WO2015138155A1 - Procédé de préparation de dispersions de particules creuses inorganiques au moyen d'une réaction sol-gel de mini-émulsion interfaciale et d'un précurseur à base d'eau - Google Patents

Procédé de préparation de dispersions de particules creuses inorganiques au moyen d'une réaction sol-gel de mini-émulsion interfaciale et d'un précurseur à base d'eau Download PDF

Info

Publication number
WO2015138155A1
WO2015138155A1 PCT/US2015/017901 US2015017901W WO2015138155A1 WO 2015138155 A1 WO2015138155 A1 WO 2015138155A1 US 2015017901 W US2015017901 W US 2015017901W WO 2015138155 A1 WO2015138155 A1 WO 2015138155A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
oil
silica precursor
solution
silica
Prior art date
Application number
PCT/US2015/017901
Other languages
English (en)
Inventor
Hau-Nan LEE
Stephanie A BERNARD
Original Assignee
E I Du Pont De Nemours And Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E I Du Pont De Nemours And Company filed Critical E I Du Pont De Nemours And Company
Publication of WO2015138155A1 publication Critical patent/WO2015138155A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • A61K8/0279Porous; Hollow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/25Silicon; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/501Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5089Processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/16Interfacial polymerisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/10General cosmetic use
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/01Crystal-structural characteristics depicted by a TEM-image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/90Other morphology not specified above

Definitions

  • the present disclosure relates to a process for preparing inorganic hollow particle dispersions, more particularly to a process for preparing inorganic hollow particle dispersions using an interfacial miniemulsion sol- gel reaction and a water-based precursor? and use of the inorganic hollow particle dispersions in coating compositions.
  • Nanospheres are submicroscopic colloidal systems composed of a solid or liquid core surrounded by a thin polymer or inorganic shell. This solid or liquid core is removed to form hollow nanospheres.
  • core- shell systems may be prepared from micro or miniemulsions via polymerization reaction at the interface of the droplets, the so-called interfacial polymerization reaction. Interfacial polymerization occurs at the interface of two immiscible phases, for example, oil and water, and a thin shell is formed. In the formation of the shell, the monomers are in either oil or water phase to participate in the reaction.
  • a microemulsion or miniemulsion is first prepared, either water in oil or oil in water, wherein in the former nanocapsules with an aqueous core suspended in oil are formed and in the latter nanocapsules with an oily core suspended in water are formed.
  • Existing processes for the preparation of inorganic hollow particle dispersions typically use solvent based precursors and hard polymer template, or often produce unwanted large-size aggregation in addition to hollow particles.
  • the disclosure provides a process for making an inorganic hollow particle dispersion using water based precursors through interfacial miniemulsion sol-gel reaction comprising:
  • an oil-in-water or water-in-oil minemulsion by high energy shearing, at an energy density of at least 10 ⁇ 6 J/m A 3, a water phase comprising water and at least one surfactant, and an oil phase comprising at least one non-reactive solvent; wherein the oil to water or water to oil ratio is about 0.01 to about 0.55, more typically about 0.05 to about 0.25; and surfactant concentration is about 0.001 wt % to about 5 wt %, more typically about 0.1 wt% to about 2 wt%, based on the total weight of the miniemulsion;
  • silica precursor solution such as sodium silicate, potassium silicate or pre-formed silicic acid
  • concentration of silica precursor is about 0.005 wt% to about 5 wt%, more typically about 0.005 wt% to about 2 wt%, based on the total weight of the dispersion; while maintaining the pH of the solution at above about 8 or below about 2, by typically continuously adding acid or base; and
  • the solution is held, typically for 0.5 to 6 hours, at room temperature, more typically at about 20 °C- to about 90 °C, and still more typically at 20 °C- to about 70 °C, with optional stirring, to allow the silica precursor to diffuse to the oil/water interface.
  • the one-step sol-gel reaction is initiated at room temperature, more typically about 20 °C to about 90 °C.
  • non- reactive solvent we mean that the solvent does not substantially react, more typically does not react, with any of the other components added to the reaction.
  • Figure 1 is the structure of the resulting particles from Example 1 that was analyzed using transmission electron microscopy.
  • Figure 2 is the structure of the resulting particles from Example 2 that was analyzed using transmission electron microscopy.
  • Figure 3 is the structure of the resulting particles from Example 3 that was analyzed using transmission electron microscopy.
  • Figure 4 is the structure of the resulting particles from Example 4 that was analyzed using transmission electron microscopy. DETAILED DESCRIPTION OF THE DISCLOSURE
  • the disclosure relates to a process for preparing an inorganic hollow particle dispersion at a solids concentration of about 0.005 wt% to about 5 wt%, more typically about 0.005 wt% to about 2 wt%.
  • These inorganic hollow particle dispersions are useful as hiding or opacifying agents in coating and molding compositions. They are also useful as drug delivery systems in the pharmaceutical and medical industries; in food, personal care and cosmetics; and agriculture.
  • These nanospheres have a particle size of less than about 400nm, more typically about 5 nm to about 400 nm, still more typically about 50 nm to about 300 nm, and most typically about 100 nm to about 250 nm.
  • the disclosure provides a process for making an inorganic hollow particle dispersion using water based precursors through interfacial miniemulsion sol-gel reaction comprising:
  • an oil-in-water or water-in-oil minemulsion by high energy shearing, at an energy density of at least 10 ⁇ 6 J/m A 3, a water phase comprising water and at least one surfactant, and an oil phase comprising at least one non-reactive solvent; wherein the oil to water or water to oil ratio is about 0.01 to about 0.55, more typically about 0.05 to about 0.25; and surfactant concentration is about 0.001 wt % to about 5 wt %, more typically about 0.1 wt% to about 2 wt%, based on the total weight of the miniemulsion;
  • silica precursor solution such as sodium silicate, potassium silicate or pre-formed silicic acid
  • concentration of silica precursor is about 0.005 wt% to about 5 wt%, more typically about 0.005 wt% to about 2 wt%, based on the total weight of the dispersion; while maintaining the pH of the solution at above about 8 or below about 2, by typically continuously adding acid or base; and
  • the solution is held, typically for 0.5 to 6 hours, at room temperature, more typically at about 20 °C- to about 90 °C, and still more typically at 20 °C- to about 70 °C, with optional stirring, to allow the silica precursor to diffuse to the oil/water interface.
  • the non-reactive solvent may be an alkane, a hydrocarbon oil, aromatic hydrocarbon or halogenated hydrocarbon liquid, more typically alkane or hydrocarbon oil .
  • the oil to water or water to oil ratio is about 0.01 to 0.55, more typically 0.05 to 0.25; and surfactant concentration is about 0.001 wt % to about 5 wt %, more typically 0,1 wt% to about 2 wt%, based on the total weight of the dispersion.
  • At least one surfactant is part of the mixture in step (a).
  • suitable surfactants include cetyltrimethylammonium bromide (CTAB), lauryltrimethylammonium bromide, dodecyltrimethylammonium bromide, octyltrimethylammonium bromide, sodium dodecyl sulfate (SDS), sodium dodecylbenzene sulfonate (SDBS), dioctylsulfosuccinate , nonionic surfactants such as alkylphenol polyoxyethylene, polyoxyethylene glycol alkyl ethers, polyoxypropylene glycol alkyl ethers, octylphenol ethoxylates or poloxamers, more typically SDS, SDBS or CTAB.
  • Some useful commercially available surfactants series include Triton X® manufactured by The Dow Chemical Company, Brij® manufactured by Croda
  • the mixture in step (a) may be prepared in any glass container or stainless steel reaction vessel .
  • the mixture of the above components is then sheared at an energy density of at least 10 ⁇ 6 J/m A 3, more typically about 10 ⁇ 7 J/m A 3 to about 5*10 ⁇ 8 J/m A 3, to form a mini-emulsion.
  • Some useful means for shearing include an ultrasonic disruptor, high speed blender, high pressure homogenizer, high shear disperser, membrane homogenizer or colloid mill, more typically an ultrasonic disruptor, high speed blender, or a high pressure homogenizer.
  • shearing occurs for a period of about 5 to about 120 minutes depending on amount of emulsion needed to be prepared and desired emulsion size range, more typically about 30 minutes to about 60 minutes.
  • shearing is accomplished at room temperature.
  • a defoamer may be needed to avoid foaming during emulsifying.
  • Some suitable defoamers include BASF Foamaster®, Dow Corning® 71 and 74 Antifoams.
  • step (b), (c) and (d) may be achieved using any reasonable choice of acid or base.
  • Some use acids include
  • hydrochloric hydrochloric, acetic acid, nitric acid, butyric acid and citric acid.
  • Some useful bases include sodium hydroxide and ammonium hydroxide.
  • the water-based silica precursor in step (c) is sodium silicate, potassium silicate, ammonium silicate or pre-formed silicic acid; more typically sodium silicate or potassium silicate; still more typically sodium silicate.
  • the concentration of silica precursor is about 0.005 wt% to about 5 wt%, more typically about 0.005 wt% to about 2 wt%, based on the total weight of the dispersion. It is important because the combination of silica precursor concentration, oil to water ratio and surfactant level in step (a) determine the particle size and distribution, hollow or non-hollow particle structure, and allow high % solid hollow silica synthesis. The process is carried out in the absence of an alcohol cosolvent.
  • a sol gel reaction or process is a method used for
  • step (c) a sol-gel reaction is then initiated using the mini-emulsion mixture formed in step (c) by adjusting the pH to about 4 to about 10, more typically at a pH to about 5 to about 9.
  • the water based silica precursors then hydrolyze and condense to form a silica shell resulting in silica hollow particles having a particle size of less than about 400 nm.
  • Heating may be accomplished using hot plate, heating mantle or any other heating method. pH adjustment in step (d) may be achieved using any reasonable choice of acid or base.
  • inorganic hollow particle dispersions are useful as hiding or opacifying agents in coating and molding compositions. They are also useful as drug delivery systems in the pharmaceutical and medical industries; in food, personal care and cosmetics; and agriculture.
  • Example 2 The structure of the resulting particles was analyzed using transmission electron microscopy and shown in Figure 1 .
  • Example 2 The structure of the resulting particles was analyzed using transmission electron microscopy and shown in Figure 1 .
  • Example 2 The structure of the resulting particles was analyzed using transmission electron microscopy and shown in Figure 1 .
  • Sodium silicate solution (3.6 ml solution silicate in 150 ml water) was added to the emulsion at a feeding rate of 1 .67 ml/min over 3 hours while maintaining the pH of the solution to about 7 by continuously adding HCI solution.
  • the sol-gel reaction was initiated by adjusting the pH to about 9.5 and then letting the mixture sit for 3 hours.
  • the sodium silicate hydrolyzed and condensed to form a silica shell at the oil/water interface resulting in silica hollow particles.
  • the structure of the resulting particles was analyzed using transmission electron microscopy and shown in Figure 2.
  • a sodium silicate solution 2.4 ml solution silicate in 160 ml water
  • the prepared sodium silicate solution was slowly added to the emulsion at a feeding rate of 2.67 ml/min over 1 hour, and then the mixture was stirred for additional 2 hours at 50 °C. Finally, the sol-gel reaction was initiated by adjusting the pH to about 5 and then letting the mixture sit overnight. The sodium silicate hydrolyzed and condensed to form a silica shell at the oil/water interface resulting in silica hollow particles. The structure of the resulting particles was analyzed using transmission electron microscopy and shown in Figure 3.
  • Sodium silicate solution (3.6 ml solution silicate in 150 ml water) was added to the emulsion at a feeding rate of 1 .67 ml/min over 3 hours while maintaining the pH of the solution to about 7 by continuously adding HCI solution.
  • the sol-gel reaction was initiated by adjusting the pH to about 9.5 and then letting the mixture sit for 3 hours.
  • the sodium silicate hydrolyzed and condensed to form a silica shell at the oil/water interface resulting in silica hollow particles.
  • the structure of the resulting particles was analyzed using transmission electron microscopy and shown in Figure 4.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Birds (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Dispersion Chemistry (AREA)
  • Dermatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Silicon Compounds (AREA)

Abstract

La présente invention concerne un procédé de fabrication d'une dispersion de particules creuses inorganiques au moyen de précurseurs à base d'eau par le biais d'une réaction sol-gel de mini-émulsion interfaciale consistant : a) en la formation d'une mini-émulsion huile-dans-eau ou eau-dans-huile par cisaillement à haute énergie d'eau, d'au moins un solvant non réactif; et d'au moins un tensioactif; à une densité énergétique d'au moins 10^6 J/m^3; le rapport huile/eau ou eau/huile étant d'environ 0,01 à environ 0,55; et la concentration en tensioactif étant d'environ 0,001% en poids à environ 5% en poids, sur la base du poids total de la dispersion; b) en le réglage du pH de l'émulsion; c) en l'alimentation en au moins une solution de précurseur de silice à base d'eau d'une émulsion à une vitesse d'alimentation constante sur plusieurs heures, la concentration en précurseur de silice étant d'environ 0,005% en poids à environ 5% en poids, sur la base du poids total de la dispersion; tout en maintenant le pH de la solution supérieur à environ 6 ou inférieur à environ 2; d) en le maintien de la solution à température ambiante, assorti d'une agitation facultative pour permettre au précurseur de silice de se diffuser jusqu'à l'interface huile/eau; et e) en le lancement d'une réaction sol-gel en une étape par le réglage du pH d'environ 4 à environ 10, le précurseur de silice à base d'eau s'hydrolysant et se condensant pour former une enveloppe de silice au niveau de l'interface huile/eau, ce qui permet d'obtenir des particules creuses de silice présentant une taille de particules inférieure à environ 400 nm.
PCT/US2015/017901 2014-03-11 2015-02-27 Procédé de préparation de dispersions de particules creuses inorganiques au moyen d'une réaction sol-gel de mini-émulsion interfaciale et d'un précurseur à base d'eau WO2015138155A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461950872P 2014-03-11 2014-03-11
US61/950,872 2014-03-11

Publications (1)

Publication Number Publication Date
WO2015138155A1 true WO2015138155A1 (fr) 2015-09-17

Family

ID=52633706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2015/017901 WO2015138155A1 (fr) 2014-03-11 2015-02-27 Procédé de préparation de dispersions de particules creuses inorganiques au moyen d'une réaction sol-gel de mini-émulsion interfaciale et d'un précurseur à base d'eau

Country Status (1)

Country Link
WO (1) WO2015138155A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112521176A (zh) * 2020-12-16 2021-03-19 北京华夏建龙矿业科技有限公司 一种高比表面积陶瓷空心球的制备方法
CN115340102A (zh) * 2022-07-25 2022-11-15 中建西部建设建材科学研究院有限公司 一种微纳米材料制备方法、微纳米材料及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090004418A1 (en) * 2006-03-02 2009-01-01 Akira Takaki Method for Producing Hollow Silicone Fine Particles
US20120104639A1 (en) * 2010-06-25 2012-05-03 Traynor Daniel H Ceramic Encapsulation with Controlled Layering By Use of Prehydrolyzed Functionalized Silanes
US20120256336A1 (en) * 2009-12-18 2012-10-11 Kao Corporation Method for producing mesoporous silica particles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090004418A1 (en) * 2006-03-02 2009-01-01 Akira Takaki Method for Producing Hollow Silicone Fine Particles
US20120256336A1 (en) * 2009-12-18 2012-10-11 Kao Corporation Method for producing mesoporous silica particles
US20120104639A1 (en) * 2010-06-25 2012-05-03 Traynor Daniel H Ceramic Encapsulation with Controlled Layering By Use of Prehydrolyzed Functionalized Silanes

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HU WANCHENG ET AL: "One-step synthesis of silica hollow particles in a W/O inverse emulsion", COLLOID & POLYMER SCIENCE, SPRINGER VERLAG, HEIDELBERG, DE, vol. 291, no. 11, 23 June 2013 (2013-06-23), pages 2697 - 2704, XP035320615, ISSN: 0303-402X, [retrieved on 20130623], DOI: 10.1007/S00396-013-3003-0 *
RAYMOND V RIVERA VIRTUDAZO ET AL: "Fabrication of calcined hierarchical porous hollow silicate micro-size spheres via double emulsion process", MATERIALS LETTERS, NORTH HOLLAND PUBLISHING COMPANY. AMSTERDAM, NL, vol. 65, no. 19, 21 June 2011 (2011-06-21), pages 3112 - 3115, XP028251905, ISSN: 0167-577X, [retrieved on 20110628], DOI: 10.1016/J.MATLET.2011.06.085 *
SONG L ET AL: "Direct preparation of silica hollow spheres in a water in oil emulsion system: The effect of pH and viscosity", JOURNAL OF NON-CRYSTALLINE SOLIDS, NORTH-HOLLAND PHYSICS PUBLISHING. AMSTERDAM, NL, vol. 352, no. 21-22, 1 July 2006 (2006-07-01), pages 2230 - 2235, XP028046803, ISSN: 0022-3093, [retrieved on 20060701], DOI: 10.1016/J.JNONCRYSOL.2006.02.045 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112521176A (zh) * 2020-12-16 2021-03-19 北京华夏建龙矿业科技有限公司 一种高比表面积陶瓷空心球的制备方法
CN115340102A (zh) * 2022-07-25 2022-11-15 中建西部建设建材科学研究院有限公司 一种微纳米材料制备方法、微纳米材料及其应用
CN115340102B (zh) * 2022-07-25 2024-03-22 中建西部建设建材科学研究院有限公司 一种微纳米材料制备方法、微纳米材料及其应用

Similar Documents

Publication Publication Date Title
JP2013237051A5 (fr)
EP1846478B2 (fr) Fabrication d'une emulsion d'organopolysiloxane a dimension de particule faible stable
EP3328534B1 (fr) Procédé pour l'encapsulation de substances dans des capsules à base de silice et produits ainsi obtenus
EP2386353B1 (fr) Suspensions de microcapsules de coque en silicate
CN109498486B (zh) 一种两亲性二氧化钛乳化剂、Pickering乳液及其制备方法和应用
Tai et al. Control of zirconia particle size by using two-emulsion precipitation technique
US11608273B2 (en) Method for producing hollow silica particles
JP6552387B2 (ja) 中空シリカ粒子の製造方法
US20070238829A1 (en) Manufacture of stable silicone emulsion
Sihler et al. Inverse Pickering emulsions with droplet sizes below 500 nm
CN102227254A (zh) 用于温度控制释放的硅酸盐壳微囊的悬浮液
WO2015138155A1 (fr) Procédé de préparation de dispersions de particules creuses inorganiques au moyen d'une réaction sol-gel de mini-émulsion interfaciale et d'un précurseur à base d'eau
Sadgar et al. Pickering interfacial catalysis—Knoevenagel condensation in magnesium oxide-stabilized Pickering emulsion
JP2014087786A (ja) マイクロカプセルの製造方法及びマイクロカプセル
EP2868628A1 (fr) Procédé de préparation d'une composition de dioxyde de silicium
JP5168529B2 (ja) 多孔質体を用いたエマルション生成方法とその装置
WO2015138142A1 (fr) Procédé de préparation de nanosphères creuses inorganiques fluorées
WO2016137456A1 (fr) Procédé permettant de préparer des dispersions de particules creuses minérales à pourcentage élevé de solides au moyen d'une réaction interfaciale sol-gel en mini-émulsion
CN109704352B (zh) 一种基于锁扣式结构高岭石稳定的皮克林乳液的制备方法
CN108503855B (zh) 一种Pickering乳液乳化剂及其制备方法和应用
WO2015138153A1 (fr) Procédé de préparation de nanosphères hybrides creuses de silice/polymère par polymérisation interfaciale en mini-émulsions inverses
Jing et al. Emulsions prepared by two‐stage ceramic membrane jet‐flow emulsification
WO2015138156A1 (fr) Procédé de préparation de nanosphères creuses inorganiques fluorées faisant appel à des précurseurs de silice aqueux
CN103111208B (zh) 一种固体悬浮液单分布乳液及其乳化方法
WO2015138143A1 (fr) Procédé permettant de préparer des dispersions de particules creuses inorganiques à pourcentage élevé de solides par le biais d'une réaction sol-gel de mini-émulsion interfaciale

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15709050

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112 ( 1) EPC ( EPO FORM 1205A DATED 31-01-2017 )

122 Ep: pct application non-entry in european phase

Ref document number: 15709050

Country of ref document: EP

Kind code of ref document: A1