fig. 14 (b). ).

Landscapes

  • Electron Tubes For Measurement (AREA)

Abstract

一种静电聚焦微通道板光电倍增管。光电倍增管包括光阴极,电子倍增器,阳极,聚焦电极,供电极,以及支撑所述聚焦电极、电子倍增器、阳极的支撑柱,所述聚焦电极、电子倍增器、阳极置于玻璃真空容器内,所述阳极的信号引线和所述供电极穿过所述玻璃真空容器与一外部电路相连,其特征在于所述聚焦电极、电子倍增器、阳极的中心共轴;所述电子倍增器包括两对并列放置且具有一定间隙的微通道板构成。与现有技术相比,通过独立调节微通道板组件各级电压,实现高增益和好的单光电子谱。

Description

一种静电聚焦微通道板光电倍增管
技术领域
本发明涉及一种真空光电探测器件, 具体地讲是一种光电倍增管, 特别是将大尺寸光阴 极产生的光电子通过静电聚焦电极聚焦到由微通道板组件构成的电子倍增器上的光电倍增 管。 技术背景
作为把微弱的光信号转换成电信号的光电倍增管(PMT), 由于其具有较高的灵敏度和快 的时间响应, 被广泛应用于国民经济的各个领域。 从目前应用的发展方向来看, 一种是微型 化, 另一种是巨型化, 后者在高能物理的中微子探测中将发挥无可替代的作用。 日本滨松光 子株式会社和法国的 Photonis公司, 先后开发出 8吋、 10吋、 12吋、 13吋和 20吋椭球形或 近球形的光电倍增管, 其光阴极覆盖内球面的一部分, 采用静电聚焦设计, 使得由光阴极产 生的光电子被聚焦到比较大的打拿极上, 实现光电子的倍增, 从而在高能物理领域得到广泛 应用。 随着高能物理的发展, 其对光探测器的要求不断提高, 首先, 由于上述大尺寸的光电 倍增管光阴极的本身覆盖度不高, 如构成阵列, 则很难达到 80%, 也由于其聚焦电极和打拿 极的设计, 从不同方向过来的光电子, 经过聚焦电极和打拿极后, 电子的渡越时间分布变宽, 不利于中微子的精确测量。 近年来, 美国 Argonne国家实验室联合其国内与微通道板 (简称 MCP) 和光阴极相关单位组成合作组, 开发 200x200mm的近贴聚焦型微通道板光电倍增管 (MCP-PMT),采用转移阴极工艺和 ALD技术,试图解决上述大尺寸光电倍增管所面临的困 难, 但技术难度大, 目前进展缓慢。 中科院高能物理所的科学家们, 提出在球形透明真空容 器内制作全部覆盖其内表面的光阴极,将 MCP或类似电子倍增器置于球体的中心,通过电子 光学设计, 使得来自各处的光电子都能有效地打到电子倍增器上, 于 2009年 6月 10日向国 家知识产权局提出专利申请, 并于 2012年 6月 27日获得专利权 (发明创造名称: 一种光电 倍增管, 申请号: 200910147915.4, 授权公告号: CN101924007B ), 该专利首次提出充分利 用透射式阴极和反射式阴极的特性, 进而提高了光阴极的量子效率, 采用合理的电子光学设 计, 确保电子倍增器能够收集到接近 4π立体角内的光电子, 但就其使用 MCP作为电子倍增 器而言, 特别是 2到 3块直接串联来作为电子倍增器, 在实际制作中, 电子清刷除气困难, 除气后每块 MCP的电阻难以预料,很难实现每块 MCP都处在最佳工作状态, 2块 MCP的直 接串联, 其增益一般在 ~105量级, 即便加放大器, 有时很难探测到单光电子。 发明内容
本发明就是针对上述缺陷而提出的一种静电聚焦微通道板光电倍增管, 首先, 根据设计 的这款光电倍增管的特点, 准确定义为静电聚焦微通道板光电倍增管, 它包括: 由玻璃构成 的球形或椭球形真空容器并在其内表面上制作的用来接收光子并产生光电子的光阴极, 用来 接收从光阴极发射出来的光电子并产生倍增电子的由微通道板组件构成的电子倍增器, 用来 将光电子聚焦使其落在所述电子倍增器有效区域上的聚焦电极, 用来收集所述电子倍增器所 产生的倍增电子的阳极, 用来供电给所述光阴极、 聚焦电极、 电子倍增器、 阳极的供电极以 及支撑它们的支撑柱, 所述聚焦电极、 电子倍增器和阳极置于玻璃真空容器内, 所述阳极的 信号引线和所述供电极的引线通过穿过玻璃真空容器的芯柱与外部电路相连,所述聚焦电极、 电子倍增器、 阳极的中心共轴, 并与供电极以及支撑它们的支撑连接成一体。
所述电子倍增器为 MCP组件,所述组件是由两对并列放置的两块微通道板以一定间隙并 在间隙中施加电场构成的, 以竖直布置的方式置于所述阳极的两侧, 这种结构便于制造过程 中排气和独立控制 MCP及其间隙电压, 实现电子倍增器的高增益和好的单光电子谱。
通过调节两块微通道板的间隙和电压, 使得从第一块微通道板出来的电子被加速并适当 聚焦, 这样尽早使得第二块微通道板处于饱和状态, 进而改善单光电子谱中的峰谷比和增益, 其技术途径是通过改变两块微通道板的电极和绝缘垫片的厚度, 来有效调节间隙厚度, 所述 微通道板组件中的间隙厚度由微通道板的输入、 输出电极以及绝缘垫片的厚度决定, 总厚度 在 60μιη~500μιη之间。
为了在间隙获得电场, 视间隙的大小, 真空卫生的好坏, 在不放电打火的前提下, 所述 微通道板组件的间隙电压在 50 1000V可调。
考虑到要把球形或椭球形阴极不同位置产生的光电子尽可能打到微通道板组件的有效区 内, 在微通道板组件的外围设计聚焦电极, 所述聚焦电极为薄金属环带, 竖直环绕在所述电 子倍增器外围, 其中心与微通道板同心。
为了把与微通道板端面平行的光电子聚焦到该有效区域, 在所述聚焦电极的外围, 设置 一细金属圆环作为辅助聚焦电极, 并与所述聚焦电极位于同一平面且同心。
由于两组 MCP的增益可能不同, 通过调整电压, 尽可能保证两者增益一致, 设计阳极为 两个相同的结构单元, 分别接收所述两组微通道板的倍增电子。
考虑到阳极输出信号的高频反射, 导致信号失真, 把阳极结构单元设计成金属栅网加金 属薄片的阳极结构, 或者采用微带线阳极结构。
上述阳极实际上是双阳极, 如调节好两组微通道板的增益 (通过调节两块 MCP及其间 隙电压是能够实现的), 可以采用单阳极结构, 即设计的单阳极为两个金属栅网加一个阳极片 构成, 或者在一个基片的两侧制作微带线阳极结构, 两侧面上的蛇形导电层与匹配的导线连 接后, 馈入阳极信号线。
为了支撑聚焦电极、 微通道板组件、 阳极, 特设计支撑柱, 所述支撑柱将所述电子倍增 器支撑到所述玻璃真空容器的内部中心处, 其形状设计柱体, 轴截面为圆形或矩形。
考虑到屏蔽和给上述阴极、 聚焦电极、 微通道板以及阳极施加电压, 并把阳极信号通过 引线引出, 把所述支撑柱内部设定为带孔的绝缘材料, 把聚焦电极、 微通道板以及阳极的电 压引线和信号线通过所述支撑柱内部孔引出。 也为了确保环绕在支撑柱上端附近的光电子能 充分进入微通道板有效区域, 支撑柱上端的外表面绝缘, 其长度在 15~35mm, 下端外部为导 电层, 例如采用金属包层或镀层, 通过固定三爪与阴极相连, 并从下端与玻璃芯柱的规定插 针实现电连接。
与现有技术相比, 本发明的积极效果为:
通过静电聚焦电极和特殊设计的支撑柱把由光阴极产生的绝大多数光电子聚焦到微通道 板组件的有效区域, 降低了不同区域过来的光电子的渡越时间差; 采用的微通道板组件是由 两对并列放置的两块微通道板以一定间隙并在间隙中施加电场构成的电子倍增器, 通过独立 调节微通道板组件各级电压, 实现高增益和好的单光电子谱; 由此倍增的光电子最后由微带 线阳极或栅网结构阳极收集并从信号线引出, 这种阳极的特殊设计有效地降低了信号失真。 附图说明
图 1为本发明的光电倍增管的第一实施例的结构示意图。
图 2为本发明的光电倍增管第一实施例的支撑柱上端的剖面结构示意图。
图 3为本发明的光电倍增管第一实施例中整个组件的装配图。
图 4为本发明的光电倍增管第一实施例中微通道板组件的剖面图。
图 5本发明采用的带有辅助聚焦电极的组件及其支撑柱正视图。
图 6本发明采用的带有辅助聚焦电极的微通道板及阳极组件剖面图。
图 7为本发明的光电倍增管的第一实施例中的微带线阳极结构示意图。
图 8为第一实施例中的支撑柱。
图 9为本发明的第二实施例中由微通道板及阳极组件构型图。
图 10为本发明的第二实施例中微通道板及阳极组件的正视图。
图 11为本发明的第二实施例中组件、 支撑柱固定连接方式正视图。
图 12为本发明光电倍增管的单光电子谱图。
(a) 一组 MCP+金属栅网 +金属薄片, MCP@2000V、 Ρ -1.6, G=1.5 X 107; (b) 另一组 MCP+金属栅网 +金属薄片,, MCP@2000V、 P/V-1.55, G=3.0 X 107;
(c) 一组 MCP+微带线单阳极结构, MCP@2000V、 Ρ -2.6, G=2.0 X 107 ;
(d) 另一组 MCP+微带线单阳极结构, MCP@2000V、 P/V-3.8, G=7.5 X 107
图 13为两 MCP直接串联获得的光电子谱图。
(a) 一组 MCP+阳极结构获得的光电子谱图;
(b) 另一组 MCP+阳极结构获得的光电子谱图。
图 14为阳极光信号对比图; 其中,
(a) 为本发明阳极光信号图, (b) 传统阳极光信号图。 具体实施方式
下面结合附图及优选实施例对本发明作进一步的描述。 应当注意, 这里描述的实施例只 用于举例说明, 并不限制本发明。
如图 1所示, 本发明的第一实施例的光电倍增管主要包括由玻璃构成的球形或椭球形真 空容器 1、 依附在玻璃内表面的光阴极 5、 聚焦电极 2、 电子倍增器 3、 阳极 6 (见图 2) 以及 支撑柱 4, 聚焦电极 2、 电子倍增器 3、 阳极 6通过陶瓷骨架 7构成一体 (如图 2所示), 三 者的中心共轴, 且通过支撑柱 4固定于所述真空容器 1的中心处, 支撑柱 4通过三爪 10以及 下面的玻璃芯柱 11固定。
本发明的电子倍增器采用两对并列放置的两块微通道板以一定间隙并在间隙中施加电场 构成的, 以竖直布置的方式置于所述阳极 6的两侧 (见图 2)。
图 3即为把电子倍增器 3 (实际上是微通道板组件)、 阳极、 聚焦电极通过陶瓷骨架 7和 压簧 18构成一体, 其中各电极环的引出端 9从陶瓷骨架豁口处引出。
两块微通道板 (图 4中 51、 52和 53、 54) 之间的间隙由微通道板电极环 91和绝缘环垫 片 8的厚度确定, 一般而言, 绝缘环垫片 8的厚度可以做到 20μιη (如氟金云母), 电极环的 厚度也可以做到 20μιη, 这样, 两块微通道板的最小间隙可以做到 60μιη, 当然, 考虑到电极 环 91的强度, 可以采用较厚的电极环, 其厚度为 0.1mm, 这样, 绝缘环垫片 8可以采用陶瓷 环, 厚度控制在 0.3mm, 由此得到微通道板之间的间隙为 500μιη。 可见, 微通道板的间隙通 过电极环 91和绝缘环垫片的厚度来调整, 控制在 60μιη~500μιη之间。 另外, 可以在间隙中 施加电场, 来控制从一块 MCP的输出面到另一块 MCP的输入面电子束斑的大小, 进而改善 整过电子倍增器的增益, 并提高其探测单光电子的峰谷比。 这个电压根据间隙大小、 真空卫 生的好坏进行调整, 当间隙比较小时, 施加的电压较小, 如间隙为 60μιη时, 电压可以加到 50-100V, 间隙为 150μιη时, 电压为 150 300 V, 间隙为 500μιη时, 电压为 800~1000V。 考虑到要把球形或椭球形阴极不同位置产生的光电子尽可能打到微通道板组件的有效区 内, 在微通道板组件的外围设计聚焦电极 2, 所述聚焦电极为薄金属环带, 竖直环绕在所述 电子倍增器外围, 其中心与微通道板同心。
为了把与微通道板端面平行的光电子聚焦到该有效区域, 在所述聚焦电极的外围, 设置 一细金属圆环 15作为辅助聚焦电极 (如图 5、 图 6所示), 并与所述聚焦电极位于同一平面 且同心。 这种辅助聚焦电极往往在较小尺寸的光电倍增管中采用, 如 8吋、 9吋的管型。
由于两组微通道板的增益可能不同, 通过调整电压, 尽可能保证两者增益一致, 设计阳 极 6为两个相同的结构单元, 分别接收所述两组微通道板的倍增电子。
考虑到阳极输出信号的高频反射, 导致信号失真, 把阳极 6制作成微带线阳极结构 (如 图 7所示), 该阳极包括蛇形导电层 12、 介电质层 13和金属接地层 14构成, 通过精确设计 蛇形导电层 12宽度、 厚度、 介电质层 13材料 (考虑其介电常数) 的厚度, 可以计算出其特 性阻抗, 再与阻抗匹配的导线联接, 进而降低高频信号在传输过程中的反射, 获得比较好的 光电子信号。 关于微带线阳极的设计与制造, 为本行业技术人员通用技术, 在此不做过多阐 述。
为了支撑聚焦电极、 微通道板组件、 阳极, 特设计支撑柱 4, 所述支撑柱将所述电子倍 增器 3及阳极 6、 聚焦电极 2支撑到所述玻璃真空容器的内部中心处, 其形状设计成圆柱形 (见图 8)。
考虑到屏蔽和给上述聚焦电极、 微通道板以及阳极施加电压, 并把阳极信号通过引线引 出, 把所述支撑柱内部设定为带孔 19的绝缘材料, 把电压引线和信号线通过所述支撑柱内孔 19引出。 也为了确保环绕在支撑柱 4与上述聚焦电极、 微通道板以及阳极构成的组件附近的 光电子能充分进入微通道板有效区域, 芯柱上端的外表面 17为绝缘层, 其在 8吋玻壳内,长 度设计为 15~20mm, 对于 20吋玻壳, 设计长度为 24〜35mm, 下端外部为金属包层 16, 在 所述金属包层通过固定的三爪 10与光阴极 5电连接, 其下端与玻璃芯柱 11相应的插针实现 电连接, 这样, 三者通过该插针馈送的电压, 保持同电位。
上述支撑柱本体材料选择陶瓷圆柱筒, 其外表面导电层 (金属层) 可以采取电镀或真空 镀膜的方式, 该金属膜层, 确保打到该处的电子能够导出。
本发明的第二实施例的光电倍增管主体结构与第一实施例相同, 只是内部聚焦电极、 微 通道板组件、 阳极以及支撑柱的结构有部分改变, 表现在微通道板及其阳极夹具的变化上, 如图 9所示即为该组件的对称部分的一半, 该夹具 82包括陶瓷骨架 107、 阳极片 200、 绝缘 环 201、 金属栅网 202、 第一电极环 203、 微通道板 105、 第二电极环 204、 绝缘环垫片 205、 第三电极环 206、 微通道板 105、 压环电极环 207、 固定盖板 108、 压盖聚焦环 104和骨架盖 板 103 (骨架 107的另一侧具有对称的结构, 图 9展示的骨架 107其中一侧的结构)。 在陶瓷 骨架 107的凹槽内, 依次安装阳极片 200、 绝缘环 201、 金属栅网 202、 绝缘环 201、 第一电 极环 203、微通道板 105、第二电极环 204、绝缘环垫片 205、第三电极环 206、微通道板 105、 压环电极环 207、 固定盖板 108、 压盖聚焦环 104, 随后用螺钉通过螺孔 102固定在陶瓷骨架 107的凹槽内。两个微通道板及阳极夹具 82叠加在一起并应用螺丝通过螺孔 102固定在一起, 组成微通道板及阳极组件 10A (见图 10)。 微通道板及阳极夹具 82使得微通道板具有一个电 子收集面, 即, 微通道板具有 2π的电子收集立体角, 把两个微通道板及阳极夹具 82叠加在 一起组成微通道板及阳极组件 10Α, 使得该组件 10A具有两个电子收集面, 即该组件 10A具 有 4π的电子收集立体角。
在微通道板及阳极夹具 82中, 优选绝缘环垫片 205厚度为 20-300μιη, 作为这种绝缘材 料, 如厚度要求比较薄的, 例如 ΙΟΟμιη以内的, 宜选氟金云母, 超过这个数值, 也可以选择 陶瓷, 考虑到金属电极环的厚度最小可加工到 20μιη, 这样, 两块微通道板间隙厚度是第二电 极环 204、 绝缘环垫片 205、 第三电极环 206三者厚度之和, 考虑到电极环厚度超过 0.2mm 刚性大而不合适, 这样整过间隙的厚度在 60〜500μιη。 如同第一实施例一样, 间隙电压的调 整范围也在 50V〜1000V。 这里的阳极结构单元是由金属栅网 202和阳极片 200构成。
将金属聚焦电极环 106环绕在所述微通道板及阳极组件 10A上, 并固定于骨架盖板 103 内, 并确保聚焦电极环所在的平面与所述微通道板及阳极组件 10A中心横截面在一个平面内 且同心, 尔后把带有金属聚焦电极环的微通道板及阳极组件 10A通过骨架盖板孔 102与支撑 柱 101通过螺钉固定 (见图 11 ), 支撑架 101是一个横截面为长方形内部有孔的柱形陶瓷体, 如同本发明第一实施例所描述的那样, 内孔用于把聚焦电极、 微通道板以及阳极电压引线和 阳极信号引出, 支撑柱 101上端裸露而下端的导电层采用包上导电材料(如不锈钢皮), 其裸 露部分连同盖板部分的长度与第一实施例相同。 支撑柱 101下端焊接在固定底座上 100上, 其细节与一般光电倍增管制作工艺相当, 在此不作展开说明。 注意: 本实施例中压盖聚焦环 104相当于实施例 1中的聚焦电极环 2,而其聚焦环 106则相当于实施例 1中的辅助聚焦电极 环 15。
上述两个实施例中均采用两个阳极, 也可以采用一个阳极, 采用单阳极结构, 即设计的 单阳极为两个金属栅网加一个阳极片构成, 或者在一个基片的两侧制作微带线阳极结构, 两 侧面上的蛇形导电层与匹配的导线连接后, 馈入信号线。
通过两个实施例, 获得的单光电子谱 (如图 12), 其中图 12 (a) 为实施例 1中的一组 MCP+金属栅网 +金属薄片获得的单光电子谱, 整个组件的电压为 2000V (为了方便, 记作 MCP@2000V)时、 单光电子峰谷比 P/V~1.6, 增益 G=1.5 X 107; 而图 12 (b)则为本实施例同 一个 MCP-PMT另一组 MCP+金属栅网 +金属薄片, 其 MCP@2000V时、 P/V~1.55, G=3.0 X 107; 图 12 (c) 第二实施例中一组 MCP+微带线单阳极结构, 当 MCP@2000V时、 P/V~2.6, G=2.0 X 107 ; 图 12 (d) 与图 12 (c) 为同一 MCP-PMT的另一组 MCP+微带线单阳极结构, 当 MCP@2000V时、 其 P/V~3.8, G=7.5 X 107
直接串联的 MCP, 其光电子谱如图 13所示, 其中图 13 (a)为一组 MCP+阳极构成的组 件, 其增益为 5.7 X 105, 测不出台阶, 因而探测不到单光电子, 更谈不上峰谷比的数值了, 图 13 (b) 为另一组 MCP+阳极构成的组件, 其增益为 1.8 X 105, 也测不出台阶, 照样探测 不到单光电子, 尽管在信号引出端增加了放大器。 改变传统的金属阳极结构, 通过本发明获 得的光电子信号, 高频反射小, 如图 14 (a) 所示, 而早期采用的传统的金属阳极结构, 得 到的信号震荡明显, 见图 14(b)。

Claims

权利 要求书
1. 一种静电聚焦微通道板光电倍增管,包括球形或椭球形玻璃真空容器内表面上的用来接收 光子并产生光电子的光阴极, 用来接收从光阴极发射出来的光电子的电子倍增器, 用来收 集所述电子倍增器所产生倍增电子的阳极,用来将光电子聚焦使其落在所述电子倍增器有 效区域上的聚焦电极, 用来供电给所述光阴极、 聚焦电极、 电子倍增器、 阳极的供电极, 以及支撑所述聚焦电极、 电子倍增器、 阳极的支撑柱, 所述聚焦电极、 电子倍增器、 阳极 置于玻璃真空容器内,所述阳极的信号引线和所述供电极的引线穿过所述玻璃真空容器与 外部电路相连, 其特征在于所述聚焦电极、 电子倍增器、 阳极的中心共轴; 所述电子倍增 器包括两对并列放置且具有一定间隙的微通道板构成。
2. 如权利要求 1所述的光电倍增管,其特征在于每对微通道板以竖直布置的方式置于所述阳 极的两侧。
3. 如权利要求 2所述的光电倍增管, 其特征在于所述微通道板之间设置有绝缘垫片。
4. 如权利要求 1~3任一所述的光电倍增管, 其特征在于所述微通道板之间的间隙范围为 60μιη~500μιη; 间隙电压在 50 1000V可调。
5. 如权利要求 1所述的光电倍增管, 其特征在于所述支撑柱的支撑所述聚焦电极、 电子倍增 器、 阳极的一端, 即所述支撑柱上端的外表面为绝缘层; 所述支撑柱下端外表面为导电层 且与所述光阴极电连接。
6. 如权利要求 1或 5所述的光电倍增管, 其特征在于所述支撑柱的内部为带孔的绝缘材料, 所述聚焦电极、微通道板以及阳极各电压引线和所述阳极的信号线通过所述支撑柱内部的 孔与所述玻璃真空容器底座上的芯柱相应的插针连接。
7. 如权利要求 1或 5所述的光电倍增管, 其特征在于所述支撑柱通过一陶瓷骨架 (107) 支 撑所述聚焦电极、 电子倍增器、 阳极; 其中所述陶瓷骨架两侧设有对称的凹槽, 每一侧的 凹槽内依次安装阳极片 (200)、 绝缘环 (201 )、 栅网 (202)、 绝缘环 (201 )、 第一电极环
(203 )、 微通道板 (105 )、 第二电极环 (204)、 绝缘环垫片 (205 )、 第三电极环 (206)、 微通道板(105 )、 压环电极环 (207)、 固定盖板 (108)、 压盖聚焦环 (104); 所述阳极片
(200)、 绝缘环 (201 )、 栅网 (202) 构成所述阳极, 所述压盖聚焦环 (104) 为所述聚焦 电极;所述陶瓷骨架(107)两侧的第一电极环(203 )、微通道板(105 )、第二电极环(204)、 绝缘环垫片 (205 )、 第三电极环 (206)、 微通道板 (105 )、 压环电极环 (207) 构成所述 电子倍增器。
8. 如权利要求 1 或 5所述的光电倍增管, 其特征在于所述聚焦电极为薄金属环带, 竖直环 绕在所述电子倍增器外围, 其中心与微通道板同心。
9. 如权利要求 8所述的光电倍增管,其特征在于所述聚焦电极的外围设置一细金属圆环作为 辅助聚焦电极, 并与所述聚焦电极位于同一平面且同心。
10.如权利要求 1所述的光电倍增管, 其特征在于所述阳极为共轴的两个相同阳极结构单元, 分别接收两组所述微通道板的倍增电子。
11.如权利要求 10所述的光电倍增管, 其特征在于所述阳极结构单元为金属栅网加金属薄片 构成的阳极结构或微带线阳极结构。
12.如权利要求 1所述的光电倍增管, 其特征在于所述阳极为两个金属栅网加一个阳极片构 成; 或者在一个基片的两侧制作微带线阳极结构, 两侧面上的蛇形导电层与匹配的导线连 接后, 馈入阳极信号线。
PCT/CN2014/074998 2014-03-20 2014-04-09 一种静电聚焦微通道板光电倍增管 WO2015139344A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410104388.X 2014-03-20
CN201410104388.XA CN103915311B (zh) 2014-03-20 2014-03-20 一种静电聚焦微通道板光电倍增管

Publications (1)

Publication Number Publication Date
WO2015139344A1 true WO2015139344A1 (zh) 2015-09-24

Family

ID=51040909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/074998 WO2015139344A1 (zh) 2014-03-20 2014-04-09 一种静电聚焦微通道板光电倍增管

Country Status (2)

Country Link
CN (1) CN103915311B (zh)
WO (1) WO2015139344A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3509085A4 (en) * 2016-09-28 2020-05-06 North Night Vision Technology Co., Ltd FOCUSING ELECTRODE WITH AUTOMATIC EXPANSION FOR PHOTO MULTIPLE AND PHOTO MULTIPLE

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104637770B (zh) * 2015-02-03 2017-01-04 中国电子科技集团公司第五十五研究所 一种用于球面光电倍增管的同轴输出结构
CN106504972A (zh) * 2016-09-28 2017-03-15 北方夜视技术股份有限公司 高量子效率的微通道板型光电倍增管、双碱光电阴极及制备方法
WO2018058870A1 (zh) * 2016-09-28 2018-04-05 北方夜视技术股份有限公司 高量子效率的微通道板型光电倍增管、制备设备及其制备方法
CN108364846B (zh) * 2018-01-30 2024-03-29 中国科学技术大学 一种微通道板装夹装置
CN108257844B (zh) * 2018-02-02 2024-01-30 中国科学院西安光学精密机械研究所 选通聚焦型光电倍增管
CN108878251B (zh) * 2018-06-20 2022-01-25 中国科学院高能物理研究所 一种微通道板组件
CN109065434B (zh) * 2018-07-11 2024-04-05 中国科学院西安光学精密机械研究所 一种聚焦扫描型光电倍增管
JP7174663B2 (ja) * 2019-04-01 2022-11-17 浜松ホトニクス株式会社 イオン検出器
CN110211861A (zh) * 2019-06-17 2019-09-06 北方夜视技术股份有限公司 用于光电倍增管的双聚焦极及光电倍增管
CN110824274A (zh) * 2019-11-04 2020-02-21 北方夜视技术股份有限公司 双微通道板叠加性能测试方法及装置
CN111090028B (zh) * 2019-12-16 2022-02-15 北方夜视技术股份有限公司 用于双片微通道板叠加测试的装置和方法
CN111883412B (zh) * 2020-07-23 2022-11-29 北方夜视技术股份有限公司 用于微通道板型光电倍增管的聚焦极与光电倍增管
CN112185795B (zh) * 2020-09-11 2022-08-02 中国科学院西安光学精密机械研究所 一种基于硅电子倍增器的混合型大面积光电倍增管
CN113299537B (zh) * 2021-04-27 2022-08-05 中国科学院西安光学精密机械研究所 一种一体式的窄边框光电探测器及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5493111A (en) * 1993-07-30 1996-02-20 Litton Systems, Inc. Photomultiplier having cascaded microchannel plates, and method for fabrication
CN101048844A (zh) * 2004-10-29 2007-10-03 浜松光子学株式会社 光电倍增管和辐射探测器
CN101116168A (zh) * 2005-02-09 2008-01-30 福通尼斯公司 具有较小渡越时间差的光电倍增管
CN101924007A (zh) * 2009-06-10 2010-12-22 中国科学院高能物理研究所 一种光电倍增管
CN103456594A (zh) * 2013-08-02 2013-12-18 西安交通大学 一种提高光电倍增器光阴极光利用率的优化设计方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5452038B2 (ja) * 2009-03-06 2014-03-26 浜松ホトニクス株式会社 電子増倍器及び電子検出器
JP5771447B2 (ja) * 2011-06-02 2015-08-26 浜松ホトニクス株式会社 電子増倍器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5493111A (en) * 1993-07-30 1996-02-20 Litton Systems, Inc. Photomultiplier having cascaded microchannel plates, and method for fabrication
CN101048844A (zh) * 2004-10-29 2007-10-03 浜松光子学株式会社 光电倍增管和辐射探测器
CN101116168A (zh) * 2005-02-09 2008-01-30 福通尼斯公司 具有较小渡越时间差的光电倍增管
CN101924007A (zh) * 2009-06-10 2010-12-22 中国科学院高能物理研究所 一种光电倍增管
CN103456594A (zh) * 2013-08-02 2013-12-18 西安交通大学 一种提高光电倍增器光阴极光利用率的优化设计方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3509085A4 (en) * 2016-09-28 2020-05-06 North Night Vision Technology Co., Ltd FOCUSING ELECTRODE WITH AUTOMATIC EXPANSION FOR PHOTO MULTIPLE AND PHOTO MULTIPLE

Also Published As

Publication number Publication date
CN103915311A (zh) 2014-07-09
CN103915311B (zh) 2017-01-18

Similar Documents

Publication Publication Date Title
WO2015139344A1 (zh) 一种静电聚焦微通道板光电倍增管
CN107389187B (zh) 位敏阳极探测器及其制作方法
US4482836A (en) Electron multipliers
EP2442350B1 (en) Photomultiplier tube
CN102749641A (zh) 涂硼中子探测器及其制造方法
JPH06310086A (ja) 光電子増倍管
US4041343A (en) Electron multiplier mosaic
WO2013172274A1 (ja) マイクロチャネルプレート
US6707034B1 (en) Mass spectrometer and ion detector used therein
CN107919257B (zh) 碳纳米管微束阵列场发射阴极微焦点x射线管
CN108878251B (zh) 一种微通道板组件
CN108364846B (zh) 一种微通道板装夹装置
CN103107054A (zh) 场发射装置
CN111090028B (zh) 用于双片微通道板叠加测试的装置和方法
JPS63248031A (ja) ガラス・チャンネルプレート接着方法
JPH07335174A (ja) 電子増倍管
CN111883413B (zh) 近贴型大开口面积比微通道板型光电倍增管
WO2003098657A1 (fr) Pistolet a cathode froide
CN206905898U (zh) 一种位敏阳极探测器
US2743391A (en) Cathode ray tube
JPS5894747A (ja) 光電子増倍管
US2206713A (en) Photoelectric apparatus
JP3312771B2 (ja) 電子増倍管
CA2457516C (en) Ion detector
CN102254765B (zh) 场发射装置的制备方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14886060

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 14886060

Country of ref document: EP

Kind code of ref document: A1