WO2015133679A1 - 퍼옥시좀 증식체 활성화 수용체 감마의 발현을 증가시키는 단계를 포함하는 성체줄기세포의 줄기세포능을 회복시키는 방법 - Google Patents

퍼옥시좀 증식체 활성화 수용체 감마의 발현을 증가시키는 단계를 포함하는 성체줄기세포의 줄기세포능을 회복시키는 방법 Download PDF

Info

Publication number
WO2015133679A1
WO2015133679A1 PCT/KR2014/004171 KR2014004171W WO2015133679A1 WO 2015133679 A1 WO2015133679 A1 WO 2015133679A1 KR 2014004171 W KR2014004171 W KR 2014004171W WO 2015133679 A1 WO2015133679 A1 WO 2015133679A1
Authority
WO
WIPO (PCT)
Prior art keywords
stem cells
pparγ
cells
expression
adult stem
Prior art date
Application number
PCT/KR2014/004171
Other languages
English (en)
French (fr)
Inventor
전희숙
박은영
Original Assignee
가천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가천대학교 산학협력단 filed Critical 가천대학교 산학협력단
Publication of WO2015133679A1 publication Critical patent/WO2015133679A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0676Pancreatic cells
    • C12N5/0678Stem cells; Progenitor cells; Precursor cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/998Proteins not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/22Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from pancreatic cells

Definitions

  • the present invention relates to a method for restoring the stem cell capacity (sentemness) of aged adult stem cells, and more particularly by increasing the expression of Peroxysome proliferator-activated receptor gamma (PPAR ⁇ )
  • the present invention relates to a method for improving stem cell ability and differentiation ability into insulin producing cells.
  • Embiated stem cells are undifferentiated cells found between differentiated cells of tissues or organs. Somatic stem cells have the ability to proliferate on their own and to differentiate into cells with specific functions of tissues or organs. stem cell). The main role of adult stem cells is to maintain the cells of tissues and organs in which adult stem cells are present and to treat any damaged cells.
  • adult stem cells are present in small amounts in each tissue. It stays silent for years without dividing or proliferating until the tissue is diseased or damaged and the adult stem cells are activated. Organs reported to have adult stem cells include the brain, bone marrow, peripheral blood, blood vessels, muscles, skin and liver. Scholars are investigating how adult stem cells grow through cell culture and induce differentiation into specific cells that can be used when our bodies are hurt or diseased.
  • MSCs Mesenchymal stem cells
  • adipose tissue obtained from liposuction such as liposuction, which has been spotted by cosmetic plastic surgery.
  • Mesenchymal stem cells from adipose tissue has the advantage that you can easily use them again.
  • These isolated cells are known to be able to attach to plastic cell culture dishes and form fibroblast-like colonies.
  • it is known to have a multipotent ability to differentiate into osteoblasts, adipocytes, chondrocytes, neurons and the like.
  • increasing the number of transplanted cells requires securing as many cells as necessary through passage in a plastic culture dish.
  • mesenchymal stem cells have a long culture period, and are reduced in proliferative capacity and differentiation into various lines through several passages.
  • colony-forming capacity was significantly reduced in late passage mesenchymal stem cells compared to early passage mesenchymal stem cells. While the differentiation capacity of the furnace was not reduced, it was confirmed that differentiation into adipocytes was suppressed.
  • senescence of mesenchymal stem cells is associated with weakened proliferative capacity over long periods of culture rather than the age of bone marrow donors (Kassem, Bone, 33: 919-926, 2003), and telomerase activity. It also appears to be associated with a decrease in (Kassem, Nat. Biotechnol, 20: 592-596, 2002).
  • the PPAR ⁇ of the present invention restores the stem cell capacity of adult stem cells and differentiates them into insulin producing cells. It was first identified that it was enhanced.
  • One object of the invention is to increase the expression of Perxisome proliferator-activated receptor gamma (PPAR ⁇ ) in adult stem cells, stem cell stem (stemness) of adult stem cells It is to provide a way to recover.
  • PPAR ⁇ Perxisome proliferator-activated receptor gamma
  • Another object of the present invention is to provide a composition for restoring stem cell ability (stemness) of adult stem cells, including the peroxysome proliferator activator receptor gamma as an active ingredient.
  • the present invention is a method for restoring the stem cell capacity of aged adult stem cells by repeated subculture by increasing the expression of PPAR ⁇ in adult stem cells, the growth factor or chemicals used in conventional stem cell culture medium By not using the substance, it is possible to suppress the side effects and restore the properties of the adult passaged adult stem cells.
  • the stem cell capacity of aged adult stem cells it is possible to mass-produce adult stem cells having the same differentiation and proliferative capacity as early subcultured cells even with a very small amount of adult stem cells without additional adult stem cells from the patient. Furthermore, by promoting the differentiation of human adipose tissue-derived stem cells into insulin producing cells, the secretion amount of insulin is improved even in a high passage number of adult stem cells, thereby improving the titer as a cell therapeutic agent.
  • the present invention can be used in a wider range of clinical fields by improving the utilization of adult stem cells that are very safe in terms of safety than embryonic stem cells.
  • Figure 1 A is a diagram showing the proliferation decrease in the continuous passage of human adipose derived mesenchymal stem cells (passage 4, 7, 12 and 20),
  • Figure 1 B is an aging marker increase
  • Figure 1 C is a stem Decreased expression of genes that maintain pluripotency and differentiation of cells.
  • FIG. 2A is a diagram showing the expression of insulin producing cell differentiation markers after passage of adipose derived mesenchymal stem cells and differentiation into insulin producing cells for each passage.
  • 2B is a diagram showing the amount of insulin secreted after differentiation into insulin producing cells for each passage.
  • 3 is a diagram observing the expression change of the expression factor of the nuclear receptor transcription factor for each passage after passage.
  • FIG. 4 is a diagram showing that increased expression or activity of reduced PPAR ⁇ increases the expression of Oct4, a key marker of stem cell ability, and in particular, stem cells produce insulin when the PPAR ⁇ activator is treated or overexpressed in aging cells.
  • Figure shows the recovery of differentiation ability into cells.
  • the present invention comprises the step of increasing the expression of Peroxysome proliferator-activated receptor gamma (PPAR ⁇ ) in adult stem cells, Provided are methods for restoring stem cell capacity.
  • PPAR ⁇ Peroxysome proliferator-activated receptor gamma
  • peroxysome proliferator-activated receptor is a member of the nuclear receptor macrophage of transcription factors, including steroids, thyroid and vitamin D receptors. They serve to control the expression of proteins that regulate lipid metabolism and are activated by fatty acids and fatty acid metabolites.
  • Three PPAR subtypes, PPAR ⁇ , PPAR ⁇ and PPAR ⁇ , are known, each representing a different tissue expression pattern and can be distinguished in terms of activation by structurally diverse compounds.
  • PPAR ⁇ is an important factor in cell signaling pathways and is known to regulate transcription factors related to glucose metabolism and adipocyte formation.
  • PPAR ⁇ is most expressed in adipocytes and low in skeletal muscle, heart, liver, intestine, kidney, vascular endothelial and smooth muscle cells and macrophages.
  • PPAR ⁇ is known to play a multifaceted role in vascular cell proliferation, migration and differentiation, macrophage activation and inflammatory action.
  • adult stem cell refers to a cell immediately before being differentiated into cells of specific organs, which are extracted from umbilical cord blood or mature adult bone marrow, blood, and the like, and are differentiated into cells of specific tissues when necessary. Is a cell.
  • the adult stem cells are not limited thereto, but may be selected from the group consisting of umbilical cord, cord blood, bone marrow, fat, muscle, nerve, skin, amniotic membrane, and placenta.
  • the adult stem cells are neural stem cells that can differentiate into neurons, hematopoietic stem cells that can differentiate into blood cells, mesenchymal stem cells that can differentiate into bone, cartilage, fat, muscle, etc.
  • Stem cells preferably may be mesenchymal stem cells, more preferably may be mesenchymal stem cells derived from adipocytes or adipose tissue, but is not limited thereto.
  • the method of obtaining stem cells from each of the derivatives may be by a method known in the art, and is not limited to the method of the embodiment of the present invention.
  • the term "stemness” refers to pluripotency capable of producing all cells, such as embryonic stem cells, and self-renewal that can produce cells that resemble themselves indefinitely. -renewal) is commonly used in the art as a generic term. Thus, it refers to increasing proliferation, increasing telomerase activity, increasing expression of stem cell acting signals or increasing cell migration activity while maintaining undifferentiated cells.
  • One or more of the features may appear (Pittenger, MF, Mackay, AM, Beck, SC, Jaiswal, RK, Douglas, R., Mosca, JD, Moorman, Simonetti, DW, Craig, S., and Marshak , DR 1999. Multilineage potential of adult human mesenchymal stem cells.Science 284 (5411), 143-147).
  • Oct4 which is known to express undifferentiated stem cells in the past, is a transcription factor mainly expressed in embryonic stem cells, plays a role in preventing cell differentiation, and disappears when natural differentiation of cells begins. Known. Therefore, it is possible to predict the degree of differentiation of stem cells according to the expression level of Oct4.
  • the expression level of Oct4 decreased as the number of passages increased (Experimental Example 2), but when PPAR ⁇ was overexpressed in the high passage number of aged stem cells. , It was confirmed that the expression level of Oct4 was significantly increased (Example 7). This suggests that stem cell capacity was restored through increased expression or activation of PPAR ⁇ in adult stem cells.
  • insulin production by re-increasing the expression of reduced insulin and / or ⁇ -cell differentiation transcription factors such as PDX1, NGN3 upon passage Differentiation into cells can be promoted to enhance the secretion of insulin.
  • insulin is a hormone that regulates carbohydrate and fat metabolism in the body. It is secreted by ⁇ -cells of islets of Langerhans in pancreas, and maintains a constant level of blood glucose, the level of glucose in the blood. In other words, when the concentration of glucose in the blood rises above a certain level, insulin is secreted, and glucose in the blood is introduced into the cells to promote the action of storing polysaccharides (eg glycogen) in the liver and muscle again. People who do not have this insulin secretion normally is susceptible to diabetes.
  • polysaccharides eg glycogen
  • insulin producing cell refers to cells capable of producing insulin, such as pancreatic cells.
  • genes engineered to produce insulin through a process such as transfection may be included without limitation, and further, “functional" insulin producing cells may secrete insulin under high glucose conditions. It means a cell that can.
  • PDX-1 pancreatic duodenal homeobox-1
  • insulin promoter factor 1 coded to express PDX-1
  • It binds to the A-box of the insulin promoter and is an essential transcription factor for interest development and ⁇ -cell maturation.
  • the expression level of ⁇ -cell differentiation transcription factors such as insulin and / or PDX1, NGN3 decreased as the passage number increased (Experimental Example 3),
  • PPAR ⁇ was overexpressed in the high passage number of aged stem cells, it was confirmed that the expression levels of insulin and PDX1 were significantly increased (Example 8).
  • the step of increasing the expression of PPAR ⁇ in order to restore the stem cell capacity (stemness) of adult stem cells may use a method known in the art. Specifically, a method of introducing the PPAR ⁇ into adult stem cells, an increase in the intracellular copy number of the gene encoding the PPAR ⁇ , a method of introducing a mutation in the expression control sequence of the gene on the chromosome encoding the PPAR ⁇ , encoding the PPAR ⁇ A method of replacing the expression control sequence of a gene on a chromosome with a more active sequence, a gene mutated to increase the activity of the PPAR ⁇ , a method of replacing a gene encoding the PPAR ⁇ on a chromosome, and an activity of the PPAR ⁇ is enhanced
  • the method may be selected from the group consisting of a method of introducing a mutation into a gene on a chromosome encoding the PPAR ⁇ , but is not limited thereto.
  • the present invention comprises a substance for activating a peroxysome proliferator activator receptor gamma or a peroxysome proliferator activator receptor gamma as an active ingredient, a composition for restoring stem cell capacity (stemness) of adult stem cells To provide.
  • the peroxysome proliferator activating receptor gamma, adult stem cells and stem cell capacity is as described above.
  • the composition includes peroxysome proliferator activator receptor gamma as an active ingredient, thereby activating or increasing PPAR ⁇ in stem cells to restore stem cell capacity of adult stem cells, and also to insulin producing cells. Can promote differentiation.
  • STEMPRO ® hADCSs were purchased from Life Technologies (Cat.Co.R7788-115) and were cultured in MesenPRO TM medium. Reagents used were each purchased from the named suppliers; Troglitazone is from Enzo LifeScience; Activin A, basic fibroblast growth factor (bFGF), and hepatocyte growth factor (HGF) are available from Peprotech; B27 serum-free supplenment and N2 supplements are available from Life Technologies; And 15-deoxy- ⁇ 12,14 -prostaglandin J 2 (15PGJ 2 ), valproic acid, exendin-4, nicotinamide, dexamethasone, 3-iso 3-isobutyl-1-methylxantine, insulin, ascorbate-2 phosphate, ⁇ -glycerol phosphate, GW9662, and 3, 3 ', 5-Triido-L-tyrosine (T3) was purchased from Sigma-Aldrich.
  • human adipose tissue-derived stem cells of the 4th, 7, 12th and 20th passages were used.
  • Stem cell growth in each passage was measured through cell proliferation for 1 week. That is, the cells of each passage were seeded at a density of 10 4 cells / cm 2 in 6-well plates and allowed to divide for 7 days. The medium was changed twice a week. One medium from each group was used to determine cell number.
  • For the chemical treatment group cells were seeded in 6-well plates at a density of 10 4 cells / cm 2 and allowed to attach to the plates overnight. It was then changed to fresh medium containing troglitazone or 15PGJ 2 . Samples were each extracted at various time periods between cultures.
  • PCR amplification was performed using an Applied-Biosystem Prism 7900HT Real-Time PCR Sequence Detection System and stopped at 40 cycles. Relative gene expression levels were corrected with human cyclophilin using the relative C T method. Primer sequences used in the present invention are shown in Table 1 below.
  • the low passage number (P4 and P7) cells had fusiform morphology, and as they grew larger and flatter, they were firmly attached to the plate at the high passage number.
  • the growth rate of the cells gradually decreased as the number of passages increased, and the increase in the number of cells also decreased significantly as the number of passages increased.
  • p16 INK4A is known to be involved in cellular aging and stem cell aging and, as accumulated in many aged cells and tissues, is considered a biomarker of aging.
  • hADSC is also known to express several markers of pluripotent embryonic stem cells.
  • the expression patterns of mesenchymal surface markers of hADSC at different passages were analyzed by FACS analysis. Analyzed. Specifically, single-cell suspensions were obtained at passages 4, 7, 12, and 20 and washed twice with FACS buffer containing 1% fetal bovine serum (FBS) in phosphate-buffered saline (PBS). It was. The cells were counted and suspended at a concentration of 5 ⁇ 10 5 cells in 100 ⁇ L FACS buffer.
  • FBS fetal bovine serum
  • PBS phosphate-buffered saline
  • hADSCs To measure the ability of hADSCs to differentiate into insulin producing cells at different passages, cells 4, 7, 12 and 20 were trypsinized to induce differentiation into insulin producing cells and suspended in culture medium. And centrifuged. The cells were counted and seeded in 12-well low adhesion plates (SPL 30212) at a density of 10 4 cells / cm 2.
  • Basic differentiation medium was used to differentiate the cells into insulin producing cells.
  • the basal differentiation medium is serum free DMEM / F12 (1: 1) with 1% B27 serum free supplement, 1% N2 supplement and 1% penicillin / streptomycin.
  • hADSCs Three different 10-day protocols were used to differentiate hADSCs into insulin-producing cells: (1) 3 days in basal medium supplemented with 50 ng / mL activin A and 2 mM valproic acid. culture; (2) incubation for 3 days in basal medium supplemented with 10 nM exendin-4 and 10 ng / mL bFGF; And (3) 4 days in basal medium with 10 nM exendin-4, 50 ng / mL HGF, and 10 mM nicotinamide.
  • hADSCs of passages 4, 7, and 12 formed smooth surface clusters, whereas cells of passage 20 formed wrinkled and rough surface clusters.
  • the insulin secretion of the differentiated cells was measured using a human insulin ELISA kit (Mercodia).
  • a human insulin ELISA kit (Mercodia).
  • the amount of insulin secreted from the differentiated cells at 7, 12 and 20 passages was significantly reduced.
  • insulin secretion was reduced by three times in the 20th passage.
  • NRs Nuclear Receptors
  • NRs nuclear Receptors
  • Oct4 and Nanog nuclear Receptors
  • PPAR ⁇ Since the expression of PPAR ⁇ was significantly decreased at 12 and 20 passages, we tried to determine whether PPAR ⁇ plays an important role in the regulation of Oct4, a stem cell marker.
  • the luciferase reporter construct (phOct4-Luc) including an upstream region of human Oct4 was provided by Shinya Yamanaka (Addgene plasmid No. 17221).
  • 20 generations of hADSCs were infected with the pcDNA flag PPARg plasmid or pcDNA plasmid (250 ng each), followed by phOct4-Luc plasmid (500 ng) and ⁇ -galactosidase plasmid. .
  • PPAR ⁇ activator treatment or PPAR ⁇ overexpression increased Oct4 mRNA expression, and it was confirmed whether overexpression of PPAR ⁇ could maintain the differentiation potential of hADSCs.
  • HADSCs at passage 20 were infected with PPAR ⁇ plasmids and then differentiated into insulin producing cells.
  • insulin and PDX1 mRNA levels were increased in PPAR ⁇ overexpressing cells as compared to pcDNA-infected cells.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

본 발명은 노화된 성체줄기세포의 줄기세포능(stemness)을 회복시키는 방법에 관한 것으로, 보다 상세하게는 퍼옥시좀 증식체 활성화 수용체 감마(Peroxisome proliferator-activated receptor gamma, PPARγ)의 발현을 증가시킴으로써 줄기세포능 및 인슐린 생산세포로의 분화능을 향상시키는 방법에 관한 것이다.

Description

퍼옥시좀 증식체 활성화 수용체 감마의 발현을 증가시키는 단계를 포함하는 성체줄기세포의 줄기세포능을 회복시키는 방법
본 발명은 노화된 성체줄기세포의 줄기세포능(stemness)을 회복시키는 방법에 관한 것으로, 보다 상세하게는 퍼옥시좀 증식체 활성화 수용체 감마(Peroxisome proliferator-activated receptor gamma, PPARγ)의 발현을 증가시킴으로써 줄기세포능 및 인슐린 생산세포로의 분화능을 향상시키는 방법에 관한 것이다.
성체줄기세포는 조직이나 기관의 분화된 세포들 사이에서 발견되는 미분화 세포로써, 자기 스스로 증식할 수 있으며, 조직이나 기관의 특수한 기능을 가지고 있는 세포로 분화할 수 있는 능력을 가진 신체줄기세포(somatic stem cell)를 말한다. 성체줄기세포의 주된 역할은 성체줄기세포가 존재하고 있는 조직이나 기관의 세포를 유지하고, 손상된 세포가 있으면 치료하는 것이다.
성체줄기세포를 이해하는데 있어서 중요한 점은 성체줄기세포는 각각의 조직에 소량으로 존재한다는 것이다. 조직이 병에 걸리거나 손상을 받아서 성체줄기세포가 활성화 될 때 까지는 수년간 분열 혹은 증식하지 않고 잠잠하게 지낸다. 성체줄기세포를 가지고 있는 것으로 보고 되고 있는 기관은 뇌, 골수, 말초혈액, 혈관, 근육, 피부와 간 등이다. 학자들은 이러한 성체줄기세포를 세포배양을 통해서 증식시키고, 특정세포로 분화를 유도하여 우리 몸이 상처를 받거나 질병에 걸리면 사용하는 방법을 연구하고 있다.
대표적인 성체줄기세포인 중간엽 줄기세포(MSC)는 지방유래 중간엽 줄기세포의 경우 미용 성형술로 각광받고 있는 지방 흡입 등의 시술에서 얻어진 지방조직에서 쉽게 줄기세포를 얻을 수 있는 장점은 물론, 환자의 지방조직으로부터 중간엽 줄기세포를 얻어 다시 본인에게 손쉽게 활용할 수 있다는 장점이 있다. 이렇게 분리된 세포들은 플라스틱 세포 배양 접시에 부착될 수 있고, 섬유아세포-유사 콜로니(fibroblast-like colony)를 형성할 수 있는 것으로 알려져 있다. 또한, 골아세포, 지방세포, 연골세포, 및 신경세포 등으로 분화할 수 있는 다분화능을 가진 것으로 알려져 있다. 이러한 중간엽 줄기세포의 많은 장점들에도 불구하고, 이식 세포의 수를 늘리기 위해서는 플라스틱 배양접시에서 계대배양을 통한 필요한 수만큼의 세포 확보가 필요하다.
그러나, 중간엽 줄기세포는 배양 기간이 길어지는 동시에, 여러 번의 계대배양을 거치면서 증식능력과 다양한 계통으로의 분화능력이 감소되는 것으로 알려져 있다. Prockop 등(Brit J Haematol, 107:275-281 ,1999년)의 연구에서 초기 계대(passage)의 중간엽 줄기세포에 비해, 후기 계대의 중간엽 줄기세포에서 콜로니 형성 능력이 현저히 감소하였으며, 골아세포로의 분화능력은 감소되지 않은 반면, 지방세포로의 분화가 억제되었음을 확인하였다. 또한, 중간엽 줄기세포의 노화는 골수 공여자의 나이보다는 오랜 배양기간 동안의 약화된 증식능력과 관련이 있으며(Kassem, Bone, 33:919-926, 2003년), 텔로머라아제 활성(telomerase activity)의 감소와도 연관이 있는 것으로 보인다(Kassem, Nat. Biotechnol, 20:592-596, 2002).
이렇듯 현재 사람에서 얻을 수 있는 중간엽 줄기세포의 양은 제한되어 있으며, 이렇게 얻은 세포를 특정 계통으로의 분화 유도를 위해선 계대배양에 따른 분화능력의 감소와 같은 문제점들이 따라올 수밖에 없다. 이러한 단점들은 정확한 타겟 세포로의 분화 유도와 그를 위해 적절한 줄기세포를 대량으로 확보해야 하는 임상적용에 있어서는 비현실적이다. 따라서 오랜 기간 동안 증식률을 유지하고 여러 계통으로의 분화능력을 유지할 수 있을 뿐만 아니라 노화된 중간엽 줄기세포의 줄기성을 재활성화 시킬 수 있는 새로운 중간엽 줄기세포의 배양방법의 필요성이 대두되고 있다.
본 발명자들은 중간엽 줄기세포를 계대배양함에 있어서, 계대 수가 증가할수록 줄기세포의 줄기세포능(stemness)이 감소하는 종래의 문제점을 해결하기 위하여, PPARγ를 활성화 또는 과발현시킨 결과, 감소된 Oct4의 발현이 회복되고, 또한 인슐린 분비세포의 대표적인 마커인 PDX1의 감소된 발현이 증가하였음을 확인함으로써, 본 발명의 PPARγ가 성체줄기세포의 줄기세포능(stemness)을 회복시키고, 인슐린 생산세포로의 분화능을 증진시켰음을 최초로 규명하였다.
본 발명의 하나의 목적은, 성체줄기세포에서 퍼옥시좀 증식체 활성화 수용체 감마(Peroxisome proliferator-activated receptor gamma, PPARγ)의 발현을 증가시키는 단계를 포함하는, 성체줄기세포의 줄기세포능(stemness)을 회복시키는 방법을 제공하는 것이다.
본 발명의 다른 목적은, 퍼옥시좀 증식체 활성화 수용체 감마를 유효성분으로 포함하는, 성체줄기세포의 줄기세포능(stemness) 회복용 조성물을 제공하는 것이다.
본 발명은 성체줄기세포 내의 PPARγ의 발현을 증가시킴으로써 반복된 계대배양에 의해 노화된 성체줄기세포의 줄기세포능(stemness)을 회복시키는 방법으로서, 종래의 줄기세포 배양 배지에 사용되는 성장인자나 화학물질을 사용하지 않아, 이에 의한 부작용 억제와 초기 계대배양 성체줄기세포의 성질을 그대로 회복시킬 수 있다.
또한, 노화된 성체줄기세포의 줄기세포능을 회복시킴으로써 환자로부터 추가적인 성체줄기세포 채취 없이 매우 적은 양의 성체줄기세포로도 초기 계대배양세포와 동일한 분화력과 증식력을 가지는 성체줄기세포를 대량생산할 수 있고, 나아가 인간 지방조직 유래 줄기세포의 인슐린 생산세포로의 분화능을 촉진함으로써 높은 계대 수의 성체줄기세포에서도 인슐린의 분비량이 개선됨으로써 세포치료제로서의 역가를 향상시킬 수 있다.
또한, 본 발명은 배아줄기세포보다 안전성 면에서 매우 우수한 성체줄기세포의 활용을 개선시킴으로써 보다 다양한 임상분야에서 사용될 수 있다.
도 1의 A는 인간 지방유래 중간엽 줄기세포의 지속적 계대배양(passage 4, 7, 12 및 20)에 따른 증식능 저하를 나타낸 도이고, 도 1의 B는 노화마커 증가, 도 1의 C는 줄기세포의 다능성 및 분화능을 유지하는 유전자의 발현감소를 나타낸 것이다.
도 2의 A는 지방유래 중간엽 줄기세포를 계대배양한 후, 계대별로 인슐린 생산세포로 분화시킨 후, 인슐린 생산세포 분화마커의 발현을 나타낸 도이다. 도 2의 B는 계대별로 인슐린 생산세포로 분화시킨 후, 인슐린 분비량을 나타낸 도이다.
도 3은 계대배양한 후, 계대별 핵수용체 전사인자의 발현인자의 발현 변화를 관찰한 도이다.
도 4는 감소한 PPARγ의 발현 혹은 활성을 증가시키면 줄기세포능의 핵심마커인 Oct4의 발현이 증가됨을 나타낸 도이고, 특히 노화가 진행된 세포에 PPARγ의 활성화제를 처리하거나 혹은 과발현시키면 줄기세포가 인슐린 생산세포로 분화능이 회복됨을 보여주는 도이다.
상기 목적을 달성하기 위한 하나의 양태로서, 본 발명은 성체줄기세포에서 퍼옥시좀 증식체 활성화 수용체 감마(Peroxisome proliferator-activated receptor gamma, PPARγ)의 발현을 증가시키는 단계를 포함하는, 성체줄기세포의 줄기세포능(stemness)을 회복시키는 방법을 제공한다.
본 발명에서 용어, "퍼옥시좀 증식체 활성화 수용체(Peroxisome proliferator-activated receptor)"는 스테로이드, 갑상선 및 비타민 D 수용체를 포함하는 전사 인자의 핵 수용체 거대족의 일원이다. 이들은 지질 대사를 조절하는 단백질의 발현을 제어하는 역할을 하며, 지방산 및 지방산 대사체에 의해 활성화된다. 3가지의 PPAR 하위 유형인 PPARα, PPARβ 및 PPARγ가 알려져 있고, 이들은 각각 상이한 조직 발현 패턴을 나타내며 구조적으로 다양한 화합물에 의한 활성화 면에서 구별될 수 있다. 이 중 PPARγ는 세포신호 경로에 중요한 요소이며, 당대사와 지방세포형성과 관련된 전사인자를 조절한다고 알려져 있다. 따라서 PPARγ는 지방세포에서 가장 많이 발현되고, 골격 근육, 심장, 간, 장, 신장, 혈관 내피 및 평활근 세포 및 대식세포에서는 낮은 수치로 발현된다. PPARγ는 혈관세포증식, 이동 및 분화, 대식세포 활성화 및 염증 작용에서 다면적 역할을 하는 것으로 알려져 있다.
본 발명에서 용어, "성체줄기세포"는 제대혈이나 다 자란 성인의 골수, 혈액 등에서 추출되는, 구체적 장기의 세포로 분화되기 직전의 세포를 의미하며, 필요한 때에 특정 조직의 세포로 분화하게 되는 미분화상태의 세포이다. 상기 성체줄기세포는 이에 제한되지는 않으나, 그 유래가 제대, 제대혈, 골수, 지방, 근육, 신경, 피부, 양막 및 태반으로 구성된 군에서 선택되는 것일 수 있다. 상기 성체줄기세포는 신경세포로 분화할 수 있는 신경줄기세포, 혈액세포로 분화할 수 있는 조혈모세포, 뼈, 연골, 지방, 근육 등으로 분화할 수 있는 중간엽 줄기세포, 간세포로 분화할 수 있는 간줄기세포일 수 있으며, 바람직하게는 중간엽 줄기세포일 수 있고, 보다 바람직하게는 지방세포 또는 지방조직 유래의 중간엽 줄기세포일 수 있으나, 이에 제한되지 않는다. 각 유래에서 줄기세포를 얻는 방법은 종래 당업계에 공지된 방법에 의할 수 있으며, 본 발명의 실시예의 방법에 한정되지 않는다.
본 발명에서 용어, "줄기세포능(stemness)"은 배아줄기세포와 같이 모든 세포를 생성할 수 있는 능력이 있는 만능성(pluripotency)과, 자기와 닮은 세포들을 무한정 만들어 낼 수 있는 자기재생(self-renewal) 능력을 총칭하는 의미로 당업계에서 통용된다. 따라서, 미분화 세포를 미분화 상태를 유지하면서 증식을 증가시키거나, 텔로머라제 활성을 증가시키거나, 줄기세포성 인자(stemness acting signals)의 발현을 증가시키거나 세포 이동 활성을 증가시키는 것을 말하며, 이들 특징 중 하나 이상이 나타나는 것을 포함할 수 있다(Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, Simonetti, D. W., Craig, S., and Marshak, D. R. 1999. Multilineage potential of adult human mesenchymal stem cells. Science 284(5411), 143-147).
본 발명의 방법을 통해 줄기세포에서의 PPARγ의 발현을 증가시키거나 활성화시킬 경우, 계대배양에 따라 감소된 Oct4(octamer-binding transcription factor 4)의 발현이 증가될 수 있다.
종래부터 미분화된 줄기세포가 발현하는 것으로 알려진 Oct4는 주로 배아 줄기세포(embryonic stem cell)에서 발현되는 전사인자로서, 세포의 분화를 방지하는 역할을 담당하고, 세포의 자연적인 분화가 시작되면 사라지는 것으로 알려져 있다. 따라서 Oct4의 발현수준에 따라 줄기세포의 분화정도를 예측할 수 있다.
본 발명의 일 실시예에서는 지방조직 유래 줄기세포를 계대배양함에 있어, 계대 수가 증가할수록 Oct4의 발현수준이 감소하였으나(실험예 2), 상기 높은 계대 수의 노화된 줄기세포에 PPARγ를 과발현시킨 경우, Oct4의 발현수준이 현저히 증가하였음을 확인하였다(실시예 7). 이는 성체줄기세포에서의 PPARγ의 발현증가 또는 활성화를 통하여 줄기세포능(stemness)이 회복되었음을 시사하는 것이다.
본 발명의 방법을 통해 줄기세포에서의 PPARγ의 발현을 증가시키거나 활성화시킬 경우, 계대배양에 따라 감소된 인슐린 및/또는 PDX1, NGN3와 같은 β-세포 분화 전사인자의 발현을 다시 증가시킴으로써 인슐린 생산세포로의 분화를 촉진시켜 인슐린의 분비를 증진시킬 수 있다.
본 발명에서 용어, "인슐린(insulin, INS)"은 체내에서 탄수화물 및 지방 대사를 조절하는 호르몬이다. 이자(pancreas)의 랑게르한스 섬 β-세포(β-cells of islets of Langerhans)에서 분비되며, 혈액 속의 포도당 수치인 혈당량을 일정하게 유지시키는 역할을 한다. 즉, 혈중 글루코스의 농도가 일정수준 이상으로 높아지면 인슐린이 분비되며, 혈액 내의 포도당을 세포 내로 유입해 간과 근육에 다시 다당류(예를 들어 글리코겐)의 형태로 저장하는 작용을 촉진시킨다. 이와 같은 인슐린의 분비가 정상적으로 이루어지지 않는 사람의 경우 당뇨병에 걸리기 쉽다.
본 발명에서 용어, "인슐린 생산 세포(insulin producing cell; IPC)"는 췌장세포와 같이 인슐린을 생산할 수 있는 세포를 총칭한다. 따라서, 세포의 기원과 무관하게 형질감염 등의 과정을 통해 인슐린을 생산할 수 있도록 유전자 조작된 세포 등을 제한없이 포함할 수 있고, 나아가 "기능적" 인슐린 생산 세포는 고농도의 글루코스 조건하에서 인슐린을 분비할 수 있는 세포를 의미한다.
본 발명에서 용어, "PDX-1(이자 샘창자 호메오박스-1; pancreatic duodenal homeobox-1)"은 코딩되어 PDX-1을 발현하는 인슐린 프로모터 인자 1(insulin promoter factor 1)이라고도 알려진 전사인자로, 인슐린 프로모터의 A-박스에 결합하여 이자 발달과 β-세포 성숙에 필수적인 전사인자이다.
본 발명의 일 실시예에서는 지방조직 유래 줄기세포를 계대배양함에 있어, 계대 수가 증가할수록 인슐린 및/또는 또는 PDX1, NGN3와 같은 β-세포 분화 전사인자의 발현수준이 감소하였으나(실험예 3), 상기 높은 계대 수의 노화된 줄기세포에 PPARγ를 과발현시킨 경우, 인슐린 및 PDX1의 발현수준이 현저히 증가하였음을 확인하였다(실시예 8).
본 발명에서 성체줄기세포의 줄기세포능(stemness)을 회복시키기 위하여 PPARγ의 발현을 증가시키는 단계는 당업계에 이미 알려진 방법을 사용할 수 있다. 구체적으로, 상기 PPARγ를 성체줄기세포 내에 도입하는 방법, 상기 PPARγ를 암호화하는 유전자의 세포내 카피수 증가, 상기 PPARγ를 암호화하는 염색체 상의 유전자의 발현 조절 서열에 변이를 도입하는 방법, 상기 PPARγ를 암호화하는 염색체 상의 유전자의 발현 조절 서열을 이보다 활성이 강력한 서열로 교체하는 방법, 상기 PPARγ의 활성이 증가하도록 돌연변이된 유전자로, 염색체상의 상기 PPARγ를 암호화하는 유전자를 대체하는 방법 및 상기 PPARγ의 활성이 강화되도록 상기 PPARγ를 암호화하는 염색체상의 유전자에 변이를 도입시키는 방법으로 이루어진 군으로부터 선택될 수 있으나, 이에 제한되는 것은 아니다.
또 하나의 양태로서, 본 발명은 퍼옥시좀 증식체 활성화 수용체 감마 또는 퍼옥시좀 증식체 활성화 수용체 감마를 활성화시키는 물질을 유효성분으로 포함하는, 성체줄기세포의 줄기세포능(stemness) 회복용 조성물을 제공한다.
본 발명에서 퍼옥시좀 증식체 활성화 수용체 감마, 성체줄기세포 및 줄기세포능에 대하여는 상기에서 설명한 바와 같다. 상기 조성물은 퍼옥시좀 증식체 활성화 수용체 감마를 유효성분으로 포함함으로써, 줄기세포 내에서의 PPARγ를 활성화 또는 발현을 증가시켜 성체줄기세포의 줄기세포능(stemness)을 회복하고, 또한 인슐린 생산세포로의 분화능을 촉진시킬 수 있다.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 한정되는 것은 아니다.
실험 재료
STEMPRO® hADCSs는 Life Technologies에서 구입하였고(Cat.Co.R7788-115), MesenPROTM 배지에서 배양하였다. 사용된 시약은 각각 지칭된 공급업자로부터 구입하였다; 트로글리타존(troglitazone)은 Enzo LifeScience로부터; 액티빈 A(activin A), 염기성 섬유아세포 성장인자(basic fibroblast growth factor, bFGF), 및 간세포 성장인자(hepatocyte growth factor, HGF)는 Peprotech에서; B27 무혈청 보충제(serum-free supplenment) 및 N2 보충제는 Life Technologies에서; 그리고 15-deoxy-Δ12,14-프로스타글란딘 J2 (15PGJ2), 발프로산(valproic acid), 엑센딘-4(exendin-4), 니코틴아마이드(nicotinamide), 덱사메타손(dexamethasone), 3-이소부틸-1-메틸잔틴(3-isobutyl-1-methylxantine), 인슐린(insulin), 아스코르베이트-2 인산(ascorbate-2 phosphate), β-글리세롤 인산(β-glycerol phosphate), GW9662, 및 3,3',5-트라이아이도-L-타이로신(T3)은 Sigma-Aldrich사로부터 구입하였다.
실시예 1: 세포 배양
본 발명에서는 4, 7, 12 및 20번째 계대의 인간 지방조직 유래 줄기세포(hADSCs)를 사용하였다. 각 계대에 따른 줄기세포의 성장 원동력은 1주일간의 세포 증식력을 통해 측정하였다. 즉, 상기 각 계대의 세포를 6-웰 플레이트에 104 세포/㎠의 밀도로 시딩(seeding)하였고, 7일간 분열할 수 있도록 하였다. 배지는 1주일에 2번 갈아주었다. 각 그룹으로부터 1개의 배지는 세포 수를 결정하기 위해 사용하였다. 화학물질 처리군의 경우, 세포를 6-웰 플레이트에 104 세포/㎠의 밀도로 시딩(seeding)하였고, 밤새 플레이트에 부착할 수 있게 하였다. 그리고 나서 트로글리타존 또는 15PGJ2를 포함한 새로운 배지로 갈아주었다. 시료는 배양 간 다양한 시간대에서 각각 추출하였다.
실시예 2: RNA 분리 및 정량적 PCR
세포의 mRNA 발현 분석 등을 위하여, 트리졸 시약(Trizol reagent)을 사용하여 세포로부터 총 RNA를 분리하였다. 게놈 DNA에 의한 오염 가능성을 제거하기 위하여 RNA 시료에 DNase를 처리하였다. ND-1000 spectrophotometer(Thermo Fisher Scientific)를 사용하여 RNA를 정량화하였고, PrimeScriptTM 1st strand cDNA synthesis kit (Takara)를 cDNA를 합성하였다. 정량적 PCR은 1×Power SYBR-Green Master-mix (Applied-Biosystems), 600-750nM의 각 정방향 및 역방향 프라이머 및 50 ng의 cDNA 주형(template)을 포함한 반응 혼합물(reaction mixture)로 수행하였다(Xie CQ et al., Mol Endocrinol 23:724-733(2009)). PCR 증폭은 Applied-Biosystem Prism 7900HT Real-Time PCR Sequence Detection System을 사용하여 수행하였으며, 40 사이클에서 정지시켰다. 상대적인 유전자 발현수준은 상대적 CT 방법을 사용하여 인간 사이클로필린(cyclophilin)으로 보정하였다. 본 발명에 사용된 프라이머 서열은 하기 표 1과 같다.
표 1
Target Forward primer Reverse primer
Cyclophilin TGCCATCGCCAAGGAGTAG(서열번호 1) TGCACAGACGGTCACTCAAA(서열번호 2)
Insulin GCAGCCTTTGTGAACCAACA(서열번호 3) TTCCCCGCACACTAGGTAGAGA(서열번호 4)
Nanog CCAACATCCTGAACCTCAGC(서열번호 5) GCTATTCTTCGGCCAGTTG(서열번호 6)
Ngn3 CGGAGTCGGCGAAAGAAG(서열번호 7) CGTCCAGTGCCGAGTTGAG(서열번호 8)
Oct4 ACATCAAAGCTCTGCAGAAAGAACT(서열번호 9) CTGAATACCTTCCCAAATAGAACCC(서열번호 10)
p16INK4A GAAGGTCCCTCAGACATCCCC(서열번호 11) CCCTGTAGGACCTTCGGTGAC(서열번호 12)
PDX1 GAACTTGACCGAGAGACACATCAA(서열번호 13) TTGTCCTCCTCCTTTTTCCACTT(서열번호 14)
PPARg AGATCCAGTGGTTGCAGATT(서열번호 15) GGAGATGCAGGCTCCACTTT(서열번호 16)
Rex1 GAAGAGGCCTTCACTCTAGTAGTG(서열번호 17) TTTCTGGTGTCTTGTCTTTGCCCG(서열번호 18)
Sox2 TGCGAGCGCTGCACAT(서열번호 19) GCAGCGTGTACTTATCCTTCTTCA(서열번호 20)
실험예 1: 계대배양에 따른 지방조직 유래 중간엽 줄기세포의 노화 및 줄기세포능(stemness)의 변화관찰
각기 다른 계대에서의 지방조직 유래 중간엽 줄기세포의 형태, 줄기세포능(성장속도) 및 노화정도를 관찰하기 위하여, 4, 7, 12 및 20 계대에서의 미분화된 세포로부터 추출된 전체 세포 추출물을 준비하였다. Bradford assay 이후에, 레인 당 40 ㎍의 단백질을 15% SDS(sodium dodecyl sulphate) 폴리아크릴아마이드 겔에서의 전기영동으로 분리하였다. 분리된 단백질은 폴리비닐리덴 디플루오라이드 막(polyvinylidene difluoride membrane)으로 이동(transfer)시켰고, 상기 막은 1시간 동안 0.05% Tween 20과 함께 Tris-buffered saline(TBS) 내의 5% 탈지우유로 블로킹시켰다. 이후 밤새 p16INK4A (1:500; Upstate)에 대한 1차 항체와 함께 배양하였다. 그 후 2차 항체로 고추냉이(horseradish) 퍼옥시데이즈-컨쥬게이트된 항-토끼 IgG(Santa Cruz)와 함께 실온에서 1시간 동안 배양하였고, Fujifilm luminescent image analyzer LAS4000를 사용하여 시각화하였다. 한편, 베타-액틴을 로딩 대조군으로 사용하였다.
그 결과 세포의 형태 변화에 있어서, 낮은 계대 수의 (P4 및 P7) 세포는 방추형 형태를 가졌고, 이들이 점차 커지고 납작해지면서 높은 계대 수에서는 플레이트에 견고하게 부착함을 확인하였다.
한편, 세포의 성장속도는 계대 수가 증가함에 따라 점차 감소하였고, 세포 수의 증가폭 또한 계대 수가 증가함에 따라 현저히 감소하였다.
세포의 노화와 관련하여는, 4번째 계대에 비해 높은 계대 수의 세포에서 p16INK4A의 mRNA 및 단백질 발현이 증가하였음을 확인하였다. p16INK4A은 세포적 노화 및 줄기세포 노화에 관여하는 것으로 알려져 있고, 많은 노화된 세포 및 조직에서 축적됨에 따라, 노화의 바이오마커로 여겨지고 있다.
실험예 2: 증식 배지에서의 줄기세포 마커의 발현여부 확인
hADSC는 만능 배아줄기세포의 몇 가지 마커를 발현하는 것으로도 알려져 있는 바, 몇 가지 중요한 만능성 마커의 발현여부를 확인하고자 FACS 분석에 의해 각기 다른 계대에서의 hADSC의 중간엽 표면 마커의 발현양상을 분석하였다. 구체적으로, 4, 7, 12 및 20 계대에서 단일세포 부유액(Single-cell suspensions)을 수득하였고, PBS(phosphate-buffered saline) 내에 1% 우태아혈청(FBS)을 함유한 FACS 완충액으로 2번 세척하였다. 세포의 수를 세었고, 100 μL FACS 버퍼 내에서 5×105 세포수의 농도로 부유시켰다. 그리고 4℃에서 30분간 암조건 하에서 CD73-PE, CD90-FITC 및 CD105-FITC (BD Biosciences)의 형광 항체와 함께 배양하였다. 세포를 FACS 버퍼로 2번 세척하고, 유세포 분석기(FACS Calibur System; Becton Dickinson)를 사용하여 분석하였으며, 그 후 데이터를 수집 및 분석하였다(Cell Questsoftware; Becton Dickinson).
그 결과, CD73, CD90 또는 CD105가 발현된 세포군은 계대 간에 차이가 없었으나, 배아줄기세포의 미분화 상태유지에 관한 중요한 전사인자인 Oct4가 4 계대에 비하여 7, 12, 및 20 계대에서 현저하게 감소하였음을 확인하였다. 이와 비슷한 패턴을 Nanog 수준에서도 관찰하였다. 한편, Sox2(sex determining region Y-box 2) 및 Rex1(reduced expression 1)의 발현은 크게 변하지 않았다.
실험예 3: 계대배양에 따른 지방조직 유래 중간엽 줄기세포의 인슐린 생산세포로의 분화능의 변화관찰
각기 다른 계대에서의 hADSC의 인슐린 생산세포로 분화하는 능력을 측정하고자, 인슐린 생산세포로의 분화를 유도하기 위해 4, 7, 12 및 20 계대의 세포를 트립신화(trypsinize)하였고, 배양 배지에서 부유하였고, 원심분리하였다. 세포의 수를 세었고, 12-웰 저부착성 플레이트(SPL 30212)에 104 세포/㎠의 밀도로 시딩(seeding)하였다. 기본 분화배지를 사용하여 세포를 인슐린 생산세포로 분화시켰다. 상기 기본 분화배지는 1% B27 무혈청 보충제(supplement), 1% N2 보충제 및 1% 페니실린/스트렙토마이신을 포함한 무혈청 DMEM/F12 (1:1)이다. hADSC를 인슐린 생산세포로 분화시키기 위하여 하기 3단계의 10일-프로토콜을 사용하였다: (1) 50 ng/mL의 액티빈 A 및 2 mM 발프론산(valproic acid)이 추가된 기본 배지에서 3일간 배양; (2) 10 nM 엑센딘-4 및 10 ng/mL의 bFGF가 추가된 기본 배지에서 3일간 배양; 및 (3) 10 nM 엑센딘-4, 50 ng/mL HGF, 및 10 mM 니코틴아마이드가 추가된 기본 배지에서 4일간 배양.
그 결과 모든 계대에서, 10일 간의 배양기간 동안 세포들은 서로 응집하였고, 타원형 클러스터를 형성하였으며, 섬(islet)과 유사한 구조를 보였다.
그러나 4, 7 및 12 계대의 hADSC는 매끄러운 표면의 클러스터를 형성한 반면, 20 계대의 세포는 주름지고 거친 표면의 클러스터를 형성하였다.
상기와 같은 형태학적 변화가 hADSC의 성공적인 분화를 반영하는지 여부를 확인하기 위하여, 인슐린과 베타-세포 분화 전사인자인 PDX1(pancreatic and duodenal homeobox 1) 및 NGN3(neurogenin-3)의 분화된 세포에서의 mRNA 발현을 상기 실시예 2에 기재한 정량적 PCR에 의해 분석하였다. 그 결과 인슐린 및 상기 전사인자의 발현 수준은 4 계대에 비하여 12 및 20 계대에서 현저하게 감소하였다.
한편, 분비된 인슐린의 양을 측정함으로써 분화된 세포의 기능성을 확인하고자, 인간 인슐린 ELISA kit(Mercodia)를 사용하여 분화된 세포의 인슐린 분비량을 측정하였다. 그 결과 7, 12 및 20 계대에서 분화된 세포로부터 분비된 인슐린의 양이 현저히 감소하였다. 4 계대에 비하여 20 계대에서의 인슐린 분비량은 약 3배 정도 감소하였다.
실험예 4: In vitro 배지에서의 hADSC의 핵수용체(NR) 발현 패턴 분석
줄기세포능(stemness)은 미분화된 표현형을 특징짓는 유전자 발현의 정확한 패턴을 정립하는 여러가지 핵심 조절 전사인자 및 신호전달 분자에 의해 유지될 수 있다. 핵수용체(Nuclear Receptor, NR)는 조직 특이적 줄기세포 조절의 경로에 관여하고, 어떤 NR은 Oct4 및 Nanog와 협력하여 배아줄기세포를 유지하는 데 중요한 역할을 하기도 한다. 배양 간 hADSC의 NR 발현 프로파일의 변화를 관찰하기 위하여, 상기 실시예 2에 기재된 방법으로 4, 7, 12 및 20 계대에서의 48가지 인간 NR의 발현을 스크리닝하였다. NR mRNA 발현 수준을 분석한 결과, 수행한 모든 계대에서 24가지의 NR이 발현됨을 확인하였다. 상기 24가지 NR은 4가지 계대에서의 발현 패턴에 따라 3가지 그룹으로 구별될 수 있다: 변함없이 유지하는 NR(13/24), 감소하는 발현의 NR(10/24), 및 증가하는 발현의 NR(1/24).
이들 중 오직 2개만이 통계적으로 유의한 수치를 보였는데, PPARγ 및 thyroid hormone receptor (TR)β은 4 계대에 비하여, 12 및 20계대에서 유의적인 감소를 보였다.
실험예 5: PPARγ에 의한 Oct4 유전자 발현 수준의 조절
12 및 20 계대에서 PPARγ의 발현이 유의적으로 감소하였기 때문에 PPARγ가 줄기세포 마커인 Oct4의 조절에 중요한 역할을 수행하는지 여부를 확인하고자 하였다. 구체적으로, 인간 Oct4의 업스트림 영역(upstream region)을 포함한 루시퍼레이즈 리포터 구조물(phOct4-Luc)은 Shinya Yamanaka (Addgene plasmid No. 17221)로부터 제공받았다. PPARγ 과발현의 영향을 알아보기 위하여, 20계대의 hADSCs를 pcDNA flag PPARg 플라스미드 또는 pcDNA 플라스미드 (250 ng each)로 감염시킨 후에, phOct4-Luc 플라스미드 (500 ng) 및 β-갈락토시데이즈 플라스미드로 감염시켰다. Neon transfection system을 사용하여 35ms duration으로 1,005 V에서 2가지 전기 펄스를 주입하였다. 감염시킨 지 36시간 이후에, 1× passive lysis buffer (Promega)를 사용하여 세포를 수득하였다. 루시퍼레이즈 활성의 강도는 및 β-갈락토시데이즈 발현으로 정상화시켰다. 그 결과, 20 계대의 hADSC에의 PPARγ 활성자인 트로클리타존의 처리는 용량 및 시간 의존적으로 PPARγ mRNA의 발현을 증가시켰고, Oct4 mRNA의 발현도 이와 유사한 패턴으로 증가하였다.
또한, 트로글리타존 처리가 Oct4 유전자 발현을 증가시키는지 확인하기 위하여, phOct4-luc 플라스미드로 일시적으로 감염시킨 hADSC에서의 Oct4 프로모터 활성을 측정하였고, 그 결과 트로글리타존(20μM)이 루시퍼레이즈 활성을 유의적으로 감소시킴을 확인하였다. 나아가, 또다른 PPARγ 활성인자인 15PGJ2의 처리가 시간 의존적으로 PPARγ 및 Oct4 mRNA 수준을 증가시켰음을 확인하였다.
이후 PPARγ 과발현이 Oct4 프로모터 활성을 증가시키는지 여부를 시험하였고, 그 결과 20 계대의 hADSC의 PPARγ에서의 과발현은 Oct4 루시퍼레이즈 활성을 증가시키는 것을 확인하였다.
Oct4 발현의 조절이 PPARγ에 의해 영향을 받는지 여부를 확인하기 위하여 PPARγ-특이적 길항제(antagonist)인 GW9662를 사용하여 추가적으로 실험을 수행하였다. 그 결과, GW9662(10μM)와 조합된 트로클리타존은 hADSC에서의 Oct4 mRNA 수준을 증가시키지 못했다. 따라서 이는 PPARγ가 Oct4 유전자의 전사를 직접적으로 증가시키는 것을 의미한다.
TRβ 발현 또한 20 계대에서 현저히 감소하였기 때문에, Oct4 발현은 TRβ 활성화에 의해 영향을 받는지를 확인하고자 하였다. 그 결과, 20 계대의 hADSC에의 T3 (10-40 ng/mL)를 처리한 결과, Oct4 또는 TRβ mRNA 수준에서는 영향이 없음을 확인하였다.
실험예 6: PPARγ에 의한 분화잠재능 보유
PPARγ 활성인자 처리 또는 PPARγ 과발현이 Oct4 mRNA 발현을 증가시켰는 바, PPARγ의 과발현이 hADSC의 분화 잠재능을 유지시킬 수 있는지 여부를 확인하였다. 20 계대에서의 hADSC를 PPARγ 플라스미드로 감염시켰고, 그 후 인슐린 생산세포로 분화시켰다.
그 결과, 인슐린 및 PDX1 mRNA 수준은 pcDNA-감염된 세포에 비하여 PPARγ 과발현 세포에서 증가하였다.
이상의 설명으로부터, 본 발명이 속하는 기술 분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (11)

  1. 성체줄기세포에서 퍼옥시좀 증식체 활성화 수용체 감마(Peroxisome proliferator-activated receptor gamma, PPARγ)의 발현을 증가시키는 단계를 포함하는, 성체줄기세포의 줄기세포능(stemness)을 회복시키는 방법.
  2. 제1항에 있어서, 상기 방법은 성체줄기세포의 인슐린 생산세포로의 분화능을 증가시키는 것을 특징으로 하는 것인 방법.
  3. 제1항에 있어서, 상기 방법은 Oct4(octamer-binding transcription factor 4)의 발현을 증가시키는 것을 특징으로 하는 것인 방법.
  4. 제1항에 있어서, 상기 방법은 성체줄기세포로부터 분화된 인슐린 생산세포에서의 PDX1(Pancreatic and duodenal homeobox 1)의 발현을 증가시키는 것을 특징으로 하는 것인 방법.
  5. 제1항에 있어서, 상기 성체줄기세포는 중간엽 줄기세포인 것인 방법.
  6. 제5항에 있어서, 상기 중간엽 줄기세포는 지방세포 또는 지방조직 유래인 것인 방법.
  7. 제1항에 있어서, PPARγ의 발현을 증가시키는 단계는, 상기 PPARγ를 성체줄기세포 내에 도입하는 방법, 상기 PPARγ를 암호화하는 유전자의 세포내 카피수 증가, 상기 PPARγ를 암호화하는 염색체 상의 유전자의 발현 조절 서열에 변이를 도입하는 방법, 상기 PPARγ를 암호화하는 염색체 상의 유전자의 발현 조절 서열을 이보다 활성이 강력한 서열로 교체하는 방법, 상기 PPARγ의 활성이 증가하도록 돌연변이된 유전자로, 염색체상의 상기 PPARγ를 암호화하는 유전자를 대체하는 방법 및 상기 PPARγ의 활성이 강화되도록 상기 PPARγ를 암호화하는 염색체상의 유전자에 변이를 도입시키는 방법으로 이루어진 군으로부터 선택되는 어느 하나 이상의 방법에 의해 이루어지는 것인 방법.
  8. 퍼옥시좀 증식체 활성화 수용체 감마를 유효성분으로 포함하는, 성체줄기세포의 줄기세포능(stemness) 회복용 조성물.
  9. 제8항에 있어서, 상기 조성물은 성체줄기세포의 인슐린 생산세포로의 분화능을 증가시키는 것을 특징으로 하는 것인 조성물.
  10. 제8항에 있어서, 상기 성체줄기세포는 중간엽 줄기세포인 것인 조성물.
  11. 제10항에 있어서, 상기 중간엽 줄기세포는 지방세포 또는 지방조직 유래인 것인 조성물.
PCT/KR2014/004171 2014-03-07 2014-05-09 퍼옥시좀 증식체 활성화 수용체 감마의 발현을 증가시키는 단계를 포함하는 성체줄기세포의 줄기세포능을 회복시키는 방법 WO2015133679A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0027173 2014-03-07
KR1020140027173A KR101439074B1 (ko) 2014-03-07 2014-03-07 퍼옥시좀 증식체 활성화 수용체 감마의 발현을 증가시키는 단계를 포함하는 성체줄기세포의 줄기세포능을 회복시키는 방법

Publications (1)

Publication Number Publication Date
WO2015133679A1 true WO2015133679A1 (ko) 2015-09-11

Family

ID=51759738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/004171 WO2015133679A1 (ko) 2014-03-07 2014-05-09 퍼옥시좀 증식체 활성화 수용체 감마의 발현을 증가시키는 단계를 포함하는 성체줄기세포의 줄기세포능을 회복시키는 방법

Country Status (2)

Country Link
KR (1) KR101439074B1 (ko)
WO (1) WO2015133679A1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102123268B1 (ko) 2019-06-11 2020-06-17 브렉소젠 주식회사 히알루론산을 포함하는 줄기세포 유래 엑소좀 생성 촉진 및 줄기세포능 증가용 조성물
KR102199636B1 (ko) 2019-06-12 2021-01-08 브렉소젠 주식회사 인터페론-감마를 포함하는 줄기세포 유래 엑소좀 생성 촉진 및 줄기세포능 증가용 조성물
KR102130501B1 (ko) 2019-06-12 2020-07-07 브렉소젠 주식회사 테트란드린을 포함하는 줄기세포 유래 엑소좀 생성 촉진 및 줄기세포능 증가용 조성물
KR102135036B1 (ko) 2019-06-10 2020-07-20 브렉소젠 주식회사 엑센딘-4를 포함하는 줄기세포 유래 엑소좀 생성 촉진 및 줄기세포능 증가용 조성물
KR102199640B1 (ko) 2020-01-06 2021-01-07 브렉소젠 주식회사 라니피브라노르를 포함하는 줄기세포 유래 엑소좀 생성 촉진 및 줄기세포기능 강화용 조성물
KR102120329B1 (ko) 2019-06-12 2020-06-09 브렉소젠 주식회사 레스베라트롤을 포함하는 줄기세포 유래 엑소좀 생성 촉진 및 줄기세포능 증가용 조성물
KR102168751B1 (ko) 2019-06-11 2020-10-23 브렉소젠 주식회사 Pma를 포함하는 줄기세포 유래 엑소좀 생성 촉진 및 줄기세포능 증가용 조성물
KR102130502B1 (ko) 2019-06-12 2020-07-07 브렉소젠 주식회사 P 물질을 포함하는 줄기세포 유래 엑소좀 생성 촉진 및 줄기세포능 증가용 조성물
KR102232670B1 (ko) 2020-08-11 2021-03-26 브렉소젠 주식회사 Pma를 포함하는 줄기세포 유래 엑소좀 생성 촉진 및 줄기세포능 증가용 조성물

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040092011A1 (en) * 2002-04-03 2004-05-13 Wilkison William O. Adipocytic differentiated adipose derived adult stem cells and uses thereof
JP2010130968A (ja) * 2008-12-05 2010-06-17 Nippon Menaade Keshohin Kk 幹細胞の褐色脂肪細胞への分化誘導方法
KR101082571B1 (ko) * 2010-01-12 2011-11-10 동의대학교 산학협력단 신경줄기세포의 줄기세포능 개선용 조성물 및 신경줄기세포의 줄기세포능 개선 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040092011A1 (en) * 2002-04-03 2004-05-13 Wilkison William O. Adipocytic differentiated adipose derived adult stem cells and uses thereof
JP2010130968A (ja) * 2008-12-05 2010-06-17 Nippon Menaade Keshohin Kk 幹細胞の褐色脂肪細胞への分化誘導方法
KR101082571B1 (ko) * 2010-01-12 2011-11-10 동의대학교 산학협력단 신경줄기세포의 줄기세포능 개선용 조성물 및 신경줄기세포의 줄기세포능 개선 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PESTEREVA, E. ET AL.: "PPARg agonists regulate the expression of sternness and differentiation genes in brain tumour stem cells", BRITISH JOURNAL OF CANCER, 24 April 2012 (2012-04-24), pages 1702 - 1712 *

Also Published As

Publication number Publication date
KR101439074B1 (ko) 2014-09-05

Similar Documents

Publication Publication Date Title
WO2015133679A1 (ko) 퍼옥시좀 증식체 활성화 수용체 감마의 발현을 증가시키는 단계를 포함하는 성체줄기세포의 줄기세포능을 회복시키는 방법
Huang et al. Plasticity of stem cells derived from adult periodontal ligament
Sánchez-Danés et al. Efficient generation of A9 midbrain dopaminergic neurons by lentiviral delivery of LMX1A in human embryonic stem cells and induced pluripotent stem cells
Krabbe et al. Neural transdifferentiation of mesenchymal stem cells–a critical review
US20180171290A1 (en) Method of producing progenitor cells from differentiated cells
EP2982747B1 (en) Method for producing reprogrammed derivative neuronal stem cell from non-neuronal cell by using hmga2
KR20140030703A (ko) 간엽줄기세포의 배양 방법
Yang et al. NRSF silencing induces neuronal differentiation of human mesenchymal stem cells
KR20140038236A (ko) 간엽줄기세포 응집체의 제조 방법
Shoshani et al. Stress as a fundamental theme in cell plasticity
TWI438275B (zh) 促進幹細胞分化為胰島素製造細胞的方法
Hwang et al. Direct differentiation of insulin-producing cells from human urine-derived stem cells
Zhang et al. Characteristics and multi‑lineage differentiation of bone marrow mesenchymal stem cells derived from the Tibetan mastiff
US20080233649A1 (en) Pancreatic stem cells
Fukuda Application of mesenchymal stem cells for the regeneration of cardiomyocyte and its use for cell transplantation therapy
WO2016117816A1 (ko) 인간 중간엽 줄기세포의 줄기세포능을 증가시키는 방법
Chen et al. Spontaneously formed spheroids from mouse compact bone‐derived cells retain highly potent stem cells with enhanced differentiation capability
WO2012008733A2 (ko) 1기 태반조직 유래 줄기세포 및 이를 함유하는 세포치료제
WO2019103528A2 (ko) 무혈청 배지 조성물
WO2011102680A9 (ko) Pi3k/akt/gsk3 경로를 통해 성체줄기세포의 증식, 다분화능 및 재프로그래밍을 촉진하는 cd49f
Dao et al. Differentiation potential and profile of nuclear receptor expression during expanded culture of human adipose tissue-derived stem cells reveals PPARγ as an important regulator of Oct4 expression
Zhang et al. Isolation, characterization, and gene modification of dairy goat mesenchymal stem cells from bone marrow
WO2021225420A1 (ko) 전능성 줄기세포로부터 중간엽 줄기세포를 분화시키는 방법
Suzuki et al. Establishment of clonal colony-forming assay system for pancreatic stem/progenitor cells
Hefei et al. Morphological characteristics and identification of islet‐like cells derived from rat adipose‐derived stem cells cocultured with pancreas adult stem cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14884524

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14884524

Country of ref document: EP

Kind code of ref document: A1