WO2015137189A1 - 状態監視システムおよび状態監視方法 - Google Patents

状態監視システムおよび状態監視方法 Download PDF

Info

Publication number
WO2015137189A1
WO2015137189A1 PCT/JP2015/056159 JP2015056159W WO2015137189A1 WO 2015137189 A1 WO2015137189 A1 WO 2015137189A1 JP 2015056159 W JP2015056159 W JP 2015056159W WO 2015137189 A1 WO2015137189 A1 WO 2015137189A1
Authority
WO
WIPO (PCT)
Prior art keywords
information processing
detection output
sensor
monitoring system
communication circuit
Prior art date
Application number
PCT/JP2015/056159
Other languages
English (en)
French (fr)
Inventor
一輝 小屋町
隆 長谷場
彰利 竹内
啓介 橋爪
Original Assignee
Ntn株式会社
一輝 小屋町
隆 長谷場
彰利 竹内
啓介 橋爪
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014047722A external-priority patent/JP2015172342A/ja
Priority claimed from JP2014058414A external-priority patent/JP2015185905A/ja
Application filed by Ntn株式会社, 一輝 小屋町, 隆 長谷場, 彰利 竹内, 啓介 橋爪 filed Critical Ntn株式会社
Priority to EP15760846.4A priority Critical patent/EP3118451A4/en
Priority to US15/124,540 priority patent/US20170016429A1/en
Priority to CN201580012746.7A priority patent/CN106103982A/zh
Publication of WO2015137189A1 publication Critical patent/WO2015137189A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/047Automatic control; Regulation by means of an electrical or electronic controller characterised by the controller architecture, e.g. multiple processors or data communications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/96Mounting on supporting structures or systems as part of a wind turbine farm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/334Vibration measurements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present disclosure relates to monitoring of the state of a system, and particularly relates to monitoring of the state of a device provided in a wind turbine generator.
  • Japanese Patent Laid-Open No. 2002-349415 discloses a local area network for facilitating monitoring of the operating state of a wind turbine generator in a remote place.
  • the wind power generator, the server, and the monitoring device are connected by an optical fiber.
  • the data collection device in the nacelle storing the detection data of the sensor and the server may not be connected by an optical fiber or the like.
  • the stored data may be transmitted from the apparatus to the server using a mobile phone line.
  • a data collection device that collects detection data of a sensor for detecting the state of a device accommodated in the nacelle may be installed in the nacelle.
  • the data collection device and a server for managing information about the device cannot be connected via an existing optical fiber or the like via the LAN (local area network) in the nacelle.
  • sensor detection data may be stored in a data collection device in the nacelle, and the stored data may be transmitted to the server using a mobile phone line. It was.
  • a cost is required for installing the data collection device, and a cost is also required for using the mobile phone line.
  • transmission using a mobile phone line may be affected by the state of radio waves on the line, and data transmission to the server may be delayed.
  • a mobile phone line when a mobile phone line is used for communication between the data collection device and the server, a cost is required for installing the data collection device, and a charge for using the mobile phone line is also required. Furthermore, transmission using a mobile phone line may be affected by the state of radio waves on the line, and data transmission to the server may be delayed.
  • the present disclosure has been conceived in view of such circumstances, and an object thereof is to provide a system for reliably monitoring the state of equipment provided in a wind turbine generator at low cost.
  • a state monitoring system for monitoring the state of equipment provided in the wind turbine generator.
  • the state monitoring system is configured to transmit a management device for managing information related to a device, an information processing device provided in the wind turbine generator, a sensor provided in the device, and a detection output of the sensor to the information processing device.
  • the information processing apparatus includes a second communication circuit for transmitting the detection output transmitted from the first communication circuit to the management apparatus via the network.
  • the first communication circuit transmits the detection output of the sensor to the information processing apparatus by a short-range wireless communication method.
  • the wind turbine generator further includes a nacelle that accommodates the device and a support column that supports the nacelle.
  • the sensor is accommodated in the nacelle, and the information processing apparatus is accommodated in the support column.
  • a method for monitoring the status of equipment provided in a wind turbine generator in a status monitoring system includes a management device for managing information related to a device, a sensor provided in the device, an information processing device provided in the wind power generator, and a first device for transmitting the detection output of the sensor to the information processing device.
  • the first communication circuit transmits the detection output of the sensor to the information processing apparatus, and the information processing apparatus transmits the detection output transmitted from the first communication circuit to the management apparatus via the network.
  • a method for monitoring the state of equipment provided in a wind turbine generator in a state monitoring system moves to the wind power generator, a server for managing information about the device, a sensor provided in the device, a communication circuit (including a data collection device) for transmitting the detection output of the sensor, and And an information processing apparatus capable of The method includes a step in which an information processing device located in a place where the detection output transmitted by the communication circuit can be received receives the detection output, and a step in which the information processing device transmits the detection output to the management device.
  • a method for monitoring the state of equipment provided in a wind turbine generator in a state monitoring system includes a sensor provided in the device, a communication circuit (including a data collection device) for transmitting a detection output of the sensor, and an information processing device that can move with respect to the wind turbine generator.
  • the method includes a step in which an information processing device located in a place where a detection output transmitted by a communication circuit can be received receives the detection output, and a step in which the information processing device stores the detection output in a recording medium.
  • the information monitoring system includes a plurality of wind power generators.
  • the step of receiving the detection output of the information processing device is performed by positioning the detection output of each of the sensors by positioning the detection output of each of the sensors of the respective devices of the plurality of wind turbine generators. Receiving.
  • a state monitoring system for monitoring the state of equipment provided in the wind turbine generator.
  • the state monitoring system includes a server for managing information about the device, a sensor provided in the device, a first communication circuit (including a data collection device) for transmitting a detection output of the sensor, and a wind power generator.
  • an information processing apparatus capable of moving.
  • the information processing device includes a second communication circuit that receives the detection output when the information processing device is located at a location where the detection output transmitted by the first communication circuit (including the data collection device) can be received.
  • the second communication circuit transmits the detection output to the management device via the network.
  • the senor is provided in the device provided in the wind turbine generator.
  • the detection output of the sensor is transmitted to an information processing device provided in the wind turbine generator.
  • the information processing apparatus transmits the detection output of the sensor to the management apparatus via the network.
  • the condition monitoring system allows the condition monitoring system to not require a special device for accumulating the sensor detection output. Further, the detection output of the sensor is transmitted from the information processing apparatus to the management apparatus using communication via a network. For this reason, the state monitoring system does not need to use a telephone line. Therefore, the state monitoring system can reduce the cost, and can reliably transmit the detection output of the sensor to the management device.
  • the senor is provided in the device provided in the wind turbine generator.
  • the detection output of the sensor is transmitted to an information processing apparatus that can move with respect to the wind turbine generator.
  • the information processing apparatus transmits the detection output of the sensor to the server via the network.
  • the information processing apparatus stores the detection output of the sensor in a recording medium.
  • the detection output stored in the recording medium can be used for processing such as analysis by being read by the server.
  • the wind power generator does not need a special device for accumulating the detection output of the sensor.
  • the detection output of the sensor is transmitted from the information processing apparatus to the server using communication via a network or transmitted via a recording medium. For this reason, since the detection output of the sensor is sent to the server, there is no need to use a telephone line. Therefore, the state monitoring system can reduce the cost, and can reliably transmit the detection output of the sensor to the server.
  • FIG. 1 is a diagram illustrating an example of an outline of a configuration of a state monitoring system.
  • the state monitoring system includes a wind power generator 100, an information processing device 200, and a management server 300.
  • the information processing apparatus 200 acquires a detection output indicating the state of the device in the wind turbine generator 100 and transmits it to the management server 300.
  • the management server 300 manages the detection output. For example, in the management server 300, the administrator compares the detection output with a predetermined threshold value, and manages data for notifying a predetermined terminal of the above based on the comparison result.
  • the wind turbine generator 100 mainly includes a blade 20, a nacelle 30 (housing), and a support column 40. Inside the nacelle 30, devices of the wind turbine generator 100 (the main shaft 50, the speed increaser 60, the generator 70 and the main bearing 80) and vibration sensors 90A to 90F are arranged.
  • the vibration sensor 90 ⁇ / b> A detects the vibration of the main bearing 80.
  • the vibration sensors 90B, 90C, 90D detect the vibration of the speed increaser 60.
  • the vibration sensors 90E and 90F detect the vibration of the generator 70.
  • the vibration sensors 90A to 90F are collectively referred to as “vibration sensor 90”.
  • the nacelle 30 is disposed above (that is, at a high place) the support column 40 installed on the ground (not shown).
  • the nacelle 30 can rotate about the axis of the support column 40.
  • the blade 20 is connected to one end of a main shaft 50 protruding outside the nacelle 30.
  • the main shaft 50 is disposed in the nacelle 30.
  • the main shaft 50 can be rotated by the wind force received by the blade 20.
  • the speed increaser 60 is connected to the main shaft 50 at the other end opposite to the one end to which the blade 20 is connected.
  • the speed increaser 60 increases the rotation of the main shaft 50 and outputs the increased rotation of the main shaft 50 to the generator 70 via the output shaft 61.
  • the speed increaser 60 is constituted by a gear speed increasing mechanism including, for example, a planetary gear, an intermediate shaft, a high speed shaft, or the like.
  • the generator 70 is connected to the speed increaser 60 on the side opposite to the main bearing 80.
  • the generator 70 is connected to the speed increaser 60 via the output shaft 61, and generates power by the rotation output from the speed increaser 60.
  • the generator 70 is, for example, an induction generator.
  • the main bearing 80 is disposed adjacent to the speed increaser 60 and supports the main shaft 50 so as to be rotatable around the shaft.
  • the main bearing 80 is a rolling bearing such as a self-aligning roller bearing, a tapered roller bearing, a cylindrical roller bearing, or a ball bearing. These bearings may be single-row or double-row.
  • the rated output of the wind power generator 100 is not particularly limited, but is larger than, for example, 500 kW.
  • the blade 20 is rotated by receiving wind force, so that the main shaft 50 connected to the blade 20 rotates while being supported by the main bearing 80.
  • the rotation of the main shaft 50 is transmitted to the speed increaser 60 to be increased in speed and converted into rotation of the output shaft 61.
  • the rotation of the output shaft 61 is transmitted to the generator 70, and an electromotive force is generated in the generator 70 by electromagnetic induction.
  • the state monitoring system is a system for monitoring damage and deterioration states of the devices (the main shaft 50, the speed increaser 60, the generator 70, and the main bearing 80) of the wind turbine generator 100.
  • the information processing apparatus 200 acquires detection outputs of the vibration sensors 90A to 90F. More specifically, the information processing apparatus 200 is disposed in the support column 40. Then, each of the vibration sensors 90A to 90F transmits the detection output of each sensor to the information processing apparatus 200 on a regular basis, regularly (every fixed time), or when a preset condition is satisfied. To do.
  • the mode of transmission may be in accordance with a short-range wireless communication system such as WiFi (Wireless Fidelity), or may be wired.
  • WiFi Wireless Fidelity
  • the information processing apparatus 200 transmits the detection output to the management server 300 via the network 900.
  • the network 900 is a public line such as the Internet, for example.
  • the information processing apparatus 200 is connected to the network 900 via, for example, a LAN (Local Area Network).
  • LAN Local Area Network
  • Management server 300 monitors the detection output. Specifically, for example, a control device (a CPU (Central Processing Unit) 31 described later) in the management server 300 displays the detection output and / or transmits it to a predetermined terminal or the like. The control device compares the detection output with a preset threshold value, displays the result of the comparison, and / or transmits the result to a predetermined terminal or the like.
  • a control device a CPU (Central Processing Unit) 31 described later
  • the control device compares the detection output with a preset threshold value, displays the result of the comparison, and / or transmits the result to a predetermined terminal or the like.
  • FIG. 2 is a diagram illustrating an example of a hardware configuration of the vibration sensor 90.
  • the vibration sensor 90 mainly includes a CPU (Central Processing Unit) 91 for executing various processes, a memory 92 for storing programs executed by the CPU 91, data, and the like.
  • a wireless communication unit 93 for communicating with an external device such as the information processing apparatus 200; and a data acquisition unit 95 configured by a member for acquiring data related to vibration of the device to which the vibration sensor 90 is attached.
  • the wireless communication unit 93 is configured by a WiFi module capable of communicating using, for example, the WiFi system.
  • FIG. 3 is a diagram illustrating an example of a hardware configuration of the information processing apparatus 200.
  • the information processing apparatus 200 includes a CPU 21, a memory 22, an input device 23, a display 24, a wireless communication unit 25, and a communication interface (I / F) 26 as main components.
  • the CPU21 controls the operation
  • the memory 22 is realized by a RAM (Random Access Memory), a ROM (Read-Only Memory), a flash memory, or the like.
  • the input device 23 is constituted by, for example, a mouse or a keyboard used in a general-purpose computer.
  • the user can input information to the information processing apparatus 200 via the input device 23.
  • the display 24 is configured by a device that can display information, such as a liquid crystal display device or a plasma display.
  • the display 24 can display various information including, for example, a calculation result by the CPU 21 and data input to the information processing apparatus 200.
  • the wireless communication unit 25 transmits and receives signals for wireless communication according to a short-range wireless communication method such as WiFi. Thereby, the information processing apparatus 200 receives the detection output of the vibration sensor 90 transmitted from the vibration sensor 90.
  • the communication I / F 26 is a communication method for communication via a network, and is a communication interface for exchanging various data with other communication devices including the management server 300.
  • the communication I / F 26 is realized by, for example, an adapter or a connector.
  • the media I / F 27 reads information recorded on a recording medium 200X that is detachable from the information processing apparatus 200. Further, the media I / F 27 may write information on the recording medium 200X.
  • the recording medium 200X various recording media such as a USB (Universal Serial Bus) memory, a CD-ROM, a flexible disk, and a flash memory can be employed.
  • the CPU 21 can execute a program stored in the recording medium 200X.
  • FIG. 4 is a diagram illustrating an example of a hardware configuration of the management server 300.
  • the management server 300 includes a CPU 31, a memory 32, an input device 33, a display 34, a communication interface (I / F) 36, and a media I / F 37 as main components. Including.
  • the CPU 31 controls the operation of each part of the management server 300 by reading and executing the program stored in the memory 32.
  • the memory 32 is realized by a RAM, a ROM, a flash memory, or the like.
  • the input device 33 is configured by, for example, a mouse or a keyboard used in a general-purpose computer.
  • the user can input information to the management server 300 via the input device 33.
  • the display 34 is configured by a device that can display information, such as a liquid crystal display device or a plasma display.
  • the display 34 can display various information including, for example, a calculation result by the CPU 31 and data input to the management server 300.
  • the wireless communication unit 25 transmits and receives signals for wireless communication according to a short-range wireless communication method such as WiFi. Thereby, the management server 300 receives the detection output of the vibration sensor 90 transmitted from the vibration sensor 90.
  • the communication I / F 36 is a communication method for communication via a network, and is a communication interface for exchanging various data with other communication devices including the information processing apparatus 200.
  • the communication I / F 36 is realized by, for example, an adapter or a connector.
  • the media I / F 37 reads information recorded on the recording medium 300X that is detachable from the management server 300. Further, the media I / F 37 may write information on the recording medium 300X.
  • the recording medium 300X for example, various recording media such as a USB memory, a CD-ROM, a flexible disk, and a flash memory can be adopted.
  • the CPU 31 can execute a program stored in the recording medium 300X.
  • the state monitoring system includes a management device (management server 300) for managing information related to devices, and an information processing device (information processing device) provided in the wind turbine generator. 200) and sensors (parts other than the wireless communication unit 93 of the vibration sensors 90A to 90F) provided in the device.
  • the vibration sensor 90 includes a first communication circuit (wireless communication unit 93) for transmitting the detection output of the sensor to the information processing apparatus.
  • each of the vibration sensors 90A to 90F is described to include the wireless communication unit 93.
  • the wireless communication unit 93 may be provided separately from each of the vibration sensors 90A to 90F. Accordingly, the existing wind power generator 100 can be applied to the state monitoring system of the present disclosure by connecting the wireless communication unit 93 to the vibration sensors 90A to 90F having no communication function.
  • the information processing apparatus transmits the detection output transmitted from the first communication circuit to the management apparatus (management server 300) via the network.
  • a second communication circuit (communication I / F 26) for transmission is included.
  • transmission of the detection outputs of the vibration sensors 90A to 90F from the vibration sensors 90A to 90F to the information processing apparatus 200 is realized by a short-range wireless communication method such as a WiFi method.
  • a short-range wireless communication method such as a WiFi method.
  • the information processing apparatus 200 is disposed in the support column 40. Thereby, it is possible to install the information processing apparatus 200 in a more stable place than in the case where it is provided in the nacelle 30 provided at a relatively high place.
  • the installation location of the information processing apparatus 200 is not limited to the inside of the support column 40 as long as it can communicate with the vibration sensor 90 using the short-range wireless communication method.
  • the information processing apparatus 200 is provided for each wind power generator 100.
  • a plurality of wind turbine generators 100 are provided adjacent to each other, and a vibration sensor 90 in a certain wind turbine generator 100 is provided in a column 40 of another wind turbine generator 100 adjacent thereto. It may be possible to communicate with the information processing apparatus 200 using the short-range wireless communication method. In such a case, for example, as illustrated in FIG. 5, the information processing apparatus 200 can receive detection outputs from the vibration sensors 90 of the plurality of wind power generation apparatuses 100 and transmit them to the management server 300.
  • Examples of transmission timing of the detection output from the information processing apparatus 200 to the management server 300 are listed below. However, these are examples, and the transmission timing is not limited to these.
  • the state monitoring system shown in FIG. 5 includes the wind power generator 100A and the wind power generator adjacent to the wind power generator 100A. Apparatus 100B.
  • the information processing device 200 provided in the support column 40 of the wind power generator 100 ⁇ / b> A includes the detection output transmitted from the vibration sensor 90 in the nacelle 30 of the wind power generator 100 ⁇ / b> A, the wind power The detection output transmitted from the vibration sensor 90 in the nacelle 30 of the power generation device 100B is received.
  • pillar 40 of 100 A of wind power generators is arrange
  • a vibration sensor is employed as an example of a sensor for detecting the state of a device provided in the wind turbine generator 100.
  • the type of the sensor is not limited to the vibration sensor. All types of sensors can be applied to the state monitoring system of the present disclosure.
  • FIG. 6 is a diagram illustrating an example of the outline of the configuration of the state monitoring system.
  • the state monitoring system includes a wind power generator 100A, an information processing device 200, and a management server 300.
  • the information processing apparatus 200 includes an antenna 25A, is mounted on the vehicle 2, and is movable with respect to the wind power generator 100A. And the information processing apparatus 200 moves to the place which can receive the detection output of the sensor in the wind power generator 100A transmitted from the radio
  • Management server 300 manages the detection output. For example, the management server 300 compares the detection output with a predetermined threshold value, and notifies an abnormality to a predetermined terminal based on the comparison result.
  • the wind turbine generator 100 ⁇ / b> A mainly includes a blade 20, a nacelle 30 (housing), and a support column 40. Inside the nacelle 30, there are equipment of the wind power generator 100A (the main shaft 50, the speed increaser 60, the generator 70 and the main bearing 80), vibration sensors 90A to 90F, a data collection device 110, and a wireless communication device 120. Is arranged.
  • the vibration sensor 90 ⁇ / b> A detects the vibration of the main bearing 80.
  • the vibration sensors 90B, 90C, 90D detect the vibration of the speed increaser 60.
  • the vibration sensors 90E and 90F detect the vibration of the generator 70. In the present specification, when a configuration common to the vibration sensors 90A to 90F is described, the vibration sensors 90A to 90F are collectively referred to as “vibration sensor 90”.
  • the data collection device 110 collects data such as detection results from the vibration sensor 90 and stores the data (for example, temporarily).
  • the wireless communication device 120 transmits the data stored in the data collection device 110 to the information processing device 200.
  • the nacelle 30 is disposed above (that is, at a high place) the support column 40 installed on the ground (not shown).
  • the nacelle 30 can rotate about the axis of the support column 40.
  • the blade 20 is connected to one end of a main shaft 50 protruding outside the nacelle 30.
  • the main shaft 50 is disposed in the nacelle 30.
  • the main shaft 50 can be rotated by the wind force received by the blade 20.
  • the speed increaser 60 is connected to the main shaft 50 at the other end opposite to the one end to which the blade 20 is connected.
  • the speed increaser 60 increases the rotation of the main shaft 50 and outputs the increased rotation of the main shaft 50 to the generator 70 via the output shaft 61.
  • the speed increaser 60 is constituted by a gear speed increasing mechanism including, for example, a planetary gear, an intermediate shaft, a high speed shaft, or the like.
  • the generator 70 is connected to the speed increaser 60 on the side opposite to the main bearing 80.
  • the generator 70 is connected to the speed increaser 60 via the output shaft 61, and generates power by the rotation output from the speed increaser 60.
  • the generator 70 is, for example, an induction generator.
  • the main bearing 80 is disposed adjacent to the speed increaser 60 and supports the main shaft 50 so as to be rotatable around the shaft.
  • the main bearing 80 is a rolling bearing such as a self-aligning roller bearing, a tapered roller bearing, a cylindrical roller bearing, or a ball bearing. These bearings may be single-row or double-row.
  • the rated output of the wind power generator 100A is not particularly limited, but is larger than, for example, 500 kW.
  • the blade 20 is rotated by receiving wind force, so that the main shaft 50 connected to the blade 20 rotates while being supported by the main bearing 80.
  • the rotation of the main shaft 50 is transmitted to the speed increaser 60 to be increased in speed and converted into rotation of the output shaft 61.
  • the rotation of the output shaft 61 is transmitted to the generator 70, and an electromotive force is generated in the generator 70 by electromagnetic induction.
  • the state monitoring system is a system for monitoring the damage and deterioration states of the equipment (the main shaft 50, the speed increaser 60, the generator 70, and the main bearing 80) of the wind turbine generator 100A.
  • the information processing apparatus 200 acquires detection outputs of the vibration sensors 90A to 90F. More specifically, the information processing apparatus 200 moves to a position where the detection outputs of the vibration sensors 90A to 90F can be received by the movement of the vehicle 2 as described above, and acquires the detection output.
  • Each of the vibration sensors 90A to 90F transmits a detection output of each sensor regularly, regularly (every fixed time), or when a preset condition is satisfied.
  • the mode of signal transmission is a mode according to a short-range wireless communication system such as WiFi (Wireless Fidelity).
  • the information processing apparatus 200 transmits the detection output to the management server 300 via the network 900.
  • the network 900 is a public line such as the Internet, for example.
  • the information processing apparatus 200 is connected to the network 900 via, for example, a LAN (Local Area Network).
  • LAN Local Area Network
  • Management server 300 monitors the detection output. Specifically, for example, a control device (a CPU (Central Processing Unit) 31 described later) in the management server 300 analyzes the detection output, displays a result of the analysis, and / or a predetermined terminal. Send to etc. The control device compares the detection output with a preset threshold value, displays the result of the comparison, and / or transmits the result to a predetermined terminal or the like.
  • a control device a CPU (Central Processing Unit) 31 described later
  • the control device compares the detection output with a preset threshold value, displays the result of the comparison, and / or transmits the result to a predetermined terminal or the like.
  • FIG. 7 is a diagram illustrating an example of the hardware configuration of the vibration sensor 90, the data collection device 110, and the wireless communication device 120.
  • the vibration sensor 90 mainly includes a CPU 91 for executing various processes, a memory 92 for storing programs executed by the CPU 91, data, and the like, and the vibration sensor 90. And a data acquisition unit 95 configured by a member for acquiring data related to vibration of the device.
  • the data collection device 110 includes a processor 110A and a memory 110B.
  • the data collection device 110 is connected to each of the vibration sensors 90 by a cable CA01.
  • the processor 110A stores each detection output of the vibration sensor 90 in the memory 110B.
  • the wireless communication device 120 is constituted by a WiFi module capable of communicating by the WiFi method, for example, and is connected to the data collection device 110 by a cable CA02.
  • the processor 110 ⁇ / b> A of the data collection device 110 can transmit data such as the detection output of the vibration sensor 90 to the information processing device 200 via the wireless communication device 120.
  • the wireless communication device 120 constitutes a “communication circuit” in the present invention.
  • the method for monitoring the state of the apparatus provided in 100 A of wind power generators in the state monitoring system includes a server (management server 300) for managing information about the device, sensors (vibration sensors 90A to 90F) provided in the device, and a sensor detection output.
  • a communication circuit wireless communication device 120
  • an information processing device capable of moving with respect to the wind turbine generator are provided.
  • the information processing apparatus may store the detection output in the recording medium 200X (see FIG. 3) instead of transmitting it to the management server 300.
  • the management server 300 may analyze the detection output by reading the detection output stored in the recording medium via the media I / F 37.
  • the state monitoring system may include a plurality of wind power generators 100A.
  • the information processing apparatus 200 can detect a signal (detection output) transmitted by the vibration sensor 90 provided in each of the plurality of wind power generation apparatuses 100 ⁇ / b> A when the vehicle 2 moves. Can move to position.
  • the state monitoring system shown in FIG. 8 includes three wind power generators 100A-1, 100A-2, 100A-3.
  • the information processing apparatus 200 receives detection outputs of the vibration sensors 90A to 90F in the nacelle 30 of the wind power generation apparatus 100A-1 from the wireless communication apparatus 120 when the vehicle is at the position indicated by 2A.
  • the information processing device 200 receives the detection outputs of the vibration sensors 90A to 90F in the nacelle 30 of the wind power generator 100A-2 when the vehicle is at the position indicated by 2B.
  • the information processing device 200 receives the detection outputs of the vibration sensors 90A to 90F in the nacelle 30 of the wind power generator 100A-3 when the vehicle is at the position indicated by 2C.
  • the information processing apparatus 200 receives the detection outputs of the vibration sensors 90A to 90F provided in the wind power generators 100A-1, 100A-2, and 100A-3, respectively. Then, the management server 300 acquires the detection output received by the information processing apparatus 200 via the network 900 or the recording medium 200X.
  • Examples of transmission timing of the detection output from the information processing apparatus 200 to the management server 300 are listed below. However, these are examples, and the transmission timing is not limited to these.
  • the detection output is acquired from the wind power generator 100A (for example, the wind power generators 100A-1, 100A-2, and 100A-3).
  • a vibration sensor was employed as an example of this sensor. Note that the type of the sensor is not limited to the vibration sensor. All types of sensors can be applied to the state monitoring system of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

 風力発電装置(100)は、当該風力発電装置(100)内の機器の状態を検出するための振動センサ(90A~90F)を含む。振動センサ(90A~90F)のそれぞれ検出出力は、情報処理装置(200)へ送信される。情報処理装置(200)は、風力発電装置(100)の支柱(40)内に配置される。情報処理装置(200)は、上記検出出力を、ネットワーク(900)を介して、管理サーバ(300)へ送信する。

Description

状態監視システムおよび状態監視方法
 本開示は、システムの状態の監視に関し、特に、風力発電装置に設けられた機器の状態の監視に関する。
 従来、風力発電装置の運転状態を遠隔地で管理するための種々の技術が提案されてきた。たとえば、特開2002-349415号公報は、遠隔地における風力発電装置の運転状態の監視を容易にするためのローカルエリアネットワークを開示している。当該ローカルエリアネットワークでは、風力発電機、サーバ、および、監視装置が、光ファイバによって接続されている。
 風力発電機において、監視対象の機器がナセル内に収容されている場合、センサの検出データを蓄積したナセル内のデータ収集用の装置とサーバとが、光ファイバ等で接続できない場合があり得る。このような場合、当該装置から、携帯電話回線を利用して、蓄積されたデータがサーバへ送信される場合があった。
 また、ナセル内に収容されている機器の状態を検出するためのセンサの検出データを収集するデータ収集装置が、ナセル内に設置されている場合がある。この場合、当該データ収集装置と、機器に関する情報を管理するためのサーバとが、上記ナセル内のLAN(ローカルエリアネットワーク)を介して既設の光ファイバ等で接続できない状況があり得る。このような状況では、たとえば、センサの検出データをナセル内のデータ収集用の装置に蓄積し、当該装置から、携帯電話回線を利用して、蓄積されたデータがサーバへ送信されることがあった。
特開2002-349415号公報
 上記のように、データ収集用の装置および携帯電話回線が利用された場合、データ収集用の装置の設置に費用が必要となり、さらに、携帯電話回線の利用にも費用が必要となる。さらに、携帯電話回線を利用する送信は、回線における電波の状況によって影響を受ける場合があり、サーバへのデータ送信が滞る場合があり得る。
 また、データ収集装置とサーバとの間の通信のために携帯電話回線が利用された場合、データ収集用の装置の設置に費用が必要となり、さらに、携帯電話回線の使用料金が必要となる。さらに、携帯電話回線を利用する送信は、回線における電波の状況によって影響を受ける場合があり、サーバへのデータ送信が滞る場合があり得る。
 本開示は、かかる実情に鑑み考え出されたものであり、その目的は、風力発電装置に設けられた機器の状態を、低コストでかつ確実に監視するためのシステムを提供することである。
 本開示のある局面に従うと、風力発電装置に設けられた機器の状態を監視するための状態監視システムが提供される。状態監視システムは、機器に関する情報を管理するための管理装置と、風力発電装置に設けられた情報処理装置と、機器に設けられるセンサと、センサの検出出力を、情報処理装置に送信するための第1の通信回路とを備える。情報処理装置は、第1の通信回路から送信された検出出力を、ネットワークを介して、管理装置へ送信するための第2の通信回路を含む。
 好ましくは、第1の通信回路は、近距離無線通信方式で、情報処理装置に、センサの検出出力を送信する。
 好ましくは、風力発電装置は、機器を収容するナセルと、ナセルを支持する支柱とをさらに備える。センサは、ナセル内に収容され、情報処理装置は、支柱内に収容されている。
 本開示の他の局面に従うと、状態監視システムにおいて風力発電装置に設けられた機器の状態を監視するための方法が提供される。状態監視システムは、機器に関する情報を管理するための管理装置と、機器に設けられるセンサと、風力発電装置に設けられた情報処理装置と、センサの検出出力を情報処理装置に送信するための第1の通信回路とを備える。第1の通信回路は、情報処理装置に、センサの検出出力を送信し、情報処理装置は、第1の通信回路から送信された検出出力を、ネットワークを介して、管理装置へ送信する。
 本開示のさらに他の局面に従うと、状態監視システムにおいて風力発電装置に設けられた機器の状態を監視するための方法が提供される。状態監視システムは、機器に関する情報を管理するためのサーバと、機器に設けられるセンサと、センサの検出出力を発信するための通信回路(データ収集装置を含む)と、風力発電装置に対して移動が可能な情報処理装置とを備える。上記方法は、通信回路によって発信される検出出力を受信可能な場所に位置する情報処理装置が、検出出力を受信するステップと、情報処理装置が、検出出力を管理装置に送信するステップとを備える。
 本開示のさらに他の局面に従うと、状態監視システムにおいて風力発電装置に設けられた機器の状態を監視するための方法が提供される。状態監視システムは、機器に設けられるセンサと、センサの検出出力を発信するための通信回路(データ収集装置を含む)と、風力発電装置に対して移動が可能な情報処理装置とを備える。上記方法は、通信回路によって発信される検出出力を受信可能な場所に位置する情報処理装置が、検出出力を受信するステップと、情報処理装置が、記録媒体に検出出力を格納するステップとを備える。
 好ましくは、情報監視システムは、複数の風力発電装置を備える。情報処理装置が検出出力を受信するステップは、情報処理装置は、複数の風力発電装置のそれぞれの機器のセンサのそれぞれの検出出力を受信可能な場所に位置することにより、センサのそれぞれの検出出力を受信することを含む。
 本開示のさらに他の局面に従うと、風力発電装置に設けられた機器の状態を監視するため状態監視システムが提供される。状態監視システムは、機器に関する情報を管理するためのサーバと、機器に設けられるセンサと、センサの検出出力を発信するための第1の通信回路(データ収集装置を含む)と、風力発電装置に対して移動が可能な情報処理装置とを備える。情報処理装置は、第1の通信回路(データ収集装置を含む)によって発信される検出出力を受信可能な場所に位置しているときに、検出出力を受信する第2の通信回路を含む。第2の通信回路は、検出出力をネットワークを介して管理装置に送信する。
 本開示によれば、風力発電装置に設けられた機器にセンサが設けられる。当該センサの検出出力は、風力発電装置に設けられた情報処理装置へ送信される。情報処理装置は、当該センサの検出出力を、ネットワークを経由して、管理装置へと送信する。
 これにより、状態監視システムは、センサの検出出力を蓄積するための特別な装置を必要としない。また、センサの検出出力は、情報処理装置から管理装置に、ネットワークを経由した通信を利用して送信される。このため、状態監視システムは、電話回線を利用する必要がない。したがって、状態監視システムは、そのコストを低減でき、また、センサの検出出力を確実に管理装置へと送信できる。
 また、本開示によれば、風力発電装置に設けられた機器にセンサが設けられる。当該センサの検出出力は、風力発電装置に対して移動可能な情報処理装置へ送信される。
 情報処理装置は、当該センサの検出出力を、ネットワークを経由して、サーバへと送信する。
 また、情報処理装置は、当該センサの検出出力を、記録媒体に格納する。当該記録媒体に格納された検出出力は、サーバにおいて読み出されることにより、解析等の処理に利用され得る。
 これにより、風力発電装置は、センサの検出出力を蓄積するための特別な装置を必要としない。また、センサの検出出力は、情報処理装置からサーバに、ネットワークを経由した通信を利用して送信され、または、記録媒体を介して伝送される。このため、センサの検出出力がサーバへと送られるために、電話回線を利用する必要がない。したがって、状態監視システムは、そのコストを低減でき、また、センサの検出出力を確実にサーバへと送信できる。
第1の実施の形態の状態監視システムの構成の概要の一例を示す図である。 振動センサのハードウェア構成の一例を示す図である。 情報処理装置のハードウェア構成の一例を示す図である。 管理サーバのハードウェア構成の一例を示す図である。 状態監視システムの構成の概要の変形例を示す図である。 第2の実施の形態の状態監視システムの構成の概要の一例を示す図である。 振動センサ、データ収集装置、および、無線通信装置のハードウェア構成の一例を示す図である。 状態監視システムの構成の概要の変形例を示す図である。
 以下、図面を参照しつつ、本開示の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。
 <第1の実施の形態>
 [状態監視システムの概要]
 はじめに、本開示の状態監視システムの第1の実施の形態の構成の概要を説明する。図1は、状態監視システムの構成の概要の一例を示す図である。
 図1に示されるように、状態監視システムは、風力発電装置100と、情報処理装置200と、管理サーバ300とを含む。情報処理装置200は、風力発電装置100内の機器の状態を示す検出出力を取得して、管理サーバ300へと送信する。管理サーバ300は、上記検出出力を管理する。たとえば、管理サーバ300は、管理者が当該検出出力を所定のしきい値と比較し、当該比較の結果に基づいて、所定の端末に以上を通知するためのデータを管理する。
 (風力発電装置100の構成)
 風力発電装置100は、主に、ブレード20と、ナセル30(筐体)と、支柱40とを備える。ナセル30の内部には、風力発電装置100の機器(主軸50、増速機60、発電機70および主軸受80)と、振動センサ90A~90Fとが配置されている。振動センサ90Aは、主軸受80の振動を検出する。振動センサ90B,90C,90Dは、増速機60の振動を検出する。振動センサ90E,90Fは、発電機70の振動を検出する。本明細書では、振動センサ90A~90Fにおいて共通する構成を説明する場合には、振動センサ90A~90Fを「振動センサ90」と総称する。
 ナセル30は、地上(図示しない)に設置された支柱40の上方(すなわち高所)に配置されている。ナセル30は、支柱40の軸周りにおいて回転し得る。ブレード20は、ナセル30の外部に突出した主軸50の一端に接続されている。主軸50は、ナセル30内に配置されている。そして、主軸50は、ブレード20が受ける風力によって回転し得る。
 増速機60は、ブレード20が接続される上記一端とは反対側の他端において、主軸50に接続されている。増速機60は、主軸50の回転を増速し、増速された主軸50の当該回転を出力軸61を介して発電機70へ出力する。増速機60は、たとえば遊星ギヤまたは中間軸、高速軸などを含む歯車増速機構により構成されている。
 発電機70は、主軸受80とは反対側において増速機60に接続されている。発電機70は、出力軸61を介して増速機60に接続され、増速機60から出力された回転により発電する。発電機70は、たとえば誘導発電機である。
 主軸受80は、増速機60に隣接して配置されており、主軸50を軸周りにおいて回転可能に支持する。主軸受80は、転がり軸受であり、たとえば自動調芯ころ軸受、円すいころ軸受、円筒ころ軸受または玉軸受などである。また、これらの軸受は、単列のものでも複列のものでもよい。
 風力発電装置100の定格出力は特に限定されるものではないが、たとえば500kWよりも大きくなっている。
 風力発電装置100では、まず、風力を受けてブレード20が回転することにより、ブレード20に接続された主軸50が主軸受80により支持されつつ回転する。主軸50の当該回転は増速機60に伝達されて増速され、出力軸61の回転に変換される。そして、出力軸61の当該回転は発電機70に伝達され、電磁誘導作用により発電機70において起電力が発生する。
 (状態監視システムの構成)
 次に、状態監視システムの全体的な構成について説明する。状態監視システムは、風力発電装置100の機器(主軸50、増速機60、発電機70および主軸受80)の損傷および劣化状態を監視するためのシステムである。
 まず、状態監視システムでは、情報処理装置200は、振動センサ90A~90Fの検出出力を取得する。より具体的には、情報処理装置200は、支柱40の中に配置されている。そして、振動センサ90A~90Fのそれぞれは、定常的に、定期的(一定時間ごと)に、または、予め設定された条件が成立したときに、情報処理装置200へ、各センサの検出出力を送信する。送信の態様は、たとえば、WiFi(Wireless Fidelity)などの近距離無線通信方式に従っても良いし、有線であってもよい。本明細書では、当該送信の一例として、近距離無線通信方式に従った送信を採用して、説明を行なう。
 そして、情報処理装置200は、ネットワーク900を介して、上記検出出力を管理サーバ300へと送信する。ネットワーク900は、たとえばインターネット等の公衆回線である。情報処理装置200は、たとえばLAN(Local Area Network)を経由してネットワーク900へ接続する。
 管理サーバ300は、上記検出出力を監視する。具体的には、たとえば、管理サーバ300内の制御装置(後述するCPU(Central Processing Unit)31)は、当該検出出力を、表示し、および/または、所定の端末等に送信する。また、上記制御装置は、当該検出出力を、予め設定されたしきい値と比較し、当該比較の結果を、表示し、および/または、所定の端末等に送信する。
 [ハードウェア構成]
 次に、状態監視システムのそれぞれの構成要素のハードウェア構成を説明する。
 (振動センサ90)
 図2は、振動センサ90のハードウェア構成の一例を示す図である。図2に示されるように、振動センサ90は、主に、各種処理を実行するためのCPU(Central Processing Unit)91と、CPU91によって実行されるプログラム、データなどを格納するためのメモリ92と、情報処理装置200等の外部の機器と通信するための無線通信部93と、当該振動センサ90が取り付けられた機器の振動に関するデータを取得するための部材によって構成されるデータ取得部95とを含む。無線通信部93は、たとえばWiFi方式で通信が可能なWiFiモジュールによって構成される。
 (情報処理装置200)
 図3は、情報処理装置200のハードウェア構成の一例を示す図である。
 図3に示されるように、情報処理装置200は、主たる構成要素として、CPU21と、メモリ22と、入力装置23と、ディスプレイ24と、無線通信部25と、通信インターフェイス(I/F)26と、メディアI/F27とを含む。
 CPU21は、メモリ22に記憶されたプログラムを読み出して実行することで、情報処理装置200の各部の動作を制御する。メモリ22は、RAM(Random Access Memory)、ROM(Read-Only Memory)、フラッシュメモリなどによって実現される。
 入力装置23は、たとえば、汎用のコンピュータにおいて使用される、マウスやキーボードなどによって構成される。ユーザは、入力装置23を介して、情報処理装置200に対して、情報を入力できる。ディスプレイ24は、たとえば液晶表示装置やプラズマディスプレイなどの、情報を表示できる装置によって構成される。ディスプレイ24は、たとえば、CPU21による演算結果および情報処理装置200に入力されたデータを含む、各種の情報を表示できる。
 無線通信部25は、WiFi等の近距離無線通信方式に従った無線通信のための信号を送受信する。これにより、情報処理装置200は、振動センサ90から送信された、当該振動センサ90の検出出力を受信する。
 通信I/F26は、ネットワークを介した通信のための通信方式で、管理サーバ300を含む他の通信機器との間で各種データをやり取りするための通信インターフェイスである。通信I/F26は、たとえば、アダプタやコネクタなどによって実現される。
 メディアI/F27は、情報処理装置200に対して着脱可能な記録媒体200Xに記録された情報を読み込む。また、メディアI/F27は、当該記録媒体200Xに情報を書き込む場合もあり得る。記録媒体200Xとしては、たとえば、USB(Universal Serial Bus)メモリ、CD-ROM、フレキシブルディスク、および、フラッシュメモリ等の種々の記録媒体が採用され得る。CPU21は、記録媒体200X内に格納されたプログラムを実行し得る。
 (管理サーバ300)
 図4は、管理サーバ300のハードウェア構成の一例を示す図である。
 図4に示されるように、管理サーバ300は、主たる構成要素として、CPU31と、メモリ32と、入力装置33と、ディスプレイ34と、通信インターフェイス(I/F)36と、メディアI/F37とを含む。
 CPU31は、メモリ32に記憶されたプログラムを読み出して実行することで、管理サーバ300の各部の動作を制御する。メモリ32は、RAM、ROM、フラッシュメモリなどによって実現される。
 入力装置33は、たとえば、汎用のコンピュータにおいて使用される、マウスやキーボードなどによって構成される。ユーザは、入力装置33を介して、管理サーバ300に対して、情報を入力できる。ディスプレイ34は、たとえば液晶表示装置やプラズマディスプレイなどの、情報を表示できる装置によって構成される。ディスプレイ34は、たとえば、CPU31による演算結果および管理サーバ300に入力されたデータを含む、各種の情報を表示できる。
 無線通信部25は、WiFi等の近距離無線通信方式に従った無線通信のための信号を送受信する。これにより、管理サーバ300は、振動センサ90から送信された、当該振動センサ90の検出出力を受信する。
 通信I/F36は、ネットワークを介した通信のための通信方式で、情報処理装置200を含む他の通信機器との間で各種データをやり取りするための通信インターフェイスである。通信I/F36は、たとえば、アダプタやコネクタなどによって実現される。
 メディアI/F37は、管理サーバ300に対して着脱可能な記録媒体300Xに記録された情報を読み込む。また、メディアI/F37は、当該記録媒体300Xに情報を書き込む場合もあり得る。記録媒体300Xとしては、たとえば、USBメモリ、CD-ROM、フレキシブルディスク、および、フラッシュメモリ等の種々の記録媒体が採用され得る。CPU31は、記録媒体300X内に格納されたプログラムを実行し得る。
 [第1の実施の形態のまとめ]
 以上説明した本開示における第1の実施の形態では、状態監視システムは、機器に関する情報を管理するための管理装置(管理サーバ300)と、風力発電装置に設けられた情報処理装置(情報処理装置200)と、機器に設けられるセンサ(振動センサ90A~90Fの無線通信部93以外の部分)とを備える。振動センサ90は、センサの検出出力を、情報処理装置に送信するための第1の通信回路(無線通信部93)を備える。
 本開示では、振動センサ90A~90Fのそれぞれは、無線通信部93を含むように説明されている。なお、無線通信部93は、振動センサ90A~90Fのそれぞれとは別体に設けられていても良い。これにより、通信機能を持たない振動センサ90A~90Fに、無線通信部93を接続させることにより、既存の風力発電装置100を本開示の状態監視システムに適用することができる。
 そして、本開示における第1の実施の形態では、情報処理装置(情報処理装置200)は、第1の通信回路から送信された検出出力を、ネットワークを介して、管理装置(管理サーバ300)へ送信するための第2の通信回路(通信I/F26)を含む。
 振動センサ90A~90Fから情報処理装置200への、各振動センサ90A~90Fの検出出力の送信は、WiFi方式等の近距離無線通信方式によって実現されることが好ましい。これにより、比較的高所に位置するナセル30内の振動センサ90A~90Fのそれぞれを情報処理装置200と有線で接続するための作業、および、当該接続を調整するための作業が省略され得る。ただし、本開示は、振動センサ90と情報処理装置200との間の有線での通信を排除するものではない。
 また、本開示における第1の実施の形態では、情報処理装置200は、支柱40内に配置されていることが好ましい。これにより、比較的高所に設けられるナセル30内に設けられる場合よりも、情報処理装置200を安定した場所に設置できる。ただし、情報処理装置200の設置場所は、振動センサ90と近距離無線通信方式での通信が可能な位置であれば、支柱40内に限定されない。
 本開示における第1の実施の形態では、風力発電装置100毎に、情報処理装置200が設けられた。なお、状態監視システムにおいて複数の風力発電装置100が隣接して設けられる場合であって、或る風力発電装置100内の振動センサ90が、隣接する他の風力発電装置100の支柱40内に設けられた情報処理装置200と、近距離無線通信方式での通信が可能な場合もあり得る。このような場合には、たとえば図5に示されるように、情報処理装置200は、複数の風力発電装置100の振動センサ90から検出出力を受信し、管理サーバ300へ送信し得る。
 情報処理装置200から管理サーバ300への上記検出出力の送信のタイミングの例が、以下に列挙される。ただし、これらは例示であって、送信のタイミングはこれらに限定されない。
 1)情報処理装置200において予め設定された時刻
 2)管理サーバ300から送信を要求されたとき
 図5に示された状態監視システムは、風力発電装置100Aと、風力発電装置100Aに隣接する風力発電装置100Bとを含む。図5に示された状態監視システムでは、風力発電装置100Aの支柱40内に設けられた情報処理装置200は、風力発電装置100Aのナセル30内の振動センサ90から送信される検出出力と、風力発電装置100Bのナセル30内の振動センサ90から送信される検出出力とを受信する。なお、風力発電装置100Aの支柱40内に設けられた情報処理装置20は、風力発電装置100Bのナセル30内の振動センサ90から送信される信号を受信可能な位置に配置されている。つまり、図5に示された例では、風力発電装置100Aと風力発電装置100Bとの間隔は、上記情報処理装置20が、風力発電装置100Bのナセル30内の振動センサ90から送信される信号を受信可能なものとされている。
 本開示では、風力発電装置100に設けられた機器の状態を検出するためのセンサの例示として、振動センサが採用された。なお、上記センサの種類は、振動センサに限定されない。本開示の状態監視システムには、あらゆる種類のセンサが適用され得る。
 <第2の実施の形態>
 [状態監視システムの概要]
 はじめに、本開示の状態監視システムの一実施の形態の構成の概要を説明する。図6は、状態監視システムの構成の概要の一例を示す図である。図6に示されるように、状態監視システムは、風力発電装置100Aと、情報処理装置200と、管理サーバ300とを含む。
 情報処理装置200は、アンテナ25Aを備え、車両2に搭載されており、また、風力発電装置100Aに対して移動可能である。そして、情報処理装置200は、車両2が移動することにより、無線通信装置120から送信される風力発電装置100A内のセンサの検出出力を受信可能な場所まで移動する。そして、情報処理装置200は、当該検出出力を取得し、そして、当該検出出力を管理サーバ300へと送信する。
 管理サーバ300は、上記検出出力を管理する。たとえば、管理サーバ300は、当該検出出力を所定のしきい値と比較し、当該比較の結果に基づいて、所定の端末に異常を通知する。
 (風力発電装置100Aの構成)
 風力発電装置100Aは、主に、ブレード20と、ナセル30(筐体)と、支柱40とを備える。ナセル30の内部には、風力発電装置100Aの機器(主軸50、増速機60、発電機70および主軸受80)と、振動センサ90A~90Fと、データ収集装置110と、無線通信装置120とが配置されている。振動センサ90Aは、主軸受80の振動を検出する。振動センサ90B,90C,90Dは、増速機60の振動を検出する。振動センサ90E,90Fは、発電機70の振動を検出する。本明細書では、振動センサ90A~90Fにおいて共通する構成を説明する場合には、振動センサ90A~90Fを「振動センサ90」と総称する。
 データ収集装置110は、振動センサ90における検出結果等のデータを収集し、当該データを(たとえば一時的に)格納する。無線通信装置120は、データ収集装置110に蓄積されたデータを、情報処理装置200へ送信する。
 ナセル30は、地上(図示しない)に設置された支柱40の上方(すなわち高所)に配置されている。ナセル30は、支柱40の軸周りにおいて回転し得る。ブレード20は、ナセル30の外部に突出した主軸50の一端に接続されている。主軸50は、ナセル30内に配置されている。そして、主軸50は、ブレード20が受ける風力によって回転し得る。
 増速機60は、ブレード20が接続される上記一端とは反対側の他端において、主軸50に接続されている。増速機60は、主軸50の回転を増速し、増速された主軸50の当該回転を出力軸61を介して発電機70へ出力する。増速機60は、たとえば遊星ギヤまたは中間軸、高速軸などを含む歯車増速機構により構成されている。
 発電機70は、主軸受80とは反対側において増速機60に接続されている。発電機70は、出力軸61を介して増速機60に接続され、増速機60から出力された回転により発電する。発電機70は、たとえば誘導発電機である。
 主軸受80は、増速機60に隣接して配置されており、主軸50を軸周りにおいて回転可能に支持する。主軸受80は、転がり軸受であり、たとえば自動調芯ころ軸受、円すいころ軸受、円筒ころ軸受または玉軸受などである。また、これらの軸受は、単列のものでも複列のものでもよい。
 風力発電装置100Aの定格出力は特に限定されるものではないが、たとえば500kWよりも大きくなっている。
 風力発電装置100Aでは、まず、風力を受けてブレード20が回転することにより、ブレード20に接続された主軸50が主軸受80により支持されつつ回転する。主軸50の当該回転は増速機60に伝達されて増速され、出力軸61の回転に変換される。そして、出力軸61の当該回転は発電機70に伝達され、電磁誘導作用により発電機70において起電力が発生する。
 (状態監視システムの構成)
 次に、状態監視システムの全体的な構成について説明する。状態監視システムは、風力発電装置100Aの機器(主軸50、増速機60、発電機70および主軸受80)の損傷および劣化状態を監視するためのシステムである。
 まず、状態監視システムでは、情報処理装置200は、振動センサ90A~90Fの検出出力を取得する。より具体的には、情報処理装置200は、上記のように車両2の移動によって、振動センサ90A~90Fの検出出力を受信可能な位置まで移動し、そして、当該検出出力を取得する。なお、振動センサ90A~90Fのそれぞれは、定常的に、定期的(一定時間ごと)に、または、予め設定された条件が成立したときに、各センサの検出出力を発信する。信号の発信の態様は、たとえば、WiFi(Wireless Fidelity)などの近距離無線通信方式に従った態様である。
 そして、情報処理装置200は、ネットワーク900を介して、上記検出出力を管理サーバ300へと送信する。ネットワーク900は、たとえばインターネット等の公衆回線である。情報処理装置200は、たとえばLAN(Local Area Network)を経由してネットワーク900へ接続する。
 管理サーバ300は、上記検出出力を監視する。具体的には、たとえば、管理サーバ300内の制御装置(後述するCPU(Central Processing Unit)31)は、当該検出出力を解析し、当該解析の結果を、表示し、および/または、所定の端末等に送信する。また、上記制御装置は、当該検出出力を、予め設定されたしきい値と比較し、当該比較の結果を、表示し、および/または、所定の端末等に送信する。
 [ハードウェア構成]
 次に、状態監視システムのそれぞれの構成要素のハードウェア構成を説明する。
 (振動センサ90、データ収集装置110、および、無線通信装置120)
 図7は、振動センサ90、データ収集装置110、および、無線通信装置120のハードウェア構成の一例を示す図である。図7に示されるように、振動センサ90は、主に、各種処理を実行するためのCPU91と、CPU91によって実行されるプログラム、データなどを格納するためのメモリ92と、当該振動センサ90が取り付けられた機器の振動に関するデータを取得するための部材によって構成されるデータ取得部95とを含む。
 データ収集装置110は、プロセッサ110Aと、メモリ110Bとを含む。データ収集装置110は、振動センサ90のそれぞれとケーブルCA01で接続されている。プロセッサ110Aは、振動センサ90のそれぞれの検出出力を、メモリ110Bに格納する。
 無線通信装置120は、たとえばWiFi方式で通信が可能なWiFiモジュールによって構成され、ケーブルCA02によってデータ収集装置110と接続されている。データ収集装置110のプロセッサ110Aは、無線通信装置120を介して、振動センサ90の検出出力等のデータを情報処理装置200へ送信することができる。無線通信装置120によって、本発明における「通信回路」が構成される。
 (情報処理装置200および管理サーバ300)
 第2の実施の形態の情報処理装置200および管理サーバ300のハードウェア構成の一例は、図3および図4に示され得る。
 [第2の実施の形態のまとめ]
 第2の実施の形態では、状態監視システムにおいて風力発電装置100Aに設けられた機器の状態を監視するための方法が提供される。より具体的には、状態監視システムは、機器に関する情報を管理するためのサーバ(管理サーバ300)と、機器に設けられるセンサ(振動センサ90A~90F)と、センサの検出出力を発信するための通信回路(無線通信装置120)と、風力発電装置に対して移動が可能な情報処理装置(情報処理装置200)とを備える。通信回路によって発信される検出出力を受信可能な場所に位置するときに、情報処理装置は、上記検出出力を受信する。そして、情報処理装置は、上記検出出力を、管理装置に送信する。
 なお、情報処理装置は、上記検出出力を、管理サーバ300に送信する代わりに、記録媒体200X(図3参照)に格納しても良い。状態監視システムでは、管理サーバ300は、当該記録媒体に格納された検出出力をメディアI/F37を介して読み込むことにより、当該検出出力の解析等を行なっても良い。
 また、状態監視システムは、複数の風力発電装置100Aを備えていても良い。図8に示されるように、情報処理装置200は、車両2が移動することにより、上記複数の風力発電装置100Aのそれぞれに設けられた振動センサ90が発信する信号(検出出力)を検出可能な位置へ移動し得る。
 より具体的には、図8に示された状態監視システムは、3台の風力発電装置100A-1,100A-2,100A-3を含む。情報処理装置200は、車両が2Aに示された位置にあるときに、無線通信装置120から、風力発電装置100A-1のナセル30内の振動センサ90A~90Fの検出出力を受信する。
 次に、車両2は、矢印R1に沿って移動することにより、車両2Aで示される位置から車両2Bで示される位置へと移動する。情報処理装置200は、車両が2Bに示された位置にあるときに、風力発電装置100A-2のナセル30内の振動センサ90A~90Fの検出出力を受信する。
 次に、車両2は、矢印R2に沿って移動することにより、車両2Bで示される位置から車両2Cで示される位置へと移動する。情報処理装置200は、車両が2Cに示された位置にあるときに、風力発電装置100A-3のナセル30内の振動センサ90A~90Fの検出出力を受信する。
 以上より、情報処理装置200は、風力発電装置100A-1,100A-2,100A-3のそれぞれに設けられた振動センサ90A~90Fの検出出力を受信する。そして、管理サーバ300は、情報処理装置200が受信した検出出力を、ネットワーク900を介して、または、記録媒体200Xを介して、取得する。
 情報処理装置200から管理サーバ300への上記検出出力の送信のタイミングの例が、以下に列挙される。ただし、これらは例示であって、送信のタイミングはこれらに限定されない。
 1)情報処理装置200が上記検出出力を取得した直後
 2)情報処理装置200において予め設定された時刻
 3)管理サーバ300から送信を要求されたとき
 4)情報処理装置200が予定されているすべての風力発電装置100A(たとえば、風力発電装置100A-1,100A-2,および100A-3)から検出出力を取得したとき
 本開示では、風力発電装置100Aに設けられた機器の状態を検出するためのセンサの例示として、振動センサが採用された。なお、上記センサの種類は、振動センサに限定されない。本開示の状態監視システムには、あらゆる種類のセンサが適用され得る。
 今回開示された実施の形態およびその変形例はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 20 ブレード、25,93 無線通信部、25A アンテナ、26,36 通信I/F、30 ナセル、40 支柱、50 主軸、60 増速機、61 出力軸、70 発電機、80 主軸受、90,90A~90F 振動センサ、95 データ取得部、100,100A 風力発電装置、200 情報処理装置、200X,300X 記録媒体、300 管理サーバ、900 ネットワーク。

Claims (8)

  1.  風力発電装置に設けられた機器の状態を監視するための状態監視システムであって、
     前記機器に関する情報を管理するための管理装置と、
     前記風力発電装置に設けられた情報処理装置と、
     前記機器に設けられるセンサと、
     前記センサの検出出力を、前記情報処理装置に送信するための第1の通信回路とを備え、
     前記情報処理装置は、前記第1の通信回路から送信された検出出力を、ネットワークを介して、前記管理装置へ送信するための第2の通信回路を含む、状態監視システム。
  2.  前記第1の通信回路は、近距離無線通信方式で、前記第2の通信回路に、前記センサの検出出力を送信する、請求項1に記載の情報監視システム。
  3.  前記機器を収容するナセルと、
     前記ナセルを支持する支柱とをさらに備え、
     前記センサは、前記ナセル内に収容され、
     前記情報処理装置は、前記支柱内に収容されている、請求項1または請求項2に記載の状態監視システム。
  4.  状態監視システムにおいて風力発電装置に設けられた機器の状態を監視するための方法であって、
     前記状態監視システムは、前記機器に関する情報を管理するための管理装置と、前記機器に設けられるセンサと、前記風力発電装置に設けられた情報処理装置と、前記センサの検出出力を前記情報処理装置に送信するための第1の通信回路とを備え、
     前記第1の通信回路は、前記情報処理装置に、前記センサの検出出力を送信し、
     前記情報処理装置は、前記第1の通信回路から送信された検出出力を、ネットワークを介して、前記管理装置へ送信する、状態監視方法。
  5.  状態監視システムにおいて風力発電装置に設けられた機器の状態を監視するための方法であって、
     前記状態監視システムは、前記機器に関する情報を管理するための管理装置と、前記機器に設けられるセンサと、前記センサの検出出力を発信するための通信回路と、前記風力発電装置に対して移動が可能な情報処理装置とを備え、
     前記通信回路によって発信される前記検出出力を受信可能な場所に位置する前記情報処理装置が、前記検出出力を受信するステップと、
     前記情報処理装置が、前記検出出力を前記管理装置に送信するステップとを備える、状態監視方法。
  6.  状態監視システムにおいて風力発電装置に設けられた機器の状態を監視するための方法であって、
     前記状態監視システムは、前記機器に設けられるセンサと、前記センサの検出出力を発信するための通信回路と、前記風力発電装置に対して移動が可能な情報処理装置とを備え、
     前記通信回路によって発信される前記検出出力を受信可能な場所に位置する前記情報処理装置が、前記検出出力を受信するステップと、
     前記情報処理装置が、記録媒体に前記検出出力を格納するステップとを備える、状態監視方法。
  7.  前記状態監視システムは、複数の前記風力発電装置を備え、
     前記情報処理装置が前記検出出力を受信するステップは、前記情報処理装置は、複数の前記風力発電装置のそれぞれの前記機器の前記センサのそれぞれの検出出力を受信可能な場所に位置することにより、前記センサのそれぞれの検出出力を受信することを含む、請求項5または請求項6に記載の状態監視方法。
  8.  風力発電装置に設けられた機器の状態を監視するため状態監視システムであって、
     前記機器に関する情報を管理するための管理装置と、
     前記機器に設けられるセンサと、
     前記センサの検出出力を発信するための第1の通信回路と、
     前記風力発電装置に対して移動が可能な情報処理装置とを備え、
     前記情報処理装置は、前記第1の通信回路によって発信される前記検出出力を受信可能な場所に位置しているときに、前記検出出力を受信する第2の通信回路を含み、
     前記第2の通信回路は、前記検出出力をネットワークを介して前記管理装置に送信する、状態監視システム。
PCT/JP2015/056159 2014-03-11 2015-03-03 状態監視システムおよび状態監視方法 WO2015137189A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15760846.4A EP3118451A4 (en) 2014-03-11 2015-03-03 Status monitoring system and status monitoring method
US15/124,540 US20170016429A1 (en) 2014-03-11 2015-03-03 Condition monitoring system and condition monitoring method
CN201580012746.7A CN106103982A (zh) 2014-03-11 2015-03-03 状态监视系统和状态监视方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014047722A JP2015172342A (ja) 2014-03-11 2014-03-11 状態監視システムおよび状態監視方法
JP2014-047722 2014-03-11
JP2014-058414 2014-03-20
JP2014058414A JP2015185905A (ja) 2014-03-20 2014-03-20 状態監視方法および状態監視システム

Publications (1)

Publication Number Publication Date
WO2015137189A1 true WO2015137189A1 (ja) 2015-09-17

Family

ID=54071637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056159 WO2015137189A1 (ja) 2014-03-11 2015-03-03 状態監視システムおよび状態監視方法

Country Status (4)

Country Link
US (1) US20170016429A1 (ja)
EP (1) EP3118451A4 (ja)
CN (1) CN106103982A (ja)
WO (1) WO2015137189A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105673333A (zh) * 2015-11-17 2016-06-15 北京恒泰实达科技股份有限公司 风力发电机运行状态展示方法
WO2018077965A1 (en) * 2016-10-27 2018-05-03 Siemens Convergence Creators Gmbh Method for the extension of mission critical voice- and/or data services for wind turbines
JP2019173706A (ja) * 2018-03-29 2019-10-10 Ntn株式会社 風力発電所の監視システム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016108673A1 (ko) * 2014-12-31 2016-07-07 엘지전자 주식회사 상향링크 제어 정보 전송 방법 및 사용자기기와, 상향링크 제어 정보 수신 방법 및 기지국
WO2020195691A1 (ja) * 2019-03-28 2020-10-01 Ntn株式会社 状態監視システム
CN113701878B (zh) * 2021-09-09 2022-09-16 淮阴工学院 风力发电设备的振动监测处理装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153010A (ja) * 2006-12-15 2008-07-03 Toko Electric Corp ブレード雷撃監視装置および雷撃監視システム
US20120065901A1 (en) * 2009-11-16 2012-03-15 Nrg Systems, Inc. Data acquisition system for condition-based maintenance
JP3176292U (ja) * 2012-04-03 2012-06-14 オーパック株式会社 風力発電設備の故障防止システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110020122A1 (en) * 2009-07-24 2011-01-27 Honeywell International Inc. Integrated condition based maintenance system for wind turbines
US7933744B2 (en) * 2009-08-28 2011-04-26 General Electric Company System and method for managing wind turbines and enhanced diagnostics
US8041540B2 (en) * 2009-12-09 2011-10-18 General Electric Company System, device, and method for acoustic and visual monitoring of a wind turbine
CN102108936B (zh) * 2009-12-25 2014-07-02 通用电气公司 用于监视和控制风机场的系统和方法
US8123478B2 (en) * 2010-05-26 2012-02-28 General Electric Company Systems and methods for monitoring a condition of a rotor blade for a wind turbine
ES2727248T3 (es) * 2011-08-31 2019-10-15 Woelfel Eng Gmbh Co Kg Procedimiento y dispositivo para el monitoreo de estado de palas de rotor
CN104067011B (zh) * 2011-11-23 2017-07-28 Skf公司 旋转系统状态监控装置与方法、计算机可读媒介和管理服务器
EP2824324B1 (en) * 2012-03-08 2018-05-02 NTN Corporation State monitor system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153010A (ja) * 2006-12-15 2008-07-03 Toko Electric Corp ブレード雷撃監視装置および雷撃監視システム
US20120065901A1 (en) * 2009-11-16 2012-03-15 Nrg Systems, Inc. Data acquisition system for condition-based maintenance
JP3176292U (ja) * 2012-04-03 2012-06-14 オーパック株式会社 風力発電設備の故障防止システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3118451A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105673333A (zh) * 2015-11-17 2016-06-15 北京恒泰实达科技股份有限公司 风力发电机运行状态展示方法
CN105673333B (zh) * 2015-11-17 2018-06-15 北京恒泰实达科技股份有限公司 风力发电机运行状态展示方法
WO2018077965A1 (en) * 2016-10-27 2018-05-03 Siemens Convergence Creators Gmbh Method for the extension of mission critical voice- and/or data services for wind turbines
JP2019173706A (ja) * 2018-03-29 2019-10-10 Ntn株式会社 風力発電所の監視システム
JP7101013B2 (ja) 2018-03-29 2022-07-14 Ntn株式会社 風力発電所の監視システム

Also Published As

Publication number Publication date
US20170016429A1 (en) 2017-01-19
CN106103982A (zh) 2016-11-09
EP3118451A4 (en) 2017-11-15
EP3118451A1 (en) 2017-01-18

Similar Documents

Publication Publication Date Title
WO2015137189A1 (ja) 状態監視システムおよび状態監視方法
EP1959134B1 (en) Method and system for utilizing lateral tower acceleration to detect asymmetric icing
DK2333329T3 (en) System, apparatus, and method for acoustic and visual monitoring of a wind turbine
CN107850051B (zh) 用于风力涡轮发电机的状态监视系统
DK2199606T3 (en) A method for determining a possibility of icing on a wind turbine blade
JP6250345B2 (ja) 監視システムおよび監視方法
EP2728175A1 (en) Operation monitoring system, operation monitoring method, and program
EP1936186A2 (en) Wind turbine and method of detecting asymmetric icing on a wind turbine
CN103809556A (zh) 风机状态监控系统和方法
JP6958068B2 (ja) 回転機械設備の異常診断システム及び異常診断方法
JP6407553B2 (ja) 状態監視システム
CN203673317U (zh) 风机状态监控系统
US8662842B2 (en) Method and system for utilizing rotorspeed acceleration to detect asymmetric icing
CN103162805A (zh) 一种具有视听功能的风力发电机组状态监测系统
EP4212722A1 (en) Abnormality determination method for wind power generation device. abnormality determination system for wind power generation device, and abnormality determination program for wind power generation device
JP2015185905A (ja) 状態監視方法および状態監視システム
JP5878089B2 (ja) モニタリング方法およびモニタリング装置
JP2015172342A (ja) 状態監視システムおよび状態監視方法
KR101314716B1 (ko) 앱기반 풍력발전기 체크시스템
JP2015045584A (ja) 振動信号取得装置及び振動監視システム
JP2015183628A (ja) 状態監視システム
JP2017101596A (ja) 風力発電装置の診断車両及びそれを備えた診断システム
WO2024062690A1 (ja) データ処理装置、物理量計測装置、データ処理システム、及び、データ処理方法
JP2018159649A (ja) 状態監視システムおよび状態監視方法
CN103727910A (zh) 风力发电机远程状态监测系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15760846

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15124540

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015760846

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015760846

Country of ref document: EP