WO2015136683A1 - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
WO2015136683A1
WO2015136683A1 PCT/JP2014/056818 JP2014056818W WO2015136683A1 WO 2015136683 A1 WO2015136683 A1 WO 2015136683A1 JP 2014056818 W JP2014056818 W JP 2014056818W WO 2015136683 A1 WO2015136683 A1 WO 2015136683A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
lithium ion
ion secondary
positive electrode
battery
Prior art date
Application number
PCT/JP2014/056818
Other languages
French (fr)
Japanese (ja)
Inventor
宏文 ▲高▼橋
安藤 慎輔
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/056818 priority Critical patent/WO2015136683A1/en
Publication of WO2015136683A1 publication Critical patent/WO2015136683A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a non-aqueous secondary battery, for example, a high energy density lithium ion secondary battery suitable for use in portable equipment, electric vehicles, power storage and the like.
  • a lithium ion secondary battery using a carbon material as a negative electrode active material can form a film on the surface of the negative electrode due to a side reaction associated with the negative electrode charging reaction at the first charge after the battery is manufactured.
  • an alloy negative electrode active material containing silicon and tin which has been actively studied as a high capacity negative electrode active material in recent years, has a larger amount of side reactions than the carbon material.
  • Patent Document 1 discloses that at least one of the positive electrode, the negative electrode, and the separator is formed with an alkali metal powder layer present on the surface, and the alkali metal powder layer is “It is formed by a step of coating an alkali metal composition on a current collector on which a polymer film or an active material layer is formed and a step of drying the coated polymer film or current collector”.
  • a lithium secondary battery is disclosed.
  • Patent Document 1 aims to “provide a lithium secondary battery exhibiting an excellent energy density by reducing the initial irreversible capacity during charging and discharging of the battery”.
  • Patent Document 2 discloses a technique of “making a lithium powder exist on the separator surface” and aims to “obtain a non-aqueous electrolyte secondary battery with high initial efficiency and high cycle retention”.
  • lithium powder a material having an environmentally stable surface, for example, organic rubber such as NBR (nitrile butadiene rubber) and SBR (styrene butadiene rubber), organic resin such as EVA (ethylene vinyl alcohol copolymer resin), and Li 2
  • organic rubber such as NBR (nitrile butadiene rubber) and SBR (styrene butadiene rubber)
  • organic resin such as EVA (ethylene vinyl alcohol copolymer resin)
  • Li 2 A technique using a “stabilized lithium powder” coated with an inorganic compound such as a metal carbonate such as CO 3 is disclosed.
  • the amount of lithium added is determined after the initial efficiency of the negative electrode is obtained, so that “deterioration of lithium powder does not proceed even in a dry room with a dew point of ⁇ 40 ° C.” and the amount of lithium added is too large. Therefore, an object of the present invention is to provide a non-aqueous electrolyte secondary battery that does not “deposit lithium on the negative electrode and conversely reduce
  • Patent Document 3 additionally supplies an additive into a battery by “breaking the electrolyte additive-containing capsule with a T-shaped jig or the like and pushing the additive into the electrolyte”. Techniques to do this are disclosed.
  • Patent Document 3 is “addition of an electrolytic solution additive for forming a new SEI after the deteriorated film is removed, and reforming the SEI”.
  • the purpose is to “suppress performance degradation due to growth of the coating film, etc., in particular, reduction in output due to resistance rise”.
  • the approach of lithium supply as in the prior art is aimed at eliminating the initial irreversible capacity of the positive electrode and / or negative electrode active material.
  • the side reaction proceeds not only in the initial stage but also in the subsequent storage state and use state, for example, during storage in a relatively high temperature environment, or with a large number of charge / discharge cycles.
  • a new phenomenon occurs in which lithium ions are fixed in the negative electrode.
  • the capacity of the battery is reduced due to the potential of the positive electrode or the negative electrode being shifted to the high potential side and the charge / discharge range being reduced.
  • the positive electrode and the metal lithium react before the first charge, and the positive electrode falls into an overdischarged state and there is a concern that the battery characteristics may deteriorate. .
  • the present invention has been made in view of the above problems, and the object of the present invention is to prevent the positive electrode from being overdischarged before the initial charge, and at the time of storage in a relatively high temperature environment, To eliminate capacity reduction due to side reactions that have progressed with the use of the battery, such as charge / discharge cycles, and to add an electrolyte additive that can suppress further side reactions by a mechanism that does not include moving parts
  • An object of the present invention is to provide a lithium ion secondary battery capable of extending the battery life.
  • a lithium ion secondary battery of the present invention includes an electrode group in which electrodes and separators are alternately arranged, a battery can in which the electrode group is stored, and a life extension that is arranged in the battery can.
  • the electrode is connected to the life extension material through a switch.
  • the present invention it is possible to supply lithium ions to the positive electrode and / or the negative electrode, and it is possible to improve the capacity drop due to the lithium ions being fixed in the negative electrode by a side reaction. Moreover, it becomes possible to supply an electrolyte solution additive at an appropriate timing, and it is possible to ensure a necessary amount of the electrolyte solution additive even at the time of battery deterioration without excessive addition at the initial stage.
  • FIG. 3 is an exploded perspective view showing the lithium ion secondary battery in Example 1 in a partial cross section.
  • Sectional drawing which shows typically the structure of the positive electrode in Example 1, and an ion supply part.
  • Charge / discharge characteristics of positive electrode and negative electrode before occurrence of capacity reduction of lithium ion secondary battery in Example 1 Charge / discharge characteristics of the positive electrode and the negative electrode before and after the decrease in capacity of the lithium ion secondary battery in Example 1
  • Sectional drawing which shows typically the structure which has arrange
  • Sectional drawing which shows typically the structure of the negative electrode in Example 2, and an ion supply part.
  • Sectional drawing which shows typically the structure which provided the positive electrode in Example 3, and the some electrolyte solution supply part. Sectional drawing which shows typically the structure of the negative electrode in Example 4, and several electrolyte solution supply part.
  • the system configuration in this embodiment The flowchart which shows the charging / discharging control method of this embodiment. Sectional drawing of the lithium ion secondary battery of this embodiment.
  • FIG. 1 is an exploded perspective view showing a configuration of the lithium ion secondary battery in the present embodiment in a partial cross section.
  • the lithium ion secondary battery C1 is a cylindrical wound type that is mounted on, for example, a hybrid vehicle or an electric vehicle, and as shown in FIG.
  • the wound electrode group 8 is housed.
  • the electrode group 8 includes a belt-like positive electrode 11 and a negative electrode 21 which are layered with a porous and insulating separator 10 interposed therebetween and wound around a resin-made shaft core 7. It is configured by fixing the separator 10 with a tape.
  • the positive electrode 11 has a positive electrode foil 12 made of an aluminum foil and a positive electrode mixture layer 13 coated on both surfaces of the positive electrode foil 12.
  • a plurality of positive electrode tabs 12a are provided on the upper long side of the positive electrode foil 12 in the figure.
  • the negative electrode 21 has a negative electrode foil 22 made of copper foil and a negative electrode mixture layer 23 coated on both surfaces of the copper foil 22.
  • a plurality of negative electrode tabs 22a are provided on the long side of the negative electrode foil 22 in the lower part of the figure.
  • the positive electrode current collector plate 5 and the negative electrode current collector plate 6 are fixed to both ends of the tubular shaft core 7 by fitting.
  • a positive electrode tab 12a is welded to the positive electrode current collector plate 5 by, for example, an ultrasonic welding method.
  • the negative electrode tab 22a is welded to the negative electrode current collector plate 6 by, for example, an ultrasonic welding method.
  • a positive electrode current collector plate 5 and a negative electrode current collector plate 6 are attached and housed in an electrode group 8 wound around a resin shaft 7. Yes.
  • the electrolytic solution is also injected into the battery can 1.
  • a gasket 2 is provided between the battery can 1 and the upper lid case 3b. The gasket 2 seals the opening of the battery can 1 and electrically insulates it.
  • the upper lid 3 includes an upper lid 3a and an upper lid case 3b.
  • One of the positive electrode leads 9 is welded to the upper lid case 3 b and the other is welded to the positive electrode current collector plate 5, whereby the upper lid portion 3 and the positive electrode of the electrode group 8 are electrically connected.
  • the positive electrode mixture layer 13 includes a positive electrode mixture containing a positive electrode active material, a conductive agent, and a binder.
  • the negative electrode mixture layer 23 includes a negative electrode active material, a negative electrode binder resin, and a thickener.
  • a negative electrode mixture containing The positive electrode mixture layer 13 and the negative electrode mixture layer 23 are prepared by preparing a dispersed solution of substances constituting the mixture, applying the mixture slurry onto a metal foil, drying, and pressing after drying. Formed by.
  • Examples of the coating method include a slit die coating method and a roll coating method. Further, N-methylpyrrolidone (NMP), water or the like can be used as a solvent for the dispersion solution. Furthermore, examples of the drying method include hot air circulation, infrared heating, and a mixing method thereof. As a pressing method, it is possible to press and compress from both sides of the electrode with a cylindrical metal roller from both sides of the electrode.
  • the positive electrode 11 uses LiCoO 2 as the positive electrode active material. Then, 7% by weight of acetylene black as a conductive agent and 5% by weight of polyvinylidene fluoride (PVDF) as a binder are added to the positive electrode active material, and N-methyl-2-pyrrolidone is added thereto and mixed. A slurry was prepared. This positive electrode mixture slurry is applied to both surfaces of the positive electrode foil 12 which is an aluminum foil having a thickness of 25 ⁇ m (FIG. 2 shows only one side. For simplification, the mixture layer is shown only on one side in the following drawings). By drying and pressing and cutting, the positive electrode mixture was bound to both surfaces of the positive electrode foil 12 to form the positive electrode mixture layer 13, thereby forming the positive electrode 11.
  • PVDF polyvinylidene fluoride
  • the negative electrode 21 uses non-graphitizable carbon as a negative electrode active material. Then, 8 wt% of PVDF as a binder was added to the negative electrode active material, and N-methyl-2-pyrrolidone was added thereto and mixed to prepare a negative electrode mixture slurry.
  • the negative electrode mixture slurry is applied to both surfaces of a negative electrode foil 22 which is a copper foil having a thickness of 10 ⁇ m, dried, pressed and cut, thereby binding the negative electrode mixture to both surfaces of the negative electrode foil 22 and negative electrode mixture.
  • the layer 23 was formed and used as the negative electrode 21.
  • One feature of the present invention is that the life extending member is connected to the electrode through a switch.
  • FIG. 2 is a cross-sectional view schematically showing the configuration of the positive electrode 11 and the ion supply unit 31 in the present embodiment, using the ion supply unit 31 as the life extension material 203.
  • the positive electrode 11 is provided with an ion supply unit 31.
  • the ion supply unit 31 has a configuration for supplying ions of the same type as ions responsible for charge / discharge when electrically connected to the positive electrode 11.
  • the specific configuration of the ion supply unit 31 is, for example, a configuration made of metallic lithium or silicon or a compound of tin and lithium.
  • the ion supply unit 31 is connected to the positive electrode foil 12 of the positive electrode 11 via the switch 40 and the wiring 41. Since the switch 40 and the wiring 41 are at the potential of the positive electrode 11 or the ion supply unit 31, it is necessary to use a material that is stable in these states.
  • aluminum is used as the wiring member on the positive electrode 11 side inside the switch 40 from the positive electrode that is always at the positive electrode potential, and the wiring 41 on the ion supply unit 31 side that is affected by the positive electrode potential only when the switch 40 is operated is oxidation resistant.
  • High-quality stainless steel was used.
  • the wiring is other than the above, it is possible to prevent oxidation or reductive decomposition by cutting off the contact with the electrolytic solution. Therefore, if the wiring is coated, various metals can be used as the wiring. .
  • FIG. 12 shows a specific arrangement relationship of the ion supply unit 31.
  • the ion supply unit 31 was made of about 1 mm square metal lithium.
  • the ion supply unit 31 is fixed to the exposed portion of the positive foil 12 with an electrolyte solution-resistant tape (not shown) through the switch 40.
  • an electrolyte solution-resistant tape not shown
  • the ion supply unit 31 since the ion supply unit 31 is in contact with the positive electrode via the switch 40 that can switch electrical connection, the ion supply unit 31 does not react with the positive electrode 11 if the switch 40 is turned off, and the ion supply unit 31 changes to the positive electrode 11. Lithium ions are never supplied.
  • the switch 40 is turned off to prevent a reaction between metallic lithium and the positive electrode, and unlike the case where metallic lithium is simply added to the positive electrode, the positive electrode 11 is overdischarged before the first charge. It will not reach.
  • the ion supply source 31 is brought into contact with the electrolyte while being electrically connected to the positive electrode 11, and the reaction between the positive electrode 11 and the ion supply source 31 is started.
  • the irreversible capacity due to the initial side reaction of the negative electrode 21 can be eliminated by supplying lithium ions from the ion supply source 31 to the positive electrode 11.
  • the structure in which the ion supply unit 31 (or electrolytic solution additive supply unit 34) is disposed on the positive electrode foil 12 has been described.
  • the ion supply unit 31 (or electrolytic solution additive supply) is provided on the negative electrode foil 22. Even with the structure in which the portion 34) is disposed, it is possible to reduce the size of the lithium ion secondary battery while preventing a decrease in capacity.
  • FIG. 3 is a graph showing charge / discharge curves of the positive electrode and the negative electrode before the capacity reduction of the lithium ion secondary battery occurs.
  • the upper curve shows the charge / discharge characteristics of the positive electrode
  • the lower curve shows the charge / discharge characteristics of the negative electrode.
  • FIG. 4 is a graph showing the charge / discharge characteristics of the positive electrode and the negative electrode after the capacity reduction occurs according to the storage state and use state.
  • the white circles in FIG. 4 are values before the occurrence of capacity reduction, and the black circles are values after the occurrence of capacity reduction.
  • a capacity shift occurs between the positive electrode and the negative electrode, and a capacity decrease occurs as shown by the width between the two black circles.
  • the ion supply unit 31 is not functioned as in this embodiment, the capacity is reduced depending on the storage state and the use state.
  • the switch 40 is turned on to perform electrolysis in a state where the ion supply unit 31 is electrically connected to the positive electrode 11.
  • the ion supply part 31 was operated in contact with the liquid.
  • the state with the capacity reduction shown in FIG. 4 black circle state
  • the state without the capacity reduction shown in FIG. 3 white circle state
  • the timing of the reaction between the ion supply unit 31 and the positive electrode 11 is controlled, and not only the initial irreversible capacity is eliminated, but also during storage in a relatively high temperature environment and a large number of times of charge / discharge. Capacity reduction due to side reactions that have progressed with the use of the battery, such as cycling, can also be eliminated.
  • a resistor 42 is provided to easily control the current and prevent oxidation or reductive decomposition of the wiring 41 and the switch 40.
  • Example 1 since the positive electrode 11 has a potential of about 3 to 4V and the negative electrode has a potential of about 0 to 1V, the potential difference is in the range of 2 to 4V.
  • the resistance value of the resistor 42 can be determined from this potential difference and the current value allowed by the wiring 41 and the switch 40. In this modification, the resistor 42 having a resistance value of 1 k ⁇ is used. Note that the lower the resistance value of the resistor 42, the more current flows, so that the reduction in capacity due to the lithium ion supply can be promptly advanced. On the other hand, since an influence such as heat generation occurs when the current is large, it is preferable to use a resistance value in the range of about 1 ⁇ to 10 k ⁇ .
  • the current can be controlled to a predetermined value by using the resistor 42 having a known resistance value
  • the product of the time when the switch 40 is turned on and the current value is controlled by controlling the time when the switch 40 is turned on.
  • the required supply amount of lithium ions can be easily controlled.
  • the switch 40 is turned on and a current flows, a potential difference obtained by the product of the current value and the resistance value is generated at both ends of the resistor 42. Therefore, depending on the installation location of the resistor 42, the switch 40 and the wiring 41 described in the citation 1 The potential can be controlled, and the degree of freedom in material selection can be improved.
  • Example 2 Next, Example 2 will be described.
  • the ion supply unit 31 is connected to the positive electrode 11.
  • the present embodiment is different from the first embodiment in that the ion supply unit 31 is installed on the negative electrode 21 via the switch 40.
  • FIG. 6 is a cross-sectional view schematically showing the configuration of the negative electrode 21 and the ion supply unit 31 in the present embodiment.
  • the wiring 41 and the switch 40 are all at a negative potential, a known negative current collecting material can be used. Or you may protect by interrupting
  • the capacity drop can be eliminated by switching the switch on and off as in the first embodiment.
  • the merit of providing the switch 40 on the negative electrode side is that the connection between the positive electrode and the ion supply unit 31 is a discharge reaction, and the connection between the negative electrode and the ion supply unit 31 is a charge reaction. By providing it, the battery can be charged, and the amount of available energy increases.
  • Example 3 Next, Example 3 will be described.
  • the ion supply unit 31 is used as the life extension material 203, but in this embodiment, the electrolyte solution additive supply unit 34 is used as the life extension material 203.
  • FIG. 7 is a cross-sectional view schematically showing the configuration of the positive electrode and the electrolyte additive supply unit 34 in this example.
  • the electrolyte additive supply unit 34 oxidizes and decomposes the additive when the electrolyte additive 35 and the additive are separated from the electrolyte and electrically connected to the positive electrode by turning on the switch. It consists of a barrier layer 36 having a function of supplying the electrolyte solution.
  • FIG. 7 shows an example using the protective layer 37.
  • vinylene carbonate was used for the electrolytic solution additive 35
  • an aluminum container was used for the protective layer 37
  • a copper foil was used for the barrier layer 36.
  • the copper of the barrier layer 36 is electrically connected to the positive electrode 11, and the electrolytic solution additive 35 is supplied into the electrolytic solution.
  • any known additive can be used as the electrolytic solution additive 33, and in this embodiment, it is reported that the film is formed by reducing and decomposing on the surface of the negative electrode mixture layer 23 to improve the life performance.
  • the vinylene carbonate which was made was used.
  • the barrier layer 36 may be made of a film-like resin that is oxidatively decomposed at the positive electrode potential.
  • FIG. 8 shows a configuration including two electrolytic solution additive supply units 34.
  • each electrolyte additive supply unit 34 can be operated at different timings by the switch 40. Therefore, the electrolyte solution additive 35 can be supplied a plurality of times, and the capacity drop can be recovered a plurality of times.
  • One of the two electrolyte additive supply units 34 may be the ion supply unit 31. In that case, since it is possible to cope with both deterioration due to a decrease in lithium ions and deterioration due to a decrease in electrolytic solution, it is possible to cope with capacity deterioration more variously.
  • Example 4 Next, Example 4 will be described.
  • the electrolyte solution additive supply unit 34 was connected to the positive electrode 11, but in this example, the point that the electrolyte solution additive supply unit 34 was connected to the negative electrode 21 was different from Example 3.
  • FIG. 9 is a cross-sectional view schematically showing the configuration of the negative electrode 21 and the electrolyte additive supply unit 34 in the present embodiment.
  • the electrolytic solution additive supply unit 34 performs reductive decomposition when the electrolytic solution additive 35 is electrically connected to the negative electrode 21 by separating the electrolytic solution additive 35 from the electrolytic solution and turning on the switch. It comprises a barrier layer 36 having a function of supplying the electrolytic solution additive 35 into the electrolytic solution. More preferably, there is a protective layer 37 that is stable at the negative electrode potential and serves as a container for storing the electrolyte solution additive 35.
  • vinylene carbonate was used for the electrolytic solution additive 35
  • a copper container was used for the protective layer 37
  • a resin film was used for the barrier layer 36.
  • the film is formed by reducing and decomposing on the surface of the negative electrode mixture layer 23 to improve the life performance.
  • the electrolytic solution additive 35 can be efficiently supplied to the surface of the negative electrode mixture layer 23, and an effect of improving the life performance can be obtained.
  • Example 5 Next, Example 5 will be described. In this example, a control system for lithium ion secondary batteries shown in Examples 1 to 4 will be described.
  • FIG. 10 is a system configuration diagram of a control system for a lithium ion secondary battery
  • FIG. 11 is a flowchart showing a control algorithm.
  • the control system of the lithium ion secondary battery C1 includes a charge / discharge control device 100, a controller 105, and an output unit 106, as shown in FIG.
  • the charge / discharge control apparatus 100 includes a battery information acquisition unit 101, a deterioration state determination unit 102, a switch operation determination unit 103, and a control signal transmission unit 104.
  • the battery information acquisition unit 101 acquires charge / discharge information of the lithium ion secondary battery C1, and the deterioration state determination unit 102 determines the operation of the ion supply unit 31 based on the capacity reduction state of the lithium ion secondary battery C1. Determine no.
  • the switch operation determining unit 103 determines which life extending material is to be operated.
  • the control signal transmission unit 104 transmits the control information determined by the switch operation determination unit 103 to the controller 105.
  • the controller 105 operates the life extending member by switching the switch. Further, the output unit outputs a history of switch operations and the like to the host system and / or the user.
  • the battery information acquisition unit 101 acquires charge / discharge information of the lithium ion secondary battery C1 (step S111). And the deterioration state determination part 102 determines the state of capacity
  • the switch operation determining unit 103 determines that lithium ion supply or electrolyte additive supply is required (YES in step S113)
  • the lithium ion secondary battery C1 is passed through the control signal transmitting unit 104 and the controller 105.
  • the switch 40 is switched inside to turn on the connection with the ion supply unit 31 or the electrolyte solution supply unit 34 (step S114).
  • the output unit 106 transmits information to the host system or the user (step S115).
  • the information transmitted to the host system is, for example, connection time or ion supply amount of the ion supply unit 31 and history information indicating which electrolyte solution supply unit 34 is used.
  • step S116 information is transmitted from the output unit 106 to the host system or user (step S116), and after waiting for a predetermined time (step S117). ) Repeat the diagnosis again.
  • the control method shown in this embodiment makes it possible to control the operations of the ion supply unit 31 and the electrolyte supply unit more precisely.
  • a known battery performance evaluation method and deterioration estimation method can be used to determine whether or not the ion supply unit 31 and the electrolyte solution supply unit need to be operated.
  • a method for measuring the battery capacity by means of measuring the rated capacity and comparing it with that before deterioration, and a battery internal state estimation method using a discharge curve are known. When the battery capacity falls below a preset value, or when the charge / discharge range of the positive and negative electrodes is estimated from the analysis of the charge and / or discharge curve, and the upper limit of the positive working potential exceeds the preset value. good.
  • an electrolytic solution additive composed of an organic solvent such as vinylene carbonate is supplied into the electrolytic solution when the switch is operated.
  • a mechanism is provided and used in a container, and a third case in which the above two cases are compatible.
  • the ion supply unit 31 since the ion supply unit 31 is electrically insulated by the switch 40, it does not reach an overdischarged state due to a reaction between metallic lithium and the positive electrode in an uncharged state. Moreover, since the supply amount of lithium ions can be controlled by controlling the time for which the switch 40 is in the connected state, an arbitrary amount can be obtained without supplying an excessive amount of lithium ions and leading to metal lithium deposition.
  • the ion source can be installed.
  • the material constituting at least a part of the container by conduction with the positive electrode or the negative electrode dissolves or disappears by oxidation or reductive decomposition according to the potential of the positive electrode or the negative electrode, and supplies the contents into the electrolytic solution. can do. Therefore, capacity degradation can be improved at an arbitrary timing.
  • the supply timing and supply amount of the life extension material are controlled, and not only the initial irreversible capacity is eliminated, but also during storage in a relatively high temperature environment and many times of charge / discharge It is possible to provide a non-aqueous secondary battery and a battery module that can eliminate a capacity reduction due to a side reaction that has progressed with the use of a battery such as a cycle, and that can suppress the occurrence of a new side reaction by supplying an additive.
  • the lithium ion secondary battery of the present invention includes an electrode group 8 in which electrodes (positive electrode 11 or negative electrode 21) and separators 10 are alternately arranged, and a battery can 1 in which the electrode group 8 is housed. And a life extension material 203 (a general term for the ion supply unit 31 and the electrolyte solution supply unit 34) disposed in the battery can 1, and the electrodes are connected to the life extension material 203 via the switch 40. Yes.
  • a life extension material 203 (a general term for the ion supply unit 31 and the electrolyte solution supply unit 34) disposed in the battery can 1, and the electrodes are connected to the life extension material 203 via the switch 40.
  • the lithium ion secondary battery of the present invention uses the lithium ion ion supply unit 31 as a life extending material. By adopting such a structure, it is possible to recover the lithium ions consumed by the side reaction in the lithium ion secondary battery and recover the capacity reduction.
  • the lithium ion secondary battery of the present invention uses the electrolyte additive supply unit 34 as a life extending material. By adopting such a structure, it is possible to recover the decrease in the electrolyte additive consumed by the side reaction in the lithium ion secondary battery and to recover the capacity decrease.
  • the electrolytic solution additive supply unit 34 has a protective layer 37 that houses the electrolytic solution additive 35 and a barrier layer 36 that is electrically connected to the electrode and decomposes. ing.
  • the barrier layer 36 can be dissolved or disappeared by being oxidized or reductively decomposed by the potential of the electrode (the positive electrode 11 or the negative electrode 21), and the contents can be supplied into the electrolytic solution. Therefore, capacity deterioration due to a decrease in the electrolyte additive can be improved at an arbitrary timing.
  • the lithium ion secondary battery of the present invention has a structure in which a plurality of electrolyte additive supply units 34 are provided, and the connection with the electrode is switched by the switch 40.
  • each electrolyte solution supply unit 34 can be operated at different timings by the switch 40. Therefore, it is possible to supply the electrolytic solution additive 35 a plurality of times, and it is possible to recover the capacity drop due to the decrease of the electrolytic solution additive 35 a plurality of times.
  • the life extension material 203 (the ion supply part 31 or the electrolytic solution additive supply part 34) is disposed on the exposed part of the electrode foil (the positive foil 12 or the negative foil 22).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention provides a lithium ion secondary battery that allows the lifespan of the battery to be extended by adding an electrolytic solution additive through a mechanism that includes no moving parts, the additive being capable of canceling a decrease in capacity during storage under a relatively high temperature environment or caused by a secondary reaction that proceeds with the use of the battery through multiple charge-discharge cycles, or capable of suppressing a further progress of the secondary reaction, without causing the positive electrode to reach excessive discharge prior to initial charging. The lithium ion secondary battery is characterized in that: an electrode group comprising lithium ion secondary battery electrodes and separators disposed alternately, a battery can whereby the electrode group is housed, and a lifespan-extending material disposed inside the battery can are provided; and the electrodes are connected to the lifespan-extending material through a switch.

Description

リチウムイオン二次電池Lithium ion secondary battery
 本発明は、非水系二次電池に係り、例えば、ポータブル機器、電気自動車、電力貯蔵等に用いるのに好適な、高エネルギー密度のリチウムイオン二次電池に関する。 The present invention relates to a non-aqueous secondary battery, for example, a high energy density lithium ion secondary battery suitable for use in portable equipment, electric vehicles, power storage and the like.
 炭素材料を負極活物質として用いるリチウムイオン二次電池は、電池を製造した後の初回充電時に、負極充電反応に伴う副反応により負極表面に皮膜ができることが知られている。また、近年高容量な負極活物質として盛んに研究されているシリコン、スズを含む合金負極活物質などは、前記炭素材料と比較して、より副反応の量が多いことが知られている。 It is known that a lithium ion secondary battery using a carbon material as a negative electrode active material can form a film on the surface of the negative electrode due to a side reaction associated with the negative electrode charging reaction at the first charge after the battery is manufactured. In addition, it is known that an alloy negative electrode active material containing silicon and tin, which has been actively studied as a high capacity negative electrode active material in recent years, has a larger amount of side reactions than the carbon material.
 これらの副反応によって、一旦充電されたリチウムイオンが負極中に固定され、全て放電できなくなる、すなわち、負極に充電されたリチウムイオンのうちの一部が放電できなくなるという不可逆な容量が発生し、電池全体の容量を低下させる原因となることが知られている。 Due to these side reactions, once charged lithium ions are fixed in the negative electrode and cannot be discharged at all, that is, an irreversible capacity is generated that some of the lithium ions charged in the negative electrode cannot be discharged, It is known to cause a reduction in the capacity of the entire battery.
 この課題を解決する従来技術として、特許文献1に、正極、負極、及びセパレータのうちの「少なくとも一つは表面に存在するアルカリ金属粉末層が形成されて」おり、前記アルカリ金属粉末層が、「アルカリ金属組成物を高分子フィルムまたは活物質層が形成された電流集電体にコーティングする工程及び前記コーティングされた高分子フィルムまたは電流集電体を乾燥する工程により形成される」ことを特徴とするリチウム二次電池が開示されている。 As a prior art for solving this problem, Patent Document 1 discloses that at least one of the positive electrode, the negative electrode, and the separator is formed with an alkali metal powder layer present on the surface, and the alkali metal powder layer is “It is formed by a step of coating an alkali metal composition on a current collector on which a polymer film or an active material layer is formed and a step of drying the coated polymer film or current collector”. A lithium secondary battery is disclosed.
 特許文献1に開示されている技術は、「電池の充放電時の初期非可逆容量が減少して優れたエネルギー密度を示すリチウム二次電池を提供する」ことを目的としている。また、特許文献2には、「セパレータ表面にリチウム粉末を存在させた」技術が開示されており、「初期効率及びサイクル保持率の高い非水電解質二次電池を得る」ことを目的としている。 The technique disclosed in Patent Document 1 aims to “provide a lithium secondary battery exhibiting an excellent energy density by reducing the initial irreversible capacity during charging and discharging of the battery”. Further, Patent Document 2 discloses a technique of “making a lithium powder exist on the separator surface” and aims to “obtain a non-aqueous electrolyte secondary battery with high initial efficiency and high cycle retention”.
 さらに、リチウム粉末に関して、「表面が環境安定の良い物質、例えばNBR(ニトリルブタジエンゴム)、SBR(スチレンブタジエンゴム)等の有機ゴム、EVA(エチレンビニルアルコール共重合樹脂)等の有機樹脂やLi2CO3などの金属炭酸塩等の無機化合物等でコーティングされた」「安定化したリチウム粉末」を用いる技術が開示されている。さらに、リチウムの添加量を「負極の初期効率を求めてから後に定めること」により、「露点-40℃程度のドライルームにおいてもリチウム粉末の変質が進行」せず、リチウムの添加量が多すぎて「負極にリチウムが析出してしまい、逆に電池の容量が滅少する」ことがない非水電解質二次電池の提供を目的としている。 Further, regarding lithium powder, “a material having an environmentally stable surface, for example, organic rubber such as NBR (nitrile butadiene rubber) and SBR (styrene butadiene rubber), organic resin such as EVA (ethylene vinyl alcohol copolymer resin), and Li 2 A technique using a “stabilized lithium powder” coated with an inorganic compound such as a metal carbonate such as CO 3 is disclosed. Furthermore, the amount of lithium added is determined after the initial efficiency of the negative electrode is obtained, so that “deterioration of lithium powder does not proceed even in a dry room with a dew point of −40 ° C.” and the amount of lithium added is too large. Therefore, an object of the present invention is to provide a non-aqueous electrolyte secondary battery that does not “deposit lithium on the negative electrode and conversely reduce the capacity of the battery”.
 また、上記副反応による電池全体の性能低下を抑制するための、様々な電解液添加剤が使用されている。しかし、電池製造時に電解液添加剤を大量に添加すると内部抵抗が上昇するなどの現象が知られており、長期の使用により電池が劣化した後にも必要十分な電解液添加剤を電池製造時に投入しておくことは困難である。 In addition, various electrolyte additives are used to suppress the overall performance degradation of the battery due to the side reaction. However, it is known that when a large amount of electrolyte additive is added during battery manufacture, the internal resistance increases, and necessary and sufficient electrolyte additive is added during battery manufacture even after the battery has deteriorated due to long-term use. It is difficult to keep.
 この課題を解決する従来技術として、特許文献3に、「T字型治具等により電解液添加剤含有カプセルを破り、添加剤を電解液中に押し出す」ことで添加剤を電池中へ追加供給する技術が開示されている。 As a prior art to solve this problem, Patent Document 3 additionally supplies an additive into a battery by “breaking the electrolyte additive-containing capsule with a T-shaped jig or the like and pushing the additive into the electrolyte”. Techniques to do this are disclosed.
 特許文献3に開示されている技術は、「劣化した被膜が除去された後、新しいSEIを形成するための電解液添加剤を追加投入し、SEIを再形成する」ことで、「負極に析出する被膜の成長等による性能劣化、特に抵抗上昇による出力低下を抑制」することを目的としている。 The technology disclosed in Patent Document 3 is “addition of an electrolytic solution additive for forming a new SEI after the deteriorated film is removed, and reforming the SEI”. The purpose is to “suppress performance degradation due to growth of the coating film, etc., in particular, reduction in output due to resistance rise”.
特開2005―317551号公報JP 2005-317551 A 特開2008―084842号公報JP 2008-048442 A 特開2012―169094号公報JP 2012-169094 A
 従来技術のようなリチウム供給の取り組みは、正極および/または負極活物質の初期の不可逆容量を解消することを目的としている。 The approach of lithium supply as in the prior art is aimed at eliminating the initial irreversible capacity of the positive electrode and / or negative electrode active material.
 しかしながら、前記副反応は、初期だけでなく、その後の保存状態や使用状態によっても進行し、例えば比較的高温環境下での保存時や、多数の回数の充放電サイクルに伴い進行することが知られており、それによりリチウムイオンが負極中に固定される現象が新たに発生してしまう。その結果、正極や負極の電位が高電位側にシフトして充放電範囲が減少することによる電池の容量低下が発生することが課題となっている。 However, it is known that the side reaction proceeds not only in the initial stage but also in the subsequent storage state and use state, for example, during storage in a relatively high temperature environment, or with a large number of charge / discharge cycles. As a result, a new phenomenon occurs in which lithium ions are fixed in the negative electrode. As a result, there is a problem that the capacity of the battery is reduced due to the potential of the positive electrode or the negative electrode being shifted to the high potential side and the charge / discharge range being reduced.
 また、従来技術を用いて正極に対して直にリチウムを供給すると、初充電前に正極と金属リチウムが反応してしまい、正極が過放電状態に陥り、電池特性が低下することが懸念される。 In addition, when lithium is supplied directly to the positive electrode using the conventional technology, the positive electrode and the metal lithium react before the first charge, and the positive electrode falls into an overdischarged state and there is a concern that the battery characteristics may deteriorate. .
 さらに、従来技術のような電解液添加剤供給の取り組みは、可動部を有するアクチュエータ機構を用いるには可動部のための空間が必要となるため、電池の体積が増加し、それにより電池のエネルギー密度が低下してしまうという課題がある。 Furthermore, the efforts to supply the electrolyte additive as in the prior art require a space for the movable part to use the actuator mechanism having the movable part, which increases the volume of the battery, thereby increasing the energy of the battery. There exists a subject that a density will fall.
 本発明は、上記課題を鑑みてなされたものであり、その目的とするところは、初充電前に正極を過放電に至らしめることなく、かつ、比較的高温環境下での保存時や、多数の回数の充放電サイクルといった電池の使用に伴い進行した副反応による容量低下を解消することや、さらなる副反応の進行を抑制可能な電解液添加剤を可動部が含まれない機構で追加することで電池の寿命を延長することが可能なリチウムイオン二次電池を提供することにある。 The present invention has been made in view of the above problems, and the object of the present invention is to prevent the positive electrode from being overdischarged before the initial charge, and at the time of storage in a relatively high temperature environment, To eliminate capacity reduction due to side reactions that have progressed with the use of the battery, such as charge / discharge cycles, and to add an electrolyte additive that can suppress further side reactions by a mechanism that does not include moving parts An object of the present invention is to provide a lithium ion secondary battery capable of extending the battery life.
 上記課題を解決するために、本発明のリチウムイオン二次電池は、電極とセパレータが交互に配置された電極群と、電極群が収納される電池缶と、電池缶内に配置される寿命延長材と、を有するリチウムイオン二次電池において、電極は寿命延長材とスイッチを介して接続されていることを特徴とする。 In order to solve the above problems, a lithium ion secondary battery of the present invention includes an electrode group in which electrodes and separators are alternately arranged, a battery can in which the electrode group is stored, and a life extension that is arranged in the battery can. The electrode is connected to the life extension material through a switch.
 本発明によれば、正極および/または負極へのリチウムイオンの供給が可能になり、副反応でリチウムイオンが負極中に固定されたことによる容量低下を改善できる。また、電解液添加剤を適切なタイミングで供給することが可能になり、初期に過剰に添加することなく電池劣化時にも必要な電解液添加剤量を確保することが可能になる。 According to the present invention, it is possible to supply lithium ions to the positive electrode and / or the negative electrode, and it is possible to improve the capacity drop due to the lithium ions being fixed in the negative electrode by a side reaction. Moreover, it becomes possible to supply an electrolyte solution additive at an appropriate timing, and it is possible to ensure a necessary amount of the electrolyte solution additive even at the time of battery deterioration without excessive addition at the initial stage.
実施例1におけるリチウムイオン二次電池を一部断面により示した分解斜視図。FIG. 3 is an exploded perspective view showing the lithium ion secondary battery in Example 1 in a partial cross section. 実施例1における正極とイオン供給部の構成を模式的に示す断面図。Sectional drawing which shows typically the structure of the positive electrode in Example 1, and an ion supply part. 実施例1におけるリチウムイオン二次電池の容量低下発生前の正極および負極の充放電特性Charge / discharge characteristics of positive electrode and negative electrode before occurrence of capacity reduction of lithium ion secondary battery in Example 1 実施例1におけるリチウムイオン二次電池の容量低下発生前後の正極および負極の充放電特性Charge / discharge characteristics of the positive electrode and the negative electrode before and after the decrease in capacity of the lithium ion secondary battery in Example 1 実施例1における正極とイオン供給部の間に抵抗を配置した構成を模式的に示す断面図。Sectional drawing which shows typically the structure which has arrange | positioned resistance between the positive electrode in Example 1, and an ion supply part. 実施例2における負極とイオン供給部の構成を模式的に示す断面図。Sectional drawing which shows typically the structure of the negative electrode in Example 2, and an ion supply part. 実施例3における正極と電解液添加剤供給部の構成を模式的に示す断面図。Sectional drawing which shows typically the structure of the positive electrode in Example 3, and an electrolyte solution additive supply part. 実施例3における正極と複数の電解液添加剤供給部を設けた構成を模式的に示す断面図。Sectional drawing which shows typically the structure which provided the positive electrode in Example 3, and the some electrolyte solution supply part. 実施例4における負極と複数の電解液添加剤供給部の構成を模式的に示す断面図。Sectional drawing which shows typically the structure of the negative electrode in Example 4, and several electrolyte solution supply part. 本実施形態におけるシステム構成。The system configuration in this embodiment. 本実施形態の充放電制御方法を示すフローチャート。The flowchart which shows the charging / discharging control method of this embodiment. 本実施形態のリチウムイオン二次電池の断面図。Sectional drawing of the lithium ion secondary battery of this embodiment.
 以下、本発明の実施例について図面を用いて説明する。なお、以下の実施例では、本発明の非水系二次電池の適用例として、リチウムイオン二次電池の場合について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following examples, a case of a lithium ion secondary battery will be described as an application example of the nonaqueous secondary battery of the present invention.
 《実施例1》
 図1は、本実施例におけるリチウムイオン二次電池の構成を一部断面により示した分解斜視図である。
Example 1
FIG. 1 is an exploded perspective view showing a configuration of the lithium ion secondary battery in the present embodiment in a partial cross section.
 リチウムイオン二次電池C1は、例えばハイブリッド自動車や電気自動車等に搭載される円筒型捲回式のものであり、図1に示すように、導電性を有する有底円筒状の電池缶1内に、捲回式の電極群8を収容した構成を有している。 The lithium ion secondary battery C1 is a cylindrical wound type that is mounted on, for example, a hybrid vehicle or an electric vehicle, and as shown in FIG. The wound electrode group 8 is housed.
 電極群8は、帯状の正極11と負極21を、間に多孔質で絶縁性を有するセパレータ10を介在させて層状に重ね合わせて、樹脂製の軸芯7の周囲に捲回し、最外周のセパレータ10をテープで固定することによって構成される。 The electrode group 8 includes a belt-like positive electrode 11 and a negative electrode 21 which are layered with a porous and insulating separator 10 interposed therebetween and wound around a resin-made shaft core 7. It is configured by fixing the separator 10 with a tape.
 正極11は、アルミニウム箔からなる正極箔12と、その正極箔12の両面に塗工される正極合剤層13とを有している。正極箔12の、図の上方の長辺部には正極タブ12aが複数設けられている。 The positive electrode 11 has a positive electrode foil 12 made of an aluminum foil and a positive electrode mixture layer 13 coated on both surfaces of the positive electrode foil 12. A plurality of positive electrode tabs 12a are provided on the upper long side of the positive electrode foil 12 in the figure.
 負極21は、銅箔からなる負極箔22と、その銅箔22の両面に塗工される負極合剤層23とを有している。負極箔22の、図の下方の長辺部には負極タブ22aが複数設けられている。 The negative electrode 21 has a negative electrode foil 22 made of copper foil and a negative electrode mixture layer 23 coated on both surfaces of the copper foil 22. A plurality of negative electrode tabs 22a are provided on the long side of the negative electrode foil 22 in the lower part of the figure.
 管状の軸芯7の両端には、正極集電板5及び負極集電板6が嵌め合いによって固定されている。正極集電板5には正極タブ12aが、例えば、超音波溶接法により溶接されている。同様に負極集電板6には負極タブ22aが、例えば、超音波溶接法により溶接されている。 The positive electrode current collector plate 5 and the negative electrode current collector plate 6 are fixed to both ends of the tubular shaft core 7 by fitting. A positive electrode tab 12a is welded to the positive electrode current collector plate 5 by, for example, an ultrasonic welding method. Similarly, the negative electrode tab 22a is welded to the negative electrode current collector plate 6 by, for example, an ultrasonic welding method.
 負極21の端子を兼ねる電池缶1の内部には、樹脂製の軸芯7を軸として捲回された電極群8に、正極集電板5及び負極集電板6が取り付けられて収納されている。この際、電解液も電池缶1内に注入される。また、電池缶1と上蓋ケース3bとの間にはガスケット2が設けられ、このガスケット2により電池缶1の開口部を封口するとともに電気的に絶縁する。 Inside the battery can 1 that also serves as a terminal for the negative electrode 21, a positive electrode current collector plate 5 and a negative electrode current collector plate 6 are attached and housed in an electrode group 8 wound around a resin shaft 7. Yes. At this time, the electrolytic solution is also injected into the battery can 1. A gasket 2 is provided between the battery can 1 and the upper lid case 3b. The gasket 2 seals the opening of the battery can 1 and electrically insulates it.
 正極集電板5の上には、電池缶1の開口部を封口するように設けられた電導性を有する上蓋部3がある。上蓋部3は、上蓋3aと上蓋ケース3bからなる。上蓋ケース3bに正極リード9の一方が溶接され、他方が正極集電板5に溶接されることによって上蓋部3と電極群8の正極とが電気的に接続される。 On the positive electrode current collector plate 5, there is an electrically conductive upper lid portion 3 provided so as to seal the opening of the battery can 1. The upper lid 3 includes an upper lid 3a and an upper lid case 3b. One of the positive electrode leads 9 is welded to the upper lid case 3 b and the other is welded to the positive electrode current collector plate 5, whereby the upper lid portion 3 and the positive electrode of the electrode group 8 are electrically connected.
 正極合剤層13は、正極活物質と、導電剤と、結着剤とを含有する正極合剤からなり、負極合剤層23は、負極活物質と、負極バインダ樹脂と、増粘剤とを含有する負極合剤からなる。正極合剤層13および負極合剤層23は、合剤を構成する物質の分散溶液を調製してスラリー状とし、その合剤スラリーを金属箔上に塗工して乾燥させ、乾燥後にプレスすることによって形成される。 The positive electrode mixture layer 13 includes a positive electrode mixture containing a positive electrode active material, a conductive agent, and a binder. The negative electrode mixture layer 23 includes a negative electrode active material, a negative electrode binder resin, and a thickener. A negative electrode mixture containing The positive electrode mixture layer 13 and the negative electrode mixture layer 23 are prepared by preparing a dispersed solution of substances constituting the mixture, applying the mixture slurry onto a metal foil, drying, and pressing after drying. Formed by.
 塗工方法の例としては、スリットダイ塗工法、ロール塗工法等を挙げることができる。また、分散溶液の溶媒としては、N-メチルピロリドン(NMP)や水等を用いることができる。さらに、乾燥方法としては、熱風循環、赤外加熱、それらの混合方法等を挙げることができる。プレスの方法としては、電極両面から円柱状の金属ローラにて電極両面から加圧圧縮することが挙げられる。 Examples of the coating method include a slit die coating method and a roll coating method. Further, N-methylpyrrolidone (NMP), water or the like can be used as a solvent for the dispersion solution. Furthermore, examples of the drying method include hot air circulation, infrared heating, and a mixing method thereof. As a pressing method, it is possible to press and compress from both sides of the electrode with a cylindrical metal roller from both sides of the electrode.
 本実施例では、正極11は、正極活物質としてLiCoO2を使用している。そして、正極活物質に、導電剤としてアセチレンブラックを7wt%、結着剤としてポリフッ化ビニリデン(PVDF)を5wt%添加して、これにN-メチル-2-ピロリドンを加え混合して正極合剤のスラリーを調製した。この正極合剤スラリーを厚み25μmのアルミニウム箔である正極箔12の両面に塗布し(図2では片面のみを示す。以下簡略化のため、以降の図では合剤層は片面のみ示す。)、乾燥した後にプレスして裁断することで、正極箔12の両面に正極合剤を結着させて正極合剤層13を形成し、正極11とした。 In this embodiment, the positive electrode 11 uses LiCoO 2 as the positive electrode active material. Then, 7% by weight of acetylene black as a conductive agent and 5% by weight of polyvinylidene fluoride (PVDF) as a binder are added to the positive electrode active material, and N-methyl-2-pyrrolidone is added thereto and mixed. A slurry was prepared. This positive electrode mixture slurry is applied to both surfaces of the positive electrode foil 12 which is an aluminum foil having a thickness of 25 μm (FIG. 2 shows only one side. For simplification, the mixture layer is shown only on one side in the following drawings). By drying and pressing and cutting, the positive electrode mixture was bound to both surfaces of the positive electrode foil 12 to form the positive electrode mixture layer 13, thereby forming the positive electrode 11.
 同様に、負極21は、負極活物質として難黒鉛化炭素を使用している。そして、負極活物質に、結着剤としてPVDFを8wt%添加して、これにN-メチル-2-ピロリドンを加え混合して負極合剤のスラリーを調製した。この負極合剤スラリーを厚み10μmの銅箔である負極箔22の両面に塗布し、乾燥した後にプレスして裁断することで、負極箔22の両面に負極合剤を結着させて負極合剤層23を形成し、負極21とした。 Similarly, the negative electrode 21 uses non-graphitizable carbon as a negative electrode active material. Then, 8 wt% of PVDF as a binder was added to the negative electrode active material, and N-methyl-2-pyrrolidone was added thereto and mixed to prepare a negative electrode mixture slurry. The negative electrode mixture slurry is applied to both surfaces of a negative electrode foil 22 which is a copper foil having a thickness of 10 μm, dried, pressed and cut, thereby binding the negative electrode mixture to both surfaces of the negative electrode foil 22 and negative electrode mixture. The layer 23 was formed and used as the negative electrode 21.
 以下、本発明の特徴点について詳細に説明する。本発明の一つの特徴点は、寿命延長材をスイッチを介して電極と接続した点にある。 Hereinafter, features of the present invention will be described in detail. One feature of the present invention is that the life extending member is connected to the electrode through a switch.
 図2は、寿命延長材203としてイオン供給部31を用いた構成であり、本実施例における正極11とイオン供給部31の構成を模式的に示す断面図である。正極11には、イオン供給部31が設けられている。イオン供給部31は、正極11と電気的に接続された際に、充放電を担うイオンと同種のイオンを供給する構成を有する。 FIG. 2 is a cross-sectional view schematically showing the configuration of the positive electrode 11 and the ion supply unit 31 in the present embodiment, using the ion supply unit 31 as the life extension material 203. The positive electrode 11 is provided with an ion supply unit 31. The ion supply unit 31 has a configuration for supplying ions of the same type as ions responsible for charge / discharge when electrically connected to the positive electrode 11.
 イオン供給部31の具体的な構成としては、例えば金属リチウムまたは、シリコンまたはスズとリチウムの化合物からなる構成である。 The specific configuration of the ion supply unit 31 is, for example, a configuration made of metallic lithium or silicon or a compound of tin and lithium.
 またイオン供給部31は、正極11の正極箔12と、スイッチ40および配線41を介して接続されている。スイッチ40および配線41は正極11またはイオン供給部31の電位となるため、それらの状態で安定な材料を用いる必要がある。 Further, the ion supply unit 31 is connected to the positive electrode foil 12 of the positive electrode 11 via the switch 40 and the wiring 41. Since the switch 40 and the wiring 41 are at the potential of the positive electrode 11 or the ion supply unit 31, it is necessary to use a material that is stable in these states.
 本実施例では、常に正極電位にある正極からスイッチ40内部の正極11側の配線部材としてアルミを用い、スイッチ40の作動時のみ正極電位の影響を受けるイオン供給部31側の配線41は耐酸化性の高いステンレスを用いた。また、上記以外の配線であったとしても電解液との接触を断つことで酸化または還元分解を防ぐことができるため、配線に被覆等施せば様々な金属を配線として使用することが可能である。 In the present embodiment, aluminum is used as the wiring member on the positive electrode 11 side inside the switch 40 from the positive electrode that is always at the positive electrode potential, and the wiring 41 on the ion supply unit 31 side that is affected by the positive electrode potential only when the switch 40 is operated is oxidation resistant. High-quality stainless steel was used. In addition, even if the wiring is other than the above, it is possible to prevent oxidation or reductive decomposition by cutting off the contact with the electrolytic solution. Therefore, if the wiring is coated, various metals can be used as the wiring. .
 図12にイオン供給部31の具体的な配置関係を示す。イオン供給部31には、約1mm角の金属リチウムを用いた。イオン供給部31は、正極箔12の露出部に、スイッチ40を介して図示していない耐電解液性のテープ等で固定されている。イオン供給部31を電極箔露出部に配置することによって、デッドスペースを活用することが可能となり、容量低下を回復できる機構を設けつつもリチウムイオン二次電池を小型にできる。イオン供給部31はスイッチ40を介して正極の電位を有する部位に設置されれば同様の効果を奏する。例えば上蓋3の電池内部側や正極集電板5の露出部にあらかじめ設置しておくことで、正極箔12の露出部に設置した場合と同様の小型化と、従来同等の組立が可能となり製造工程の簡略化が図れる。 FIG. 12 shows a specific arrangement relationship of the ion supply unit 31. The ion supply unit 31 was made of about 1 mm square metal lithium. The ion supply unit 31 is fixed to the exposed portion of the positive foil 12 with an electrolyte solution-resistant tape (not shown) through the switch 40. By disposing the ion supply part 31 in the electrode foil exposed part, it becomes possible to utilize a dead space, and it is possible to reduce the size of the lithium ion secondary battery while providing a mechanism capable of recovering the capacity reduction. If the ion supply part 31 is installed in the site | part which has the electric potential of a positive electrode via the switch 40, there will exist the same effect. For example, by installing in advance on the inside of the battery of the upper lid 3 or on the exposed portion of the positive electrode current collector plate 5, the same size reduction as in the case of installing on the exposed portion of the positive foil 12 and assembly equivalent to the conventional one can be made. The process can be simplified.
 またイオン供給部31は、電気的な接続を切り替え可能なスイッチ40を介して正極と接しているため、スイッチ40をオフにしていれば正極11と反応せず、イオン供給部31から正極11にリチウムイオンが供給されることはない。 In addition, since the ion supply unit 31 is in contact with the positive electrode via the switch 40 that can switch electrical connection, the ion supply unit 31 does not react with the positive electrode 11 if the switch 40 is turned off, and the ion supply unit 31 changes to the positive electrode 11. Lithium ions are never supplied.
 したがって、未充電の状態ではスイッチ40をオフにすることで金属リチウムと正極との反応が起こるのを防ぎ、単に正極に金属リチウムを添加した場合と異なり、初充電前に正極11が過放電に至ることはない。 Accordingly, in an uncharged state, the switch 40 is turned off to prevent a reaction between metallic lithium and the positive electrode, and unlike the case where metallic lithium is simply added to the positive electrode, the positive electrode 11 is overdischarged before the first charge. It will not reach.
 そして、初充電後に、スイッチ40をオンにすることで、イオン供給源31を正極11に電気的に接続した状態で電解液に接触させて、正極11とイオン供給源31との反応を開始させ、イオン供給源31から正極11にリチウムイオンを供給し、負極21の初期の副反応による不可逆容量を解消することができる。 なお、後述する電解液添加剤供給部34を用いる場合も、電極の箔露出部に当該電解液供給部34を設けることが、小型化の観点から望ましい。 Then, after the initial charge, by turning on the switch 40, the ion supply source 31 is brought into contact with the electrolyte while being electrically connected to the positive electrode 11, and the reaction between the positive electrode 11 and the ion supply source 31 is started. The irreversible capacity due to the initial side reaction of the negative electrode 21 can be eliminated by supplying lithium ions from the ion supply source 31 to the positive electrode 11. In addition, also when using the electrolyte solution supply part 34 mentioned later, it is desirable from a viewpoint of size reduction to provide the said electrolyte solution supply part 34 in the foil exposed part of an electrode.
 また、上記では正極箔12上にイオン供給部31(または電解液添加剤供給部34)を配置した構造の説明をしたが、当然負極箔22上にイオン供給部31(または電解液添加剤供給部34)を配置した構造であっても、容量低下を防ぎつつリチウムイオン二次電池を小型にすることが可能となる。 In the above description, the structure in which the ion supply unit 31 (or electrolytic solution additive supply unit 34) is disposed on the positive electrode foil 12 has been described. Naturally, the ion supply unit 31 (or electrolytic solution additive supply) is provided on the negative electrode foil 22. Even with the structure in which the portion 34) is disposed, it is possible to reduce the size of the lithium ion secondary battery while preventing a decrease in capacity.
 図3は、リチウムイオン二次電池の容量低下発生前の正極および負極の充放電カーブを示すグラフである。上のカーブは正極の充放電特性、下のカーブは負極の充放電特性であり、容量低下発生前は正極・負極間に容量のずれが発生していない。そのため、2つの白丸間の幅で示される容量は十分確保されている。 FIG. 3 is a graph showing charge / discharge curves of the positive electrode and the negative electrode before the capacity reduction of the lithium ion secondary battery occurs. The upper curve shows the charge / discharge characteristics of the positive electrode, and the lower curve shows the charge / discharge characteristics of the negative electrode. There is no capacity shift between the positive electrode and the negative electrode before the capacity drop occurs. Therefore, the capacity indicated by the width between the two white circles is sufficiently secured.
 図4は、保管状態や使用状態に応じて容量低下が発生した後の正極及び負極の充放電特性を示すグラフである。図4の白丸は容量低下発生前の値、黒丸は容量低下発生後の値である。このように副反応が起こった場合、正極と負極の間に容量のずれが発生し、2つの黒丸間の幅で示されるように容量低下が発生してしまう。本実施例のようにイオン供給部31を機能させない場合には、保管状態や使用状態に応じて容量低下が発生してしまう。 FIG. 4 is a graph showing the charge / discharge characteristics of the positive electrode and the negative electrode after the capacity reduction occurs according to the storage state and use state. The white circles in FIG. 4 are values before the occurrence of capacity reduction, and the black circles are values after the occurrence of capacity reduction. When a side reaction occurs in this way, a capacity shift occurs between the positive electrode and the negative electrode, and a capacity decrease occurs as shown by the width between the two black circles. When the ion supply unit 31 is not functioned as in this embodiment, the capacity is reduced depending on the storage state and the use state.
 一方で初充電完了後に高温環境下での保存として60℃、2日間の貯蔵を行った後、スイッチ40をオンにすることで、イオン供給部31を正極11に電気的に接続した状態で電解液に接触させて、イオン供給部31を作動させた。その結果、図4に示す容量低下有りの状態(黒丸の状態)に至ることはなく、図3に示す容量低下なしの状態(白丸の状態)とすることができ、比較的高温環境下での保存により進行する副反応による容量低下を解消することができた。 On the other hand, after completion of the initial charge, after storage at 60 ° C. for 2 days as storage in a high temperature environment, the switch 40 is turned on to perform electrolysis in a state where the ion supply unit 31 is electrically connected to the positive electrode 11. The ion supply part 31 was operated in contact with the liquid. As a result, the state with the capacity reduction shown in FIG. 4 (black circle state) is not reached, and the state without the capacity reduction shown in FIG. 3 (white circle state) can be obtained. It was possible to eliminate the capacity drop due to side reactions that proceeded by storage.
 したがって、本発明ではイオン供給部31と正極11との反応のタイミングをコントロールし、初期の不可逆容量を解消することのみならず、比較的高温環境下での保存時や、多数の回数の充放電サイクルといった電池の使用に伴い進行した副反応による容量低下をも解消することができる。 Therefore, in the present invention, the timing of the reaction between the ion supply unit 31 and the positive electrode 11 is controlled, and not only the initial irreversible capacity is eliminated, but also during storage in a relatively high temperature environment and a large number of times of charge / discharge. Capacity reduction due to side reactions that have progressed with the use of the battery, such as cycling, can also be eliminated.
 《実施例1の変形例》
 続いて、実施例1の変形例を図5に示す。本変形例では簡易に電流を制御し、かつ配線41およびスイッチ40の酸化または還元分解を防ぐため、抵抗42を設置した構成となっている。
<< Modification of Example 1 >>
Next, a modification of the first embodiment is shown in FIG. In this modified example, a resistor 42 is provided to easily control the current and prevent oxidation or reductive decomposition of the wiring 41 and the switch 40.
 実施例1では正極11が3~4V程度、負極が0~1V程度の電位を有するため、電位差は2~4Vの範囲となる。 In Example 1, since the positive electrode 11 has a potential of about 3 to 4V and the negative electrode has a potential of about 0 to 1V, the potential difference is in the range of 2 to 4V.
 抵抗42の抵抗値はこの電位差と配線41およびスイッチ40が許容する電流値から決めることができる。本変形例では抵抗42として1kΩの抵抗値のものを用いた。なお、抵抗42の抵抗値が低いほど電流が多く流れ、リチウムイオン供給による容量低下の解消を速やかに進めることができる。一方、電流が大きいと発熱などの影響が生じるため、1Ωから10kΩ程度の範囲の抵抗値を用いるのが好ましい。 The resistance value of the resistor 42 can be determined from this potential difference and the current value allowed by the wiring 41 and the switch 40. In this modification, the resistor 42 having a resistance value of 1 kΩ is used. Note that the lower the resistance value of the resistor 42, the more current flows, so that the reduction in capacity due to the lithium ion supply can be promptly advanced. On the other hand, since an influence such as heat generation occurs when the current is large, it is preferable to use a resistance value in the range of about 1Ω to 10 kΩ.
 さらに抵抗値が既知の抵抗42を用いることで電流を所定の値に制御することができるため、スイッチ40をオンにした時間を制御することでスイッチ40をオンにした時間と電流値の積で求められるリチウムイオン供給量を簡易に制御することができる。また、スイッチ40がオンとされ電流が流れると抵抗42の両端に電流値と抵抗値の積で求められる電位差が生じるため、抵抗42の設置場所により引用部1で記載したスイッチ40や配線41の電位を制御でき、材料の選定の自由度を向上させることができる。 Further, since the current can be controlled to a predetermined value by using the resistor 42 having a known resistance value, the product of the time when the switch 40 is turned on and the current value is controlled by controlling the time when the switch 40 is turned on. The required supply amount of lithium ions can be easily controlled. Further, when the switch 40 is turned on and a current flows, a potential difference obtained by the product of the current value and the resistance value is generated at both ends of the resistor 42. Therefore, depending on the installation location of the resistor 42, the switch 40 and the wiring 41 described in the citation 1 The potential can be controlled, and the degree of freedom in material selection can be improved.
 《実施例2》
 続いて実施例2について説明する。実施例1ではイオン供給部31が正極11と接続されていたが、本実施例はイオン供給部31がスイッチ40を介して負極21に設置されたことが実施例1とは異なる。
Example 2
Next, Example 2 will be described. In the first embodiment, the ion supply unit 31 is connected to the positive electrode 11. However, the present embodiment is different from the first embodiment in that the ion supply unit 31 is installed on the negative electrode 21 via the switch 40.
 図6は、本実施例における負極21とイオン供給部31の構成を模式的に示す断面図である。  
 本実施例においては、配線41およびスイッチ40は全て負極電位であるため、公知の負極集電材料を用いることができる。または、電解液と遮断することで保護しても良い。
FIG. 6 is a cross-sectional view schematically showing the configuration of the negative electrode 21 and the ion supply unit 31 in the present embodiment.
In the present embodiment, since the wiring 41 and the switch 40 are all at a negative potential, a known negative current collecting material can be used. Or you may protect by interrupting | blocking with electrolyte solution.
  本実施例においても、実施例1と同様にスイッチのオンおよびオフを切り替えることにより容量低下を解消できる。なお、スイッチ40を負極側に設けるメリットは、正極とイオン供給部31との接続は放電反応であり、負極とイオン供給部31との接続は充電反応であるため、負極側にイオン供給部を設けることで電池を充電することができ、利用可能なエネルギー量が増加する点である。 In this embodiment, the capacity drop can be eliminated by switching the switch on and off as in the first embodiment. The merit of providing the switch 40 on the negative electrode side is that the connection between the positive electrode and the ion supply unit 31 is a discharge reaction, and the connection between the negative electrode and the ion supply unit 31 is a charge reaction. By providing it, the battery can be charged, and the amount of available energy increases.
 《実施例3》
 続いて実施例3について説明する。実施例1では寿命延長材203としてイオン供給部31を用いていたが、本実施例では寿命延長材203として電解液添加剤供給部34を用いた点が実施例1とは異なる。
Example 3
Next, Example 3 will be described. In the first embodiment, the ion supply unit 31 is used as the life extension material 203, but in this embodiment, the electrolyte solution additive supply unit 34 is used as the life extension material 203.
 図7は、本実施例における正極と電解液添加剤供給部34の構成を模式的に示す断面図である。電解液添加剤供給部34は、電解液添加剤35と、前記添加剤を電解液から隔てかつスイッチをオンにすることで正極と電気的に接続された際に酸化分解して前記添加剤を電解液中に供給する機能を有したバリア層36からなる。 FIG. 7 is a cross-sectional view schematically showing the configuration of the positive electrode and the electrolyte additive supply unit 34 in this example. The electrolyte additive supply unit 34 oxidizes and decomposes the additive when the electrolyte additive 35 and the additive are separated from the electrolyte and electrically connected to the positive electrode by turning on the switch. It consists of a barrier layer 36 having a function of supplying the electrolyte solution.
 また、さらに好ましくは、正極電位において安定でかつ前記添加剤を収納する容器となる保護層37があると好ましい。図7では保護層37を用いた例を示す。 More preferably, there is a protective layer 37 that is stable at the positive electrode potential and serves as a container for storing the additive. FIG. 7 shows an example using the protective layer 37.
 本実施例では前記電解液添加剤35にはビニレンカーボネ-トを、保護層37にはアルミ製容器を、バリア層36には銅箔を用いた。本実施例の構成でスイッチをオンにすると、正極11と電気的に接続されてバリア層36の銅が溶解し、電解液添加剤35が電解液中に供給される。なお、電解液添加剤33は任意の公知の添加剤を用いることができ、本実施例では負極合剤層23の表面で還元分解して被膜を形成し寿命性能向上の効果を奏するとの報告がなされているビニレンカーボネートを用いた。なお、バリア層36は、正極電位で酸化分解するフィルム状の樹脂を用いてもよい。 In this embodiment, vinylene carbonate was used for the electrolytic solution additive 35, an aluminum container was used for the protective layer 37, and a copper foil was used for the barrier layer 36. When the switch is turned on in the configuration of the present embodiment, the copper of the barrier layer 36 is electrically connected to the positive electrode 11, and the electrolytic solution additive 35 is supplied into the electrolytic solution. Note that any known additive can be used as the electrolytic solution additive 33, and in this embodiment, it is reported that the film is formed by reducing and decomposing on the surface of the negative electrode mixture layer 23 to improve the life performance. The vinylene carbonate which was made was used. The barrier layer 36 may be made of a film-like resin that is oxidatively decomposed at the positive electrode potential.
 図8は電解液添加剤供給部34を2つ備えた構成である。このような構成にすることによって、スイッチ40でそれぞれの電解液添加剤供給部34を異なるタイミングで作動させられる。そのため、複数回の電解液添加剤35の供給が可能になり、容量低下も複数回回復することが可能となる。 FIG. 8 shows a configuration including two electrolytic solution additive supply units 34. With such a configuration, each electrolyte additive supply unit 34 can be operated at different timings by the switch 40. Therefore, the electrolyte solution additive 35 can be supplied a plurality of times, and the capacity drop can be recovered a plurality of times.
 なお、2つの電解液添加剤供給部34のうち、一方をイオン供給部31としても良い。その場合にはリチウムイオンの減少による劣化と、電解液の減少による劣化の両方に対応することが可能となるため、より多様に容量劣化への対応を出来る。 One of the two electrolyte additive supply units 34 may be the ion supply unit 31. In that case, since it is possible to cope with both deterioration due to a decrease in lithium ions and deterioration due to a decrease in electrolytic solution, it is possible to cope with capacity deterioration more variously.
 《実施例4》
 続いて実施例4について説明する。実施例3では電解液添加剤供給部34を正極11に接続させたが、本実施例では電解液添加剤供給部34を負極21に接続させた点が実施例3と異なっている。
Example 4
Next, Example 4 will be described. In Example 3, the electrolyte solution additive supply unit 34 was connected to the positive electrode 11, but in this example, the point that the electrolyte solution additive supply unit 34 was connected to the negative electrode 21 was different from Example 3.
 図9は、本実施例における負極21と電解液添加剤供給部34の構成を模式的に示す断面図である。電解液添加剤供給部34は、電解液添加剤35と、前記電解液添加剤35を電解液から隔てかつスイッチをオンにすることで負極21と電気的に接続された際に還元分解して前記電解液添加剤35を電解液中に供給する機能を有したバリア層36からなる。また、さらに好ましくは、負極電位において安定でかつ前記電解液添加剤35を収納する容器となる保護層37があると好ましい。 FIG. 9 is a cross-sectional view schematically showing the configuration of the negative electrode 21 and the electrolyte additive supply unit 34 in the present embodiment. The electrolytic solution additive supply unit 34 performs reductive decomposition when the electrolytic solution additive 35 is electrically connected to the negative electrode 21 by separating the electrolytic solution additive 35 from the electrolytic solution and turning on the switch. It comprises a barrier layer 36 having a function of supplying the electrolytic solution additive 35 into the electrolytic solution. More preferably, there is a protective layer 37 that is stable at the negative electrode potential and serves as a container for storing the electrolyte solution additive 35.
 本実施例では前記電解液添加剤35にビニレンカーボネ-トを、保護層37に銅製容器を、バリア層36に樹脂フィルムを用いた。本実施例の構成でスイッチをオンにすると、負極21と電気的に接続されてバリア層が分解し、電解液添加剤33が電解液中に供給される。 In this example, vinylene carbonate was used for the electrolytic solution additive 35, a copper container was used for the protective layer 37, and a resin film was used for the barrier layer 36. When the switch is turned on in the configuration of the present embodiment, the barrier layer is decomposed by being electrically connected to the negative electrode 21, and the electrolytic solution additive 33 is supplied into the electrolytic solution.
 ビニレンカーボネートによる寿命性能向上効果の理由として、負極合剤層23の表面で還元分解して被膜を形成し寿命性能向上の効果を奏するとの報告がなされている。電解液添加剤供給部34を負極付近に設けることで電解液添加剤35を効率的に負極合剤層23の表面に供給し、寿命性能向上効果を得ることができる。 As a reason for the effect of improving the life performance by vinylene carbonate, it has been reported that the film is formed by reducing and decomposing on the surface of the negative electrode mixture layer 23 to improve the life performance. By providing the electrolytic solution additive supply part 34 in the vicinity of the negative electrode, the electrolytic solution additive 35 can be efficiently supplied to the surface of the negative electrode mixture layer 23, and an effect of improving the life performance can be obtained.
 《実施例5》
 続いて、実施例5について説明する。本実施例は、実施例1から4に示すリチウムイオン二次電池の制御システムについて説明する。
Example 5
Next, Example 5 will be described. In this example, a control system for lithium ion secondary batteries shown in Examples 1 to 4 will be described.
 図10は、リチウムイオン二次電池の制御システムのシステム構成図、図11は、制御アルゴリズムを示すフローチャートである。 FIG. 10 is a system configuration diagram of a control system for a lithium ion secondary battery, and FIG. 11 is a flowchart showing a control algorithm.
 リチウムイオン二次電池C1の制御システムは、図10に示すように、充放電制御装置100とコントローラ105と出力部106を有している。充放電制御装置100は、電池情報取得部101、劣化状態判定部102、スイッチ作動判断部103、制御信号送信部104を有している。 The control system of the lithium ion secondary battery C1 includes a charge / discharge control device 100, a controller 105, and an output unit 106, as shown in FIG. The charge / discharge control apparatus 100 includes a battery information acquisition unit 101, a deterioration state determination unit 102, a switch operation determination unit 103, and a control signal transmission unit 104.
 電池情報取得部101は、リチウムイオン二次電池C1の充放電情報を取得し、劣化状態判定部102は、リチウムイオン二次電池C1の容量低下の状態に基づいてイオン供給部31の作動の要否を判定する。スイッチ作動判断部103は、どの寿命延長材を作動させるかを判断する。制御信号送信部104は、スイッチ作動判断部103により決定された制御情報をコントローラ105に送信する。コントローラ105は、スイッチの切り替えにより寿命延長材を作動させる。さらに、出力部は、上位システムおよび/またはユーザーにスイッチ作動の履歴等を出力する。 The battery information acquisition unit 101 acquires charge / discharge information of the lithium ion secondary battery C1, and the deterioration state determination unit 102 determines the operation of the ion supply unit 31 based on the capacity reduction state of the lithium ion secondary battery C1. Determine no. The switch operation determining unit 103 determines which life extending material is to be operated. The control signal transmission unit 104 transmits the control information determined by the switch operation determination unit 103 to the controller 105. The controller 105 operates the life extending member by switching the switch. Further, the output unit outputs a history of switch operations and the like to the host system and / or the user.
 次に、上記した構成を有する制御システムの動作について説明する。 Next, the operation of the control system having the above configuration will be described.
 まず、電池情報取得部101によりリチウムイオン二次電池C1の充放電情報を取得する(ステップS111)。そして、劣化状態判定部102によりリチウムイオン二次電池C1の容量低下の状態を判定し(ステップS112)、リチウムイオンの供給が必要か否かの判定が行われる(ステップS113)。 First, the battery information acquisition unit 101 acquires charge / discharge information of the lithium ion secondary battery C1 (step S111). And the deterioration state determination part 102 determines the state of capacity | capacitance reduction of the lithium ion secondary battery C1 (step S112), and it is determined whether supply of lithium ion is required (step S113).
  そして、スイッチ作動判断部103によってリチウムイオンの供給または電解液添加剤の供給が必要と判定された場合は(ステップS113でYES)、制御信号送信部104およびコントローラ105を通じて、リチウムイオン二次電池C1内部でスイッチ40を切り替えてイオン供給部31または電解液添加剤供給部34との接続をオンにする(ステップS114)。その後、出力部106が、上位システムまたはユーザーへと情報を伝達する(ステップS115)。なお、ここで上位システムに送信される情報は、例えば、イオン供給部31の接続時間またはイオン供給量および、どの電解液添加剤供給部34を使用したかの履歴情報などである。 When the switch operation determining unit 103 determines that lithium ion supply or electrolyte additive supply is required (YES in step S113), the lithium ion secondary battery C1 is passed through the control signal transmitting unit 104 and the controller 105. The switch 40 is switched inside to turn on the connection with the ion supply unit 31 or the electrolyte solution supply unit 34 (step S114). Thereafter, the output unit 106 transmits information to the host system or the user (step S115). Here, the information transmitted to the host system is, for example, connection time or ion supply amount of the ion supply unit 31 and history information indicating which electrolyte solution supply unit 34 is used.
 一方で、リチウムイオンの供給または電解液添加剤の供給が不要と判断された場合には、出力部106から上位システムまたはユーザーへと情報を伝達し(ステップS116)、所定時間待機後(ステップS117)、再度診断を繰り返す。 On the other hand, if it is determined that supply of lithium ions or supply of electrolyte solution is unnecessary, information is transmitted from the output unit 106 to the host system or user (step S116), and after waiting for a predetermined time (step S117). ) Repeat the diagnosis again.
 本実施例に示した制御方法により、イオン供給部31および電解液供給部の作動をより精密に制御することが可能になる。イオン供給部31および電解液供給部の作動の要否の判定には、公知の電池性能評価方法および劣化推定方法を用いることができる。例えば、定格容量を測定する手段で電池容量を測定し、劣化前と比較する方法や、放電曲線を用いた電池内部状態推定手法が知られている。電池容量が予め設定した値を下回った場合や、充電および/または放電曲線の解析から正負極の充放電範囲を推定し正極の作動電位の上限値が予め設定した値を超えた場合などとすると良い。 The control method shown in this embodiment makes it possible to control the operations of the ion supply unit 31 and the electrolyte supply unit more precisely. A known battery performance evaluation method and deterioration estimation method can be used to determine whether or not the ion supply unit 31 and the electrolyte solution supply unit need to be operated. For example, a method for measuring the battery capacity by means of measuring the rated capacity and comparing it with that before deterioration, and a battery internal state estimation method using a discharge curve are known. When the battery capacity falls below a preset value, or when the charge / discharge range of the positive and negative electrodes is estimated from the analysis of the charge and / or discharge curve, and the upper limit of the positive working potential exceeds the preset value. good.
 以上、本発明の作用効果をまとめて説明する。本発明では寿命延長材としては金属リチウムまたは合金系負極をイオン供給源とする第一の場合と、ビニレンカーボネートなどの有機溶媒からなる電解液添加剤を、スイッチ作動に伴い電解液中に供給する機構を設けた容器に封入して用いる第二の場合、および上記2つの場合を両立した第三の場合がある。 The operational effects of the present invention will be described together. In the present invention, as a life extension material, in the first case where metallic lithium or an alloy-based negative electrode is used as an ion supply source, an electrolytic solution additive composed of an organic solvent such as vinylene carbonate is supplied into the electrolytic solution when the switch is operated. There are a second case in which a mechanism is provided and used in a container, and a third case in which the above two cases are compatible.
 第一の場合では、イオン供給部31がスイッチ40により電気的に絶縁されているため、未充電の状態で金属リチウムと正極との反応により過放電状態に至らせることがない。また、スイッチ40を接続状態にする時間を制御することで、リチウムイオンの供給量を制御することができるため、過剰な量のリチウムイオンを供給してしまい金属リチウム析出に至るおそれなく任意の量のイオン供給源を設置することができる。 In the first case, since the ion supply unit 31 is electrically insulated by the switch 40, it does not reach an overdischarged state due to a reaction between metallic lithium and the positive electrode in an uncharged state. Moreover, since the supply amount of lithium ions can be controlled by controlling the time for which the switch 40 is in the connected state, an arbitrary amount can be obtained without supplying an excessive amount of lithium ions and leading to metal lithium deposition. The ion source can be installed.
 第二の場合では、正極または負極との導通により容器の少なくとも一部を構成する材料が、正極または負極の電位により酸化または還元分解することで溶解もしくは消失し、内容物を電解液中に供給することができる。そのため、任意のタイミングで容量劣化を改善することができる。 In the second case, the material constituting at least a part of the container by conduction with the positive electrode or the negative electrode dissolves or disappears by oxidation or reductive decomposition according to the potential of the positive electrode or the negative electrode, and supplies the contents into the electrolytic solution. can do. Therefore, capacity degradation can be improved at an arbitrary timing.
 第三の場合には、前記第一の場合と前記第二の場合を組み合わせた効果が得られる。 In the third case, an effect obtained by combining the first case and the second case is obtained.
 以上のことから、本発明により寿命延長材の供給時期および供給量をコントロールし、初期の不可逆容量を解消することのみならず、比較的高温環境下での保存時や、多数の回数の充放電サイクルといった電池の使用に伴い進行した副反応による容量低下を解消し、また添加剤供給により新たな副反応の発生を抑制することが可能な非水系二次電池及び電池モジュールを提供できる。 From the above, according to the present invention, the supply timing and supply amount of the life extension material are controlled, and not only the initial irreversible capacity is eliminated, but also during storage in a relatively high temperature environment and many times of charge / discharge It is possible to provide a non-aqueous secondary battery and a battery module that can eliminate a capacity reduction due to a side reaction that has progressed with the use of a battery such as a cycle, and that can suppress the occurrence of a new side reaction by supplying an additive.
 より具体的な構成としては、本発明のリチウムイオン二次電池は、電極(正極11または負極21)とセパレータ10が交互に配置された電極群8と、電極群8が収納される電池缶1と、電池缶1内に配置される寿命延長材203(イオン供給部31と電解液添加剤供給部34の総称)とを有し、電極は寿命延長材203とスイッチ40を介して接続されている。このような構造にすることによって、寿命延長材の供給時期および供給量をコントロールし、初期の不可逆容量を解消することが可能となる。 As a more specific configuration, the lithium ion secondary battery of the present invention includes an electrode group 8 in which electrodes (positive electrode 11 or negative electrode 21) and separators 10 are alternately arranged, and a battery can 1 in which the electrode group 8 is housed. And a life extension material 203 (a general term for the ion supply unit 31 and the electrolyte solution supply unit 34) disposed in the battery can 1, and the electrodes are connected to the life extension material 203 via the switch 40. Yes. By adopting such a structure, it is possible to control the supply timing and supply amount of the life extension material and eliminate the initial irreversible capacity.
 また、本発明のリチウムイオン二次電池は、寿命延長材としてリチウムイオンのイオン供給部31を用いている。このような構造をとることによって、リチウムイオン二次電池内の副反応で消費されたリチウムイオンを回復し、容量低下を回復することが可能となる。 Further, the lithium ion secondary battery of the present invention uses the lithium ion ion supply unit 31 as a life extending material. By adopting such a structure, it is possible to recover the lithium ions consumed by the side reaction in the lithium ion secondary battery and recover the capacity reduction.
 また、本発明のリチウムイオン二次電池は、寿命延長材として電解液添加剤供給部34を用いている。このような構造をとることによって、リチウムイオン二次電池内の副反応で消費された電解液添加剤の減少を回復し、容量低下を回復することが可能となる。 Moreover, the lithium ion secondary battery of the present invention uses the electrolyte additive supply unit 34 as a life extending material. By adopting such a structure, it is possible to recover the decrease in the electrolyte additive consumed by the side reaction in the lithium ion secondary battery and to recover the capacity decrease.
 また、本発明のリチウムイオン二次電池は、電解液添加剤供給部34は、電解液添加剤35を収容する保護層37と、電極と電気的に接続されて分解するバリア層36を有している。このような構造とすることによって電極(正極11または負極21)の電位により酸化または還元分解することでバリア層36を溶解もしくは消失させ、内容物を電解液中に供給することができる。そのため、任意のタイミングで電解液添加剤の減少による容量劣化を改善することができる。 Further, in the lithium ion secondary battery of the present invention, the electrolytic solution additive supply unit 34 has a protective layer 37 that houses the electrolytic solution additive 35 and a barrier layer 36 that is electrically connected to the electrode and decomposes. ing. With such a structure, the barrier layer 36 can be dissolved or disappeared by being oxidized or reductively decomposed by the potential of the electrode (the positive electrode 11 or the negative electrode 21), and the contents can be supplied into the electrolytic solution. Therefore, capacity deterioration due to a decrease in the electrolyte additive can be improved at an arbitrary timing.
 また、本発明のリチウムイオン二次電池は、電解液添加剤供給部34が複数個設けられ、それぞれがスイッチ40によって電極との接続が切り替えられる構造となっている。このような構造にすることによって、スイッチ40でそれぞれの電解液添加剤供給部34を異なるタイミングで作動させられる。そのため、複数回の電解液添加剤35の供給が可能になり、電解液添加剤35の減少による容量低下も複数回回復することが可能となる。
また、本発明のリチウム二次電池は、寿命延長材203(イオン供給部31または電解液添加剤供給部34)が電極箔(正極箔12または負極箔22)の露出部に配置されている。このような構造にすることによって、容量低下を回復できる機構を設けつつもリチウムイオン二次電池を小型にできる。
In addition, the lithium ion secondary battery of the present invention has a structure in which a plurality of electrolyte additive supply units 34 are provided, and the connection with the electrode is switched by the switch 40. By adopting such a structure, each electrolyte solution supply unit 34 can be operated at different timings by the switch 40. Therefore, it is possible to supply the electrolytic solution additive 35 a plurality of times, and it is possible to recover the capacity drop due to the decrease of the electrolytic solution additive 35 a plurality of times.
In the lithium secondary battery of the present invention, the life extension material 203 (the ion supply part 31 or the electrolytic solution additive supply part 34) is disposed on the exposed part of the electrode foil (the positive foil 12 or the negative foil 22). By adopting such a structure, the lithium ion secondary battery can be reduced in size while providing a mechanism capable of recovering the capacity drop.
1 電池缶
2 ガスケット
3 上蓋部
5 正極集電板
6 負極集電板
7 軸芯
8 電極群
11 正極
12 正極箔
13 正極合剤層
21 負極
22 負極箔
23 負極合剤層
31 イオン供給部
32 スイッチ
33 抵抗
34 電解液添加剤供給部
35 電解液添加剤
36 バリア層
37 保護層
40スイッチ
41配線
42抵抗
100 充放電制御装置
101 電池情報取得部
102 劣化状態判定部
103 スイッチ作動判断部
104 制御信号送信部
105 コントローラ
106 出力部
C1 リチウムイオン二次電池
DESCRIPTION OF SYMBOLS 1 Battery can 2 Gasket 3 Upper cover part 5 Positive electrode current collecting plate 6 Negative electrode current collecting plate 7 Axle core 8 Electrode group 11 Positive electrode 12 Positive electrode foil 13 Positive electrode mixture layer 21 Negative electrode 22 Negative electrode foil 23 Negative electrode mixture layer 31 Ion supply part 32 Switch 33 Resistance 34 Electrolyte Additive Supply Unit 35 Electrolyte Additive 36 Barrier Layer 37 Protective Layer 40 Switch 41 Wiring 42 Resistance 100 Charge / Discharge Control Device 101 Battery Information Acquisition Unit 102 Degradation State Determination Unit 103 Switch Operation Determination Unit 104 Control Signal Transmission Part 105 Controller 106 Output part C1 Lithium ion secondary battery

Claims (8)

  1.  電極とセパレータが交互に配置された電極群と、
     前記電極群が収納される電池缶と、
     前記電池缶内に配置される寿命延長材と、を有するリチウムイオン二次電池において、
     前記電極は、前記寿命延長材とスイッチを介して接続されていることを特徴とするリチウムイオン二次電池。
    An electrode group in which electrodes and separators are alternately arranged;
    A battery can containing the electrode group;
    In a lithium ion secondary battery having a life extension material disposed in the battery can,
    The lithium ion secondary battery, wherein the electrode is connected to the life extending member via a switch.
  2.  請求項1に記載のリチウムイオン二次電池において、
     前記寿命延長材はリチウムイオンのイオン供給部を有することを特徴とするリチウムイオン二次電池。
    The lithium ion secondary battery according to claim 1,
    The life extension material has a lithium ion ion supply part.
  3.  請求項1または2に記載のリチウムイオン二次電池において、
     前記寿命延長材は電解液添加剤供給部を有することを特徴とするリチウムイオン二次電池。
    The lithium ion secondary battery according to claim 1 or 2,
    The lithium ion secondary battery, wherein the life extending material has an electrolyte additive supply unit.
  4.  請求項3に記載のリチウムイオン二次電池において、
     前記電解液添加剤供給部は、電解液添加剤を収容する保護層と、前記電極と電気的に接続されて分解するバリア層を有することを特徴とするリチウムイオン二次電池。
    The lithium ion secondary battery according to claim 3,
    The lithium ion secondary battery is characterized in that the electrolytic solution additive supply unit includes a protective layer that stores the electrolytic solution additive and a barrier layer that is electrically connected to the electrode and decomposes.
  5.  請求項4に記載のリチウムイオン二次電池において、
     前記電解液添加剤供給部が複数設けられ、それぞれ前記スイッチにより電極との接続が切り替えられることを特徴とするリチウムイオン二次電池。
    The lithium ion secondary battery according to claim 4,
    A lithium ion secondary battery comprising a plurality of the electrolyte additive supply units, each of which is connected to an electrode by the switch.
  6.  請求項4または5に記載のリチウムイオン二次電池において、
     前記電解液添加剤はビニレンカーボネートであることを特徴とするリチウムイオン二次電池。
    The lithium ion secondary battery according to claim 4 or 5,
    The lithium ion secondary battery, wherein the electrolyte additive is vinylene carbonate.
  7.  請求項2乃至6に記載のリチウムイオン二次電池において、
     前記イオン供給部は、金属リチウム、シリコン、スズ、またはリチウム化合物のいずれかで構成されることを特徴とするリチウムイオン二次電池。
    The lithium ion secondary battery according to any one of claims 2 to 6,
    The lithium ion secondary battery is characterized in that the ion supply unit is made of any one of metallic lithium, silicon, tin, or a lithium compound.
  8.  請求項7に記載のリチウムイオン二次電池において、
     前記電極は電極箔に塗工された合剤層と、前記電極箔が露出されている電極箔露出部を有し、
     前記イオン供給部は前記電極箔露出部に配置したことを特徴とするリチウムイオン二次電池。
    The lithium ion secondary battery according to claim 7,
    The electrode has a mixture layer coated on the electrode foil, and an electrode foil exposed portion where the electrode foil is exposed,
    The lithium ion secondary battery is characterized in that the ion supply unit is disposed in the electrode foil exposed part.
PCT/JP2014/056818 2014-03-14 2014-03-14 Lithium ion secondary battery WO2015136683A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/056818 WO2015136683A1 (en) 2014-03-14 2014-03-14 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/056818 WO2015136683A1 (en) 2014-03-14 2014-03-14 Lithium ion secondary battery

Publications (1)

Publication Number Publication Date
WO2015136683A1 true WO2015136683A1 (en) 2015-09-17

Family

ID=54071160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056818 WO2015136683A1 (en) 2014-03-14 2014-03-14 Lithium ion secondary battery

Country Status (1)

Country Link
WO (1) WO2015136683A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021086662A (en) * 2019-11-25 2021-06-03 イビデン株式会社 Lithium ion secondary battery, current control circuit, and capacity-recovering method of lithium ion secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05205776A (en) * 1992-01-29 1993-08-13 Hitachi Ltd Chemical battery and electric power storage system
JP2006324591A (en) * 2005-05-20 2006-11-30 Nisshinbo Ind Inc Electric double-layer capacitor, control method thereof, storage system using the same and secondary battery
JP2010528437A (en) * 2007-05-25 2010-08-19 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Electrochemical energy storage device with storage container for additives
JP2011165343A (en) * 2010-02-04 2011-08-25 Hitachi Ltd Nonaqueous electrolyte secondary battery apparatus, and method for charging anode of the same
JP2012256430A (en) * 2011-06-07 2012-12-27 Toyota Motor Corp Solid secondary battery system
JP2013187040A (en) * 2012-03-08 2013-09-19 Toyota Motor Corp Battery and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05205776A (en) * 1992-01-29 1993-08-13 Hitachi Ltd Chemical battery and electric power storage system
JP2006324591A (en) * 2005-05-20 2006-11-30 Nisshinbo Ind Inc Electric double-layer capacitor, control method thereof, storage system using the same and secondary battery
JP2010528437A (en) * 2007-05-25 2010-08-19 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Electrochemical energy storage device with storage container for additives
JP2011165343A (en) * 2010-02-04 2011-08-25 Hitachi Ltd Nonaqueous electrolyte secondary battery apparatus, and method for charging anode of the same
JP2012256430A (en) * 2011-06-07 2012-12-27 Toyota Motor Corp Solid secondary battery system
JP2013187040A (en) * 2012-03-08 2013-09-19 Toyota Motor Corp Battery and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021086662A (en) * 2019-11-25 2021-06-03 イビデン株式会社 Lithium ion secondary battery, current control circuit, and capacity-recovering method of lithium ion secondary battery
JP7377080B2 (en) 2019-11-25 2023-11-09 イビデン株式会社 Lithium ion secondary battery, current control circuit, and lithium ion secondary battery capacity recovery method

Similar Documents

Publication Publication Date Title
JP6746520B2 (en) Secondary battery, battery pack, and vehicle
US9399404B2 (en) Charging system for all-solid-state battery
JP5822089B2 (en) Sealed lithium secondary battery
JP4240078B2 (en) Lithium secondary battery
JP2014086228A (en) Enclosed nonaqueous electrolytic secondary battery, and method for manufacturing the same
JP2011192610A (en) Lithium ion battery
JP2015011930A (en) Nonaqueous electrolyte secondary battery
WO2015064179A1 (en) Lithium ion secondary battery
KR20130014431A (en) Electrode assembly comprising separator for improving safety and lithium secondary batteries comprising the same
JP5704409B2 (en) Sealed lithium secondary battery
JP6501129B2 (en) Electrode structure of lithium ion battery
JP2013145737A (en) Battery
JP5841827B2 (en) Secondary battery system and control method of secondary battery system
JP2015138730A (en) Secondary battery
JP5660057B2 (en) Sealed battery and method for manufacturing sealed battery
KR20130031772A (en) Lithium ion secondary battery
JP5962961B2 (en) Positive electrode, manufacturing method thereof, and nonaqueous electrolyte secondary battery using the positive electrode
JP5835617B2 (en) Sealed lithium secondary battery
JP5997284B2 (en) Non-aqueous secondary battery and battery control system
JP5618156B2 (en) Manufacturing method of sealed lithium secondary battery
JP2017054739A (en) Secondary battery
WO2015136683A1 (en) Lithium ion secondary battery
JP6895079B2 (en) Non-aqueous electrolyte secondary battery
JP2012028044A (en) Lithium ion battery
JP6951666B2 (en) Deterioration estimation device for lithium ion capacitors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14885102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14885102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP