WO2015132920A1 - 熱交換器および熱交換器の製造方法 - Google Patents

熱交換器および熱交換器の製造方法 Download PDF

Info

Publication number
WO2015132920A1
WO2015132920A1 PCT/JP2014/055693 JP2014055693W WO2015132920A1 WO 2015132920 A1 WO2015132920 A1 WO 2015132920A1 JP 2014055693 W JP2014055693 W JP 2014055693W WO 2015132920 A1 WO2015132920 A1 WO 2015132920A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
spiral
heat exchanger
channel
flow
Prior art date
Application number
PCT/JP2014/055693
Other languages
English (en)
French (fr)
Inventor
泰孝 和田
晴仁 久保田
幸政 山村
一郎 内山
圭二 尾山
寿樹 山▲崎▼
幸彦 松村
良文 川井
琢史 野口
Original Assignee
中国電力株式会社
国立大学法人広島大学
中電プラント株式会社
株式会社東洋高圧
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国電力株式会社, 国立大学法人広島大学, 中電プラント株式会社, 株式会社東洋高圧 filed Critical 中国電力株式会社
Priority to SG11201607329YA priority Critical patent/SG11201607329YA/en
Priority to US15/123,233 priority patent/US20170067691A1/en
Priority to MYPI2016703202A priority patent/MY179381A/en
Priority to JP2015514693A priority patent/JP5873602B1/ja
Priority to EP14884770.0A priority patent/EP3115727A4/en
Priority to PCT/JP2014/055693 priority patent/WO2015132920A1/ja
Publication of WO2015132920A1 publication Critical patent/WO2015132920A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/024Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled tubes, the coils having a cylindrical configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/26Making specific metal objects by operations not covered by a single other subclass or a group in this subclass heat exchangers or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/026Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled and formed by bent members, e.g. plates, the coils having a cylindrical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/04Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being spirally coiled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag

Definitions

  • the present invention relates to a heat exchanger and a method for manufacturing the heat exchanger.
  • a first spiral protrusion is bent in the inner tube, a second spiral protrusion that is aligned with the first spiral protrusion is formed in the outer tube, and the inner tube and the outer tube are connected to each other.
  • the flow path formed between the inner pipe and the outer pipe is narrow, and the inside of the inner pipe is formed wide. For this reason, in the flow path formed between the inner tube and the outer tube, there is a problem that inorganic substances are easily clogged. In addition, since the flow velocity is low inside the inner tube, there is a problem that the inorganic substance is difficult to flow and precipitates or accumulates easily. That is, the flow path between the inner pipe and the outer pipe and the flow path in the inner pipe may be blocked in any case.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a heat exchanger and a method of manufacturing the heat exchanger that are less likely to clog solids in the flow path and are less likely to settle and accumulate. It is in.
  • the present invention is configured so that a plurality of planar channel bodies in which two channels are curved or bent so as to be adjacent to each other in the same plane overlap in a crossing direction intersecting the plane.
  • the two planar flow channel bodies adjacent to each other in the intersecting direction among the plurality of the planar flow channel bodies arranged and stacked at both ends of each of the flow channels included in one of the planar flow path bodies A flow path unit in which each one of the two flow path inlets and outlets forming the flow path is connected to one of the two flow path inlets and outlets forming both ends of each of the flow paths of the other planar flow path body, and the flow And a high-pressure pipe covering the outside of the path unit.
  • the flow path unit that is inserted and covered along the cross direction in the high-pressure pipe has a plurality of planes including two flow paths that are adjacent to each other in a plane that intersects the cross direction. Are disposed so as to overlap each other in the crossing direction, and the flow paths of adjacent planar flow path bodies are connected to form two flow paths as a whole.
  • the cross-sectional area of the flow path can be made smaller than when a heat exchanger is formed with a tube. For this reason, since a high flow rate can be ensured in each flow path, it is possible to prevent solids from being precipitated or deposited in the flow path.
  • the two flow paths are arranged adjacent to each other, it is possible to efficiently exchange heat by circulating the high-temperature fluid in one flow path and flowing the low-temperature fluid in the other flow path.
  • the fluid unit including two flow paths is provided in the high-pressure pipe, it is more suitable as a heat exchanger that performs heat exchange using a high-pressure fluid, for example.
  • the planar flow path body is curved in a spiral shape in which the two flow paths spread from the central side to the outer peripheral side and have a half-circumferential phase different from each other and spiral in the same direction.
  • the two flow paths are alternately arranged in the diameter direction of the spiral formed by the two flow paths, and the flow path unit includes the spiral flow path body and the plane.
  • the two spiral flow channel bodies adjacent to each other in the crossing direction are connected to each other on the central side or on the outer peripheral side to form two continuous channels. It is desirable that
  • the two flow paths of the planar flow path body are curved in a spiral shape that is swirled in the same direction, so that the two flow paths are formed in the diameter direction of the spiral. Since they are arranged alternately, it is possible to secure a wider boundary portion between the two flow paths, that is, a heat transfer surface. For this reason, it is possible to exchange heat more efficiently.
  • the flow path unit is formed by connecting a plurality of spiral flow path bodies in a crossing direction to form two flow paths, the two flow paths are high-pressure pipes that are almost the entire length of the heat exchanger. Therefore, the heat exchange can be performed more efficiently.
  • the flow path units are overlapped so that the winding directions of the adjacent spiral flow path bodies are the same. According to such a heat exchanger, it is possible to arrange two flow paths so that the flow path through which the high temperature fluid flows and the flow path through which the low temperature fluid flows do not contact each other in the crossing direction.
  • the flow path units may be overlapped so that the winding directions of the adjacent spiral flow path bodies are opposite to each other. According to such a heat exchanger, a location where the flow path through which the high-temperature fluid flows and the flow path through which the low-temperature fluid flows is generated in the intersecting direction, so that the heat transfer area can be further increased. .
  • a partition material forming step of forming a plurality of partition walls having openings in one end of the groove formed on the both sides of the metal plate material, and facing the partition material A plurality of metal plates each having a flat surface that covers the groove of the partition wall material and has an opening at an end opposite to the end provided with the opening of the formed flow channel.
  • a plate-shaped material forming step for forming a plate-shaped material, the partition wall material and the plate-shaped material are alternately arranged, and the flow paths provided on one side of the partition wall material and the other side of the partition wall material are provided.
  • the two flow paths formed by the partition wall material forming the partition walls of the connected grooves and the two plate-like materials adjacent in the crossing direction of the partition wall material are the plate Since the partition material and the plate-like material are alternately arranged while sharing the shape material, there is only one plate separating the two between the two flow paths. For this reason, it is possible to raise heat conduction efficiency rather than the case where two pipes are made to adjoin.
  • the partition wall material and the plate-like material are alternately arranged, and the flow path provided on one side of the partition wall material and the flow path provided on the other side of the partition wall material are connected to each other.
  • the flow path unit is easily formed by adjusting the position of the opening provided in the unit and fixed integrally. Further, the formed flow path unit is easily inserted into the high-pressure pipe and integrated. It is possible to form a heat exchanger.
  • the partition wall material and the plate-shaped material are formed by drawing, and the partition wall material and the plate-shaped material adjacent to each other are bent in a direction intersecting the plane. It is desirable that the partition wall material and the plate-like material are overlapped and joined at a portion bent in a direction intersecting the plane. According to such a method of manufacturing a heat exchanger, the partition wall material and the plate-like material can be easily formed by drawing, and the partition wall material and the plate-like material are bent in a direction intersecting the plane. Since they are overlapped and joined at the site, it is possible to easily form two flow paths without using a tube by sealing the outer peripheral side.
  • the heat exchanger 1 of the present embodiment includes a flow path unit 2 in which two continuous flow paths 21 and 22 are bent so as to be adjacent to each other, and a flow path unit 2 has 2 And a cover 3 that covers the flow path unit 2 by projecting end openings 21 a and 22 a that are ends of the continuous flow paths 21 and 22 to the outside.
  • the cover 3 is indicated by a virtual line (one-dot chain line).
  • the flow path unit 2 has a plurality of spiral flow path bodies 25 as planar flow path bodies in which the two spiral flow paths 23 and 24 are curved in a spiral shape adjacent to each other in the same plane. ing.
  • Each spiral channel body 25 is curved in a spiral shape in which the two spiral channels 23, 24 are spread from the center side to the outer periphery side, and have a half-circumference in phase with each other and spiral in the same direction.
  • the two spiral channels 23 and 24 are alternately arranged in the diameter direction of the spiral formed by the two spiral channels 23 and 24.
  • the channel inlets / outlets 23 a, 23 b, 24 a, 24 b serving as both ends of the spiral channels 23, 24 are provided at the center and the outer periphery of the spiral channel body 25, respectively.
  • the spiral flow paths 23 and 24 included in each spiral flow path body 25 correspond to flow paths, and the two flow paths in which the spiral flow paths 23 and 24 included in the plurality of spiral flow path bodies 25 are connected. 21 and 22 correspond to continuous flow paths.
  • each spiral flow path 23, 24 is shown as a single tube, but the spiral flow paths 23, 24 may be a partitioned space, for example, two spirals
  • the flow paths 23 and 24 may be partitioned by a single partition material.
  • the plurality of spiral flow path bodies 25 are arranged so as to overlap each other in a direction intersecting with a plane formed by arranging the two spiral flow paths 23 and 24 (hereinafter referred to as a cross direction). At this time, it arrange
  • the surface of the plurality of spiral flow channel bodies 25 that are overlapped will be described with the surface facing the lower left side in FIG. 2 as the front surface and the opposite surface as the back surface.
  • the flow path unit 2 in which a plurality of spiral flow path bodies 25 are stacked has a central flow path inlet / outlet port 23 a, 24 a that is an end on the central side of the two spiral flow paths 23, 24.
  • the flow passages 23 and 24 are provided with center-side flow passages 23a and 24a serving as end portions on the central side on the back side, and the flow passage entrances 23b and 24b on the outer peripheral side serving as end portions on the outer peripheral side.
  • the second spiral channel bodies 252 provided on the surface side are alternately arranged.
  • two spiral flow channel bodies 251 and 252 adjacent to each other in the intersecting direction are connected to the flow path entrances 23a and 24a on the central side or the flow path entrances 23b and 24b on the outer peripheral side.
  • the flow passages 23a and 24a on the center side and the flow passages 23b and 24b on the outer peripheral side are airtightly joined, and the two spiral flow passage bodies 25 as a whole form two continuous flow passages 21 and 22. ing.
  • the overlapped spiral channel body 25 is opened to the side where the spiral channel body 25 is not provided adjacently among the channel inlets / outlets 23a, 23b, 24a, 24b of the spiral channel body 25 arranged at both ends.
  • a communication pipe 26 connected to the outside is provided at each of the flow passage openings 23a, 23b, 24a, 24b.
  • the communication pipes 26 are respectively provided at the flow path entrances 23 a and 24 a on the center side of the spiral flow path bodies 251 and 252 disposed at both ends of the flow path unit 2.
  • the cover 3 includes a high-pressure pipe 31 in which the fluid unit 2 is accommodated, and a lid member 32 provided so as to close both ends of the high-pressure pipe 31.
  • the high-pressure pipe 31 has approximately the same length as the length in the intersecting direction of the portion where the spiral flow path body 25 is overlapped in the flow path unit 2.
  • the lid member 32 has an opening through which the communication pipe 26 passes, has an outer diameter substantially the same as the diameter of the high-pressure pipe 31, and the outer peripheral edge of the lid member 32 is welded to the end of the high-pressure pipe 31.
  • the heat exchanger 1 configured as described above is manufactured, for example, as shown in FIG.
  • a heat exchanger 1 having four spiral channel bodies 25 will be described.
  • the flow path unit 2 of the present embodiment is a flat surface that covers the groove forming plate member 10 as a partition member having spiral grooves 11 and 12 and the grooves 11 and 12 formed in the groove forming plate member 10.
  • the flat plate members 13 provided with the portions 13 a are alternately stacked, and the end plate members 14 covering the grooves 11 and 12 of the groove forming plate member 10 are overlapped and integrated at both ends of the flow path unit 2. That is, the spiral flow path body 25 is formed by joining two flat plate members 13 or the flat plate member 13 and the end plate member 14 on both sides of one groove forming plate member 10.
  • the adjacent spiral flow path body 25 is comprised so that the plane board
  • the two flat plate members 13 bonded to both sides of the single groove forming plate member 10 or the flat plate member 13 and the end plate member 14 correspond to two plate members.
  • the manufacturing method of the heat exchanger 1 first forms the groove forming plate member 10, the flat plate member 13, and the end plate member 14 by drawing the metal plate member having heat resistance and heat transfer. At this time, the flat plate member 13 and the end plate member 14 do not necessarily have to have heat conductivity. In addition, openings 10a, 13b, and 14b are previously formed in the groove forming plate member 10, the flat plate member 13, and the end plate member 14 at portions that become the flow passage openings 23a, 23b, 24a, and 24b. In FIG.
  • the openings 10 a, 13 b, and 14 b and the flow passage openings 23 a, 23 b, 24 a, and 24 b are shown by black rectangles, and the cross sections of the groove forming plate member 10, the flat plate member 13, and the end plate member 14 are shown. Hatching is omitted.
  • the groove-forming plate material 10 is formed by curving one spiral groove 11 and 12 on the front and back surfaces of the plate material so as to vortex in the same direction while spreading from the center side to the outer periphery side while differing from each other by half a phase. Form. At this time, the outer peripheral portion is bent back along the intersecting direction in which the plurality of spiral flow path bodies 25 are overlapped to form the bent portion 10b.
  • the flat plate member 13 is formed by bending the outer peripheral end of the flat portion 13a covering the grooves 11 and 12 of the groove forming plate member 10 to approximately 90 degrees and overlapping the groove forming plate member 10 with the outer periphery of the adjacent groove forming plate member 10.
  • a bent portion 13c is formed so as to overlap the bent bent portion 10b.
  • the end plate 14 also has a flat portion 14a that covers the grooves 11 and 12 of the groove forming plate 10 disposed on both ends of the flow path unit 2, and the outer peripheral end of the flat portion 14a is bent at approximately 90 degrees. And the bent portion 10b overlapped with the surface intersecting the flat portion 14a on the outer periphery of the groove forming plate member 10 and the outer periphery of the groove forming plate member 10 when overlapped with the groove forming plate member 10 on both ends of the flow path unit 2. 14c is formed.
  • the adjacent groove forming plate material 10 and the flat plate material 13 or the end plate material are formed while alternately stacking the formed groove forming plate material 10 and the flat plate material 13 and overlapping the end plate material 14 at both ends.
  • 14 is welded over the entire circumference, and the communication pipe 26 is welded to the flow path inlets 23a, 24a on the center side of the end plate 14 to form the flow path unit 2.
  • the flow passage ports 23a, 23b, 24a24b of adjacent members face each other and the flow passage unit 2 is formed. It arrange
  • the formed flow path unit 2 is inserted so as to contact the inner peripheral surface of the high-pressure pipe 31.
  • the planar portions 14 a of the end plate members 14 at both ends of the flow path unit 2 are substantially aligned with both edges of the high-pressure pipe 31, and the communication pipe 26 protrudes from the edges of the high-pressure pipe 31.
  • the lid member 32 provided with the through hole 32a of the communication pipe 26 is disposed at the end of the high-pressure pipe 31, and the edge of the high-pressure pipe 31 and the outer periphery of the lid member 32 are welded over the entire circumference.
  • the heat exchanger 1 having two continuous flow paths 21 and 2 is completed.
  • a low-temperature gasification raw material is circulated in a predetermined direction in one continuous flow path 21 and flows out from a gasification reactor included in the hydrous biomass supercritical water gasification device.
  • the high-temperature treated water is circulated in the opposite direction to the gasification raw material in the other continuous flow path 22. That is, in the flow path unit 2, the gasification raw material and the treated water flow through the two continuous flow paths 21 and 22 in opposite directions.
  • heat is generated between the two continuous flow paths 21 and 22 by using the groove forming plate 10 that partitions the two continuous flow paths 21 and 22 as a heat transfer surface. Exchange is performed.
  • the low temperature gasification raw material is circulated through one continuous flow path 21 and the high temperature treated water is circulated through the other continuous flow path 22, in the process where the gasification raw material is heated,
  • the gasification raw material is agitated by the secondary flow in the flow path bent in a shape, and the activated carbon and biomass, which are gasification catalysts suspended in the gasification raw material, are mixed and homogenized.
  • the contact probability between the catalyst and biomass is improved, and the catalytic effect is improved.
  • the secondary flow is a flow generated in the spiral tube shown in FIG.
  • the flow path unit 2 that is inserted into the high-pressure pipe 31 along the cross direction and covered is two spiral flow paths 23 that are adjacent in a plane that intersects the cross direction. , 24 are arranged so as to overlap each other in the crossing direction, and the two spiral flow paths 23 and 24 of the adjacent spiral flow path bodies 25 are connected to form two continuous flow paths as a whole.
  • the cross-sectional area of the flow path can be made smaller than that in the case where a heat exchanger is formed by providing a double pipe in the high-pressure pipe 31, for example. For this reason, since a fast flow rate can be ensured in each of the continuous flow paths 21 and 22, it is possible to prevent solids from being precipitated or deposited in the continuous flow paths 21 and 22.
  • the two continuous flow paths 21 and 22 are arranged adjacent to each other, the high temperature fluid is circulated through one of the continuous flow paths 21 and 22, and the low temperature fluid is transferred to the other flow path 21 and 22. It is possible to exchange heat efficiently by circulating the gas.
  • the fluid unit 2 including the two continuous flow paths 21 and 22 is provided in the high-pressure pipe 31, for example, a system including a hydrous biomass supercritical water gasifier that performs heat exchange using a high-pressure fluid. It is more suitable as the heat exchanger 1.
  • the two spiral channels 23 and 24 included in the spiral channel body 25 are curved in a spiral shape in which the spirals are wound in the same direction, so that the two spiral channels 23 and 24 are formed in the spiral direction. Since they are arranged alternately, it is possible to secure a wider boundary portion between the two spiral flow paths 23, 24, that is, a heat transfer surface. For this reason, it is possible to exchange heat more efficiently.
  • the flow path unit 2 since the flow path unit 2 has two continuous flow paths 21 and 22 formed by connecting a plurality of spiral flow path bodies 25 in the crossing direction, the two continuous flow paths 21 and 22 are heated. Since it becomes sufficiently longer than the length of the high-pressure pipe 31 that is almost the entire length of the exchanger 1, it is possible to exchange heat more efficiently.
  • the two continuous flow paths 21 and 22 can be arranged so that the continuous flow path 21 through which the high-temperature treated water flows and the continuous flow path 22 through which the low-temperature gasification raw material flows do not contact each other in the crossing direction. It is.
  • plate material 10 which makes the partition of the connected groove
  • the groove forming plate member 10 and the flat plate member 13 are alternately arranged. Between the two continuous flow paths 21 and 22, only one of the groove-forming plate members 10 is used to partition the two. For this reason, it is possible to raise heat conduction efficiency rather than the case where two pipes are made to adjoin.
  • the groove forming plate members 10 and the flat plate members 13 are alternately arranged so that the grooves 11 provided on one side of the groove forming plate member 10 and the grooves 12 provided on the other side of the groove forming plate member 10 are connected.
  • the flow channel unit 2 can be easily formed, and the formed flow channel unit 2 It is possible to easily form the heat exchanger 1 by inserting into the high-pressure pipe 31 and integrating them.
  • the groove forming plate member 10, the flat plate member 13 and the end plate member 14 can be easily formed by drawing, and the groove forming plate member 10, the flat plate member 13 and the end plate member 14 arranged alternately in the intersecting direction.
  • the bent portions 10b, 13c, 14c and the outer periphery of the groove forming plate member 10 are overlapped and joined on the plane intersecting the plane portions 13a, 14a.
  • the continuous flow paths 21 and 22 can be easily formed.
  • the flow path unit 2 is formed by stacking a plurality of spiral flow path bodies 25 so that the winding direction of the spiral flow path body 25 is the same direction.
  • the flow path units may be formed by arranging the adjacent spiral flow path bodies 25 so that the winding directions are reversed. According to such a heat exchanger, the flow path through which the high-temperature treated water circulates and the flow path through which the low-temperature gasification raw material circulates also in the cross direction, and the contact area is widened, so the heat transfer area is further increased Is possible.
  • the planar channel body is not limited to a spiral shape as long as two channels are provided curved and bent adjacent to each other in a plane.
  • the heat exchanger 1 is a high-temperature and high-pressure fluid heat exchanger used in a hydrous biomass supercritical water gasifier, but is not limited thereto.
  • 1 heat exchanger, 2 flow path unit, 3 cover 10 groove forming plate material, 10a opening, 10b bent portion, 11 groove, 12 groove, 13 flat plate material, 13a flat portion, 13b opening, 13c bent part, 14 end plate material, 14a plane part, 14b opening, 14c bent part, 21 continuous flow path, 21a end opening, 22 continuous flow path, 23 flow path, 23a channel inlet / outlet, 23b channel inlet / outlet, 24a channel inlet / outlet, 24b channel inlet / outlet, 25 spiral channel body, 26 communication pipe, 31 high pressure pipe, 32 Lid material, 32a Through-hole, 251 Swirl channel body, 252 Swirl channel body

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

 2本の流路を同一平面内にて隣り合うように配置した平面状流路体が前記平面と交差する交差方向に複数重なるように配置され、重ねた複数の前記平面状流路体のうちの前記交差方向に隣接する2つの前記平面状流路体における、一方の前記平面状流路体が有する各々の前記流路の両端をなす2つの流路出入口の各一方と、他方の前記平面状流路体が有する各々の前記流路の両端をなす2つの流路出入口の各一方とが繋がった流路ユニットと、前記流路ユニットの外側を覆う高圧配管と、を有する。

Description

熱交換器および熱交換器の製造方法
 本発明は、熱交換器および熱交換器の製造方法に関する。
 熱交換器としては、例えば、例えば、内管に第1螺旋突条が曲折形成され、外管に第1螺旋突条と整合する第2螺旋突条が形成され、内管と外管とが、第2螺旋突条の内面と第1螺旋突条の外面のみで接触し、それ以外の面では対向してその間に螺旋状の流路が形成された二重管を用いた熱交換器が知られている(例えば、特許文献1参照)。
特開2012-193869号公報
 上記のような二重管は、内管と外管との間に形成された流路が狭く、内管の内側は広く形成されている。このため、内管と外管との間に形成された流路では、無機物の固まり等が詰まり易いという課題がある。また、内管の内側は流速が低いので、無機物の固まり等が流れにくく、沈殿または堆積し易いという課題がある。すなわち、内管と外管との間の流路および内管内の流路はいずれにしても閉塞されるおそれがある。
 本発明は、このような事情に鑑みてなされたものであり、その目的は、流路に固形物が詰まり難く、また沈殿、堆積もし難い熱交換器および熱交換器の製造方法を提供することにある。
 前述の目的を達成するため本発明は、2本の流路を同一平面内にて隣り合うように湾曲または屈曲させて配置した平面状流路体が前記平面と交差する交差方向に複数重なるように配置され、重ねた複数の前記平面状流路体のうちの前記交差方向に隣接する2つの前記平面状流路体における、一方の前記平面状流路体が有する各々の前記流路の両端をなす2つの流路出入口の各一方と、他方の前記平面状流路体が有する各々の前記流路の両端をなす2つの流路出入口の各一方とが繋がった流路ユニットと、前記流路ユニットの外側を覆う高圧配管と、を有することを特徴とする熱交換器である。
 このような熱交換器によれば、高圧配管に交差方向に沿って挿入されて覆われる流路ユニットは、交差方向と交差する平面内にて隣り合う2本の流路を備えた複数の平面状流路体が交差方向に重なるように配置されており、隣り合う平面状流路体の流路が繋げられて全体として2本の流路をなしているので、例えば高圧配管内に二重管を備えて熱交換器を形成する場合より、流路の断面積を小さくすることが可能である。このため、各流路内において速い流速を確保することができるため、流路内に固形物が沈殿または堆積することを防止することが可能である。また、2本流路は隣り合うように配置されているので、一方の流路に高温流体を流通させ、他方の流路に低温流体を流通させることにより効率良く熱交換することが可能である。また、2つの流路でなる流体ユニットが高圧配管内に設けられているので、例えば、高圧の流体を用いて熱交換する熱交換器としてより適している。
 かかる熱交換器であって、前記平面状流路体は、前記2本流路が、中央側から外周側に広がりつつ互いに半周分位相を異ならせて同一方向に渦を巻く渦巻き状に湾曲することにより、前記2本の流路がなす渦巻きの直径方向において当該2本の流路が交互に配置された渦巻き流路体であり、前記流路ユニットは、前記渦巻き流路体が、前記平面と交差する交差方向に複数重ねて配置され、前記交差方向に隣接する2つの渦巻き流路体の中央側の流路出入口同士または外周側の流路出入口同士が繋がって2本の連続流路をなしていることが望ましい。
 このような熱交換器によれば、平面状流路体が有する2本の流路は、同一方向に渦を巻いた渦巻き状に湾曲することにより、渦巻きの直径方向において2本の流路が交互に配置されているので、2本の流路の境界部分、すなわち伝熱面をより広く確保することが可能である。このため、より効率良く熱交換することが可能である。
 また、流路ユニットは、渦巻き流路体が交差方向に複数重ねられて繋がって2本の流路をなしているので、2本の流路は、熱交換器のほぼ全長となる高圧配管の長さより十分に長くなるこのため、更に効率良く熱交換することが可能である。
 かかる熱交換器であって、前記流路ユニットは、隣接する前記渦巻き流路体の巻き方向が互いに同一になるように重ねられていることが望ましい。
 このような熱交換器によれば、高温流体が流通する流路と低温流体が流通する流路とが交差方向において接触しないように2本の流路を配置することが可能である。
 かかる熱交換器であって、前記流路ユニットは、隣接する前記渦巻き流路体の巻き方向が互いに逆になるように重ねられていることとしてもよい。
 このような熱交換器によれば、高温流体が流通する流路と低温流体が流通する流路とが交差方向において接触する箇所が発生するので、更に伝熱面積を広くすることが可能である。
 また、金属製の板材の両面にそれぞれ形成される繋がった溝の隔壁をなし、前記溝の一方の端部に開口を有する複数の隔壁材を形成する隔壁材形成工程と、前記隔壁材に対向する平面を有し、前記隔壁材の溝を覆って流路を形成するとともに形成された流路の前記開口が設けられた端部と反対側の端部に開口を備えた金属製の複数の板状材を形成する板状材形成工程と、前記隔壁材と前記板状材とを交互に配置するとともに前記隔壁材の一方側に設けられた流路同士および前記隔壁材の他方側に設けられた流路同士が繋がるように前記隔壁材および前記板状材に設けられた前記開口の位置を調整して一体に固定することにより流路ユニットを形成する流路ユニット形成工程と、前記流路ユニットを前記交差方向に沿って挿入し当該流路ユニットの外側を高圧配管にて覆い一体化する一体化工程と、
を有することを特徴とする熱交換器の製造方法である。
 このような熱交換器の製造方法によれば、繋がった溝の隔壁をなす隔壁材と、当該隔壁材の交差方向において隣接する2つの板状材とにより形成される2つの流路が、板状材を共有しつつ隔壁材と板状材とが交互に配置されるので、2つの流路間には、両者を仕切る板は1枚のみである。このため、2本の管を隣接させる場合より熱伝導効率を高めることが可能である。また、隔壁材と板状材とを交互に配置するとともに隔壁材の一方側に設けられた流路同士および隔壁材の他方側に設けられた流路同士が繋がるように隔壁材および板状材に設けられた開口の位置を調整して一体に固定することにより、流路ユニットを容易に形成し、更に、形成された流路ユニットを高圧配管内に挿入して一体化することにより容易に熱交換器を形成することが可能である。
 かかる熱交換器の製造方法であって、前記隔壁材および前記板状材は絞り加工により形成され、互いに隣り合う前記隔壁材と前記板状材の外周部は前記平面と交差する方向に屈曲されており、前記隔壁材と前記板状材とが前記平面と交差する方向に屈曲された部位にて重ね合わせて接合されていることが望ましい。
 このような熱交換器の製造方法によれば、隔壁材および板状材は絞り加工により容易に形成することが可能であり、隔壁材と板状材とが平面と交差する方向に屈曲された部位にて重ね合わせて接合されているので、外周側が密閉されることにより、管を用いることなく2本の流路を容易に形成することが可能である。
 本発明によれば、流路に固形物が詰まり難く、また沈殿、堆積もし難い熱交換器および熱交換器の製造方法を提供することが可能である。
本発明に係る熱交換器を示す概念図である。 本発明に係る熱交換器が備える平面状流路体および流路ユニットを示す概念図である。 本発明に係る熱交換器の製造方法を示す概念図である。 二次流れを説明する図である。
 以下、本発明の一実施形態について、例えば、含水性バイオマス超臨界水ガス化装置に用いられ高温高圧の流体の熱交換器を例に挙げて説明する。
 本実施形態の熱交換器1は、図1に示すように、2本の連続流路21、22を互いに隣り合うように屈曲させて配置した流路ユニット2と、流路ユニット2が有する2本の連続流路21、22の端となる端部開口21a、22aを外部に突出させて流路ユニット2を覆うカバー3と、を有している。図1においては、流路ユニット2を示すために、カバー3を仮想線(一点鎖線)にて示している。
 流路ユニット2は、図2に示すように、2本の渦巻き流路23、24が同一平面内で隣り合い渦巻き状に湾曲された平面流路体としての渦巻き流路体25を複数有している。
 各渦巻き流路体25は、2本の渦巻き流路23、24が各々中央側から外周側に広がりつつ互いに半周分位相を異ならせて同一方向に渦を巻いた渦巻き状に湾曲しており、2本の渦巻き流路23、24がなす渦巻きの直径方向において当該2本の渦巻き流路23、24が交互に配置されている。このため各渦巻き流路23、24の両端となる流路出入口23a、23b、24a、24bは、渦巻き流路体25の中央と外周とにそれぞれ設けられている。本実施形態においては、各渦巻き流路体25が有する渦巻き流路23、24が流路に相当し、複数の渦巻き流路体25が有する渦巻き流路23、24が繋がった2本の流路21,22が連続流路に相当する。
 図2においては、説明の便宜上、各渦巻き流路23、24を1本の管にて示しているが、渦巻き流路23、24は仕切られた空間であれば構わず、例えば、2つの渦巻き流路23、24が単一の仕切り材にて仕切られていても構わない。
 複数の渦巻き流路体25は、2本の渦巻き流路23、24が配置されて形成される平面と交差する方向(以下、交差方向という)に重ねて配置されている。このとき、各渦巻き流路体25の巻き方向が同一方向になるように重ねて配置される。以下の説明においては、重ねられている複数の渦巻き流路体25の、図2において左下側に向く面を表面、その反対側の面を裏面として説明する。
 複数の渦巻き流路体25が重ねられた流路ユニット2は、図2に示すように、2本の渦巻き流路23、24における中央側の端部となる中央側の流路出入口23a、24aがいずれも表面側に設けられており、外周側の端部となる外周側の流路出入口23b、24bがいずれも裏面側に設けられている第1渦巻き流路体251と、2本の渦巻き流路23、24における中央側の端部となる中央側の流路出入口23a、24aがいずれも裏面側に設けられており、外周側の端部となる外周側の流路出入口23b、24bがいずれも表面側に設けられている第2渦巻き流路体252とが交互に配置されている。
 重ねられる複数の渦巻き流路体25は、交差方向に隣接する2つの渦巻き流路体251、252が、中央側の流路出入口23a、24a同士または外周側の流路出入口23b、24b同士が繋がるように配置されている。中央側の流路出入口23a、24a同士および外周側の流路出入口23b、24b同士は、気密に接合されており、複数の渦巻き流路体25全体として2本の連続流路21、22をなしている。
 重ねられた渦巻き流路体25は、両端に配置された渦巻き流路体25の流路出入口23a、23b、24a、24bのうち、隣接して渦巻き流路体25が設けられていない側に開放された流路出入口23a、23b、24a、24bに外部と繋ぐ連通管26がそれぞれ設けられている。図1の例では、流路ユニット2の両端に配置された渦巻き流路体251、252の中央側の流路出入口23a、24aにそれぞれ連通管26が設けられている。
 カバー3は、図1に示すように、流体ユニット2が収容される高圧配管31と、高圧配管31の両端を閉塞するように設けられる蓋材32と、を有している。高圧配管31は、流路ユニット2において渦巻き流路体25が重ねられた部位の交差方向の長さとほぼ同じ長さを有している。蓋材32は、連通管26が貫通される開口を備え、高圧配管31の直径とほぼ同じ外径をなしており、高圧配管31の端部に蓋材32の外周縁が溶接されている。
 上記のような構成の熱交換器1は、例えば、図3に示すように製造される。本実施形態では、4つの渦巻き流路体25を有する熱交換器1について説明する。
 本実施形態の流路ユニット2は、図3に示すように渦巻き状の溝11、12を有する隔壁材としての溝形成板材10と、溝形成板材10に形成された溝11、12を覆う平面部13aを備えた平面板材13と、を交互に重ねると共に、流路ユニット2の両端にて溝形成板材10の溝11、12を覆う端部板材14を重ねて一体化して形成されている。すなわち、渦巻き流路体25は、1枚の溝形成板材10の両側に2枚の平面板材13、または、平面板材13と端部板材14とが接合されて形成されている。そして、隣接する渦巻き流路体25は、各々の渦巻き流路体25が有する溝形成板材10の間に配置される平面板材13を共有するように構成されている。ここで、1枚の溝形成板材10の両側に接合される2枚の平面板材13、または、平面板材13と端部板材14とが2枚の板状材に相当する。
 熱交換器1の製造方法は、まず、耐熱性及び伝熱性を有する金属の板材に絞り加工により溝形成板材10と、平面板材13と、端部板材14と、を形成する。このとき、平面板材13及び端部板材14は、必ずしも伝熱性を有していなくとも良い。また、溝形成板材10、平面板材13、および端部板材14には、流路出入口23a、23b、24a、24bとなる部位に予め開口10a、13b、14bを形成しておく。尚、図3においては、開口10a、13b、14bおよび流路出入口23a、23b、24a、24bを黒色の長方形にて示し、溝形成板材10、平面板材13、および端部板材14の断面を示すハッチングを省略している。
 溝形成板材10は、板材の表裏面に各々1本の渦巻き状の溝11、12を、中央側から外周側に広がりつつ互いに半周分位相を異ならせて同一方向に渦を巻くように湾曲させて形成する。このとき、外周部分は、複数の渦巻き流路体25が重ねられる交差方向に沿って曲げ返して屈曲部10bを形成しておく。
 平面板材13は、溝形成板材10の溝11、12を覆う平面部13aの外周端部をほぼ90度に屈曲させ、溝形成板材10と重ねられたときに隣接する溝形成板材10の外周の曲げ返した屈曲部10bと重なるように屈曲部13cが形成されている。
 端部板材14も、流路ユニット2の両端側に配置される溝形成板材10の溝11、12を覆う平面部14aを有しており、平面部14aの外周端部をほぼ90度に屈曲させ、流路ユニット2の両端側の溝形成板材10と重ねられたときにその外周の曲げ返した屈曲部10b及び溝形成板材10の外周において平面部14aを交差する面と重なるように屈曲部14cが形成されている。
 次に、形成された溝形成板材10と平面板材13とを交互に重ね合わせつつ、また、両端部に端部板材14を重ね合わせつつ、隣接する溝形成板材10と平面板材13または端部板材14との外周部分を全周に亘って溶接し、端部板材14の中央側の流路出入口23a、24aに連通管26を溶接して流路ユニット2を形成する。このとき、溝形成板材10、平面板材13および端部板材14は、重ね合わされたときに隣接する部材の流路出入口23a、23b、24a24b同士が対向し、流路ユニット2を形成したときに2本の繋がった連続流路21、22が形成されるように配置する。
 次に形成された流路ユニット2を高圧配管31の内周面に接するように挿入する。このとき、流路ユニット2の両端の端部板材14が有する平面部14aが高圧配管31の両縁とほぼ一致し、連通管26が高圧配管31の縁より突出するように配置する。
 最後に、連通管26の貫通孔32aが設けられた蓋材32を高圧配管31の端部に配置して、高圧配管31の端縁と蓋材32の外周とを全周に亘って溶接して2本の連続流路21、2を備えた熱交換器1が完成する。
 本実施形態の熱交換器1では、例えば、低温のガス化原料を、一方の連続流路21内を所定方向に流通させ、含水性バイオマス超臨界水ガス化装置が備えるガス化反応器から流出される高温の処理水を、他方の連続流路22内をガス化原料と反対方向に流通させる。すなわち、流路ユニット2内では、ガス化原料と処理水とが、2本の連続流路21、22を互いに反対方向に流通している。このように、ガス化原料と処理水とを流通させることにより、2本の連続流路21、22を仕切る溝形成板材10を伝熱面として2本の連続流路21、22間にて熱交換が行われる。
 本実施形態では、低温のガス化原料を一方の連続流路21に流通させ、高温の処理水を他方の連続流路22に流通させたので、ガス化原料が昇温される過程において、渦巻き状に屈曲した流路内における二次流れによりガス化原料が攪拌され、ガス化原料内に懸濁されたガス化触媒である活性炭とバイオマスが混合されて均質化される。また、活性炭とバイオマスが混合されることにより、触媒とバイオマスとの接触確率が向上し、触媒効果が向上する。なお二次流れとは図4に示す、螺旋管内に発生する流れである。
 本実施形態の熱交換器1によれば、高圧配管31に交差方向に沿って挿入されて覆われる流路ユニット2は、交差方向と交差する平面内にて隣り合う2本の渦巻き流路23、24を備えた複数の渦巻き流路体25が交差方向に重なるように配置されており、隣り合う渦巻き流路体25の渦巻き流路23、24が繋げられて全体として2本の連続流路21,22をなしているので、例えば高圧配管31内に二重管を備えて熱交換器を形成する場合より、流路の断面積を小さくすることが可能である。このため、各連続流路21、22内において速い流速を確保することができるため、連続流路21、22内に固形物が沈殿または堆積することを防止することが可能である。
 また、2本の連続流路21、22は隣り合うように配置されているので、一方の連続流路21、22のいずれかに高温流体を流通させ、他方の流路21、22に低温流体を流通させることにより効率良く熱交換することが可能である。また、2つの連続流路21、22でなる流体ユニット2が高圧配管31内に設けられているので、例えば、高圧の流体を用いて熱交換する含水性バイオマス超臨界水ガス化装置を備えるシステムなどの熱交換器1としてより適している。
 また、渦巻き流路体25が有する2本の渦巻き流路23、24が、同一方向に渦を巻いた渦巻き状に湾曲することにより、渦巻きの直径方向において2本の渦巻き流路23、24が交互に配置されているので、2本の渦巻き流路23、24の境界部分、すなわち伝熱面をより広く確保することが可能である。このため、より効率良く熱交換することが可能である。
 また、流路ユニット2は、渦巻き流路体25が交差方向に複数重ねられて繋がって2本の連続流路21、22をなしているので、2本の連続流路21、22は、熱交換器1のほぼ全長となる高圧配管31の長さより十分に長くなるこのため、更に効率良く熱交換することが可能である。
 また、高温の処理水が流通する連続流路21と低温のガス化原料が流通する連続流路22とが交差方向において接触しないように2本の連続流路21、22を配置することが可能である。
 また、本実施形態の熱交換器1の製造方法によれば、繋がった溝11、12の隔壁をなす溝形成板材10と、当該溝形成板材10の交差方向において隣接する2枚の平面板材13、または、平面板材13と端部板材14とにより形成される2つの渦巻き流路23、24が、平面板材13を共有しつつ溝形成板材10と平面板材13とが交互に配置されるので、2つの連続流路21、22間には、両者を仕切る板は溝形成板材10の1枚のみである。このため、2本の管を隣接させる場合より熱伝導効率を高めることが可能である。
 また、溝形成板材10と平面板材13とを交互に配置するとともに溝形成板材10の一方側に設けられた溝11同士および溝形成板材10の他方側に設けられた溝12同士が繋がるように溝形成板材10および平面板材13に設けられた開口10a、13b、14bの位置を調整して一体に固定することにより、流路ユニット2を容易に形成し、更に、形成された流路ユニット2を高圧配管31内に挿入して一体化することにより容易に熱交換器1を形成することが可能である。
 また、溝形成板材10、平面板材13および端部板材14は絞り加工により容易に形成することが可能であり、交差方向に交互に配置された溝形成板材10、平面板材13および端部板材14の外周部を、屈曲部10b、13c、14c及び溝形成板材10の外周部など、平面部13a、14aを交差する面にて重ね合わせて接合するので、外周側が密閉されることにより2本の連続流路21、22を容易に形成することが可能である。
 上記実施形態においては、渦巻き流路体25の巻き方向が同一方向になるように複数の渦巻き流路体25を重ねて流路ユニット2を形成する例について説明したが、これに限らず、例えば、隣接する渦巻き流路体25の巻き方向が逆になるように配置して流路ユニットを形成してもよい。このような熱交換器によれば、高温の処理水が流通する流路と低温のガス化原料が流通する流路とが交差方向においても接触し、接触面積が広がるので更に伝熱面積を広くすることが可能である。また、平面流路体は、2本の流路が平面内にて互いに隣接して湾曲及び屈曲させて設けられていれば、渦巻き状に限るものではない。
 上記実施形態においては、熱交換器1を、含水性バイオマス超臨界水ガス化装置に用いられ高温高圧の流体の熱交換器としたが、これに限るものではない。
 上記実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれることはいうまでもない。
 1 熱交換器、2 流路ユニット、3 カバー、10 溝形成板材、10a 開口、
10b 屈曲部、11 溝、12 溝、13 平面板材、13a 平面部、
13b 開口、13c 屈曲部、14 端部板材、14a 平面部、14b 開口、
14c 屈曲部、21 連続流路、21a 端部開口、22 連続流路、23 流路、
23a 流路出入口、23b 流路出入口、24a 流路出入口、
24b 流路出入口、25 渦巻き流路体、26 連通管、31 高圧配管、
32 蓋材、32a 貫通孔、251 渦巻き流路体、252 渦巻き流路体

Claims (6)

  1.  2本の流路を同一平面内にて隣り合うように湾曲または屈曲させて配置した平面状流路体が前記平面と交差する交差方向に複数重なるように配置され、重ねた複数の前記平面状流路体のうちの前記交差方向に隣接する2つの前記平面状流路体における、一方の前記平面状流路体が有する各々の前記流路の両端をなす2つの流路出入口の各一方と、他方の前記平面状流路体が有する各々の前記流路の両端をなす2つの流路出入口の各一方とが繋がった流路ユニットと、
     前記流路ユニットの外側を覆う高圧配管と、を有することを特徴とする熱交換器。
  2.  前記平面状流路体は、前記2本流路が、中央側から外周側に広がりつつ互いに半周分位相を異ならせて同一方向に渦を巻く渦巻き状に湾曲することにより、前記2本の流路がなす渦巻きの直径方向において当該2本の流路が交互に配置された渦巻き流路体であり、
     前記流路ユニットは、前記渦巻き流路体が、前記平面と交差する交差方向に複数重ねて配置され、前記交差方向に隣接する2つの渦巻き流路体の中央側の流路出入口同士または外周側の流路出入口同士が繋がって2本の連続流路をなしていることを特徴とする請求項1に記載の熱交換器。
  3.  前記流路ユニットは、隣接する前記渦巻き流路体の巻き方向が互いに同一になるように重ねられていることを特徴とする請求項2に記載の熱交換器。
  4.  前記流路ユニットは、隣接する前記渦巻き流路体の巻き方向が互いに逆になるように重ねられていることを特徴とする請求項2に記載の熱交換器。
  5.  金属製の板材の両面にそれぞれ形成される繋がった溝の隔壁をなし、前記溝の一方の端部に開口を有する複数の隔壁材を形成する隔壁材形成工程と、
     前記隔壁材に対向する平面を有し、前記隔壁材の溝を覆って流路を形成するとともに形成された流路の前記開口が設けられた端部と反対側の端部に開口を備えた金属製の複数の板状材を形成する板状材形成工程と、
     前記隔壁材と前記板状材とを交互に配置するとともに前記隔壁材の一方側に設けられた流路同士および前記隔壁材の他方側に設けられた流路同士が繋がるように前記隔壁材および前記板状材に設けられた前記開口の位置を調整して一体に固定することにより流路ユニットを形成する流路ユニット形成工程と、
     前記流路ユニットを前記交差方向に沿って挿入し当該流路ユニットの外側を高圧配管にて覆い一体化する一体化工程と、
    を有することを特徴とする熱交換器の製造方法。
  6.  前記隔壁材および前記板状材は絞り加工により形成され、
     互いに隣り合う前記隔壁材と前記板状材の外周部は前記平面と交差する方向に屈曲されており、
     前記隔壁材と前記板状材とが前記平面と交差する方向に屈曲された部位にて重ね合わせて接合することを特徴とする請求項6に記載の熱交換器の製造方法。
PCT/JP2014/055693 2014-03-05 2014-03-05 熱交換器および熱交換器の製造方法 WO2015132920A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
SG11201607329YA SG11201607329YA (en) 2014-03-05 2014-03-05 Heat exchanger and method for manufacturing heat exchanger
US15/123,233 US20170067691A1 (en) 2014-03-05 2014-03-05 Heat exchanger and method to manufacture heat exchanger
MYPI2016703202A MY179381A (en) 2014-03-05 2014-03-05 Heat exchanger and method to manufacture heat exchanger
JP2015514693A JP5873602B1 (ja) 2014-03-05 2014-03-05 熱交換器および熱交換器の製造方法
EP14884770.0A EP3115727A4 (en) 2014-03-05 2014-03-05 Heat exchanger and method for manufacturing heat exchanger
PCT/JP2014/055693 WO2015132920A1 (ja) 2014-03-05 2014-03-05 熱交換器および熱交換器の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/055693 WO2015132920A1 (ja) 2014-03-05 2014-03-05 熱交換器および熱交換器の製造方法

Publications (1)

Publication Number Publication Date
WO2015132920A1 true WO2015132920A1 (ja) 2015-09-11

Family

ID=54054756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055693 WO2015132920A1 (ja) 2014-03-05 2014-03-05 熱交換器および熱交換器の製造方法

Country Status (5)

Country Link
US (1) US20170067691A1 (ja)
EP (1) EP3115727A4 (ja)
JP (1) JP5873602B1 (ja)
SG (1) SG11201607329YA (ja)
WO (1) WO2015132920A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107131778A (zh) * 2017-06-28 2017-09-05 石家庄吉瑞节能技术有限公司 层叠式螺盘换热器
WO2018135583A1 (ja) * 2017-01-23 2018-07-26 株式会社オストランド 渦巻き状移動機構、及び、渦巻き状移動機構を備える水平回転炉
CN110285697A (zh) * 2019-07-23 2019-09-27 浙江诚信医化设备有限公司 螺旋板式换热器
JP2020054201A (ja) * 2018-09-28 2020-04-02 日本電産トーソク株式会社 モータユニット

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3128278B1 (de) * 2015-08-06 2018-06-20 Linde Aktiengesellschaft Zufuhr und entnahme von rohrströmen mit zwischentemperatur bei gewickelten wärmeübertragern
EP3141815B1 (en) * 2015-09-08 2019-03-13 Black & Decker, Inc. Boiler and method of manufacture
EP3842727B1 (en) * 2019-12-23 2023-11-15 Hamilton Sundstrand Corporation Additively manufactured spiral diamond heat exchanger
US11808527B2 (en) 2021-03-05 2023-11-07 Copeland Lp Plastic film heat exchanger for low pressure and corrosive fluids
CN115307467B (zh) * 2022-10-12 2023-01-20 中国核动力研究设计院 热交换件及热交换装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2217316A (en) * 1937-11-30 1940-10-08 American Heat Reclaiming Corp Plate stack heat exchanger
DE1179232B (de) * 1960-07-19 1964-10-08 Dynamit Nobel Ag Waermetauscher
US3705618A (en) * 1968-12-27 1972-12-12 Etienne Jouet Heat exchanger
JPS5248860A (en) * 1975-09-02 1977-04-19 Parca Norrahammar Ab Plate heat exchanger
US4287724A (en) * 1979-12-17 1981-09-08 Morehouse Industries, Inc. Air chiller/drier
DE19754145A1 (de) * 1997-12-05 1999-06-10 Bernd Dipl Ing Misbach Spiralwärmeübertrager in Elementbauweise
JP2000304474A (ja) * 1999-04-16 2000-11-02 Kankyo Co Ltd 熱交換器、その製造方法及びそれを含む除湿機
JP2002062079A (ja) * 2000-08-10 2002-02-28 Sanyo Electric Co Ltd プレート式熱交換器
JP2009264727A (ja) * 2008-04-25 2009-11-12 Taiyo Kogyo Kk 熱交換ユニット及びそれを用いた熱交換器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62206380A (ja) * 1986-03-05 1987-09-10 Hitachi Ltd 積層熱交換器
DE102009024442A1 (de) * 2009-06-10 2011-01-05 Robert Bosch Gmbh Gliederheizkessel

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2217316A (en) * 1937-11-30 1940-10-08 American Heat Reclaiming Corp Plate stack heat exchanger
DE1179232B (de) * 1960-07-19 1964-10-08 Dynamit Nobel Ag Waermetauscher
US3705618A (en) * 1968-12-27 1972-12-12 Etienne Jouet Heat exchanger
JPS5248860A (en) * 1975-09-02 1977-04-19 Parca Norrahammar Ab Plate heat exchanger
US4287724A (en) * 1979-12-17 1981-09-08 Morehouse Industries, Inc. Air chiller/drier
DE19754145A1 (de) * 1997-12-05 1999-06-10 Bernd Dipl Ing Misbach Spiralwärmeübertrager in Elementbauweise
JP2000304474A (ja) * 1999-04-16 2000-11-02 Kankyo Co Ltd 熱交換器、その製造方法及びそれを含む除湿機
JP2002062079A (ja) * 2000-08-10 2002-02-28 Sanyo Electric Co Ltd プレート式熱交換器
JP2009264727A (ja) * 2008-04-25 2009-11-12 Taiyo Kogyo Kk 熱交換ユニット及びそれを用いた熱交換器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3115727A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018135583A1 (ja) * 2017-01-23 2018-07-26 株式会社オストランド 渦巻き状移動機構、及び、渦巻き状移動機構を備える水平回転炉
JPWO2018135583A1 (ja) * 2017-01-23 2019-11-14 Cr−Power合同会社 渦巻き状移動機構、及び、渦巻き状移動機構を備える水平回転炉
CN107131778A (zh) * 2017-06-28 2017-09-05 石家庄吉瑞节能技术有限公司 层叠式螺盘换热器
JP2020054201A (ja) * 2018-09-28 2020-04-02 日本電産トーソク株式会社 モータユニット
JP7210975B2 (ja) 2018-09-28 2023-01-24 日本電産トーソク株式会社 モータユニット
CN110285697A (zh) * 2019-07-23 2019-09-27 浙江诚信医化设备有限公司 螺旋板式换热器
CN110285697B (zh) * 2019-07-23 2024-03-22 浙江诚信医化设备有限公司 螺旋板式换热器

Also Published As

Publication number Publication date
EP3115727A4 (en) 2017-05-03
US20170067691A1 (en) 2017-03-09
EP3115727A1 (en) 2017-01-11
JP5873602B1 (ja) 2016-03-01
SG11201607329YA (en) 2016-10-28
JPWO2015132920A1 (ja) 2017-03-30

Similar Documents

Publication Publication Date Title
JP5873602B1 (ja) 熱交換器および熱交換器の製造方法
US10215497B2 (en) Heat exchanger and production method for heat exchanger
US9714796B2 (en) Plate heat exchanger and method for manufacturing of a plate heat exchanger
US10066874B2 (en) Plate heat exchanger and method for constructing multiple passes in the plate heat exchanger
JP2015532972A (ja) 熱交換器平板及びそのような熱交換器平板を備える平板熱交換器
JP2006010130A (ja) 多流体熱交換器
CN110073163B (zh) 板式热交换器
JP7471281B2 (ja) プレート熱交換器構造及びモジュール構造
EP3023727B1 (en) Fluid guide plate and associated plate heat exchanger
US11441854B2 (en) Heat exchanger made of plastic material and vehicle including this heat exchanger
KR20190074362A (ko) 열교환기
JP5993884B2 (ja) プレート式熱交換器
RU2615094C1 (ru) Теплообменник
CN108955319B (zh) 一种箱式换热器
JP6819199B2 (ja) 圧力容器
WO2018186347A1 (ja) 流体流路装置
KR101175761B1 (ko) 판형 열교환기
JPS59158986A (ja) 積層型熱交換器
JP6934399B2 (ja) プレート式熱交換器
JP3214342U (ja) 組合せ式熱交換器
EP3037766B1 (en) Heat exchanger
TW201518597A (zh) 排氣熱回收裝置
KR20170042035A (ko) 다 유체 열교환기

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015514693

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14884770

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15123233

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014884770

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014884770

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201606628

Country of ref document: ID