JPH05205776A - Chemical battery and electric power storage system - Google Patents

Chemical battery and electric power storage system

Info

Publication number
JPH05205776A
JPH05205776A JP4013961A JP1396192A JPH05205776A JP H05205776 A JPH05205776 A JP H05205776A JP 4013961 A JP4013961 A JP 4013961A JP 1396192 A JP1396192 A JP 1396192A JP H05205776 A JPH05205776 A JP H05205776A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
positive electrode
battery
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4013961A
Other languages
Japanese (ja)
Other versions
JP2733404B2 (en
Inventor
Hiromi Tokoi
博見 床井
Kiyomitsu Nemoto
清光 根本
Katsuo Kawasaki
勝男 川崎
Naohisa Watabiki
直久 綿引
Shigehiro Shimoyashiki
重広 下屋敷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4013961A priority Critical patent/JP2733404B2/en
Publication of JPH05205776A publication Critical patent/JPH05205776A/en
Application granted granted Critical
Publication of JP2733404B2 publication Critical patent/JP2733404B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To enhance the reliability of a battery by making a positive and a negative terminal conductive only when negative electrode active material is raised up to temperature equal to or more than its melting point, if the chemical battery is made up of a positive electrode region filled with positive electrode active material within a container, a negative electrode region filled with negative electrode active material within the container, and of solid electrolyte interposed between the aforesaid regions. CONSTITUTION:Na is filled in a Na electrode acting as a negative electrode as follows, the Na electrode is evacuated first, Na is filled in the uppermost section of a negative electrode container 4 by way of the uppermost section of a Na injection and electric current collection tube 8, and a filling port is hermetically sealed after filling has been over. The Na side tip end section of a negative electrode terminal 10 is then inserted into the electric current collection tube 8 thereafter. In this case, the tip end of the terminal 10 is so defined in dimension that its does not reach the level of Na. Namely, the length of the terminal 10 and the filling quantity of Na are adjusted in such a way that the container 4 acting as the terminal 10 and Na are in a non-contact condition. This thereby allows the level of Na within the electric current collection tube 8 to be positioned as indicated by the dotted line of a code number 12 at temperatures less than battery operating temperature without being brought into contact with the tip end of the terminal, and if temperature is equal to or more than battery operating temperature, the level is allowed to rise up to a position indicated by the solid line of a code number 13, so that electricity is conducted to the terminal 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は夜間電力貯蔵用や電気自
動車用の大電力を貯蔵する化学電池に係り、特に、信頼
性や安全性の高いNa/溶融塩電池等の化学電池に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chemical battery for storing a large amount of electric power for nighttime electric power storage or an electric vehicle, and more particularly to a chemical battery such as a Na / molten salt battery having high reliability and safety.

【0002】[0002]

【従来の技術】Na/溶融塩電池には、Na/S電池,
Na/FeCl電池,Na/Se電池等多数存在する。
これらの各電池に共通する問題なので、以下、Na/S
電池を例に説明する。Na/S電池は、大電力を貯蔵す
ることができるので、夜間に余った電力を貯蔵したり、
電気自動車用の電池として使用することが可能である。
しかし、これらを実用化する上で解決しなければならな
い問題がある。その1つは、Na/S電池のナトリウム
Na(負極活物質)と硫黄S(正極活物質)とを画成す
る固体電解質(通常、β−アルミナ管,β”−アルミナ
管を用いる。)が破損しやすいという問題である。この
固体電解質が破損すると、電池内部にて正極活物質と負
極活物質とが直接反応して電力を電池外部に取り出すこ
とができなくなるばかりでなく、最悪の場合には電池容
器まで破損してしまう。そこで、従来のNa/s電池
は、特開平2−98068号公報や特開平2−1038
69号公報記載の様に、固体電解質の破損時にNaとS
との直接反応熱にて当該電池内における電気回路系が溶
断するような金属筒等を設けておき、他の並列接続され
たNa/S電池への悪影響を防止するようにしている。
2. Description of the Related Art Na / molten salt batteries include Na / S batteries,
There are many Na / FeCl batteries and Na / Se batteries.
Since it is a problem common to each of these batteries, Na / S
A battery will be described as an example. Since the Na / S battery can store a large amount of power, it can store excess power at night,
It can be used as a battery for an electric vehicle.
However, there are problems that must be solved before putting them into practical use. One of them is a solid electrolyte (usually a β-alumina tube or a β ″ -alumina tube is used) that defines sodium Na (negative electrode active material) and sulfur S (positive electrode active material) of a Na / S battery. If the solid electrolyte is damaged, not only will the positive electrode active material and negative electrode active material not react directly inside the battery to take out power, but in the worst case Therefore, the conventional Na / s battery is not disclosed in JP-A-2-98068 and JP-A-2-1038.
As described in Japanese Patent No. 69, when the solid electrolyte is damaged, Na and S
A metal tube or the like is provided so that the electric circuit system in the battery is melted off by the heat of direct reaction with and so as to prevent adverse effects on other Na / S batteries connected in parallel.

【0003】[0003]

【発明が解決しようとする課題】上記の従来技術は、多
数の並列接続された電池の1つで固体電解質が破損した
とき、他の電池への悪影響を防止するために、破損の起
きた電池内部における電気的短絡を回避するものであ
り、固体電解質の破損自体を防止する技術ではない。固
体電解質がどの様な原因にて破損するかの詳細について
はいまだ不明であるが、その概略について以下に説明す
る。
SUMMARY OF THE INVENTION In the above-mentioned prior art, when a solid electrolyte is damaged in one of a large number of batteries connected in parallel, the damaged battery is prevented in order to prevent adverse effects on the other batteries. This is to avoid electrical short circuit inside and not to prevent damage to the solid electrolyte itself. The details of what causes the solid electrolyte to break are still unknown, but its outline will be described below.

【0004】図2は、Na/S電池の一般的な構造を示
す図である。例えばβーアルミナ管やβ”ーアルミナ管
等でなる固体電解質管1を介して、負極活物質(Na)
7と正極活物質(S)5が対峙しており、電池反応で発
生する電力を取り出すために、負極活物質と負極容器4
との間に電気導体が接続されている。負極(Na極)で
はNa注入管兼集電管8が電気導体の役割を果たし、正
極(S極)では補助導電材(正極活物質と一緒に入れた
グラファイトフェルト)6が電気導体の役割を果たす。
FIG. 2 is a diagram showing a general structure of a Na / S battery. For example, the negative electrode active material (Na) is passed through the solid electrolyte tube 1 composed of a β-alumina tube or a β ″ -alumina tube.
7 and the positive electrode active material (S) 5 face each other, and the negative electrode active material and the negative electrode container 4 are provided in order to extract the electric power generated in the battery reaction.
An electrical conductor is connected between and. In the negative electrode (Na electrode), the Na injection tube / current collector tube 8 serves as an electric conductor, and in the positive electrode (S electrode), the auxiliary conductive material (graphite felt put together with the positive electrode active material) 6 serves as an electric conductor. Fulfill

【0005】従って、電池の作動温度以下でも、電池の
S極とNa極を短絡すると電池内の電気回路が導通し、
短絡電流が流れる。電池単体を製作する時や、電池組立
て時、または単体電池を集合した集合電池の組立て時
は、電池が短絡してしまう事態が生じる。更に、組立後
の電池を計測するために計測線を電池へ接続すると、必
然的に、電池が短絡してしまう。短絡時の様子をさらに
詳細に図7を使って説明する。Na7は固体電解質管壁
1中を陽イオン状態で負極側から正極側へと移動する。
Naイオンは、固体電解質管1と正極との界面で電子を
もらい、中性化する(以下、これをNaデンドライトと
呼ぶ)。負極でNaが陽イオンとなり、補助導電材6か
ら正極容器3に通ることで、電子は、負極から外部回路
(外部負荷28が短絡状態のとき)を経て正極容器3に
流れる。尚、正極活物質である硫黄(S)5は電子伝導
性を持たないため、固体電解質管壁1に補助導電材6が
接触している個所29で電子の供給がなされる。
Therefore, even if the temperature is lower than the operating temperature of the battery, if the S pole and the Na pole of the battery are short-circuited, the electric circuit in the battery becomes conductive,
Short circuit current flows. When producing a single battery, assembling a battery, or assembling an assembled battery in which single batteries are assembled, a situation occurs in which the batteries are short-circuited. Furthermore, if the measurement line is connected to the battery to measure the assembled battery, the battery is inevitably short-circuited. The state at the time of short circuit will be described in more detail with reference to FIG. Na7 moves in the solid electrolyte tube wall 1 in the cation state from the negative electrode side to the positive electrode side.
The Na ions receive electrons at the interface between the solid electrolyte tube 1 and the positive electrode, and are neutralized (hereinafter referred to as Na dendrite). When Na becomes a cation at the negative electrode and passes from the auxiliary conductive material 6 to the positive electrode container 3, electrons flow from the negative electrode to the positive electrode container 3 through an external circuit (when the external load 28 is in a short circuit state). Since the positive electrode active material sulfur (S) 5 does not have electron conductivity, electrons are supplied at the location 29 where the auxiliary conductive material 6 is in contact with the solid electrolyte tube wall 1.

【0006】固体電解質1と補助導電材6の接触状況に
付いて説明する。補助導電材6が固体電解質1のほぼ全
面で接触すると、電池の充電時に充電反応で生成される
硫黄が固体電解質1の表面全面に析出してしまう。硫黄
は絶縁物であるため、充電過電圧が発生して充電不能と
なる。一方、補助導電材6が固体電解質1に接触しない
と、電池の放電ができない。従って、固体電解質1と補
助導電材6は、局部的に接触した状態を維持させる必要
がある。正極活物質である硫黄(S)は119℃以下で
は固体であり、固体電解質1表面に密着しているため、
中性化したNaは固体電解質管1から外部へ自由に流出
できない。中性化したNaの原子直径は、Na陽イオン
の直径に比べてほぼ2倍ある。このため、固体電解質1
内でNaが中性化し、Naデンドライトが生じると、そ
の膨張圧によって、固体電解質1が損傷を受けると考え
られる。一旦Naデンドライトが形成されると、その部
分がNaによって電気導電性が高くなり、ますます電流
が集中する。なお、短絡された電池の開路電圧は低下す
る。
The state of contact between the solid electrolyte 1 and the auxiliary conductive material 6 will be described. When the auxiliary conductive material 6 comes into contact with almost the entire surface of the solid electrolyte 1, sulfur generated by the charging reaction when the battery is charged is deposited on the entire surface of the solid electrolyte 1. Since sulfur is an insulator, charging overvoltage occurs and charging becomes impossible. On the other hand, if the auxiliary conductive material 6 does not come into contact with the solid electrolyte 1, the battery cannot be discharged. Therefore, it is necessary to maintain the state where the solid electrolyte 1 and the auxiliary conductive material 6 are locally in contact with each other. Sulfur (S), which is the positive electrode active material, is solid at 119 ° C. or lower and is in close contact with the surface of the solid electrolyte 1.
Neutralized Na cannot freely flow out from the solid electrolyte tube 1. The atom diameter of neutralized Na is almost twice as large as the diameter of Na cation. Therefore, the solid electrolyte 1
When Na is neutralized inside and Na dendrite is generated, it is considered that the solid electrolyte 1 is damaged by the expansion pressure. Once Na dendrite is formed, Na becomes more electrically conductive due to Na, and the electric current is further concentrated. The open circuit voltage of the short-circuited battery is lowered.

【0007】さらに、外部負荷28を接続して図7に示
す方向に電流を流すと、当然ながら固体電解質1の損傷
は拡大し、固体電解質1の破損へと発展する。斯かる加
速電流を発生させる具体例としては、電池単体や集合電
池を接続配線するときに電気絶縁や抵抗等のチェックの
ために電池に同方向の電圧を印加した場合、あるいは対
象電池に直並列された電池から電流が流れ込む場合等が
考えられる。
Further, when the external load 28 is connected and a current is passed in the direction shown in FIG. 7, the damage of the solid electrolyte 1 naturally expands and the solid electrolyte 1 is damaged. A specific example of generating such an acceleration current is when a voltage in the same direction is applied to the battery to check electrical insulation or resistance when connecting and wiring a single battery or an assembled battery, or serially connected to the target battery. It is conceivable that current may flow from the charged battery.

【0008】固体電解質1が一旦破損すると、高温状態
ではNaとSとの直接反応が発生し、その反応生成熱に
より電池容器が破損する可能性がある。電池の安全性を
確保する上で、固体電解質の破損を防止することが肝要
である。
Once the solid electrolyte 1 is damaged, a direct reaction between Na and S occurs in a high temperature state, and the heat generated by the reaction may damage the battery container. In order to ensure the safety of the battery, it is important to prevent damage to the solid electrolyte.

【0009】従って、Na/S電池は、作動温度以下の
状態で電池単体を短絡したり、短絡して開路電圧の低下
した電池を直並列接続して集合電池を構成したり、ある
いは電池単体や集合電池の接続配線等の電気絶縁や抵抗
等のチェックのために電圧をかけたりすることは、固体
電解質の健全性維持の観点から望ましくない。Na/S
電池の作動温度以下(充放電可能温度以下、例えばNa
やSの融点以下)でも、電池の正極と負極を短絡すると
電池内の電気回路が導通し、固体電解質を損傷し、開路
電圧も低下してしまう。このような電池を実際に使用す
るときは、直並列接続し集合電池として電力貯蔵プラン
ト等を構成するため、固体電解質の破損の問題は解決す
る必要があり、また、従来のNa/S電池は、集合電池
の接続配線時の電気絶縁等のチェックのために電圧をか
けることができないという問題もある。
[0009] Therefore, the Na / S battery is configured such that the battery unit is short-circuited at a temperature lower than the operating temperature, or the batteries whose open circuit voltage is lowered due to the short-circuit are connected in parallel and parallel to each other to form an assembled battery. It is not desirable to apply a voltage to check the electrical insulation of the connection wiring of the assembled battery, the resistance, etc. from the viewpoint of maintaining the soundness of the solid electrolyte. Na / S
Below the operating temperature of the battery (below the chargeable / dischargeable temperature, eg Na
If the positive electrode and the negative electrode of the battery are short-circuited, the electric circuit in the battery becomes conductive, the solid electrolyte is damaged, and the open circuit voltage is also lowered. When such a battery is actually used, it is necessary to solve the problem of damage to the solid electrolyte because it is connected in series and parallel to form a power storage plant or the like as an assembled battery. However, there is also a problem that a voltage cannot be applied to check the electrical insulation during connection wiring of the assembled battery.

【0010】本発明の目的は、電池作動温度以下でどの
ような電気的取扱をしても、安全でかつ信頼性の高いN
a/溶融塩電池等の化学電池と電力貯蔵システムを提供
することにある。
The object of the present invention is to provide a safe and highly reliable N-cell, no matter what kind of electrical handling is performed below the battery operating temperature.
a / To provide a chemical battery such as a molten salt battery and an electric power storage system.

【0011】[0011]

【課題を解決するための手段】上記目的は、容器と、容
器内の正極活物質を充填した正極領域と、容器内の負極
活物質を充填した負極領域と、前記正極領域及び前記負
極領域との間に配置された固体電解質と、前記各領域に
接続された正極端子及び負極端子とを備える化学電池に
おいて、前記負極活物質の融点以上の温度で前記正極端
子と前記負極端子とが電気的に導通状態になるスイッチ
機構を設けることで、達成される。
The above object is to provide a container, a positive electrode region in the container filled with a positive electrode active material, a negative electrode region in the container filled with a negative electrode active material, the positive electrode region and the negative electrode region. In a chemical battery including a solid electrolyte disposed between the positive electrode terminal and the negative electrode terminal connected to the respective regions, the positive electrode terminal and the negative electrode terminal are electrically connected at a temperature equal to or higher than the melting point of the negative electrode active material. This is achieved by providing a switch mechanism that brings the device into a conductive state.

【0012】また電力貯蔵システムは、上記の化学電池
を複数接続し構成することで、達成される。
A power storage system can be achieved by connecting a plurality of the above chemical batteries.

【0013】[0013]

【作用】電池作動温度以下では、スイッチが開放するこ
とで電池内の回路が導通しない。電池作動温度になって
初めてスイッチが閉じ電池内の回路が導通する。これに
より、Naデンドライトの生成が防止される。
When the temperature is lower than the operating temperature of the battery, the circuit inside the battery does not conduct due to the opening of the switch. The switch closes and the circuit inside the battery becomes conductive only when the battery operating temperature is reached. This prevents the generation of Na dendrites.

【0014】[0014]

【実施例】以下、本発明の一実施例を図面を参照して詳
細に説明する。図1は、本発明の一実施例に係るNa/
S電池の縦断面図である。Na/S電池は、正極容器3
と負極容器4との間に、固体電解質(β”−アルミナ)
管1及び電気絶縁材(α−アルミナ)2を設けてセパレ
ータ兼電解質としている。固体電解質管1内及びNa注
入管兼集電管8内には、負極活物質(Na)7を充填し
(固体電解質管1内には、Na注入管兼集電管8のNa
供給孔11を介して供給される。)、これらにより負極
を構成する。一方、正極は、固体電解質管1と正極容器
3との間に、補助導電材(グラファイトフェルト)6と
正極活物質(S)5とを充填して構成する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. FIG. 1 shows Na / according to an embodiment of the present invention.
It is a longitudinal cross-sectional view of an S battery. The Na / S battery has a positive electrode container 3
Between the negative electrode container 4 and the solid electrolyte (β ″ -alumina)
A tube 1 and an electric insulating material (α-alumina) 2 are provided to serve as a separator and an electrolyte. The solid electrolyte tube 1 and the Na injection tube / current collector tube 8 are filled with a negative electrode active material (Na) 7 (the solid electrolyte tube 1 contains Na of the Na injection tube / current collector tube 8).
It is supplied through the supply hole 11. ), These constitute a negative electrode. On the other hand, the positive electrode is formed by filling an auxiliary conductive material (graphite felt) 6 and a positive electrode active material (S) 5 between the solid electrolyte tube 1 and the positive electrode container 3.

【0015】Na極(負極)へのNa充填は、Na極を
真空排気した後、負極容器4の最上部からNa注入管兼
集電管8の最上部を経て充填する。充填後、充填口を気
密封止する。充填後には、負極端子10のNa側先端部
はNa注入管兼集電管8内に挿入された状態にある。こ
のとき、負極端子10の先端が、電池作動温度以下の低
温時にはNa液面に達しない寸法とする。つまり、負極
容器4(負極端子10)とNaとは非接触状態になるよ
うに負極端子10の長さ及びNaの充填量を加減する。
すなわち、電池作動温度以下では、Na注入管兼集電管
8内のNa液位は符号12に示す点線位置にあり、負極
端子10と接触していない。電池運転のため温度を30
0℃から350℃に昇温すると、Naの融点(98℃)
でNaが溶融して2.7%の体積膨張をし、さらに35
0℃までの昇温で約7%の体積膨張をするために、負極
のNa液位は符号13で示す実線位置まで上昇し、負極
端子10と接触する。その結果、Na極は導通状態(抵
抗値が1mΩ以下)となり、充放電が可能となる。この
時、Na注入管兼集電管8内のNaは、電気良導体とし
て低抵抗で電池電流を流し得る状態になる。尚、本実施
例で使用したNa注入管兼集電管8は、その内径が15
mmである。電池温度を下げた場合には、上記のNa液
面は下がり、電池作動温度以下では、液面が符号12で
示す位置となって電池内は絶縁状態に戻る。電池の昇降
温を繰返しても、このスイッチング機能は損なわれな
い。
To fill the Na electrode (negative electrode) with Na, the Na electrode is evacuated and then filled from the uppermost portion of the negative electrode container 4 through the uppermost portion of the Na injection tube / current collector tube 8. After filling, the filling port is hermetically sealed. After the filling, the Na-side tip portion of the negative electrode terminal 10 is in a state of being inserted into the Na injection tube / current collector tube 8. At this time, the tip of the negative electrode terminal 10 is dimensioned so as not to reach the Na liquid surface when the temperature is lower than the battery operating temperature. That is, the length of the negative electrode terminal 10 and the filling amount of Na are adjusted so that the negative electrode container 4 (negative electrode terminal 10) and Na do not contact each other.
That is, at the battery operating temperature or lower, the Na liquid level in the Na injecting tube / current collecting tube 8 is at the dotted line position indicated by reference numeral 12 and is not in contact with the negative electrode terminal 10. Temperature is 30 for battery operation
When the temperature is raised from 0 ° C to 350 ° C, the melting point of Na (98 ° C)
Na melts and expands 2.7% in volume.
Since the volume expansion of about 7% occurs when the temperature is raised to 0 ° C., the Na liquid level of the negative electrode rises to the position indicated by the solid line 13 and comes into contact with the negative electrode terminal 10. As a result, the Na electrode is in a conductive state (resistance value is 1 mΩ or less), and charging / discharging becomes possible. At this time, Na in the Na injecting tube / current collecting tube 8 becomes a state in which the battery current can flow with a low resistance as an electric conductor. The Na injection tube / current collector tube 8 used in this example has an inner diameter of 15
mm. When the battery temperature is lowered, the Na liquid level is lowered, and at the battery operating temperature or lower, the liquid level becomes the position indicated by reference numeral 12 and the inside of the battery returns to the insulating state. This switching function is not impaired even if the temperature of the battery is raised and lowered repeatedly.

【0016】次に、充放電反応に伴うNa極のNaの挙
動を説明する。Na/S電池における充放電時の反応は
下式の通りである。 充電時 2Na+xS ← Na2Sx 放電時 2Na+xS → Na2Sx 放電反応と共にNaは固体電解質管1を透過するため、
管内のNa液位は放電初期の液位14から放電末期には
液位15に低下する。一方、充電反応では、解離したN
aが固体電解質管1を逆方向に透過するため、管内のN
a液位は充電初期の液位15から充電末期には液位14
に達する。しかし、この充放電の間、Na注入管兼集電
管8内のNa液位は液位13で一定に維持される。
Next, the behavior of Na at the Na electrode due to the charge / discharge reaction will be described. The reaction at the time of charging / discharging in the Na / S battery is as follows. When charging 2Na + xS ← Na 2 Sx When discharging 2Na + xS → Na 2 Sx Discharge reaction causes Na to pass through the solid electrolyte tube 1,
The Na liquid level in the tube drops from the liquid level 14 at the beginning of discharge to the liquid level 15 at the end of discharge. On the other hand, in the charging reaction, the dissociated N
Since a permeates the solid electrolyte tube 1 in the opposite direction, N in the tube
The liquid level is from liquid level 15 at the beginning of charging to liquid level 14 at the end of charging.
Reach However, during this charging / discharging, the Na liquid level in the Na injecting tube / current collecting tube 8 is kept constant at the liquid level 13.

【0017】本実施例の構造に係る電池では、その内部
抵抗を低減できることを図8に示す。図2に示す形式の
電池では、放電の進行と共に固体電解質管1内のNa液
位が低下し、それと共にNa注入管兼集電管8内のNa
液位も低下する(管8の底部が開口しているため)。従
って、内部抵抗はNa液位の低下に反比例して増大す
る。一方、図1に示す形式の電池では、Na注入管兼集
電管8内に充填されているNaの液位は一定となるた
め、Na極の抵抗は小さく安定に維持される。尚、本実
施例では、注入管兼集電管8の材料としてはNa中での
耐食性を考慮してステンレス鋼を用いている。本実施例
の電池構造によれば、電池作動温度以下では電池内が導
通することがないので、Naデンドライトが形成され
ず、また、スイッチ手段としてNaを利用するため電池
内に装着する装置類が少なくて済み、更に、電池内部抵
抗が低いので充放電時のエネルギー損失を少なくするこ
とができ、高効率の電池が実現できる。
FIG. 8 shows that the internal resistance of the battery according to the structure of this embodiment can be reduced. In the battery of the type shown in FIG. 2, the Na liquid level in the solid electrolyte tube 1 decreases as the discharge progresses, and at the same time, the Na in the Na injection tube / current collector tube 8
The liquid level also drops (because the bottom of the tube 8 is open). Therefore, the internal resistance increases in inverse proportion to the decrease in the Na liquid level. On the other hand, in the battery of the type shown in FIG. 1, since the liquid level of Na filled in the Na injection tube / current collector tube 8 is constant, the resistance of the Na electrode is small and stably maintained. In this embodiment, stainless steel is used as the material of the injection tube / current collector tube 8 in consideration of corrosion resistance in Na. According to the battery structure of the present embodiment, since the inside of the battery does not conduct at the battery operating temperature or lower, the Na dendrite is not formed, and since Na is used as the switch means, the devices to be mounted in the battery are Further, the battery has a small amount, and since the internal resistance of the battery is low, it is possible to reduce energy loss during charging and discharging, and it is possible to realize a highly efficient battery.

【0018】図3は、本発明の第2実施例に係るNa/
S電池の構成図である。本実施例では、ガスの熱膨張を
利用し、温度検知機能とスイッチ機能を実現したもので
ある。負極端子10は、ベロー付き膨張容器27を介し
て、可動接点29と電気的に接合されている。尚、ベロ
ー付き膨張容器27内には不活性ガスを充填してある。
電池作動温度以下の低温では、不活性ガスは収縮してお
り、この結果、可動接点は点線で示す位置26に吊り下
げられた状態となる。つまり、Na極は絶縁状態にあ
る。温度が上昇し電池が作動温度になると、膨張容器2
7外の雰囲気は真空なので、膨張容器27内の不活性ガ
スが膨張してベローズ部が伸び、可動接点29は集電管
8に固設された固定接点21に接触する。その結果とし
て、Na極が導通状態となり、電池の充放電が可能とな
る。尚、ベロー付き膨張容器27は、ベロー構造でなく
ても熱膨張率の大きな物質を使用することによって代用
できる。また、固定接点21は、図1に示すように、N
aを接点の導体として活用しても良い。本実施例によれ
ば、ガスの膨張または接点材の熱膨張を温度検知手段及
びスイッチ手段に利用するため信頼性が高い。
FIG. 3 shows Na / according to the second embodiment of the present invention.
It is a block diagram of an S battery. In this embodiment, the thermal expansion of gas is utilized to realize the temperature detection function and the switch function. The negative electrode terminal 10 is electrically joined to the movable contact 29 via the expansion container 27 with a bellows. The expansion container 27 with bellows is filled with an inert gas.
At a low temperature below the battery operating temperature, the inert gas is contracted, and as a result, the movable contact is suspended at the position 26 shown by the dotted line. That is, the Na electrode is in an insulating state. When the temperature rises and the battery reaches the operating temperature, the expansion container 2
Since the atmosphere outside 7 is a vacuum, the inert gas in the expansion container 27 expands to expand the bellows portion, and the movable contact 29 comes into contact with the fixed contact 21 fixed to the collector tube 8. As a result, the Na electrode becomes conductive and the battery can be charged and discharged. The bellows-equipped expansion container 27 may be replaced by using a substance having a large coefficient of thermal expansion, instead of the bellows structure. Further, the fixed contact 21 is, as shown in FIG.
You may utilize a as a conductor of a contact. According to this embodiment, the expansion of the gas or the thermal expansion of the contact material is used for the temperature detecting means and the switching means, so that the reliability is high.

【0019】図4は、本発明の第3実施例に係るNa/
S電池の構成図である。図1に示した実施例におけるN
aの熱膨張を利用した温度検知機能とスイッチ機能に替
わり、バイメタルの温度検知機能とスイッチ機能を活用
するものである。負極端子10に電気的に接続されたバ
イメタル16を設け、その先端に接点18を設ける。電
池作動温度以下の低温では、接点18はNa注入管兼集
電管8の内面と接触しておらず、バイメタル16は位置
17にある。温度が上昇し電池が作動温度に達すると、
バイメタル16は位置18に移動し、接点18が集電管
8に接触する。これにより、負極端子10とNa注入管
兼集電管8とが導通する。その結果としてNa極が導通
状態となり、電池の充放電が可能となる。本実施例によ
れば、バイメタルを温度検知手段及びスイッチ手段に利
用するため信頼性が高い。
FIG. 4 shows Na / according to the third embodiment of the present invention.
It is a block diagram of an S battery. N in the embodiment shown in FIG.
Instead of the temperature detection function and the switch function utilizing the thermal expansion of a, the bimetal temperature detection function and the switch function are utilized. A bimetal 16 electrically connected to the negative electrode terminal 10 is provided, and a contact 18 is provided at the tip thereof. At a temperature lower than the battery operating temperature, the contact 18 is not in contact with the inner surface of the Na injection tube / current collector tube 8, and the bimetal 16 is at the position 17. When the temperature rises and the battery reaches operating temperature,
The bimetal 16 moves to the position 18 and the contact 18 contacts the current collector tube 8. As a result, the negative electrode terminal 10 and the Na injection tube / current collector tube 8 are electrically connected. As a result, the Na electrode becomes conductive and the battery can be charged and discharged. According to this embodiment, since the bimetal is used for the temperature detecting means and the switch means, the reliability is high.

【0020】図5は本発明の第4実施例に係るNa/S
電池の構成図である。図4に示したバイメタルの温度検
知機能とスイッチ機能に替わり、形状記憶合金の変態温
度における変形を利用した温度検知機能とスイッチ機能
を活用するものである。負極端子10に電気的に接続さ
れた形状記憶合金19を設け、その先端に接点18を設
ける。電池作動温度以下の低温では、接点18はNa注
入管兼集電管8の内面と接触しておらず、形状記憶合金
19は位置20にある。温度が上昇し電池が作動温度に
達すると、形状記憶合金19は変形して接点18がNa
注入管兼集電管8に接触する。その結果として、Na極
が導通状態となり、電池の充放電が可能となる。本実施
例によれば、形状記憶合金を温度検知手段及びスイッチ
手段に利用するため構造が簡便で信頼性が高い。
FIG. 5 shows Na / S according to the fourth embodiment of the present invention.
It is a block diagram of a battery. Instead of the temperature detection function and the switch function of the bimetal shown in FIG. 4, the temperature detection function and the switch function using the deformation at the transformation temperature of the shape memory alloy are utilized. A shape memory alloy 19 electrically connected to the negative electrode terminal 10 is provided, and a contact 18 is provided at the tip thereof. At a temperature lower than the battery operating temperature, the contact 18 is not in contact with the inner surface of the Na injection tube / current collector tube 8, and the shape memory alloy 19 is at the position 20. When the temperature rises and the battery reaches the operating temperature, the shape memory alloy 19 deforms and the contact 18 becomes Na.
It contacts the injection tube and collector tube 8. As a result, the Na electrode becomes conductive and the battery can be charged and discharged. According to this embodiment, since the shape memory alloy is used for the temperature detecting means and the switch means, the structure is simple and the reliability is high.

【0021】図6は本発明の第5実施例に係るNa/S
電池の構成図である。本実施例は、永久磁石のキュリー
点を利用して温度検知機能とスイッチ機能を実現するも
のである。負極端子10の集電管8内側に固定接点部1
0aを設け、可動接点22を永久磁石で製作する。この
可動接点22はスプリング24の一端に接続され、スプ
リングの他端は集電管8に固設された磁性体でなる部材
25に接続されている。可動接点22と部材25とは永
久磁石の吸引力により引き合っている。電池作動温度以
下の低温では、スプリング24の弾発力に打ち勝つ永久
磁石の吸引力によって、可動接点22は固定接点部10
aを離れ、位置23に吊り下げられた状態となる。この
ため、Na極は絶縁状態にある。温度が上昇し電池が作
動温度になると、可動接点22の永久磁石の温度がキュ
リー点をこえるため、可動接点22は、自重とスプリン
グ24の固定接点部10a側への弾発力により、固定接
点部10aに接触する。その結果として、Na極が導通
状態となり、電池の充放電が可能となる。尚、本実施例
では、永久磁石として鉄・ニッケル合金を用いている。
キュリー点は、ニッケル含有量によって自由にコントロ
ールできる。本実施例によれば、磁石のキュリー点を温
度検知手段とし利用するため、正確で信頼性が高い。
FIG. 6 shows Na / S according to the fifth embodiment of the present invention.
It is a block diagram of a battery. In this embodiment, the Curie point of the permanent magnet is used to realize the temperature detection function and the switch function. The fixed contact portion 1 is provided inside the collector tube 8 of the negative electrode terminal 10.
0a is provided and the movable contact 22 is made of a permanent magnet. The movable contact 22 is connected to one end of a spring 24, and the other end of the spring is connected to a member 25 made of a magnetic material and fixed to the collector tube 8. The movable contact 22 and the member 25 are attracted to each other by the attractive force of the permanent magnet. At a temperature lower than the battery operating temperature, the movable contact 22 is moved to the fixed contact portion 10 by the attractive force of the permanent magnet that overcomes the elastic force of the spring 24.
It leaves a and is in a state of being suspended at the position 23. Therefore, the Na electrode is in an insulating state. When the temperature rises and the battery reaches the operating temperature, the temperature of the permanent magnet of the movable contact 22 exceeds the Curie point. Therefore, the movable contact 22 is fixed due to its own weight and the elastic force of the spring 24 toward the fixed contact portion 10a. It contacts the part 10a. As a result, the Na electrode becomes conductive and the battery can be charged and discharged. In this embodiment, iron / nickel alloy is used as the permanent magnet.
The Curie point can be freely controlled by the nickel content. According to this embodiment, since the Curie point of the magnet is used as the temperature detecting means, it is accurate and highly reliable.

【0022】図9は、本発明の第6実施例に係るNa/
S電池の構成図である。本実施例の電池は、温度検知と
スイッチ機能を自己作動型としない例である。集電極4
0としてはNaは使わずに、表面に銅をコーティングし
た導体を用いている。負極端子10の内部側には負極接
点41が設けられ、集電極40の上端部には負極接点4
1端部と嵌合する部材41aが設けられ、電池製作時に
はこの両者は離間しており、負極容器4を上から下に押
圧したとき、ベロー42が収縮し、前記の両者が嵌合し
て電気的に接触するようになっている。これにより、N
a極が導通状態となり、電池の充放電が可能となる。導
通の時期は、マニュアル操作によっても、また、タイマ
ー等による自動操作でもよい。
FIG. 9 shows Na / according to the sixth embodiment of the present invention.
It is a block diagram of an S battery. The battery of this embodiment is an example in which the temperature detection and switch functions are not self-actuated. Collector electrode 4
As 0, a conductor whose surface is coated with copper is used without using Na. A negative electrode contact 41 is provided inside the negative electrode terminal 10, and a negative electrode contact 4 is provided at the upper end of the collector electrode 40.
A member 41a that fits with one end is provided, and these are separated from each other when the battery is manufactured. When the negative electrode container 4 is pressed from top to bottom, the bellows 42 contract and the above two are fitted together. It is designed to make electrical contact. By this, N
The a pole becomes conductive and the battery can be charged and discharged. The timing of conduction may be manual operation or automatic operation by a timer or the like.

【0023】図10は、本発明の第7実施例に係るNa
/S電池の構成図である。本実施例も第6実施例(図
9)と同様に自己作動型でない温度検知機能及びスイッ
チ機能を備える。集電極40は、Naを使わずに、銅を
表面にコーティングした導体を用いている。集電極40
の上端部には負極端子10の接続された負極容器4にま
で延在する負極接点44が設けられている。電池製作時
には、負極容器4と負極接点44とは離間しており、電
磁石45の吸引力にて負極接点44を負極容器4に接触
(符号43で示す位置)させたとき、Na極が導通状態
となる。この導通は、電磁石をマニュアルにて操作した
とき或いはタイマー等の自動操作で行う。図11は、本
発明の第8実施例に係るNa/S電池の構成図である。
本実施例では、固体電解質管1の内側に電池の正極活物
質5及び補助導電材を入れ、その外側且つ負極容器4内
に負極活物質7を充填している。そして、正極活物質5
内に挿入されている集電極40の上端部と正極容器3と
を接続するバイメタルを設け、電池作動温度以下のとき
はバイメタル先端の接点18は集電極40から離間して
点線17の位置にあり、温度が上昇して作動温度に達す
ると実線16で示す位置に移動して正極端子9と集電極
40とが電気的に接続されるようになっている。
FIG. 10 shows Na according to the seventh embodiment of the present invention.
It is a block diagram of a / S battery. Like the sixth embodiment (FIG. 9), this embodiment also has a temperature detection function and a switch function that are not self-actuated. The collector electrode 40 uses a conductor whose surface is coated with copper without using Na. Collector electrode 40
A negative electrode contact 44 extending to the negative electrode container 4 to which the negative electrode terminal 10 is connected is provided at the upper end portion of the. At the time of manufacturing the battery, the negative electrode container 4 and the negative electrode contact 44 are separated from each other, and when the negative electrode contact 44 is brought into contact with the negative electrode container 4 by the attraction force of the electromagnet 45 (position indicated by reference numeral 43), the Na electrode is in a conductive state. Becomes This conduction is performed when the electromagnet is manually operated or automatically by a timer or the like. FIG. 11 is a schematic diagram of a Na / S battery according to an eighth embodiment of the present invention.
In this embodiment, the positive electrode active material 5 of the battery and the auxiliary conductive material are placed inside the solid electrolyte tube 1, and the negative electrode active material 7 is filled outside the solid electrolyte tube 1 and inside the negative electrode container 4. Then, the positive electrode active material 5
A bimetal for connecting the upper end of the collecting electrode 40 inserted into the positive electrode container 3 is provided. When the temperature is below the battery operating temperature, the contact 18 at the tip of the bimetal is separated from the collecting electrode 40 at the position of the dotted line 17. When the temperature rises and reaches the operating temperature, it moves to the position shown by the solid line 16 and the positive electrode terminal 9 and the collector electrode 40 are electrically connected.

【0024】図12は、図1に示したNa/S電池30
を複数個直列及び並列に接続して、電力貯蔵システム
(第1実施例)を形成した例である。電池群は恒温槽3
3内に配列され、外部の負荷28と電気的に接続され
る。電池温度は、加熱用ヒータ35で加熱された加熱ガ
ス34で昇温される。恒温槽33内は、撹拌扇32にて
撹拌され、槽内の温度は恒に一様に維持される。温度
は、熱電対式温度計31にて計測する。本実施例のシス
テムに於いて、仮に、電池接続のための母線36が他の
電池と接触したり、温度計測線が複数の電池と接触して
も、電池作動温度以下であれば、電池内に短絡電流が流
れることはない。従って、固体電解質が損傷を受けるこ
とはなく、電池群を安全に維持できる。本実施例によれ
ば、電池作動温度以下でどのような電気的取扱をして
も、電池内が絶縁されているので安全で、多数本の電池
集合体の製作、組立て、分解等の取扱や電気配線の電気
絶縁チェックも飛躍的に容易になり、信頼性が高まるば
かりでなく、作業性が向上しコスト低減につながる電力
貯蔵システムが得られる。図13は、本発明の第2実施
例に係る電力貯蔵システムの構成図である。本実施例で
は、図2に示した電池37を複数個直列及び並列に接続
してある。電池群は恒温槽33内に配列され、各直列電
池群の両端には温度検出とスイッチ機能を持つたスイッ
チ素子38が2個ずつ設けられ、外部の負荷28と電気
的に接続される。スイッチ素子38の構成を図14に示
す。このスイッチ素子38は、図1に示すNa/S電池
のNaの熱膨張による負極端子10との接続部分を取り
出した構造である。勿論、図3から図6に示すスイッチ
部分を利用することも可能である。電池温度は加熱用ヒ
ータ35で加熱された加熱ガス34で昇温される。恒温
槽33内は撹拌扇32にて、撹拌され槽内の温度は恒に
一様に維持される。温度は熱電対式温度計31にて計測
する。本実施例のシステムに於いて、仮に、電池接続の
ための母線36が他の電池や筐体と接触しても、電池作
動温度以下であれば、2個のスイッチ素子が電池の短絡
を防止し、短絡電流が電池内を流れることはない。従っ
て、固体電解質が損傷を受けることはなく、電池群を安
全に維持できる。本実施例によれば、電池作動温度以下
で電池群が短絡しても、電池回路が一部絶縁されている
ので安全で、多数本の電池集合体の製作、組立て、分解
等の取扱や電気配線の電気絶縁チェックも飛躍的に容易
な電力貯蔵システムが得られる。図13の電力貯蔵シス
テムは、直列接続された電池群を2つのスイッチ素子3
8で挟み、他の直列接続された電池群への悪影響を阻止
するものである。図15の電力貯蔵システム(第3実施
例)では、直並列された個々の電池対応にスイッチ素子
38を設けている。この実施例では、スイッチ素子38
の数が多くなるが、個々の電池での短絡が他の電池に悪
影響を及ぼさないという利点がある。
FIG. 12 shows the Na / S battery 30 shown in FIG.
In this example, a plurality of power storage systems are connected in series and in parallel to form a power storage system (first embodiment). Battery group is thermostatic chamber 3
3 and are electrically connected to an external load 28. The battery temperature is raised by the heating gas 34 heated by the heating heater 35. The inside of the constant temperature bath 33 is agitated by the agitating fan 32, and the temperature inside the bath is maintained constant. The temperature is measured by the thermocouple type thermometer 31. In the system of the present embodiment, even if the bus bar 36 for battery connection comes into contact with another battery or the temperature measurement line comes into contact with a plurality of batteries, if the battery operating temperature or less There is no short-circuit current flowing through. Therefore, the solid electrolyte is not damaged and the battery group can be safely maintained. According to the present embodiment, no matter what kind of electrical handling is performed below the battery operating temperature, it is safe because the inside of the battery is insulated, and the handling, such as the production, assembly and disassembly of many battery assemblies, Checking the electrical insulation of the electrical wiring is dramatically facilitated, and not only the reliability is improved, but also the workability is improved and the power storage system leading to cost reduction can be obtained. FIG. 13 is a configuration diagram of the power storage system according to the second embodiment of the present invention. In this embodiment, a plurality of batteries 37 shown in FIG. 2 are connected in series and in parallel. The battery groups are arranged in a constant temperature bath 33, and two switching elements 38 having a temperature detecting and switching function are provided at both ends of each series battery group, and are electrically connected to an external load 28. The structure of the switch element 38 is shown in FIG. This switch element 38 has a structure in which a connection portion with the negative electrode terminal 10 due to thermal expansion of Na of the Na / S battery shown in FIG. 1 is taken out. Of course, it is also possible to use the switch portion shown in FIGS. The battery temperature is raised by the heating gas 34 heated by the heating heater 35. The inside of the constant temperature bath 33 is agitated by the agitating fan 32 so that the temperature inside the bath is kept constant. The temperature is measured by a thermocouple type thermometer 31. In the system of the present embodiment, even if the bus bar 36 for battery connection comes into contact with another battery or housing, if the battery operating temperature or less, the two switch elements prevent the battery from short-circuiting. However, the short circuit current does not flow in the battery. Therefore, the solid electrolyte is not damaged and the battery group can be safely maintained. According to the present embodiment, even if the battery group is short-circuited at the battery operating temperature or lower, the battery circuit is partially insulated, so it is safe. It is possible to obtain a power storage system in which the electrical insulation check of wiring is dramatically easy. The power storage system of FIG. 13 includes a group of batteries connected in series and two switching elements 3
It is sandwiched by 8 to prevent adverse effects on other battery groups connected in series. In the power storage system (third embodiment) of FIG. 15, the switch element 38 is provided for each battery in series and parallel. In this embodiment, the switch element 38
However, there is an advantage that a short circuit in each battery does not adversely affect other batteries.

【0025】図16は、電力貯蔵システムの第4実施例
に係る構成図である。本実施例は図10に示す自己作動
型でない電池を多数直並列に接続することで構成されて
いる。本実施例では、充放電回路に開閉器46を設け、
充電あるいは放電する場合に開閉器46を閉状態にした
ときのみ、電磁石45が作動して各電池が導通状態とな
る。尚、タイマーを設け、加熱用ヒータに電力を供給し
てから一定時間後に電磁石45が作動して各電池を導通
状態にする構成でもよい。
FIG. 16 is a block diagram showing a fourth embodiment of the power storage system. This embodiment is constructed by connecting a large number of non-self-actuating batteries shown in FIG. 10 in series and parallel. In this embodiment, a switch 46 is provided in the charge / discharge circuit,
Only when the switch 46 is closed when charging or discharging, the electromagnet 45 operates and each battery becomes conductive. Alternatively, a timer may be provided, and the electromagnet 45 may be activated to make each battery conductive after a lapse of a certain time after supplying electric power to the heating heater.

【0026】図17は、電力貯蔵システムの第5実施例
に係る構成図である。電池を加熱するために加熱した不
活性ガス34を恒温槽33内に導入したとき、ガス検知
器47がガス導入を検知して、自己作動型でない各電池
例えば図10の電池30を導通状態にする。不活性ガス
として窒素やアルゴンガスを使用した場合、ガス検知器
47としては恒温槽33内の酸素濃度の低下を検出する
ことで相対的にこれらの不活性ガスの濃度増加を検知で
きる。従って、酸素検出器を使用可能である。図18
は、化学電池の他の実施例に係る構成図である。本実施
例の化学電池はマンガン乾電池である。乾電池の中心軸
上に配された正極電極57は2分割(図示の例では外部
に突出した正極部分で2分割してあり、分割正極間に空
間60が形成されている。)されている。そして、正極
57の外部突出部分を覆う正極端子48の空間60回り
にはベロー部58が形成されている。このため、この乾
電池は、正極回路が断線状態となっている。この乾電池
を使用する場合には、正極端子48を矢印59方向に圧
迫してベロー部58を押し潰して前記空間60を無く
し、上下の正極を短絡する。これにより、正極回路が接
続状態となる。この正極の圧迫動作は、乾電池を作動さ
せるための回路にて自動的(使用者がスイッチを投入す
ることで)に行われるようにすることも可能である。
FIG. 17 is a block diagram showing a fifth embodiment of the power storage system. When the heated inert gas 34 is introduced into the constant temperature bath 33 to heat the battery, the gas detector 47 detects the introduction of the gas and brings each non-self-acting battery, for example, the battery 30 in FIG. To do. When nitrogen or argon gas is used as the inert gas, the gas detector 47 can relatively detect the increase in the concentration of these inert gases by detecting the decrease in the oxygen concentration in the thermostatic chamber 33. Therefore, an oxygen detector can be used. FIG.
FIG. 4 is a configuration diagram according to another embodiment of a chemical battery. The chemical battery of this embodiment is a manganese dry battery. The positive electrode 57 arranged on the central axis of the dry battery is divided into two parts (in the example shown, the positive electrode part is divided into two parts by the positive part protruding to the outside, and a space 60 is formed between the divided positive electrodes). Then, a bellows portion 58 is formed around the space 60 of the positive electrode terminal 48 that covers the outer protruding portion of the positive electrode 57. Therefore, in this dry battery, the positive electrode circuit is in a broken state. When this dry battery is used, the positive electrode terminal 48 is pressed in the direction of arrow 59 to crush the bellows portion 58 to eliminate the space 60 and the upper and lower positive electrodes are short-circuited. This brings the positive electrode circuit into the connected state. The pressing operation of the positive electrode can be automatically performed (by the user turning on the switch) in the circuit for operating the dry cell.

【0027】[0027]

【発明の効果】本発明によれば、電池作動温度以下でど
のような電気的取扱をしても、電池内が絶縁されている
ので、安全である。また、モジュール電池のような多数
本の電池集合体の製作,組立て,分解等の取り扱いや電
気配線の電気絶縁チェックも飛躍的に容易になり、信頼
性が高まるばかりでなく、作業性が向上しコスト低減に
つながる。
According to the present invention, it is safe because the inside of the battery is insulated no matter what kind of electrical handling is performed below the battery operating temperature. In addition, handling, such as manufacturing, assembling and disassembling a large number of battery assemblies such as module batteries, and checking the electrical insulation of the electrical wiring are dramatically facilitated, which not only improves reliability but also improves workability. It leads to cost reduction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係るNa/S電池の構成
図である。
FIG. 1 is a configuration diagram of a Na / S battery according to a first embodiment of the present invention.

【図2】一般的なNa/S電池の構成図である。FIG. 2 is a configuration diagram of a general Na / S battery.

【図3】本発明の第2実施例に係るNa/S電池の構成
図である。
FIG. 3 is a configuration diagram of a Na / S battery according to a second embodiment of the present invention.

【図4】本発明の第3実施例に係るNa/S電池の構成
図である。
FIG. 4 is a configuration diagram of a Na / S battery according to a third embodiment of the present invention.

【図5】本発明の第4実施例に係るNa/S電池の構成
図である。
FIG. 5 is a configuration diagram of a Na / S battery according to a fourth embodiment of the present invention.

【図6】本発明の第5実施例に係るNa/S電池の構成
図である。
FIG. 6 is a configuration diagram of a Na / S battery according to a fifth embodiment of the present invention.

【図7】Naデンドライト生成説明図である。FIG. 7 is an explanatory diagram of Na dendrite generation.

【図8】本発明と従来のNa/S電池の内部抵抗を示す
グラフである。
FIG. 8 is a graph showing the internal resistance of the present invention and a conventional Na / S battery.

【図9】本発明の第6実施例に係るNa/S電池の構成
図である。
FIG. 9 is a configuration diagram of a Na / S battery according to a sixth embodiment of the present invention.

【図10】本発明の第7実施例に係るNa/S電池の構
成図である。
FIG. 10 is a configuration diagram of a Na / S battery according to a seventh embodiment of the present invention.

【図11】本発明の第8実施例に係るNa/S電池の構
成図である。
FIG. 11 is a configuration diagram of a Na / S battery according to an eighth embodiment of the present invention.

【図12】本発明の電池を用いた電力貯蔵システムの第
1実施例の構成図である。
FIG. 12 is a configuration diagram of a first embodiment of an electric power storage system using the battery of the present invention.

【図13】本発明の電池を用いた電力貯蔵システムの第
2実施例の構成図である。
FIG. 13 is a configuration diagram of a second embodiment of an electric power storage system using the battery of the present invention.

【図14】スイッチ素子の構成図である。FIG. 14 is a configuration diagram of a switch element.

【図15】本発明の電池を用いた電力貯蔵システムの第
3実施例の構成図である。
FIG. 15 is a configuration diagram of a third embodiment of an electric power storage system using the battery of the present invention.

【図16】本発明の電池を用いた電力貯蔵システムの第
4実施例の構成図である。
FIG. 16 is a configuration diagram of a fourth embodiment of an electric power storage system using the battery of the present invention.

【図17】本発明の電池を用いた電力貯蔵システムの第
5実施例の構成図である。
FIG. 17 is a configuration diagram of a fifth embodiment of an electric power storage system using the battery of the present invention.

【図18】本発明の別の実施例に係る乾電池の構成図で
ある。
FIG. 18 is a configuration diagram of a dry battery according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…固体電解質管(β"−アルミナ等)、2…電気絶縁
材(α−アルミナ等)、3…正極容器、4…負極容器、
5…正極活物質(S+Na2Sx)、6…補助導電材
(グラファイトフェルト)、7…負極活物質(Na)、
8…Na注入管兼集電管、9…正極端子、10…負極端
子、11…Na供給孔、12…電池運転温度以下でのN
a液位、13…電池運転温度以上でのNa液位、14…
放電初期のNa液位、15…放電末期のNa液位、16
…バイメタル(電池作動時)、17…バイメタル(電池
作動温度以下時)、18…接点、19…形状記憶合金
(電池作動時)、20…形状記憶合金(電池作動温度以
下時)、21…固定接点、22…可動接点(電池作動
時)、23,26…可動接点(電池作動温度以下時)、
24…スプリング、25…部材、27…ベロー付き膨張
容器、28…負荷、29…Naデンドライト、30,3
7…Na/S電池、31…温度計、32…撹拌扇、33
…恒温槽、34…加熱ガス、35…加熱用ヒータ、36
…母線、38…スイッチ素子、39…電極。
1 ... Solid electrolyte tube (β "-alumina or the like), 2 ... Electrical insulating material (α-alumina or the like), 3 ... Positive electrode container, 4 ... Negative electrode container,
5 ... Positive electrode active material (S + Na2Sx), 6 ... Auxiliary conductive material (graphite felt), 7 ... Negative electrode active material (Na),
8 ... Na injection tube and current collecting tube, 9 ... Positive electrode terminal, 10 ... Negative electrode terminal, 11 ... Na supply hole, 12 ... N at battery operating temperature or lower
a liquid level, 13 ... Na liquid level above the battery operating temperature, 14 ...
Na level at the beginning of discharge, 15 ... Na level at the end of discharge, 16
... Bimetal (when battery is operating), 17 ... Bimetal (when battery operating temperature is below), 18 ... Contact, 19 ... Shape memory alloy (when battery operating), 20 ... Shape memory alloy (when battery operating temperature is below), 21 ... Fixed Contact points, 22 ... Movable contact point (when battery is operating), 23, 26 ... Movable contact point (at battery operating temperature or lower),
24 ... Spring, 25 ... Member, 27 ... Expansion container with bellows, 28 ... Load, 29 ... Na dendrite, 30, 3
7 ... Na / S battery, 31 ... Thermometer, 32 ... Stirring fan, 33
... Constant temperature bath, 34 ... Heating gas, 35 ... Heating heater, 36
... bus bar, 38 ... switch element, 39 ... electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 綿引 直久 茨城県日立市森山町1168番地 株式会社日 立製作所エネルギー研究所内 (72)発明者 下屋敷 重広 茨城県日立市森山町1168番地 株式会社日 立製作所エネルギー研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Naohisa Watabiki 1168 Moriyama-cho, Hitachi City, Ibaraki Prefecture Hiritsu Manufacturing Co., Ltd.Energy Research Institute (72) Shigehiro Shimoyashiki 1168 Moriyama-cho, Hitachi City, Ibaraki Hitsuritsu Corporation Inside the energy research institute

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 容器と、容器内の正極活物質を充填した
正極領域と、容器内の負極活物質を充填した負極領域
と、前記正極領域及び前記負極領域との間に配置された
固体電解質と、前記各領域に接続された正極端子及び負
極端子とを備える化学電池において、前記負極活物質の
融点以上の温度で前記正極端子と前記負極端子とが電気
的に導通状態になるスイッチ機構を備えることを特徴と
する化学電池。
1. A solid electrolyte disposed between a container, a positive electrode region filled with a positive electrode active material in the container, a negative electrode region filled with a negative electrode active material in the container, and the positive electrode region and the negative electrode region. And a chemical battery comprising a positive electrode terminal and a negative electrode terminal connected to each of the regions, a switch mechanism that electrically connects the positive electrode terminal and the negative electrode terminal at a temperature equal to or higher than the melting point of the negative electrode active material. A chemical battery provided with.
【請求項2】 容器と、容器内の正極活物質を充填した
正極領域と、容器内の負極活物質を充填した負極領域
と、前記正極領域及び前記負極領域との間に配置された
固体電解質と、前記各領域に接続された正極端子及び負
極端子とを備える化学電池において、前記正極活物質が
固体の状態となる温度では前記容器内において前記正極
端子と前記負極端子とが電気的に絶縁状態となるスイッ
チ機構を備えることを特徴とする化学電池。
2. A container, a positive electrode region filled with a positive electrode active material in the container, a negative electrode region filled with a negative electrode active material in the container, and a solid electrolyte disposed between the positive electrode region and the negative electrode region. In a chemical battery including a positive electrode terminal and a negative electrode terminal connected to each of the regions, the positive electrode terminal and the negative electrode terminal are electrically insulated in the container at a temperature at which the positive electrode active material is in a solid state. A chemical battery comprising a switch mechanism for setting a state.
【請求項3】 容器と、容器内の正極活物質を充填した
正極領域と、容器内の負極活物質を充填した負極領域
と、前記正極領域及び前記負極領域との間に配置された
固体電解質と、前記各領域に接続された正極端子及び負
極端子とを備える化学電池において、少なくとも運転停
止時には前記正極端子と前記負極端子との間が容器内に
おいて絶縁状態になるスイッチ機構を備えることを特徴
とする化学電池。
3. A container, a positive electrode region filled with a positive electrode active material in the container, a negative electrode region filled with a negative electrode active material in the container, and a solid electrolyte disposed between the positive electrode region and the negative electrode region. And a chemical battery including a positive electrode terminal and a negative electrode terminal connected to each of the regions, wherein a switch mechanism that provides an insulating state between the positive electrode terminal and the negative electrode terminal at least when the operation is stopped is provided. And a chemical battery.
【請求項4】 容器内に正極活物質と負極活物質とを固
体電解質にて分離して充填し正極活物質に接続される正
極端子と負極活物質に接続される負極端子とを備えた化
学電池において、正極活物質と正極端子との接続/絶縁
または負極活物質と負極端子との接続/絶縁を行うスイ
ッチ機構を前記容器内に備えることを特徴とする化学電
池。
4. A chemistry comprising a positive electrode terminal connected to the positive electrode active material and a negative electrode terminal connected to the positive electrode active material by separately filling the positive electrode active material and the negative electrode active material with a solid electrolyte in a container. A chemical battery, characterized in that a switch mechanism for connecting / insulating a positive electrode active material and a positive electrode terminal or connecting / insulating a negative electrode active material and a negative electrode terminal is provided in the container.
【請求項5】 請求項4において、電池作動時になって
初めて前記スイッチ機構が接続状態となることを特徴と
する化学電池。
5. The chemical battery according to claim 4, wherein the switch mechanism is brought into a connected state only when the battery is activated.
【請求項6】 請求項4において、電池停止時には前記
スイッチ機構は絶縁状態となることを特徴とする化学電
池。
6. The chemical battery according to claim 4, wherein the switch mechanism is in an insulating state when the battery is stopped.
【請求項7】 請求項4において、負極活物質の融点以
下の温度では自動的に前記スイッチ機構が絶縁状態にな
ることを特徴とする化学電池。
7. The chemical battery according to claim 4, wherein the switch mechanism automatically becomes an insulating state at a temperature equal to or lower than the melting point of the negative electrode active material.
【請求項8】 請求項4において、正極活物質が固体の
状態となる温度では前記スイッチ機構が絶縁状態になる
ことを特徴とする化学電池。
8. The chemical battery according to claim 4, wherein the switch mechanism is in an insulating state at a temperature at which the positive electrode active material is in a solid state.
【請求項9】 請求項4において、正極活物質が液体の
状態となる温度に上昇して初めて前記スイッチ機構が接
続状態になることを特徴とする化学電池。
9. The chemical battery according to claim 4, wherein the switch mechanism is brought into a connected state only after the temperature of the positive electrode active material rises to a liquid state.
【請求項10】 請求項1乃至請求項9のいずれかに記
載の化学電池を複数接続して構成したことを特徴とする
電力貯蔵システム。
10. An electric power storage system comprising a plurality of the chemical batteries according to claim 1 connected to each other.
【請求項11】 正極活物質及び負極活物質を固体電解
質にて分離して内部に充填した単電池を複数接続して構
成した電力貯蔵システムにおいて、単電池の接続回路中
に、負極活物質の融点以下の温度では回路の接続を遮断
するスイッチ機構を挿入して構成したことを特徴とする
電力貯蔵システム。
11. A power storage system configured by connecting a plurality of single cells in which a positive electrode active material and a negative electrode active material are separated by a solid electrolyte and filled therein, and a negative electrode active material in a connection circuit of the single cells. A power storage system characterized by being configured by inserting a switch mechanism that cuts off circuit connection at temperatures below the melting point.
【請求項12】 正極活物質及び負極活物質を固体電解
質にて分離して内部に充填した単電池を複数接続して構
成した電力貯蔵システムにおいて、単電池の接続回路中
に、正極活物質が固体状態となる温度では回路の接続を
遮断するスイッチ機構を挿入して構成したことを特徴と
する電力貯蔵システム。
12. In a power storage system configured by connecting a plurality of single cells in which a positive electrode active material and a negative electrode active material are separated by a solid electrolyte and filled therein, the positive electrode active material is contained in a connection circuit of the single cells. A power storage system characterized by being configured by inserting a switch mechanism that disconnects a circuit at a solid state temperature.
【請求項13】 正極活物質及び負極活物質を固体電解
質にて分離して内部に充填した単電池を複数接続して構
成した電力貯蔵システムにおいて、単電池の接続回路中
に、正極活物質の融点以上の温度になって初めて回路の
接続を行うスイッチ機構を挿入して構成したことを特徴
とする電力貯蔵システム。
13. A power storage system configured by connecting a plurality of single cells, in which a positive electrode active material and a negative electrode active material are separated by a solid electrolyte and filled therein, in a connection circuit of the single cells. A power storage system characterized by being configured by inserting a switch mechanism for connecting circuits only when the temperature becomes higher than the melting point.
【請求項14】 容器内に充填された物質の化学反応に
て容器外に電気を取り出す化学電池において、途中に空
隙を有し使用時にこの空隙を押し潰すことで電気的導通
を図る電極を備えることを特徴とする化学電池。
14. A chemical battery for extracting electricity to the outside of a container by a chemical reaction of a substance filled in the container, which is provided with an electrode having an air gap in the middle and crushing the air gap during use to achieve electrical conduction. A chemical battery characterized by that.
JP4013961A 1992-01-29 1992-01-29 Chemical battery and power storage system Expired - Lifetime JP2733404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4013961A JP2733404B2 (en) 1992-01-29 1992-01-29 Chemical battery and power storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4013961A JP2733404B2 (en) 1992-01-29 1992-01-29 Chemical battery and power storage system

Publications (2)

Publication Number Publication Date
JPH05205776A true JPH05205776A (en) 1993-08-13
JP2733404B2 JP2733404B2 (en) 1998-03-30

Family

ID=11847812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4013961A Expired - Lifetime JP2733404B2 (en) 1992-01-29 1992-01-29 Chemical battery and power storage system

Country Status (1)

Country Link
JP (1) JP2733404B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011142016A (en) * 2010-01-07 2011-07-21 Sumitomo Electric Ind Ltd Battery system, method of using battery, and method of regenerating battery
WO2015136683A1 (en) * 2014-03-14 2015-09-17 株式会社日立製作所 Lithium ion secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101499770B1 (en) * 2013-12-27 2015-03-06 포스코에너지 주식회사 Output power control system for sodium rechargeable battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6237166U (en) * 1985-08-22 1987-03-05
JPS62254337A (en) * 1986-02-10 1987-11-06 クロ−ライド サイレント パワ− リミテツド Alkali metal switching device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6237166U (en) * 1985-08-22 1987-03-05
JPS62254337A (en) * 1986-02-10 1987-11-06 クロ−ライド サイレント パワ− リミテツド Alkali metal switching device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011142016A (en) * 2010-01-07 2011-07-21 Sumitomo Electric Ind Ltd Battery system, method of using battery, and method of regenerating battery
WO2015136683A1 (en) * 2014-03-14 2015-09-17 株式会社日立製作所 Lithium ion secondary battery

Also Published As

Publication number Publication date
JP2733404B2 (en) 1998-03-30

Similar Documents

Publication Publication Date Title
US4035552A (en) Electrochemical cell
US6159630A (en) Safety vent for storage battery or cell
TW342510B (en) Current interrupter for electrochemical cells
TW345756B (en) Current interrupter for electrochemical cells
EP0862231A1 (en) Lithium secondary battery having thermal switch
US20100035129A1 (en) Safety device for a sealed accumulator
US6140905A (en) Electrically conductive contact pin having a temperature fuse function
KR20060039955A (en) Safety apparatus for battery
JP2733404B2 (en) Chemical battery and power storage system
US4207386A (en) Electrochemical storage cell
US4497879A (en) Electrochemical storage cell
EP0884789A1 (en) Thermal cutoff switch
KR101112447B1 (en) Secondary Battery of Improved Safety
JP2000208132A (en) Nonaqueous electrolyte secondary battery and battery thermal relay
CN209993705U (en) Self-temperature-control battery
GB1536143A (en) Electric cells
US4895773A (en) Electrochemical cell
JP3539620B2 (en) Rechargeable battery
CN214254675U (en) Battery short-circuiting device, battery pack and vehicle
JP2911169B2 (en) Storage battery system
CN219350602U (en) Lithium ion battery with temperature protection
JPH05205774A (en) Sodium/molten salt battery
Kawamoto et al. Performance and thermal behavior of sodium‐sulfur cell under high current density operations
JPH0557714B2 (en)
CN213692283U (en) Battery cover plate assembly and lithium ion battery