WO2015132882A1 - 風力発電装置 - Google Patents

風力発電装置 Download PDF

Info

Publication number
WO2015132882A1
WO2015132882A1 PCT/JP2014/055477 JP2014055477W WO2015132882A1 WO 2015132882 A1 WO2015132882 A1 WO 2015132882A1 JP 2014055477 W JP2014055477 W JP 2014055477W WO 2015132882 A1 WO2015132882 A1 WO 2015132882A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
back surface
wind turbine
protrusion
wind
Prior art date
Application number
PCT/JP2014/055477
Other languages
English (en)
French (fr)
Inventor
泰孝 和田
晴仁 久保田
幸政 山村
一郎 内山
圭二 尾山
寿樹 山▲崎▼
Original Assignee
中国電力株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国電力株式会社 filed Critical 中国電力株式会社
Priority to PCT/JP2014/055477 priority Critical patent/WO2015132882A1/ja
Priority to EP14885053.0A priority patent/EP3115599A4/en
Priority to JP2015512411A priority patent/JP6189940B2/ja
Publication of WO2015132882A1 publication Critical patent/WO2015132882A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/306Surface measures
    • F05B2240/3062Vortex generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/60Fluid transfer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a wind power generator.
  • the present invention has been made in view of such a background, and an object of the present invention is to suppress the separation phenomenon that occurs on the back surface of the blade while suppressing the influence on the airflow flowing on the blade belly surface of the wind turbine blade.
  • One aspect of the present invention for achieving the above object is a wind turbine generator that generates power by driving a generator by receiving and rotating lift-type wind turbine blades radially attached to a rotating shaft.
  • a protrusion protruding from the rear surface of the blade is provided on a front edge side of the wind turbine blade and on the rotary shaft side in the longitudinal direction of the wind turbine blade. This is a characteristic wind power generator.
  • the influence of the airflow flowing on the airfoil surface of the wind turbine blade is suppressed, and the airflow flowing on the back surface of the blade collides with the protrusion to cause the back surface of the blade. It is possible to suppress the peeling phenomenon that occurs in In addition, it is possible to suppress the peeling phenomenon that frequently occurs in the blade root portion side (rotating shaft side) portion of the blade back surface than the blade tip portion side portion.
  • the protrusion is provided in a portion on the leading edge side of the blade back surface from the position where the blade thickness from the blade back surface to the blade belly surface is maximum. Wind power generator.
  • the probability that the protrusion is positioned upstream of the separation start point on the blade back surface is increased, and the separation phenomenon occurring on the blade back surface can be more reliably suppressed.
  • This wind power generator is a wind power generator characterized in that the protrusion can be projected and retracted with respect to the back surface of the wing.
  • the peeling phenomenon when the peeling phenomenon occurs on the blade back surface, the peeling phenomenon can be suppressed by projecting the protrusion from the blade back surface, and the peeling phenomenon occurs on the blade back surface.
  • the phenomenon does not occur, it is possible to reduce the resistance of the airflow flowing through the back surface of the blade by accommodating a part or the whole of the protrusion in the wind turbine blade.
  • the protrusion protrudes from the back surface of the blade, and after the separation phenomenon has been eliminated, the protrusion portion is separated from the back surface of the blade.
  • the wind turbine generator is characterized in that the protrusion is housed inside the wind turbine blade after a predetermined time has elapsed since the protrusion or after a predetermined time has elapsed since the peeling phenomenon has been resolved.
  • This wind power generator is a wind power generator characterized in that the protrusion protrudes from the blade back surface due to the difference between the pressure inside the wind turbine blade and the pressure on the blade back surface.
  • the mechanism for projecting and projecting the protruding portion with respect to the back surface of the blade can be simplified, and power saving can be achieved.
  • the present invention it is possible to suppress the separation phenomenon that occurs on the back surface of the blade while suppressing the influence on the airflow flowing through the blade belly surface of the wind turbine blade.
  • FIG. 1 It is a schematic perspective view of a wind power generator. It is a top view of a windmill blade. It is a figure explaining the airflow around the cross section of the windmill blade in line AA of FIG. It is a figure explaining the air flow around the cross section of the windmill blade in line BB of FIG. It is sectional drawing of the windmill blade in line BB of FIG. It is a figure which shows the vortex which generate
  • FIG. 1 is a schematic perspective view of the wind power generator 1.
  • FIG. 2 is a plan view of the wind turbine blade 10.
  • 3A is a diagram for explaining the air flow around the cross section of the wind turbine blade 10 along the line AA in FIG. 2
  • FIG. 3B is a diagram for explaining the air flow around the cross section of the wind turbine blade 10 along the line BB in FIG. is there.
  • FIG. 4 is a cross-sectional view of the wind turbine blade 10 taken along line BB in FIG.
  • FIG. 5 is a diagram showing vortices generated on the blade back surface 10 a by the protrusion 20.
  • the wind power generator 1 includes a tower 2 installed on a foundation such as the ground, a nacelle 5 installed on the top of the tower 2 and housing the generator 3 and its rotating shaft 4, and three lift-type windmills.
  • the rotor 6 has a blade 10 and rotates around a rotation axis 4 extending in the horizontal direction, and an anemometer 7 attached to the nacelle 5.
  • the wind turbine blades 10 are radially attached so that the longitudinal direction thereof is along the radial direction of the rotating shaft 4. That is, the wind power generator 1 of this embodiment is a power generator using a horizontal axis lift type wind turbine.
  • the direction in which the rotating shaft 4 extends is not limited to the horizontal direction, and may be a direction inclined from the horizontal direction. Further, the number of wind turbine blades 10 is not limited to three.
  • the linear direction connecting the leading edge LE (the most advanced portion) and the trailing edge TE (the rearmost end portion) of the wind turbine blade 10 is referred to as the “chord direction”, and the leading edge LE and the trailing edge TE are defined as
  • the length of the connecting straight line is called the “blade chord length”
  • the direction perpendicular to the plane formed by the longitudinal direction of the wind turbine blade 10 and the chord direction is the “blade thickness direction”.
  • blade thickness The length in the blade thickness direction from the blade back surface 10a to the blade belly surface 10b is referred to as “blade thickness”
  • blade root the portion on the rotating shaft 4 side in the longitudinal direction of the wind turbine blade 10
  • wing tip the opposite side Is called the “wing tip”.
  • the wind turbine blade 10 is formed so that the blade back surface 10a and the blade belly surface 10b form a streamline shape over the entire length in the longitudinal direction. Specifically, as shown in FIG. 4, the blade thickness gradually increases from the leading edge LE toward the trailing edge TE, reaches the maximum blade thickness at the position P, and then gradually increases toward the trailing edge TE. Is thinner.
  • the peripheral edge of the back member 101 that forms the blade back surface 10a and the peripheral edge of the belly member 102 that forms the blade belly surface 10b are joined together by welding or the like.
  • a closed space is formed in the wind turbine blade 10 by the member 102.
  • the chord length gradually decreases from the blade root portion toward the blade tip portion, and the blade thickness decreases.
  • the angle of attack ⁇ which is the angle formed by the direction of the synthetic air flow Vc and the direction of the chord
  • the lift of the wind turbine blade 10 increases and the rotational force of the wind turbine blade 10 increases.
  • the angle of attack ⁇ is equal to or greater than a predetermined angle
  • an air flow does not flow along the blade back surface 10a, but a separation phenomenon occurs in which the air flow is separated from the blade back surface 10a, and the lift of the wind turbine blade 10 decreases.
  • the wind turbine blade 10 is connected to the rotary shaft 4 so as to be rotatable, and the mounting angle (pitch angle) of the wind turbine blade 10 is set so as to have an optimum angle of attack ⁇ according to the wind direction wind speed.
  • the yaw control for changing the direction of the rotor 6 (nacelle 35) according to the wind direction so that the rotor 6 can receive wind from the front is not sufficient, and there has been a problem that peeling occurs on the blade back surface 10a frequently. .
  • the blade root portion (FIG. 3B) of the wind turbine blade 10 has a lower rotation speed than the blade tip portion (FIG. 3A), and the air flow Vr due to the rotation of the wind turbine blade 10 is slower. Therefore, the blade root portion has a larger angle of attack ⁇ than the blade tip portion, which cannot be handled by pitch control, and the rate of deceleration of the combined air flow (Vc ′ ⁇ Vc) due to natural wind deceleration (Vw ′ ⁇ Vw). Is large, the wind speed is likely to decrease, and a peeling phenomenon is likely to occur.
  • the blade root portion with a low rotational speed has a lower Reynolds number than the blade tip portion, and a laminar boundary layer is formed around the blade root portion, so that a separation phenomenon is likely to occur at the blade root portion.
  • the blade root portion has a larger curvature than the blade tip portion with a thin blade thickness. Therefore, it can be said that the blade root portion is more likely to cause a separation phenomenon on the blade back surface 10a than the blade tip portion. .
  • ⁇ Protrusion 20 of windmill blade 10 >> In the wind turbine generator 1 of the present embodiment, in order to suppress the separation phenomenon that occurs on the blade back surface 10a, the front of the wind turbine blade 10 in the blade back surface 10a of the wind turbine blade 10 as shown in FIGS.
  • Protrusions 20 are fixedly provided on the edge side, on the blade root portion side (rotary shaft side 4) in the longitudinal direction of the wind turbine blade 10.
  • the protrusion 20 protrudes from the blade back surface 10a toward the outside in the direction intersecting the blade back surface 10a.
  • the blade rear surface 10a is a portion excluding the front edge LE and the rear edge TE of the wind turbine blade 10. Further, the front edge side portion of the blade back surface 10a is a portion on the front edge side with respect to the central portion of the wind turbine blade 10 in the chord direction, and is preferably 1 from the front edge LE of the wind turbine blade 10 to the chord length. This is a portion within a range extending to the trailing edge TE side along the chord direction by a length of / 3.
  • the protrusion 20 is located on the front edge side of the maximum blade thickness position P at which the blade thickness from the blade back surface 10 a to the blade belly surface 10 b becomes the maximum. Is provided.
  • the portion on the blade root side of the blade back surface 10 a is a portion closer to the blade root than the center in the longitudinal direction of the wind turbine blade 10.
  • the tip of the blade extends along the longitudinal direction from the end on the blade root side of the wind turbine blade 10 by a length (L / 3) that is 1/3 of the total length (L) of the wind turbine blade 10.
  • a plurality of protrusions 20 are provided side by side in the longitudinal direction over a range extending to the side.
  • the separation phenomenon is more likely to occur when the airflow flowing on the blade back surface 10a is laminar than when it is turbulent.
  • the vortex motion of the turbulent air flow mixes the high-speed turbulent air flow and the almost stopped air flow near the wall surface, and the momentum exchange is intensely performed. For this reason, since momentum is supplied to the air in the vicinity of the wall surface and flow is ensured, it is more difficult to separate than the laminar boundary layer. Therefore, as in the wind turbine blade 10 of the present embodiment, by providing the protrusion 20 on the blade back surface 10a, the air flow flowing on the blade back surface 10a collides with the protrusion 20, and as shown in FIG.
  • a vortex (turbulent flow) can be generated on the blade 10a, and the vortex can generate a turbulent air flow on the blade back surface 10a to suppress the separation phenomenon generated on the blade back surface 10a. Therefore, it is possible to suppress a decrease in rotational efficiency of the wind turbine blade 10. Moreover, since the pressure drop on the blade back surface 10a as shown in FIG. 3B can be suppressed and the force for pulling the blade back surface 10a outward can be reduced, damage to the wind turbine blade 10 can be suppressed.
  • the projection part 20 is made into the column shape in FIG.2 and FIG.4, it is not restricted to this. Any shape may be used as long as vortices (turbulent flow) can be generated by the protrusions 20, for example, a triangular pyramid shape, a prismatic shape, or a plate shape having a triangular cross section when viewed in the longitudinal direction. Moreover, the vortex attenuation
  • the height of the protrusion 20 is preferably set to a height at which a vortex capable of mixing the boundary layer flow on the blade back surface 10a and the air flow away from the blade back surface 10a is generated.
  • a protrusion is provided on the front edge LE of the wind turbine blade 10. Then, since a vortex (turbulent flow) is generated at a point away from the separation start point on the blade back surface 10a, the vortex is attenuated at the separation start point, and there is a possibility that the separation phenomenon generated on the blade back surface 10a cannot be suppressed. . Further, if a protrusion is provided on the leading edge LE of the wind turbine blade 10, a vortex may flow into the blade abdomen surface 10b side, which may cause adverse effects.
  • the probability that the protrusion is located in a portion downstream of the separation start point, that is, a portion where the air flow is separated from the blade back surface 10a. Get higher.
  • the air flow does not hit the protrusions, vortices cannot be generated by the protrusions, and the peeling phenomenon that occurs at the blade back surface 10a cannot be suppressed.
  • the protrusion 20 on the front edge side portion of the wind turbine blade 10 in the blade back surface 10a, while suppressing the influence on the air flow flowing through the blade belly surface 10b,
  • the vortex generation point by the protrusion 20 is too short of the separation start point and the vortex is attenuated, or the protrusion 20 is positioned downstream of the separation start point and the vortex cannot be generated.
  • the peeling phenomenon that occurs on the back surface 10a can be suppressed.
  • the blade root portion of the wind turbine blade 10 has a larger cross-sectional curvature than the blade tip portion, and the inclination direction of the blade back surface 10a greatly changes with the maximum blade thickness position P as a boundary. Peeling phenomenon is likely to occur. Therefore, as in the wind turbine blade 10 of the present embodiment, by providing the protrusion 20 on the front edge side of the maximum blade thickness position P in the blade back surface 10a, the upstream side of the separation start point on the blade back surface 10a. The probability that the protrusion 20 is located at the position increases. Therefore, the peeling phenomenon which generate
  • the protrusion 20 provided on the blade back surface 10a has an effect of suppressing the separation phenomenon, but also serves as a resistance to the air flow flowing through the blade back surface 10a. Therefore, as in the wind turbine blade 10 of the present embodiment, the protrusion 20 is provided only on the blade root side portion of the blade back surface 10a, and the protrusion 20 is not provided on the blade tip portion side. . By doing so, it is possible to reduce the resistance of the air flow flowing through the blade tip while suppressing the peeling phenomenon that frequently occurs at the blade root. Further, the blade tip portion is less likely to cause a separation phenomenon than the blade root portion, so that there is little possibility of damage to the wind turbine blade 10 without the projection 20 and it can be said that there is no problem.
  • the protrusion 20 is fixed to the blade back surface 10a.
  • the protrusion 20 provided on the blade back surface 10a also serves as a resistance to airflow flowing through the blade back surface 10a. Therefore, the protrusion 20 may be allowed to appear and disappear with respect to the blade back surface 10a. Then, when the peeling phenomenon occurs on the blade back surface 10a, the protrusion 20 is moved to the outside side (the side from which the protrusion 20 protrudes) in the direction intersecting the blade back surface 10a, and the protrusion 20 is moved to the blade back surface 10a. By projecting from the blade, it is possible to suppress the peeling phenomenon that occurs on the blade back surface 10a.
  • the protrusion 20 is moved to the inner side of the wind turbine blade 10 in the direction intersecting the blade back surface 10a, and the height of the protrusion 20 protruding from the blade back surface 10a. Or by accommodating the entire protrusion 20 inside the wind turbine blade 10, the resistance of the airflow flowing through the blade back surface 10 a can be reduced, and the decrease in the rotational efficiency of the wind turbine blade 10 can be suppressed. can do.
  • 6A to 6D are views for explaining a mechanism for projecting and projecting the protrusion 20 with respect to the blade back surface 10a.
  • the actual blade back surface 10a is a curved surface
  • the blade back surface 10a is shown by a plane for the sake of simplicity.
  • the mechanism shown in FIG. 6 is an example, and any mechanism may be used as long as the protrusion 20 can be projected and retracted with respect to the blade back surface 10a.
  • 6A to 6C has a cylindrical shape, and the upper surface of the protrusion 20 forms part of the blade back surface 10a.
  • the back member 101 has a hole through which the protrusion 20 can be inserted.
  • the mechanism shown in FIG. 6A includes a fixed portion 30 housed in the wind turbine blade 10, an operating shaft 31 that is movable in the vertical direction with respect to the fixed portion 30, and a protrusion that is connected to the tip of the operating shaft 31. And a base 32 on which the unit 20 is placed.
  • the pressure on the blade back surface 10a decreases as shown in FIG. 3B described above. Therefore, in the mechanism shown in FIG. 6A, the pressure inside the wind turbine blade 10 and the pressure on the blade back surface 10a are reduced. Using the difference with the pressure, the protrusion 20 is moved in the vertical direction (direction intersecting the blade back surface 10a).
  • the movement of the protruding portion 20 is restricted by the contact between the base 32 and the fixed portion 30, and the upper surface of the protruding portion 20 and the upper surface of the back member 101 become flat surfaces.
  • the protruding and retracting mechanism of the protruding portion 20 can be simplified.
  • the present invention is not limited to this, and the protrusion 20 and the operating shaft 31 may be moved in the vertical direction using, for example, a hydraulic cylinder.
  • the protruding portion 20 may be maintained for a predetermined time.
  • the protruding state of the protruding portion 20 may be maintained for a predetermined time after the peeling phenomenon is eliminated. For this purpose, for example, as shown in FIG.
  • the base 32 may be a magnetic member, and the electromagnet 33 may be provided at the site of the back member 101 that contacts the base 32. By doing so, the electromagnet 33 is turned on and the base 32 is attracted to the back side member 101 for a predetermined period of time after the base 32 and the back side member 101 contact each other. After the elapse of time, the electromagnet 33 can be turned off to eliminate the attracted state between the back member 101 and the base 32.
  • a mechanism having an eccentric cam 34, a motor 35, and a control unit 36 may be used.
  • the control unit 36 detects, for example, a separation phenomenon on the blade back surface 10a, and drives the motor 35 to rotate the eccentric cam 34, thereby causing the protrusion 20 that is in contact with the peripheral edge of the eccentric cam 34 to move upward.
  • the protrusion 20 can be protruded from the blade back surface 10a.
  • the control unit 36 detects that the separation phenomenon on the blade back surface 10a has been eliminated, for example, and drives the motor 35 again to rotate the eccentric cam 34, thereby moving the projection 20 downward and performing the projection.
  • the part 20 can be accommodated inside the wind turbine blade 10.
  • the control unit 36 a casing 37 accommodated in the wind turbine blade 10, an electromagnetic solenoid 38 provided in the casing 37, a spring 39, and an operating shaft 40.
  • a mechanism having The operating shaft 40 has a shaft portion 40a having a projection 20 connected to the tip thereof, and a locking portion 40b protruding from the middle of the shaft portion 40a, and the spring 39 is located below the locking portion 40b. It passes through the shaft portion 40a.
  • the control unit 36 demagnetizes the coil of the electromagnetic solenoid 38, the operating shaft 40 is moved upward by the restoring force of the spring 39, and accordingly, the protrusion 20 can protrude from the blade back surface 10a.
  • the control unit 36 excites the coil of the electromagnetic solenoid 38 to overcome the restoring force of the spring 39 and move the operating shaft 40 downward, and accordingly, accommodate the protrusion 20 in the wind turbine blade 10. Can do.
  • the present invention is not limited to this.
  • the protrusion 20 may be a triangular pyramid as shown in FIG. 6D.
  • a part of the back member 101 is used as a lid member 101a that can be opened and closed, and when the protruding portion 20 is projected, the motor 35 having the rotation shaft 35a connected to the lid member 101a is rotated to open the lid member 101a.
  • the lid member 101a may be closed during the period in which the protrusion 20 is housed in the wind turbine blade 10.
  • the control unit 36 controls the movement of the protrusion 20, the control unit 36 needs to detect a peeling phenomenon.
  • the peeling phenomenon occurs when the angle of attack ⁇ becomes too large, for example, there is a method of detecting the peeling phenomenon by calculating the angle of attack ⁇ based on the measured value obtained from the wind direction anemometer 7. It is done. Specifically, if the calculated angle of attack ⁇ is equal to or greater than the threshold value, the control unit 36 determines that a peeling phenomenon has occurred, causes the protrusion 20 to protrude from the blade back surface 10a, and the calculated angle of attack ⁇ is the threshold value.
  • the mounting angle of the wind turbine blade 10 and the rotor 6 may be calculated in consideration of the direction.
  • a pressure sensor (not shown) that measures the pressure on the blade back surface 10a may be provided on the blade back surface 10a, and the occurrence or elimination of the peeling phenomenon may be detected based on the measurement value of the pressure sensor.
  • a vibration sensor (not shown) that measures vibration on the blade back surface 10a may be provided on the blade back surface 10a to detect the occurrence or elimination of the peeling phenomenon based on the measurement value of the vibration sensor.
  • control unit 36 may house the protrusion 20 in the wind turbine blade 10 after a predetermined time has elapsed since the protrusion 20 protruded from the blade back surface 10a. By doing so, it is possible to prevent the movement of the protrusion 20 from being repeated in a short time, and it is not necessary to detect the elimination of the peeling phenomenon, so that the control of the controller 36 can be facilitated. .
  • the predetermined time from when the protrusion 20 protrudes from the blade back surface 10a until the protrusion 20 is accommodated in the wind turbine blade 10 is equal to or longer than the time required until the protrusion 20 eliminates the peeling phenomenon, and the calculation, experience, etc. It is good to decide based on.
  • the projection part 20 is not immediately housed in the wind turbine blade 10, and the projection part is delayed by a predetermined time after the peeling phenomenon is eliminated. 20 may be accommodated inside the wind turbine blade 20. By doing so, the protrusion 20 can be accommodated after the peeling phenomenon is reliably eliminated.
  • the separation phenomenon may be detected based on a plurality of parameters, not limited to the detection of the separation phenomenon based on any one of the attack angle ⁇ and the pressure and vibration on the blade back surface 10a.
  • the protrusion 20 may be protruded from the blade back surface 10a at the timing when the precursor phenomenon of the separation phenomenon is detected based on the angle of attack ⁇ , pressure on the blade back surface 10a, vibration, or the like.
  • the protrusion 20 protrudes from the blade back surface 10a, and after the peeling phenomenon at the blade back surface 10a is eliminated, the protrusion 20
  • the protrusion 20 may be accommodated inside the wind turbine blade 10 after a predetermined time has elapsed since protruding from the blade back surface 10a or after a predetermined time has elapsed since the peeling phenomenon has been resolved. By doing so, it is possible to reduce the resistance of the air flow flowing through the blade back surface 10a when the separation phenomenon does not occur while suppressing the separation phenomenon occurring at the blade back surface 10a.
  • the plurality of protrusions 20 arranged in the longitudinal direction at the blade root part on the blade back surface 10a can be individually moved, and pressure sensors and vibration sensors for detecting a separation phenomenon are spaced apart in the longitudinal direction. A plurality of them may be opened. By doing so, the generation
  • the projection 20 can be accommodated inside the wind turbine blade 10. As a result, it is possible to reduce the resistance of the air flow flowing through the blade back surface 10a as much as possible while suppressing the separation phenomenon that occurs on the blade back surface 10a.
  • the blade back surface 10a (FIG. 2), but not limited to this, the blade back surface 10a extends from the leading edge LE to the trailing edge TE.
  • a plurality of rows of the protrusions 20 may be arranged at intervals in the direction along the line.
  • the protrusion 20 may be provided on the rear edge side of the maximum blade thickness position P, or one protrusion 20 may be provided on the blade back surface 10a.
  • you may provide the projection part 20 over the whole area of the longitudinal direction of the blade back surface 10a.
  • the above embodiment is for facilitating understanding of the present invention, and is not intended to limit the present invention.
  • the present invention can be changed and improved without departing from the gist thereof, and the present invention includes equivalents thereof.

Abstract

【課題】風車翼の翼腹面を流れる空気流への影響を抑えつつ、翼背面にて発生する剥離現象を抑制すること。 【解決手段】回転軸に放射状に取り付けられた揚力型の風車翼が風を受けて回転することにより発電機を駆動して発電する風力発電装置であって、前記風車翼の翼背面のうち、前記風車翼の前縁側であって、前記風車翼の長手方向における前記回転軸側の部位に、前記翼背面から突出する突起部が設けられていることを特徴とする風力発電装置である。

Description

風力発電装置
 本発明は、風力発電装置に関する。
 揚力型の風車翼を有する風力発電装置では、翼背面を流れる気流の速度が翼腹面を流れる気流の速度よりも速くなることにより、翼背面側に向く揚力が発生する。この揚力により風車翼が回転して発電機が駆動されることにより、風力エネルギーが電気エネルギーに変換される。但し、風車翼が受ける風向き等によっては、翼背面から空気流が離れる剥離現象が発生し、風車翼の回転効率が低下してしまう。そこで、風車翼の前縁(最先端部)に乱流形成促進部(凹凸部)を形成して、風車翼の前縁近傍の層流気流を乱流にすることで、翼背面にて発生する剥離現象を抑制する風車が提案されている(例えば、特許文献1参照)。
特開2003-227453号公報
 しかし、上記特許文献1のように、風車翼の前縁に乱流形成促進部を形成してしまうと、翼背面上の剥離開始地点よりも手前過ぎる地点で乱流が形成されるため、翼背面にて発生する剥離現象を抑制できない虞がある。また、翼腹面を流れる空気流が悪影響を受ける虞がある。
 本発明はこのような背景に鑑みてなされたものであって、風車翼の翼腹面を流れる空気流への影響を抑えつつ、翼背面にて発生する剥離現象を抑制することを目的とする。
 上記目的を達成するための本発明の一つは、回転軸に放射状に取り付けられた揚力型の風車翼が風を受けて回転することにより発電機を駆動して発電する風力発電装置であって、前記風車翼の翼背面のうち、前記風車翼の前縁側であって、前記風車翼の長手方向における前記回転軸側の部位に、前記翼背面から突出する突起部が設けられていることを特徴とする風力発電装置である。
 このような風力発電装置によれば、風車翼の翼腹面を流れる空気流への影響を抑えつつ、翼背面を流れる空気流が突起部に衝突することで発生する渦(乱流)により翼背面にて発生する剥離現象を抑制することができる。また、翼背面のうち翼先端部側の部位よりも翼根部側(回転軸側)の部位にて多発する剥離現象を抑制することができる。
 かかる風力発電装置であって、前記翼背面のうち、当該翼背面から翼腹面までの翼厚が最大となる位置よりも前記前縁側の部位に、前記突起部が設けられていることを特徴とする風力発電装置である。
 このような風力発電装置によれば、翼背面における剥離開始地点よりも上流側に突起部が位置する確率が高まり、翼背面にて発生する剥離現象をより確実に抑制することができる。
 かかる風力発電装置であって、前記突起部が前記翼背面に対して出没可能であることを特徴とする風力発電装置である。
 このような風力発電装置によれば、翼背面にて剥離現象が発生しているときには、翼背面から突起部を突出させることで、剥離現象を抑制することができ、また、翼背面にて剥離現象が発生していないときには、突起部の一部又は全体を風車翼の内部に収容することで、翼背面を流れる空気流の抵抗を小さくすることができる。
 かかる風力発電装置であって、前記翼背面における剥離現象、又は、その前兆現象が発生すると、前記突起部が前記翼背面から突出し、前記剥離現象が解消した後、前記突起部が前記翼背面から突出してから所定時間の経過後、又は、前記剥離現象が解消してから所定時間の経過後に、前記突起部が前記風車翼の内部に収容されることを特徴とする風力発電装置である。
 このような風力発電装置によれば、翼背面にて発生する剥離現象を抑制するとともに、翼背面にて剥離現象が発生していないときには、翼背面を流れる空気流の抵抗を小さくすることができる。
 かかる風力発電装置であって、前記風車翼の内部の圧力と前記翼背面上の圧力との差によって、前記突起部が前記翼背面から突出することを特徴とする風力発電装置である。
 このような風力発電装置によれば、翼背面に対して突起部を出没させる機構を簡素化することができ、また、省電力化を図ることができる。
 本発明の他の特徴については、添付図面及び本明細書の記載により明らかとなる。
 本発明によれば、風車翼の翼腹面を流れる空気流への影響を抑えつつ、翼背面にて発生する剥離現象を抑制することができる。
風力発電装置の概略斜視図である。 風車翼の平面図である。 図2の線AAにおける風車翼の断面周りの空気流を説明する図である。 図2の線BBにおける風車翼の断面周りの空気流を説明する図である。 図2の線BBにおける風車翼の断面図である。 突起部により翼背面に発生する渦を示す図である。 翼背面に対して突起部を出没させる機構の説明図である。 翼背面に対して突起部を出没させる機構の説明図である。 翼背面に対して突起部を出没させる機構の説明図である。 翼背面に対して突起部を出没させる機構の説明図である。
 図1は、風力発電装置1の概略斜視図である。図2は、風車翼10の平面図である。図3Aは、図2の線AAにおける風車翼10の断面周りの空気流を説明する図であり、図3Bは、図2の線BBにおける風車翼10の断面周りの空気流を説明する図である。図4は、図2の線BBにおける風車翼10の断面図である。図5は、突起部20により翼背面10aに発生する渦を示す図である。
<<風力発電装置1>>
 風力発電装置1は、地面等の基礎上に設置されるタワー2と、タワー2の頂部に設置され、発電機3やその回転軸4等を収容するナセル5と、揚力型の3本の風車翼10を有し、水平方向に延びる回転軸4周りに回転するロータ6と、ナセル5に取り付けられた風向風速計7と、を有する。風車翼10は、その長手方向が回転軸4の径方向に沿うように、放射状に取り付けられている。つまり、本実施形態の風力発電装置1は、水平軸揚力型風車を利用した発電装置である。なお、回転軸4の延びる方向は水平方向に限らず、水平方向から傾いた方向であってもよい。また、風車翼10の数は3本に限定されるものではない。
 以下の説明のため、風車翼10の前縁LE(最先端部)と後縁TE(最後端部)とを結ぶ直線方向を「翼弦方向」と呼び、前縁LEと後縁TEとを結ぶ直線の長さを「翼弦長」と呼び、風車翼10の長手方向及び翼弦方向で形成される面に直交する方向(つまり図2の紙面に垂直な方向)を「翼厚方向」と呼び、翼背面10aから翼腹面10bまでの翼厚方向の長さを「翼厚」と呼び、風車翼10の長手方向における回転軸4側の部位を「翼根部」と呼び、その反対側の部位を「翼先端部」と呼ぶ。
 風車翼10は、長手方向の全長に亘って翼背面10a及び翼腹面10bが流線形状を成すように形成されている。詳しくは、図4に示すように、前縁LEから後縁TEに向かって徐々に翼厚が厚くなり、位置Pにて最大翼厚となった後、後縁TEに向かって徐々に翼厚が薄くなっている。なお、本実施形態の風車翼10では、翼背面10aを形成する背側部材101の周縁と翼腹面10bを形成する腹側部材102の周縁とが溶接等により接合され、背側部材101と腹側部材102によって風車翼10内に閉空間が形成されている。また、風車翼10では、図2に示すように、翼根部から翼先端部に向かって徐々に翼弦長が減少し、且つ、翼厚が薄くなっている。
 そして、風車翼10が風を受け、風車翼10の前縁LEから後縁TEへと空気流が流れると、翼背面10a側と翼腹面10b側との空気流の速度差により、翼背面10aの外側に向く揚力が発生する。その結果、風車翼10(ロータ6)が回転軸4と共に回転し、回転軸4の回転力が発電機3に伝達され、発電機3が駆動して発電する。
<<翼背面10aにおける剥離現象>>
 風車翼10は、図3に示すように、自然の風による空気流Vwと、風車翼10の回転による空気流Vrと、の合成空気流Vcを受ける。この合成空気流Vcの方向と翼弦方向とで成す角度である迎え角αを大きくする程に、風車翼10の揚力が高まり、風車翼10の回転力が増す。但し、迎え角αが所定角以上になると、翼背面10aに沿って空気流が流れず、翼背面10aから空気流が離れる剥離現象が発生し、風車翼10の揚力が減少してしまう。
 そのため、風力発電装置では、例えば、風車翼10を回転軸4に対して回動可能に連結し、風向風速に応じて最適な迎え角αとなるように、風車翼10の取り付け角度(ピッチ角)を調整するピッチ制御や、ロータ6が正面から風を受けられるように、風向に応じてロータ6(ナセル35)の向きを変えるヨー制御等が実施されている。しかし、例えば日本の山岳地帯のように、風向風速が激しく変動する地域では、ピッチ制御やヨー制御では対応しきれずに、翼背面10aにおける剥離現象が頻繁に発生してしまうという問題が起こっていた。
 そして、翼背面10aにおいて剥離現象が発生すると、図3Bに示すように、翼背面10a上の圧力が低下し、負圧領域が形成されてしまう。このため、翼内空間と翼背面10a上とで圧力差が生じ、翼背面10aを外側に引っ張る力が翼背面10a(背側部材101)に掛かってしまう。そうすると、風車の回転が減速されたり、翼背面10aの外形が変形したり、また、本実施形態のように背側部材101と腹側部材102とが接合された風車翼10では前縁LE部分に亀裂が生じたりして、風車翼10が損傷する虞がある。
 特に、風車翼10の翼根部(図3B)は翼先端部(図3A)に比べ、回転速度が遅く、風車翼10の回転による空気流Vrの速度が遅い。そのため、翼根部は翼先端部に比べ、迎え角αが大きく、ピッチ制御では対応しきれず、また、自然の風の減速(Vw’→Vw)による合成空気流の減速割合(Vc’→Vc)が大きく、風速が減少し易く、剥離現象が発生し易い。また、回転速度が遅い翼根部は翼先端部に比べてレイノルズ数が低い値となり、翼根部の周囲には層流境界層が形成されるため、翼根部では剥離現象が発生し易い状態にあることや、翼厚の薄い翼先端部に比べて翼根部は曲率の大きい断面となっていることなどからも、翼根部は翼先端部に比べ、翼背面10aにおける剥離現象が発生し易いと言える。
<<風車翼10の突起部20>>
 本実施形態の風力発電装置1では、翼背面10aにて発生する剥離現象を抑制するために、図2、図4に示すように、風車翼10の翼背面10aのうち、風車翼10の前縁側であって、風車翼10の長手方向における翼根部側(回転軸側4)の部位に、突起部20が固定して設けられている。突起部20は、翼背面10aと交差する方向の外部側に向かって、翼背面10aから突出している。
 なお、翼背面10aとは風車翼10の前縁LEと後縁TEを除く部位である。また、翼背面10aのうちの前縁側の部位とは、風車翼10の翼弦方向における中央部よりも前縁側の部位であり、好ましくは、風車翼10の前縁LEから翼弦長の1/3の長さだけ翼弦方向に沿って後縁TE側に延びた範囲内の部位である。本実施形態では、図4に示すように、翼背面10aのうち、翼背面10aから翼腹面10bまでの翼厚が最大となる最大翼厚位置Pよりも前縁側の部位に、突起部20が設けられている。
 また、翼背面10aのうちの翼根部側の部位とは、風車翼10の長手方向における中央部よりも翼根部側の部位である。本実施形態では、図2に示すように、風車翼10の翼根部側の端から風車翼10の全長(L)の1/3の長さ(L/3)だけ長手方向に沿って翼先端側に延びた範囲に亘り、複数の突起部20が長手方向に間隔を空けて並んで設けられている。
 ところで、翼背面10a上を流れる空気流が層流である方が乱流であるよりも剥離現象が発生し易い。乱流境界層では、乱流空気流の渦運動により、高速の乱流空気流と壁面近くのほぼ停止した運動量の小さい空気流が混合され、運動量交換が激しく行われる。このため、壁面近傍の空気へ運動量が供給されて流動が確保されるため、層流境界層よりも剥離しにくい。そのため、本実施形態の風車翼10のように、翼背面10aに突起部20を設けることで、翼背面10a上を流れる空気流が突起部20に衝突し、図5に示すように、翼背面10a上に渦(乱流)を発生させることができ、その渦により、翼背面10a上に乱流空気流を発生させて翼背面10aにて発生する剥離現象を抑制することができる。よって、風車翼10の回転効率の低下を抑えることができる。また、図3Bに示すような翼背面10a上の圧力低下を抑えることができ、翼背面10aを外側に引っ張る力を低減できるため、風車翼10の損傷を抑制することができる。
 なお、図2や図4では突起部20を円柱形状としているが、これに限らない。突起部20により渦(乱流)を発生させることができれば何れの形状でもよく、例えば、三角錐形状や、角柱形状や、長手方向に見た断面が三角形である板形状であってもよい。また、長手方向に並ぶ突起部20の間隔を、各突起部20により形成される渦が互いに干渉しない程度に離すことで、渦の減衰を抑制することができる。また、突起部20の高さは、翼背面10a上の境界層流と翼背面10aから離れた空気流とを混合させることのできる渦が発生する高さに設定するとよい。
 ここで仮に、風車翼10の前縁LEに突起部を設けたとする。そうすると、翼背面10a上の剥離開始地点から離れた地点で渦(乱流)が発生するため、剥離開始地点では渦が減衰し、翼背面10a上にて発生する剥離現象を抑制できない虞がある。また、風車翼10の前縁LEに突起部を設けると、翼腹面10b側にも渦が流入して悪影響が生じる虞がある。一方、翼背面10aのうち後縁側の部位に突起部を設けたとすると、剥離開始地点よりも下流側の部位、即ち、翼背面10aから空気流が離れた部位に、突起部が位置する確率が高くなる。そうすると、空気流が突起部に当たらないので、突起部により渦を発生させることができず、翼背面10aにて発生する剥離現象を抑制できない。これに対して、本実施形態の風車翼10では、翼背面10aのうち風車翼10の前縁側の部位に突起部20を設けることで、翼腹面10bを流れる空気流への影響を抑えつつ、突起部20による渦発生地点が剥離開始地点の手前過ぎて渦が減衰したり、突起部20が剥離開始地点の下流側に位置して渦を発生させることができなかったりすることを防ぎ、翼背面10aにて発生する剥離現象を抑制することができる。
 また、一般的に風車翼10の翼根部は翼先端部に比べて断面の曲率が大きく、最大翼厚位置Pを境に翼背面10aの傾斜方向が大きく変わるため、最大翼厚位置Pの近傍にて剥離現象が発生し易い。そのため、本実施形態の風車翼10のように、翼背面10aのうち最大翼厚位置Pよりも前縁側の部位に突起部20を設けることで、翼背面10aにおける剥離開始地点よりも上流側の位置に突起部20が位置する確率が高まる。よって、翼背面10aにて発生する剥離現象をより確実に抑制することができる。
 また、翼背面10aに設けられた突起部20は、剥離現象を抑制する作用を有する一方で、翼背面10aを流れる空気流の抵抗にもなる。そのため、本実施形態の風車翼10のように、翼背面10aのうち、翼根部側の部位にのみ突起部20を設け、翼先端部側の部位には突起部20を設けないようにするとよい。そうすることで、翼根部にて多発する剥離現象を抑制しつつ、翼先端部を流れる空気流の抵抗を小さくすることができる。また、翼先端部は翼根部に比べて剥離現象が発生し難いため、突起部20を設けなくとも風車翼10の損傷等の虞が少なく、問題ないと言える。
<<突起部20の変形例>>
 上記実施例では、翼背面10aに突起部20が固定して設けられている。但し、翼背面10aに設けられた突起部20は翼背面10aを流れる空気流の抵抗にもなる。そのため、翼背面10aに対して突起部20を出没可能にしてもよい。そうすると、翼背面10aにて剥離現象が発生しているときには、翼背面10aと交差する方向における外部側(突起部20が突出する側)に突起部20を移動させ、突起部20を翼背面10aから突出させることで、翼背面10aにて発生する剥離現象を抑制することができる。一方、翼背面10aにて剥離現象が発生していないときには、翼背面10aと交差する方向における風車翼10の内部側に突起部20を移動させ、翼背面10aから突出する突起部20の高さを低くしたり、突起部20の全体を風車翼10の内部に収容したりすることで、翼背面10aを流れる空気流の抵抗を小さくすることができ、風車翼10の回転効率の低下を抑制することができる。
 図6Aから図6Dは、翼背面10aに対して突起部20を出没させる機構を説明する図である。なお、実際の翼背面10aは曲面となっているが、図6では説明の簡略のために翼背面10aを平面で示す。また、図6に示す機構は一例であり、翼背面10aに対して突起部20を出没可能な機構であれば何れの機構でもよい。また、図6Aから図6Cの突起部20は円柱形状を成し、突起部20の上面が翼背面10aの一部を成している。また、背側部材101には突起部20が挿通可能な孔が形成されている。
 例えば、図6Aに示す機構は、風車翼10の内部に収容された固定部30と、固定部30に対して上下方向に移動可能な作動軸31と、作動軸31の先端に連結され且つ突起部20が載置された基台32とを有する。翼背面10aにて剥離現象が発生すると、前述の図3Bに示すように翼背面10a上の圧力が低下するため、図6Aに示す機構では、風車翼10の内部の圧力と翼背面10a上の圧力との差を利用して、上下方向(翼背面10aと交差する方向)に突起部20を移動させる。具体的に説明すると、翼背面10aにて剥離現象が発生して翼背面10a上の圧力が低下すると、突起部20は上方に引っ張られて基台32や作動軸31と共に上方に移動して翼背面10aから突出する。なお、この時、基台32と背側部材101との当接により突起部20の移動が規制される。そして、剥離現象が解消して翼背面10a上の圧力が高まると、突起部20は自重により基台32や作動軸31と共に下方に移動して風車翼20の内部に収容される。なお、この時、基台32と固定部30との当接により突起部20の移動が規制され、突起部20の上面と背側部材101の上面とが平坦な面となる。このように、風車翼10の内部の圧力と翼背面10a上の圧力との差を利用して突起部20を出没させることで、突起部20の出没機構を簡素化することができる。また、モーター等を利用しないため省電力化を図ることができる。但し、これに限らず、例えば油圧シリンダ等を利用して、突起部20や作動軸31を上下方向に移動してもよい。
 また、剥離現象の発生時には、翼背面10aに対する空気流の剥離や再接触が繰り返され、翼背面10a上の圧力変動が激しくなる場合がある。そうすると、短時間の間に突起部20の上下方向の移動が繰り返され、安定的に渦を発生させることができなかったり、出没機構の故障に繋がったりする。そこで、翼背面10a上の圧力低下により突起部20が一度突出されたら、突起部20の突出状態が所定時間保持されるようにしてもよい。又は、剥離現象が解消してからも突起部20の突出状態が所定時間保持されるようにしてもよい。そのために、例えば、図6Aに示すように、基台32を磁性部材とし、基台32と当接する背側部材101の部位に電磁石33を設けるとよい。そうすることで、基台32と背側部材101とが当接してから所定時間が経過するまでの期間は電磁石33をオン状態にして背側部材101に基台32を吸着させ、所定時間の経過後は電磁石33をオフ状態にして背側部材101と基台32との吸着状態を解消することができる。
 また、図6Aに示す機構に限らず、例えば、図6Bに示すように、偏心カム34と、モーター35と、制御部36とを有する機構でもよい。この場合、制御部36が、例えば翼背面10aでの剥離現象を検知し、モーター35を駆動して偏心カム34を回転させることで、偏心カム34の周縁に当接している突起部20を上方に移動させて翼背面10aから突起部20を突出さることができる。また、制御部36が、例えば翼背面10aでの剥離現象が解消されたことを検知し、モーター35を再び駆動して偏心カム34を回転させることで、突起部20を下方に移動させて突起部20を風車翼10の内部に収容することができる。
 また、例えば、図6Cに示すように、制御部36と、風車翼10の内部に収容された筐体37と、筐体37内に設けられた電磁ソレノイド38と、バネ39と、作動軸40とを有する機構でもよい。なお、作動軸40は、先端に突起部20が連結された軸部40aと、軸部40aの途中から突出した係止部40bとを有し、バネ39は、係止部40bよりも下方の軸部40aに通されている。この場合、制御部36が電磁ソレノイド38のコイルを消磁することで、バネ39の復元力により作動軸40が上方へ移動し、それに伴って突起部20を翼背面10aから突出させることができる。また、制御部36が電磁ソレノイド38のコイルを励磁することで、バネ39の復元力に打ち勝って作動軸40が下方へ移動し、それに伴って突起部20を風車翼10の内部に収容することができる。
 また、図6Aから図6Cでは円柱形状である突起部20を例に挙げているが、これに限らず、例えば、図6Dに示すように三角錐形状である突起部20でもよい。但し、その場合、突起部20を風車翼10の内部に収容したときに、突起部20を挿通するために背側部材101に設けられた孔を塞ぐ事ができない。そこで、背側部材101の一部を開閉可能な蓋部材101aとし、突起部20を突出させる際には、蓋部材101aに回転軸35aが接続されたモーター35を回転して蓋部材101aを開き、突起部20を風車翼10の内部に収容している期間は蓋部材101aを閉じておくようにするとよい。
 また、制御部36が突起部20の移動を制御する場合、制御部36は剥離現象を検知する必要がある。前述のように、迎え角αが大きくなり過ぎると剥離現象が発生するため、例えば、風向風速計7から得られる計測値に基づき迎え角αを算出することによって、剥離現象を検知する方法が挙げられる。具体的には、制御部36が、算出した迎え角αが閾値以上であれば剥離現象が発生していると判断して突起部20を翼背面10aから突出させ、算出した迎え角αが閾値未満になれば剥離現象が解消されたと判断して突起部20を風車翼10の内部に収容する制御を行うようにするとよい。また、より正確に剥離現象を検知するために、ピッチ制御やヨー制御を実施する風力発電装置1の場合には、風向と風速の計測値に加えて、風車翼10の取り付け角度やロータ6の向きも加味して、迎え角αを算出するとよい。
 また、剥離現象が発生すると、翼背面10a上の圧力が低下する。そのため、翼背面10a上の圧力を計測する圧力センサー(不図示)を翼背面10a上に設け、圧力センサーの計測値に基づき剥離現象の発生や解消を検知するようにしてもよい。また、剥離現象が発生すると、翼背面10aに対する空気流の剥離や再接触が繰り返され、翼背面10a上に振動が生じる。そのため、翼背面10a上の振動を計測する振動センサー(不図示)を翼背面10aに設け、振動センサーの計測値に基づき剥離現象の発生や解消を検知するようにしてもよい。
 また、風向風速、圧力、振動等の計測値は短時間で変化する場合があり、短時間の間に突起部20の移動が繰り返され、安定的に渦を発生させることができなかったり、出没機構の故障に繋がったりする。そこで、制御部36が、翼背面10aから突起部20を突出させてから所定時間の経過後に、突起部20を風車翼10の内部に収容するようにしてもよい。そうすることで、短時間の間に突起部20の移動が繰り返されてしまうことを防止でき、また、剥離現象の解消を検知する必要がなくなるため制御部36の制御を容易にすることができる。なお、突起部20を翼背面10aから突出させてから風車翼10の内部に収容するまでの所定時間は、突起部20により剥離現象が解消されるまでに要する時間以上とし、計算や経験値等に基づき決定するとよい。又は、制御部36が、剥離現象が解消したことを検知し後も、突起部20を直ぐに風車翼10の内部に収容せずに、剥離現象が解消してから所定時間遅らせたタイミングで突起部20を風車翼20の内部に収容するようにしてもよい。そうすることで、剥離現象が確実に解消された後に突起部20を収容することができる。
 また、迎え角αや翼背面10a上の圧力や振動のうちの何れか1つのパラメーターに基づき剥離現象を検知するに限らず、複数のパラメーターに基づき剥離現象を検知するようにしてもよい。また、迎え角αや翼背面10a上の圧力や振動等に基づき剥離現象の前兆現象を検知したタイミングで突起部20を翼背面10aから突出させるようにしてもよい。
 以上のように、翼背面10aにおける剥離現象、又は、その前兆現象が発生すると、突起部20が翼背面10aから突出するようにし、翼背面10aにおける剥離現象が解消された後、突起部20が翼背面10aから突出してから所定時間の経過後、又は、剥離現象が解消してから所定時間の経過後に、突起部20が風車翼10の内部に収容されるようにするとよい。そうすることで、翼背面10aにて発生する剥離現象を抑制しつつ、剥離現象が発生していないときには翼背面10aを流れる空気流の抵抗を小さくすることができる。
 また、翼背面10aにおける翼根部側の部位において長手方向に並ぶ複数の突起部20を、それぞれ個別に移動可能とし、且つ、剥離現象を検知するための圧力センサーや振動センサーを長手方向に間隔を開けて複数配置してもよい。そうすることで、風車翼10の長手方向における剥離現象の発生位置を特定し、剥離現象が発生している領域の突起部20のみを翼背面10aから突出させ、剥離現象が発生していない領域の突起部20は風車翼10の内部に収容しておくことができる。その結果、翼背面10aにて発生する剥離現象を抑制しつつ、翼背面10aを流れる空気流の抵抗を出来る限り小さくすることができる。
 また、上記実施例では、長手方向に沿う突起部20の列が1列だけ翼背面10aに形成されているが(図2)、これに限らず、前縁LEから後縁TEにかけて翼背面10aに沿う方向に間隔を空けて突起部20の列を複数並べてもよい。また、最大翼厚位置Pよりも後縁側の部位に突起部20を設けてもよいし、翼背面10aに設ける突起部20を1つにしてもよい。また、翼背面10aの長手方向の全域に亘って突起部20を設けてもよい。
 以上、上記実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明にはその等価物も含まれる。
1 風力発電装置、2 タワー、3 発電機、4 回転軸、5 ナセル、6 ロータ、
7 風向風速計、10 風車翼、10a 翼背面、10b 翼腹面、
101 背側部材、102 腹側部材、20 突起部、30 固定部、31 作動軸、
32 基台、33 電磁石、34 偏心カム、35 モーター、36 制御部、
37 筐体、38 電磁ソレノイド、39 バネ、40 作動軸、

Claims (5)

  1.  回転軸に放射状に取り付けられた揚力型の風車翼が風を受けて回転することにより発電機を駆動して発電する風力発電装置であって、
     前記風車翼の翼背面のうち、前記風車翼の前縁側であって、前記風車翼の長手方向における前記回転軸側の部位に、前記翼背面から突出する突起部が設けられていることを特徴とする風力発電装置。
  2.  請求項1に記載の風力発電装置であって、
     前記翼背面のうち、当該翼背面から翼腹面までの翼厚が最大となる位置よりも前記前縁側の部位に、前記突起部が設けられていることを特徴とする風力発電装置。
  3.  請求項1又は請求項2に記載の風力発電装置であって、
     前記突起部が前記翼背面に対して出没可能であることを特徴とする風力発電装置。
  4.  請求項3に記載の風力発電装置であって、
     前記翼背面における剥離現象、又は、その前兆現象が発生すると、前記突起部が前記翼背面から突出し、
     前記剥離現象が解消した後、前記突起部が前記翼背面から突出してから所定時間の経過後、又は、前記剥離現象が解消してから所定時間の経過後に、前記突起部が前記風車翼の内部に収容されることを特徴とする風力発電装置。
  5.  請求項3又は請求項4に記載の風力発電装置であって、
     前記風車翼の内部の圧力と前記翼背面上の圧力との差によって、前記突起部が前記翼背面から突出することを特徴とする風力発電装置。
PCT/JP2014/055477 2014-03-04 2014-03-04 風力発電装置 WO2015132882A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2014/055477 WO2015132882A1 (ja) 2014-03-04 2014-03-04 風力発電装置
EP14885053.0A EP3115599A4 (en) 2014-03-04 2014-03-04 Wind power generation device
JP2015512411A JP6189940B2 (ja) 2014-03-04 2014-03-04 風力発電装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/055477 WO2015132882A1 (ja) 2014-03-04 2014-03-04 風力発電装置

Publications (1)

Publication Number Publication Date
WO2015132882A1 true WO2015132882A1 (ja) 2015-09-11

Family

ID=54054722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055477 WO2015132882A1 (ja) 2014-03-04 2014-03-04 風力発電装置

Country Status (3)

Country Link
EP (1) EP3115599A4 (ja)
JP (1) JP6189940B2 (ja)
WO (1) WO2015132882A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7063973B1 (ja) 2020-11-27 2022-05-09 三菱重工業株式会社 風車翼用のボルテックスジェネレータ、風車翼及び風力発電装置並びに風車翼の製造方法
JP2022533604A (ja) * 2019-05-17 2022-07-25 ヴォッベン プロパティーズ ゲーエムベーハー 風力発電所の設計運転方法、風力発電所、およびウィンドファーム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110537019A (zh) * 2017-02-20 2019-12-03 西门子歌美飒可再生能源公司 用于确定风力涡轮机转子叶片的污染状态的系统和方法
WO2023138823A1 (en) * 2022-01-18 2023-07-27 Siemens Gamesa Renewable Energy A/S Control system for maintaining stall margin of a wind turbine blade with an active aerodynamic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002029247A1 (en) * 2000-09-29 2002-04-11 Bonus Energy A/S Method for regulating a windmill and an apparatus for the use of said method
JP2003056452A (ja) * 2001-08-10 2003-02-26 Kanki Kenzo 風力発電機用ブレード及び風力発電機
WO2004099608A1 (en) * 2003-05-05 2004-11-18 Lm Glasfiber A/S Wind turbine blade with lift-regulating means
WO2009080316A2 (en) * 2007-12-21 2009-07-02 Vestas Wind Systems A/S Active flow control device and method for affecting a fluid boundary layer of a wind turbine blade
EP2128385A2 (en) * 2008-05-16 2009-12-02 Frontier Wind, LLC. Wind turbine with deployable air deflectors

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10319246A1 (de) * 2003-04-28 2004-12-16 Aloys Wobben Rotorblatt einer Windenergieanlage
DE102006028167A1 (de) * 2006-06-16 2007-12-20 Daubner & Stommel Gbr Bau-Werk-Planung Verfahren zum Betreiben einer zumindest einen fluiddynamischen Auftriebskörper aufweisenden Vorrichtung, insbesondere einer Windenergieanlage
WO2010034749A2 (en) * 2008-09-26 2010-04-01 Vestas Wind Systems A/S Flow control device and method of controlling a fluid boundary layer on a rotating wind turbine blade
US8038396B2 (en) * 2010-06-22 2011-10-18 General Electric Company Vortex generator assembly for use with a wind turbine rotor blade and method for assembling a wind turbine rotor blade
US8167554B2 (en) * 2011-01-28 2012-05-01 General Electric Corporation Actuatable surface features for wind turbine rotor blades
US20120141271A1 (en) * 2011-09-13 2012-06-07 General Electric Company Actuatable spoiler assemblies for wind turbine rotor blades
JP5594740B2 (ja) * 2011-12-28 2014-09-24 株式会社日本製鋼所 風力発電用ブレードおよび風力発電装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002029247A1 (en) * 2000-09-29 2002-04-11 Bonus Energy A/S Method for regulating a windmill and an apparatus for the use of said method
JP2003056452A (ja) * 2001-08-10 2003-02-26 Kanki Kenzo 風力発電機用ブレード及び風力発電機
WO2004099608A1 (en) * 2003-05-05 2004-11-18 Lm Glasfiber A/S Wind turbine blade with lift-regulating means
WO2009080316A2 (en) * 2007-12-21 2009-07-02 Vestas Wind Systems A/S Active flow control device and method for affecting a fluid boundary layer of a wind turbine blade
EP2128385A2 (en) * 2008-05-16 2009-12-02 Frontier Wind, LLC. Wind turbine with deployable air deflectors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3115599A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022533604A (ja) * 2019-05-17 2022-07-25 ヴォッベン プロパティーズ ゲーエムベーハー 風力発電所の設計運転方法、風力発電所、およびウィンドファーム
JP7063973B1 (ja) 2020-11-27 2022-05-09 三菱重工業株式会社 風車翼用のボルテックスジェネレータ、風車翼及び風力発電装置並びに風車翼の製造方法
JP2022085618A (ja) * 2020-11-27 2022-06-08 三菱重工業株式会社 風車翼用のボルテックスジェネレータ、風車翼及び風力発電装置並びに風車翼の製造方法

Also Published As

Publication number Publication date
JP6189940B2 (ja) 2017-08-30
JPWO2015132882A1 (ja) 2017-03-30
EP3115599A4 (en) 2017-03-29
EP3115599A1 (en) 2017-01-11

Similar Documents

Publication Publication Date Title
EP2399825B1 (en) Vortex Generator Assembly For Use With A Wind Turbine Rotor Blade
US9279412B2 (en) Flow control on a vertical axis wind turbine (VAWT)
JP6189940B2 (ja) 風力発電装置
EP3282120B1 (en) Wind turbine blade, wind turbine rotor, wind turbine power generating apparatus, and method of mounting vortex generator
EP3348824B1 (en) Vortex generator, installation method for the same, wind turbine blade, and wind turbine power generating apparatus
JP6067130B2 (ja) 風力発電装置
KR101368448B1 (ko) 풍력 발전 시스템 및 그 제어 방법
JP2012502222A (ja) 流体タービンシステム
JP2006177354A (ja) 風力タービンブレード上の能動的流れ変更
JP2009501304A (ja) 流体力学的な力を生成する要素
Schreck et al. HAWT dynamic stall response asymmetries under yawed flow conditions
JP5886475B2 (ja) 風力発電装置
JP2010121518A (ja) 縦軸式マグナス型風力発電装置
WO2016066170A1 (en) Turbulence sensor for wind turbines
KR101450611B1 (ko) 풍속 증폭형 풍력터빈
JP2019060237A (ja) 風車システムまたはウィンドファーム
JP6524396B2 (ja) 波力発電タービン
JP6354051B2 (ja) 波力発電タービン
KR101465638B1 (ko) 풍력발전기용 회전체
KR101331133B1 (ko) 풍력발전기용 블레이드
JP6357668B2 (ja) 波力発電タービン
RU106675U1 (ru) Ветрогенератор
WO2015145723A1 (ja) 風車翼及びそれを備えた風力発電装置
JP5371087B2 (ja) 風力発電機用ブレード
CN108368830B (zh) 风力涡轮机及在风力涡轮机中引起增升周期性失速的方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015512411

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14885053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014885053

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014885053

Country of ref document: EP