WO2015134816A1 - Imagerie ultrasonore multispectrale - Google Patents

Imagerie ultrasonore multispectrale Download PDF

Info

Publication number
WO2015134816A1
WO2015134816A1 PCT/US2015/019069 US2015019069W WO2015134816A1 WO 2015134816 A1 WO2015134816 A1 WO 2015134816A1 US 2015019069 W US2015019069 W US 2015019069W WO 2015134816 A1 WO2015134816 A1 WO 2015134816A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequencies
ultrasonic
frequency
scan
image information
Prior art date
Application number
PCT/US2015/019069
Other languages
English (en)
Inventor
Jack Conway Kitchens
John Keith Schneider
Ashish HINGER
Ranjith RANGANATHAN
Nai-Kuei Kuo
Kostadin D. Djordjev
Stephen M. Gojevic
David William Burns
Nao Sugawara Chuei
Eliza Yingzi Du
Ming Yu Chen
Kwokleung Chan
Jin Gu
Esra VURAL
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to CN201580011084.1A priority Critical patent/CN106068515B/zh
Priority to JP2016555454A priority patent/JP2017514108A/ja
Priority to KR1020167024236A priority patent/KR20160130234A/ko
Priority to EP15711007.3A priority patent/EP3114608A1/fr
Priority to US15/115,058 priority patent/US10503948B2/en
Publication of WO2015134816A1 publication Critical patent/WO2015134816A1/fr

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1306Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1365Matching; Classification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1382Detecting the live character of the finger, i.e. distinguishing from a fake or cadaver finger

Definitions

  • the present disclosure relates to devices and methods of using multi-spectral ultrasonic imaging.
  • An ultrasonic scanner may be comprised of various types of materials.
  • the ultrasonic energy used in such a scanner is required to pass through most of these materials.
  • the properties of the various materials through which an ultrasonic wave passes or strikes may have differing properties with regard to dispersion, diffraction, absorption and reflection such that the materials will disperse, diffract, absorb, and reflect the ultrasonic energy in different ways, and these differences may be dependent upon the wavelength of the ultrasonic energy.
  • Use of a single ultrasonic frequency to image a particular object may result in limited information and detail about the object being imaged.
  • tolerances may build up within the ultrasonic sensor stack that affect the signal path and may create a situation where the data collected does make use of the optimum available signal and response of the system.
  • the data quality may be frequency dependent and the structural makeup of the target may present frequency dependencies.
  • the basic methodology that has been applied in the prior art has been to perform a scan at a single specific frequency which maximizes the signal output as captured by a thin-film transistor (TFT) array positioned within the sensor stack.
  • the single frequency may be primarily determined by the thickness and the material properties of the sensor stack and used to differentiate the fingerprint ridge and valley regions of a finger being imaged.
  • the frequency determination may be made by choosing the frequency at which the sensor array output is maximized between two cases, one with the ultrasonic transmitter excitation voltage on and one with the transmitter off.
  • This methodology may yield image information sets that may not match expected results in terms of fingerprint image definition in a more real-life setting. There might also be the need to tune the operational frequency throughout normal usage, which may lead to inconsistent results.
  • the method may include generating an ultrasonic image information set from a plurality of pixels of the ultrasonic sensor for each of the scan frequencies.
  • the image information set may include a pixel output value from each of the plurality of pixels, each pixel output value indicating an amount of energy reflected from the imaging surface.
  • Each scan frequency may provide an image information set describing a plurality of pixel output signal levels associated with a fingerprint.
  • Each pixel output value may indicate a signal strength that indicates an amount of ultrasonic energy reflected from a surface of a platen on which a finger is provided.
  • image refers to one form of an image information set.
  • the method may further comprise the step of combining the image information sets corresponding to each of the scan frequencies to generate a combined image information set.
  • the combined image information set may include combined pixel output values from each of the plurality of pixels.
  • Combining the image information sets may include adding pixel output values to produce a sum, dividing the sum by the number of scan frequencies to produce an average value for each of the pixels, and using the average value as the combined value.
  • the term "combined" means mathematically combined.
  • the method may further include using the plurality of ultrasonic image information sets to make a liveness determination and providing a liveness output signal indicating the liveness determination.
  • the method may further include transforming each pixel output value to a gray-scale value and providing the gray-scale values for the plurality of pixels as the combined image information set representing the fingerprint of the finger.
  • combining the image information sets includes, for each scan frequency, identifying a weighting factor, multiplying each pixel output value by the corresponding weighting factor to produce a pixel output value product, adding the pixel output value products to produce a sum, dividing the sum by the number of scan frequencies to produce an average value for each of the pixel output values, and using the average value as the combined pixel output value.
  • the weighting factor may be calculated using the following equation:
  • f is a lowest scan frequency
  • f max is a highest scan frequency
  • combining the image information sets may include creating a covariance matrix for each of the scan frequencies.
  • the covariance matrix may be created from the pixel output values in the image information sets.
  • the covariance matrices may be combined to provide a combined matrix having a combined value for each pixel output value.
  • combining the covariance matrices comprises interpolating between entries in the covariance matrices.
  • the method may include, for each scan frequency, identifying a weighting factor and multiplying each entry in the covariance matrices by the corresponding weighting factor prior to mathematically combining the covariance matrices.
  • the weighting factor may be calculated using the following equation:
  • w(f.) is the weighting factor for the i scan frequency
  • avg. is the average value of the
  • f is a lowest scan frequency
  • f max is a highest scan frequency
  • the method may further include the step of correlating each combined value for each of the pixels to a gray-scale value.
  • the method may further include the step of providing the gray-scale values as the representation of the finger or fingerprint.
  • the method may further include the step of scanning, without a finger on the imaging surface of the ultrasonic sensor, at a plurality of ultrasonic test frequencies.
  • the method may further include the step of selecting one or more peak test frequencies. Each selected peak test frequency may have a reflected signal that is higher than a majority of other peak test frequencies.
  • the method may further include the step of using the selected peak test frequencies as the plurality of scan frequencies. Additional scan frequencies may be identified by adding or subtracting a predetermined offset to the selected one of the peak test frequencies. In another embodiment, additional scan frequencies may be selected by identifying a range that includes the selected one of the peak test frequencies and selecting the scan frequencies to be within the identified range. In one embodiment, additional scan frequencies may be selected by identifying harmonics of the selected peak test frequency. In another embodiment, the method may further include assessing image quality of the peak test frequencies and selecting peak test frequencies having an image quality that is better than other peak test frequencies.
  • One aspect of the present invention may be described as a system for generating automatically co-registered image information sets of a target object.
  • the system may also be described as a system for scanning a finger.
  • the system may comprise an imaging surface configured to receive a finger.
  • the imaging surface may be substantially planar.
  • the system may also comprise plane wave ultrasonic transmitter.
  • the plane wave ultrasonic transmitter may generate one or more ultrasonic plane waves in response to a signal generator.
  • the signal generator may be capable of creating electrical signals of different discrete frequencies within the ultrasonic frequency range.
  • Neyman-Pearson multimodal fusion system to produce an output representation of the target object, such as an image.
  • the combined image information set may include combined pixel output values from each of the plurality of pixels.
  • the executable code may further comprise instructions to transform each pixel output value to a gray-scale value and provide the gray-scale values for the plurality of pixels as the combined image information set representing the fingerprint of the finger.
  • the executable code may further comprise instructions to use the plurality of ultrasonic image information sets to make a liveness determination and provide a liveness output signal indicating the liveness determination.
  • One aspect of the present invention may also be described as a system for scanning a finger.
  • the system may comprise a means for generating one or more ultrasonic plane waves ("MFG") in response to a signal generator that is capable of creating electrical signals of different discrete frequencies within the ultrasonic frequency range.
  • MFG ultrasonic plane waves
  • FIG. 7 depicts a diagram showing a second configuration of a system for generating ultrasonic image information sets of an object in contact with an outer surfaced of a platen positioned on an ultrasonic sensor array;
  • FIG. 11 is a flow chart illustrating a method for creating a combined image information set using two or more covariance matrices
  • FIGS. 21 and 22 depict graphs illustrating various chirp sequences
  • FIGS. 23 A, 23B, 24A and 24B depict graphs illustrating FFTs of chirp-coded transmitter signals
  • FIG. 30 depicts sample image contours and corresponding histogram plots of a finger
  • One aspect of the present invention relates generally to an ultrasonic sensor system for providing information about a target object.
  • the information may be obtained from a plurality of excitation signals applied to an ultrasonic transmitter, each at a different frequency.
  • a plurality of ultrasonic frequencies By using a plurality of ultrasonic frequencies, more information may be provided about a target object than may be provided by utilizing a single excitation frequency.
  • Ultrasonic fingerprint sensors may function by generating and transmitting an ultrasonic wave toward a platen-type imaging surface.
  • On the platen may be a target object about which information is desired.
  • the desired information may be related to a fingerprint.
  • Some of the ultrasonic energy reaching the platen is reflected, and this reflected energy may be detected.
  • the strength of the reflected energy and the location at which it is received can be acquired.
  • the acquired signals may be recorded in the form of a dataset.
  • the dataset may be used to create a data stream that may be used to produce a visual image of the target object, which may be provided via a monitor or printer.
  • each sensor may be slightly different in its resonant frequency and in its effects upon the ultrasonic signal passing through it. These resonant differences can show as much as a 50% change over a reasonably small change in frequency. Consequently, the same system that obtains a good output at a transmitter excitation frequency of 20 MHz may show only half of the output with a frequency of 19 MHz or 21 MHz.
  • An ultrasonic image information set or dataset corresponding to the detected energy is generated and may be stored 27 for later use. That later use may include creating a data stream that causes an image of the target object to be displayed via a monitor or for fingerprint enrollment, verification and authentication.
  • the process is repeated with a second frequency, and a second image information set corresponding to the detected energy is generated and may be stored for later use. This process may be repeated N times so as to create N image information sets 29.
  • the plurality of image information sets may be combined to produce 28 a multi-spectral combined image information set.
  • w(f.) is the weighting factor for the i scan frequency
  • avg. is the average value of the scan-value data at the i scan frequency and a next lower scan frequency
  • a weighting factor for the corresponding covariance matrix may be identified, and each entry in the corresponding covariance matrix may be multiplied by that weighting factor prior to mathematically combining the covariance matrices.
  • the weighting factor may be calculated using the following equation:
  • w(f.) is the weighting factor for the i scan frequency
  • f max is a hig °hest scan freq L uency J .
  • an initial scan frequency for example, the peak test frequency with the highest average amplitude or the best quality
  • additional scan frequencies by adding and/or subtracting a predetermined offset to or from the initially selected scan frequency. For example, if the initially selected scan frequency has a frequency of X and the predetermined offset is Y, then a second one of the scan frequencies may be X+Y and a third one of the scan frequencies may be X-Y.
  • FIG. 11 is a flow chart illustrating a method for generating a combined image information set using two or more covariance matrices.
  • a first received image may be acquired 101 with a first scan frequency.
  • a second received image at a second scan frequency different from the first may be acquired 103.
  • interpolation may be used to estimate statistics centered around each pixel in the information set.
  • an estimated image data for that pixel may be computed.
  • each combined value may be correlated 140 to a gray-scale value.
  • Estimated image data may be obtained by combining the results from each block of estimated image data.
  • a combined representation may be obtained by combining results of the estimated image data from each set of initial image data (e.g. from various excitation frequencies).
  • the gray-scale values may be provided 141 as a representation of the fingerprint.
  • FIG. 14A-F Six graphs are shown in Fig. 14A-F, each indicating how an operating frequency might be selected.
  • the frequency with the highest amplitude response at f r2 is selected.
  • the lower left graph (Fig. 14B) frequencies with the two highest amplitude responses (f-2 and f r3 ) are selected.
  • the upper middle graph (Fig. 14C) frequencies with the five highest amplitude responses (f rl through f r5 ) are selected.
  • Fig. 14D frequencies with the best response quality are selected, corresponding to f r3 and f r4 .
  • the upper right graph Fig.
  • a first frequency "3" representing the lowest output signal with a skin-like test target applied to the sensor platen (representing a fingerprint ridge) may be determined, and a second frequency "4" representing the highest output signal with air (representing a fingerprint valley) may be determined. Note that the highest output signal with air and the lowest output signal with a skin-like test target may not always occur with the highest and lowest system peaks.
  • the two determined frequencies 3 and 4 may be selected for operation. Shifts in the frequencies 3 and 4 with temperature changes may be included.
  • a fourth method (Fig.
  • One or more chirps may be applied in a series (e.g. repeated).
  • a single information set may be acquired using a chirp sequence with multi- frequency content covering the greatest receiver frequency response.
  • Multiple information sets may be acquired using one or more chirp sequences and the information sets combined.
  • An ultrasonic sensor may be calibrated using these chirp sequences.
  • a linear chirp signal has a frequency that changes linearly with time, for example,
  • FIG. 23A and 23B depict graphs illustrating FFTs of chirp-coded transmitter signals.
  • Fig. 23A shows a FFT of chirp-coded "extended chirp" transmitter signal, with a linear frequency band from 5 to 20 MHz.
  • Fig. 23B shows a FFT of chirp-coded "peak-to- peak chirp” transmitter signal, with a linear frequency band from 7.5 to 12.5 MHz.
  • Fig. 31 is a variability plot showing analog voltage comparison between selected ridge and valley points.
  • a group of randomly selected points corresponding to ridge and valley regions of a finger is tracked for the two frequencies of operation. It can be seen that the regions representative of the ridges of a finger show the maximum change between the two operation frequencies, while the "valley" regions of the finger remain fairly unchanged.
  • a standard factory-like calibration methodology can be employed by using a target material (e.g., rubber) similar in acoustic properties to a finger. Two sets of measurements may be taken, one with the target material completely covering the platen (simulating finger) and another without any target object on the platen ("air" measurement). The frequency of the tone burst signal may be swept, and the TFT response captured for both the cases (with and without the target). The difference between the two signals is then used to determine the optimal point(s) where inversion behavior is best observed which is given by the negative and positive maximum of the difference signal of air and target ("Air minus Target").
  • the method may further comprise identifying a feature-value of the ridge-pixel SSHDI or FSHDI and a feature-value of the valley-pixel SSHDI or FSHDI. For each of the other information sets, the method may further comprise determining a difference between the ridge-pixel feature-value and the valley-pixel feature- value to obtain a separation value. For each of the other information sets, the method may further comprise determining whether the separation values identify a spatial location previously identified as corresponding to a live being.
  • the feature-value is a signal-strength most commonly appearing in the SSHDI or FSHDI. In another embodiment, the feature-value is a median signal-strength appearing in the SSHDI or FSHDI. However, the feature-value may be a statistical energy, statistical entropy, or statistical variance of the SSHDI or FSHDI.
  • the speed of sound in PVDF, parylene, and polycarbonate may be respectively as follows: m m m
  • the piezoelectric layer and parylene coating on top of the piezoelectric may be observed first.
  • the following equations describe a possible observation: ⁇ c pvdf c pary )
  • Film(t, St, X) if(t ⁇ 6t,—X, X)(film thickness marker function)

Abstract

La présente invention concerne des systèmes et des procédés d'imagerie ultrasonore multispectrale. Dans un mode de réalisation, un doigt est balayé à une pluralité de fréquences de balayage ultrasonores. Chaque fréquence de balayage fournit un ensemble d'informations d'image décrivant une pluralité de pixels du doigt présentant une intensité de signal indiquant une quantité d'énergie réfléchie par une surface d'un plateau sur lequel se trouve un doigt. Pour chacun des pixels, la valeur de sortie du pixel correspondant à chacune des fréquences de balayage est combinée de façon à produire une valeur de sortie de pixel combinée pour chaque pixel. La présente invention concerne également des systèmes et des procédés conçus pour améliorer la capture de données d'imagerie ultrasonore multispectrale.
PCT/US2015/019069 2014-03-06 2015-03-05 Imagerie ultrasonore multispectrale WO2015134816A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580011084.1A CN106068515B (zh) 2014-03-06 2015-03-05 多频谱超声成像
JP2016555454A JP2017514108A (ja) 2014-03-06 2015-03-05 マルチスペクトル超音波撮像
KR1020167024236A KR20160130234A (ko) 2014-03-06 2015-03-05 다중-스펙트럼 초음파 이미징
EP15711007.3A EP3114608A1 (fr) 2014-03-06 2015-03-05 Imagerie ultrasonore multispectrale
US15/115,058 US10503948B2 (en) 2014-03-06 2015-03-05 Multi-spectral ultrasonic imaging

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201461948778P 2014-03-06 2014-03-06
US61/948,778 2014-03-06
US201514639116A 2015-03-04 2015-03-04
US14/639,116 2015-03-04

Publications (1)

Publication Number Publication Date
WO2015134816A1 true WO2015134816A1 (fr) 2015-09-11

Family

ID=52693065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2015/019069 WO2015134816A1 (fr) 2014-03-06 2015-03-05 Imagerie ultrasonore multispectrale

Country Status (5)

Country Link
EP (1) EP3114608A1 (fr)
JP (1) JP2017514108A (fr)
KR (1) KR20160130234A (fr)
CN (1) CN106068515B (fr)
WO (1) WO2015134816A1 (fr)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017053877A3 (fr) * 2015-09-26 2017-05-11 Qualcomm Incorporated Dispositifs et procédés d'imagerie à ultrasons
WO2017142912A1 (fr) * 2016-02-15 2017-08-24 Qualcomm Incorporated Détection de caractère vivant et de mystification pour des capteurs d'empreinte digitale à ultrasons
EP3264332A1 (fr) * 2016-06-30 2018-01-03 Beijing Xiaomi Mobile Software Co., Ltd. Dispositif et méthode pour reconnaissance des empreintes de doigts
US9953205B1 (en) 2017-04-28 2018-04-24 The Board Of Trustees Of The Leland Stanford Junior University Acoustic biometric touch scanner
WO2018085853A1 (fr) * 2016-11-07 2018-05-11 Qualcomm Incorporated Système biométrique à ultrasons avec détection des harmoniques
US10444335B2 (en) 2015-09-23 2019-10-15 Qualcomm Incorporated Spoof detection by ultrasonic subdermal probe
US10489627B2 (en) 2017-04-28 2019-11-26 The Board Of Trustees Of The Leland Stanford Junior University Acoustic biometric touch scanner
US10592718B2 (en) 2017-08-09 2020-03-17 The Board Of Trustees Of The Leland Stanford Junior University Interactive biometric touch scanner
US10846501B2 (en) 2017-04-28 2020-11-24 The Board Of Trustees Of The Leland Stanford Junior University Acoustic biometric touch scanner
US10860831B2 (en) 2017-06-01 2020-12-08 Invensense, Inc. Image generation in an electronic device using ultrasonic transducers
WO2020264046A1 (fr) * 2019-06-25 2020-12-30 Invensense, Inc. Détection de faux doigt basée sur des caractéristiques transitoires
WO2021011832A1 (fr) * 2019-07-17 2021-01-21 Invensense, Inc. Capteur d'empreintes digitales à ultrasons doté d'une couche de contact d'épaisseur non uniforme
US10936843B2 (en) 2018-12-28 2021-03-02 Invensense, Inc. Segmented image acquisition
US10936841B2 (en) 2017-12-01 2021-03-02 Invensense, Inc. Darkfield tracking
US10997388B2 (en) 2017-12-01 2021-05-04 Invensense, Inc. Darkfield contamination detection
US11112388B2 (en) 2016-05-10 2021-09-07 Invensense, Inc. Operation of an ultrasonic sensor
CN113474646A (zh) * 2019-02-26 2021-10-01 国立大学法人丰桥技术科学大学 超声波检查装置及超声波检查方法
US11151355B2 (en) 2018-01-24 2021-10-19 Invensense, Inc. Generation of an estimated fingerprint
US11154906B2 (en) 2016-05-10 2021-10-26 Invensense, Inc. Receive operation of an ultrasonic sensor
CN113569799A (zh) * 2021-08-05 2021-10-29 中北大学 一种蜂窝结构空耦超声信号特征提取方法
US11188735B2 (en) 2019-06-24 2021-11-30 Invensense, Inc. Fake finger detection using ridge features
US11216632B2 (en) 2019-07-17 2022-01-04 Invensense, Inc. Ultrasonic fingerprint sensor with a contact layer of non-uniform thickness
WO2022006567A1 (fr) * 2020-07-01 2022-01-06 Qualcomm Incorporated Système de détection ultrasonore multifréquence
US11232549B2 (en) 2019-08-23 2022-01-25 Invensense, Inc. Adapting a quality threshold for a fingerprint image
US11243300B2 (en) 2020-03-10 2022-02-08 Invensense, Inc. Operating a fingerprint sensor comprised of ultrasonic transducers and a presence sensor
US11288891B2 (en) 2016-05-10 2022-03-29 Invensense, Inc. Operating a fingerprint sensor comprised of ultrasonic transducers
US11328165B2 (en) 2020-04-24 2022-05-10 Invensense, Inc. Pressure-based activation of fingerprint spoof detection
US11392789B2 (en) 2019-10-21 2022-07-19 Invensense, Inc. Fingerprint authentication using a synthetic enrollment image
US11440052B2 (en) 2016-05-04 2022-09-13 Invensense, Inc. Two-dimensional array of CMOS control elements
US11460957B2 (en) 2020-03-09 2022-10-04 Invensense, Inc. Ultrasonic fingerprint sensor with a contact layer of non-uniform thickness
US11471912B2 (en) 2016-05-10 2022-10-18 Invensense, Inc. Supplemental sensor modes and systems for ultrasonic transducers
US11487323B2 (en) 2017-02-07 2022-11-01 Samsung Electronics Co., Ltd. Electronic device for acquiring fingerprint information by using ultrasonic signal
US11626099B2 (en) 2016-05-10 2023-04-11 Invensense, Inc. Transmit beamforming of a two-dimensional array of ultrasonic transducers
US11651611B2 (en) 2016-05-04 2023-05-16 Invensense, Inc. Device mountable packaging of ultrasonic transducers
US11673165B2 (en) 2016-05-10 2023-06-13 Invensense, Inc. Ultrasonic transducer operable in a surface acoustic wave (SAW) mode
CN113569799B (zh) * 2021-08-05 2024-05-14 中北大学 一种蜂窝结构空耦超声信号特征提取方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106842155B (zh) * 2017-01-17 2020-02-07 北京工业大学 一种基于空间插值和聚类分析的无线固定发射源定位方法
WO2018151547A1 (fr) * 2017-02-16 2018-08-23 주식회사 베프스 Appareil de reconnaissance d'informations biométriques et procédé de reconnaissance d'informations biométriques utilisant ledit appareil
JP7111497B2 (ja) * 2018-04-17 2022-08-02 株式会社東芝 画像処理装置、画像処理方法、距離計測装置、及び距離計測システム
CN109009107B (zh) * 2018-08-28 2021-12-14 深圳市一体医疗科技有限公司 一种乳腺成像方法及其系统、计算机可读存储介质
CN111868741A (zh) * 2019-02-06 2020-10-30 指纹卡有限公司 声学指纹表示获取技术
CN109886183B (zh) * 2019-02-19 2021-01-12 清华大学 基于桥式神经网络的人脸年龄估计方法及装置
KR20220008402A (ko) 2020-07-09 2022-01-21 삼성디스플레이 주식회사 초음파 지문 센서, 및 이를 이용한 초음파 지문 센싱 방법
CN112801057B (zh) * 2021-04-02 2021-07-13 腾讯科技(深圳)有限公司 图像处理方法、装置、计算机设备和存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5515298A (en) * 1993-03-30 1996-05-07 Sonident Anstalt Liechtensteinischen Rechts Apparatus for determining surface structures
US5551295A (en) * 1992-07-08 1996-09-03 Stockburger; Hermann Method and apparatus using ultrasonic and light waves for identification of test specimens
WO2002037402A1 (fr) * 2000-11-03 2002-05-10 Stockburger, Andreas Procede et dispositif pour identifier des objets a tester
WO2006026970A1 (fr) * 2004-09-10 2006-03-16 Frank Bechtold Procede et systeme de determination de l'authenticite des caracteristiques individuelles typiques d'objets de test
US7287013B2 (en) 2005-01-14 2007-10-23 Ultra-Scan Corporation Multimodal fusion decision logic system
US20090279746A1 (en) * 2008-05-06 2009-11-12 Sonavation, Inc. Method, apparatus and computer program product to determine a resonant frequency in a biometric sensor
WO2013023087A1 (fr) * 2011-08-09 2013-02-14 Lumidigm, Inc. Procédés et systèmes pour estimation de caractéristiques génétiques provenant de mesures biométriques

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1113631C (zh) * 1998-09-30 2003-07-09 柯坚 人体组织超声衰减成像方法
AU2001245936A1 (en) * 2000-03-23 2001-10-03 Cross Match Technologies, Inc. Piezoelectric identification device and applications thereof
JP2002175529A (ja) * 2000-12-06 2002-06-21 Matsushita Electric Ind Co Ltd 個人識別装置
CA2597831A1 (fr) * 2004-11-02 2006-05-11 Cross Match Technologies, Inc. Multiplexeur pour dispositif d'identification piezoceramique
US7804984B2 (en) * 2006-07-31 2010-09-28 Lumidigm, Inc. Spatial-spectral fingerprint spoof detection
US9117439B2 (en) * 2008-03-13 2015-08-25 Supersonic Imagine Method and apparatus for ultrasound synthetic imagining
US8508103B2 (en) * 2009-03-23 2013-08-13 Sonavation, Inc. Piezoelectric identification device and applications thereof
JP2012521597A (ja) * 2009-03-23 2012-09-13 ソナベーション, インコーポレイテッド 圧電セラミック識別デバイスのための改良マルチプレサ
JP2013517039A (ja) * 2010-01-19 2013-05-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 撮像装置
EP2566394B1 (fr) * 2010-05-03 2016-12-14 Koninklijke Philips N.V. Poursuite ultrasonore de transducteur(s) à ultrasons embarqués sur un outil d'intervention
CN103688271A (zh) * 2010-10-19 2014-03-26 索纳维森股份有限公司 使用声学超声阻抗描记术的指纹传感器的电气系统、方法和装置
KR101288178B1 (ko) * 2011-11-30 2013-07-19 삼성전기주식회사 지문 인식 센서 및 지문 인식 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5551295A (en) * 1992-07-08 1996-09-03 Stockburger; Hermann Method and apparatus using ultrasonic and light waves for identification of test specimens
US5515298A (en) * 1993-03-30 1996-05-07 Sonident Anstalt Liechtensteinischen Rechts Apparatus for determining surface structures
WO2002037402A1 (fr) * 2000-11-03 2002-05-10 Stockburger, Andreas Procede et dispositif pour identifier des objets a tester
WO2006026970A1 (fr) * 2004-09-10 2006-03-16 Frank Bechtold Procede et systeme de determination de l'authenticite des caracteristiques individuelles typiques d'objets de test
US7287013B2 (en) 2005-01-14 2007-10-23 Ultra-Scan Corporation Multimodal fusion decision logic system
US20090279746A1 (en) * 2008-05-06 2009-11-12 Sonavation, Inc. Method, apparatus and computer program product to determine a resonant frequency in a biometric sensor
WO2013023087A1 (fr) * 2011-08-09 2013-02-14 Lumidigm, Inc. Procédés et systèmes pour estimation de caractéristiques génétiques provenant de mesures biométriques

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VISHNU PRIYA NALLAGATLA: "Sequential decision fusion of multibiometrics applied to text-dependent speaker verification for controlled errors", 1 May 2012 (2012-05-01), BRISBANE, QUEENSLAND, XP055188829, Retrieved from the Internet <URL:http://eprints.qut.edu.au/63348/> [retrieved on 20150512] *

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10444335B2 (en) 2015-09-23 2019-10-15 Qualcomm Incorporated Spoof detection by ultrasonic subdermal probe
EP3353709B1 (fr) * 2015-09-23 2023-04-05 Qualcomm Incorporated Détection de falsification par sonde sous-cutanée à ultrasons
US11346930B2 (en) 2015-09-23 2022-05-31 Qualcomm Incorporated Method and apparatus of user verification by ultrasonic subdermal probe
KR20180054846A (ko) * 2015-09-26 2018-05-24 퀄컴 인코포레이티드 초음파 이미징 디바이스들 및 방법들
CN108024792A (zh) * 2015-09-26 2018-05-11 高通股份有限公司 超声波成像装置和方法
WO2017053877A3 (fr) * 2015-09-26 2017-05-11 Qualcomm Incorporated Dispositifs et procédés d'imagerie à ultrasons
KR102616845B1 (ko) * 2015-09-26 2023-12-20 퀄컴 인코포레이티드 초음파 이미징 디바이스들 및 방법들
US11017251B2 (en) 2015-09-26 2021-05-25 Qualcomm Incorporated Ultrasonic imaging devices and methods
JP2018534014A (ja) * 2015-09-26 2018-11-22 クアルコム,インコーポレイテッド 超音波撮像デバイスおよび方法
US10140534B2 (en) 2015-09-26 2018-11-27 Qualcomm Incorporated Ultrasonic imaging devices and methods
CN108024792B (zh) * 2015-09-26 2020-12-22 高通股份有限公司 超声波成像装置和方法
JP7028767B2 (ja) 2015-09-26 2022-03-02 クアルコム,インコーポレイテッド 超音波撮像デバイスおよび方法
EP3659517A1 (fr) * 2015-09-26 2020-06-03 Qualcomm Incorporated Dispositifs et procédés d'imagerie ultrasonore
CN108701221A (zh) * 2016-02-15 2018-10-23 高通股份有限公司 超声波指纹传感器的活性和冒充物检测
US10262188B2 (en) 2016-02-15 2019-04-16 Qualcomm Incorporated Liveness and spoof detection for ultrasonic fingerprint sensors
WO2017142912A1 (fr) * 2016-02-15 2017-08-24 Qualcomm Incorporated Détection de caractère vivant et de mystification pour des capteurs d'empreinte digitale à ultrasons
US11651611B2 (en) 2016-05-04 2023-05-16 Invensense, Inc. Device mountable packaging of ultrasonic transducers
US11440052B2 (en) 2016-05-04 2022-09-13 Invensense, Inc. Two-dimensional array of CMOS control elements
US11471912B2 (en) 2016-05-10 2022-10-18 Invensense, Inc. Supplemental sensor modes and systems for ultrasonic transducers
US11626099B2 (en) 2016-05-10 2023-04-11 Invensense, Inc. Transmit beamforming of a two-dimensional array of ultrasonic transducers
US11673165B2 (en) 2016-05-10 2023-06-13 Invensense, Inc. Ultrasonic transducer operable in a surface acoustic wave (SAW) mode
US11112388B2 (en) 2016-05-10 2021-09-07 Invensense, Inc. Operation of an ultrasonic sensor
US11288891B2 (en) 2016-05-10 2022-03-29 Invensense, Inc. Operating a fingerprint sensor comprised of ultrasonic transducers
US11154906B2 (en) 2016-05-10 2021-10-26 Invensense, Inc. Receive operation of an ultrasonic sensor
RU2687214C2 (ru) * 2016-06-30 2019-05-07 Бейдзин Сяоми Мобайл Софтвэр Ко., Лтд. Способ и устройство для распознавания отпечатка пальца
EP3264332A1 (fr) * 2016-06-30 2018-01-03 Beijing Xiaomi Mobile Software Co., Ltd. Dispositif et méthode pour reconnaissance des empreintes de doigts
US10546192B2 (en) 2016-06-30 2020-01-28 Beijing Xiaomi Mobile Software Co., Ltd. Device and method for recognizing fingerprint
US10410034B2 (en) * 2016-11-07 2019-09-10 Qualcomm Incorporated Ultrasonic biometric system with harmonic detection
WO2018085853A1 (fr) * 2016-11-07 2018-05-11 Qualcomm Incorporated Système biométrique à ultrasons avec détection des harmoniques
US11487323B2 (en) 2017-02-07 2022-11-01 Samsung Electronics Co., Ltd. Electronic device for acquiring fingerprint information by using ultrasonic signal
US11288479B2 (en) 2017-04-28 2022-03-29 The Board Of Trustees Of The Leland Stanford Junior University Acoustic biometric touch scanner
US10489627B2 (en) 2017-04-28 2019-11-26 The Board Of Trustees Of The Leland Stanford Junior University Acoustic biometric touch scanner
US9953205B1 (en) 2017-04-28 2018-04-24 The Board Of Trustees Of The Leland Stanford Junior University Acoustic biometric touch scanner
US10846501B2 (en) 2017-04-28 2020-11-24 The Board Of Trustees Of The Leland Stanford Junior University Acoustic biometric touch scanner
US11803728B2 (en) 2017-04-28 2023-10-31 The Board Of Trustees Of The Leland Stanford Junior University Acoustic biometric touch scanner
US10860831B2 (en) 2017-06-01 2020-12-08 Invensense, Inc. Image generation in an electronic device using ultrasonic transducers
EP3665616A4 (fr) * 2017-08-09 2021-06-02 The Board of Trustees of the Leland Stanford Junior University Scanner tactile biométrique interactif
US10592718B2 (en) 2017-08-09 2020-03-17 The Board Of Trustees Of The Leland Stanford Junior University Interactive biometric touch scanner
US11645862B2 (en) 2017-08-09 2023-05-09 The Board Of Trustees Of The Leland Stanford Junior University Interactive biometric touch scanner
US10691912B2 (en) 2017-08-09 2020-06-23 The Board Of Trustees Of The Leland Stanford Junior University Ultrasonic biometric sensing device integrated with optics
EP3665617A4 (fr) * 2017-08-09 2021-07-21 The Board of Trustees of the Leland Stanford Junior University Dispositif de détection biométrique à ultrasons intégré à un système optique
US11023704B2 (en) 2017-08-09 2021-06-01 The Board Of Trustees Of The Leland Stanford Junior University Interactive biometric touch scanner
US10936841B2 (en) 2017-12-01 2021-03-02 Invensense, Inc. Darkfield tracking
US10997388B2 (en) 2017-12-01 2021-05-04 Invensense, Inc. Darkfield contamination detection
US11151355B2 (en) 2018-01-24 2021-10-19 Invensense, Inc. Generation of an estimated fingerprint
US10936843B2 (en) 2018-12-28 2021-03-02 Invensense, Inc. Segmented image acquisition
CN113474646A (zh) * 2019-02-26 2021-10-01 国立大学法人丰桥技术科学大学 超声波检查装置及超声波检查方法
US11188735B2 (en) 2019-06-24 2021-11-30 Invensense, Inc. Fake finger detection using ridge features
WO2020264046A1 (fr) * 2019-06-25 2020-12-30 Invensense, Inc. Détection de faux doigt basée sur des caractéristiques transitoires
US11216681B2 (en) 2019-06-25 2022-01-04 Invensense, Inc. Fake finger detection based on transient features
US11176345B2 (en) 2019-07-17 2021-11-16 Invensense, Inc. Ultrasonic fingerprint sensor with a contact layer of non-uniform thickness
WO2021011832A1 (fr) * 2019-07-17 2021-01-21 Invensense, Inc. Capteur d'empreintes digitales à ultrasons doté d'une couche de contact d'épaisseur non uniforme
US11216632B2 (en) 2019-07-17 2022-01-04 Invensense, Inc. Ultrasonic fingerprint sensor with a contact layer of non-uniform thickness
US11682228B2 (en) 2019-07-17 2023-06-20 Invensense, Inc. Ultrasonic fingerprint sensor with a contact layer of non-uniform thickness
US11232549B2 (en) 2019-08-23 2022-01-25 Invensense, Inc. Adapting a quality threshold for a fingerprint image
US11392789B2 (en) 2019-10-21 2022-07-19 Invensense, Inc. Fingerprint authentication using a synthetic enrollment image
US11460957B2 (en) 2020-03-09 2022-10-04 Invensense, Inc. Ultrasonic fingerprint sensor with a contact layer of non-uniform thickness
US11243300B2 (en) 2020-03-10 2022-02-08 Invensense, Inc. Operating a fingerprint sensor comprised of ultrasonic transducers and a presence sensor
US11328165B2 (en) 2020-04-24 2022-05-10 Invensense, Inc. Pressure-based activation of fingerprint spoof detection
WO2022006567A1 (fr) * 2020-07-01 2022-01-06 Qualcomm Incorporated Système de détection ultrasonore multifréquence
US11393239B2 (en) 2020-07-01 2022-07-19 Qualcomm Incorporated Multiple-frequency ultrasonic sensor system
CN113569799A (zh) * 2021-08-05 2021-10-29 中北大学 一种蜂窝结构空耦超声信号特征提取方法
CN113569799B (zh) * 2021-08-05 2024-05-14 中北大学 一种蜂窝结构空耦超声信号特征提取方法

Also Published As

Publication number Publication date
KR20160130234A (ko) 2016-11-10
CN106068515B (zh) 2020-03-10
JP2017514108A (ja) 2017-06-01
EP3114608A1 (fr) 2017-01-11
CN106068515A (zh) 2016-11-02

Similar Documents

Publication Publication Date Title
US10503948B2 (en) Multi-spectral ultrasonic imaging
CN106068515B (zh) 多频谱超声成像
US10140534B2 (en) Ultrasonic imaging devices and methods
US10410034B2 (en) Ultrasonic biometric system with harmonic detection
JP7256131B2 (ja) 音響生体識別タッチスキャナ
US10274590B2 (en) Ultrasonic imaging with acoustic resonant cavity
US11803728B2 (en) Acoustic biometric touch scanner
US20190370518A1 (en) Heart rate and respiration rate measurement using a fingerprint sensor
US20210073502A1 (en) Ultrasonic fingerprint sensor with low-frequency vibration source
US20200160018A1 (en) Ultrasonic biometric sensor with transmit and receive side beamforming
US9946914B1 (en) Liveness detection via ultrasonic ridge-valley tomography
US20240127620A1 (en) Apparatus and method for ultrasonic fingerprint and touch sensing
EP4357947A2 (fr) Detecteur d&#39;empreintes digitales configure pour eviter des empreintes digitales latentes
US20200034593A1 (en) Biometric age estimation via ultrasonic imaging
CN114569153A (zh) 弹性测量方法、基于弹性图像的匹配方法和超声成像系统
CN113950708A (zh) 超声成像设备及超声设备中的图像采集的方法
US20230090998A1 (en) Fingerprint sensor with force or pressure feedback
US20230130790A1 (en) Fingerprint sensor with detection of latent fingerprints
Long Adaptive Ultrasonic Frequency Selection Using Principles of Spatial Coherence

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15711007

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
REEP Request for entry into the european phase

Ref document number: 2015711007

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015711007

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15115058

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167024236

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016555454

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE