WO2015131759A1 - 换热板及板式换热器 - Google Patents

换热板及板式换热器 Download PDF

Info

Publication number
WO2015131759A1
WO2015131759A1 PCT/CN2015/073025 CN2015073025W WO2015131759A1 WO 2015131759 A1 WO2015131759 A1 WO 2015131759A1 CN 2015073025 W CN2015073025 W CN 2015073025W WO 2015131759 A1 WO2015131759 A1 WO 2015131759A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
heat exchange
central channel
plate according
plate
Prior art date
Application number
PCT/CN2015/073025
Other languages
English (en)
French (fr)
Inventor
拉尔斯·佩尔松
Original Assignee
丹佛斯微通道换热器(嘉兴)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 丹佛斯微通道换热器(嘉兴)有限公司 filed Critical 丹佛斯微通道换热器(嘉兴)有限公司
Priority to EP15758812.0A priority Critical patent/EP3115732A4/en
Publication of WO2015131759A1 publication Critical patent/WO2015131759A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/046Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/044Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being pontual, e.g. dimples
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media

Definitions

  • the invention relates to the fields of HVAC, automobile, refrigeration and transportation, in particular to a heat exchange plate and a plate heat exchanger using the same.
  • the current plate heat exchanger is mainly a channel structure characterized by herringbone (fishbone). This structure has better lateral flow priority and can achieve lateral flow distribution well, so that it has better heat exchange effect.
  • herringbone fishbone
  • the corrugation width of the herringbone structure and its assembly effect determine the welding space per unit area, so the strength is limited.
  • the channel crossing pattern between the chevron plates and the density of the solder joints determine the turbulence intensity generated when the fluid passes through the position. Under the condition of limited parameter variation, the turbulence intensity is limited, so that a large heat transfer enhancement effect cannot be obtained.
  • a heat exchange plate is provided, at least one surface of each heat exchange plate comprising ridges and grooves that are alternately arranged.
  • a plurality of fluid distribution adjustment structures are disposed on the crests of the ridges and/or the valleys of the grooves.
  • each of the fluid distribution adjustment structures includes a projection at each of the two edges of the crest or valley and a central channel between the two edges.
  • the protrusion includes any one of a cylinder, a rounded rectangular parallelepiped, a trapezoidal structure, and an arcuate protrusion.
  • the central channel comprises a straight channel and/or a channel formed by a multi-element curved structure.
  • a smooth connection structure is disposed between the protrusion and the surface of the heat exchange plate, and the multi-dimensional curved structure body includes a curved arc, a multivariate curve, a multi-arc line, and a straight line, a curve, and an arc. A combination of multiples.
  • the bottom of the central channel is substantially flush or concave relative to the crest or valley.
  • the portion between the two projections on each edge constitutes the inlet or outlet of the central channel.
  • the projections are spaced apart on the leading and/or trailing edges of the crest or valley.
  • the projections on the leading edge and the projections on the trailing edge are offset in a horizontal direction perpendicular to the direction in which the central channel extends.
  • the central channel is curved in the direction in which the peak or valley extends.
  • At least a portion of the projections are configured to at least partially cover the central channel to form a discontinuous central channel.
  • a part or all of the surface is provided with a semi-herringbone and/or chevron shape, or a structure pattern of two and more hemipletic and/or chevron shapes, each heat exchanger plate including along
  • the heat exchanger plates extend in opposite directions at the opposite ends of the fluid inlet and the fluid outlet, and the two heat exchange plates are assembled to form a manifold.
  • a plate heat exchanger in another aspect of the invention, includes the heat exchange plate described above.
  • the inventive concept of the present invention resides in providing various raised structures, curved structures or recessed structures on the flat edges of the ridges and/or grooves in the herringbone or fishbone heat exchange plates of the prior art. With such an arrangement, the heat exchange plates will generate more turbulence and increase heat transfer while maintaining consistent fluid distribution. In addition, the strength of the fluid passages in the heat exchange plates is also enhanced, which is advantageous for reducing the thickness of the heat exchange plates.
  • Figure 1 is a partial view of a surface of the herringbone heat exchange plate of the prior art
  • Figure 2 is a cross-sectional view taken along line A-A of Figure 1;
  • Figure 3a is a partial view of a ridge of a surface of a herringbone heat exchange plate according to an embodiment of the present invention
  • Figures 3b and 3c are cross-sectional views taken along line B-B and line C-C of Figure 3a, respectively;
  • Figure 4 is a view of the fluid flow direction of one surface of the heat exchange plate shown in Figure 3a;
  • Figure 5 is a view showing another modification of one surface of the heat exchange plate shown in Figure 3a;
  • Figure 6 is a view showing still another modification of one surface of the heat exchange plate shown in Figure 3a;
  • Figure 7 is a view showing still another modification of one surface of the heat exchange plate shown in Figure 3a;
  • Figure 8a is a view of another variation of the heat exchanger plate according to the present invention.
  • Figure 8b is a partial enlarged view of Figure 8a.
  • the plate heat exchanger includes a plurality of A-shaped heat exchange plates and V-shaped heat exchange plates stacked on each other between the end plate and the bottom plate (hereinafter referred to as a simple description for convenience).
  • the heat exchange plate may also be a combination of W-shaped and M-shaped heat exchanger plates, which are well known in the art and will not be described in detail herein, as long as a plurality of heat exchanger plates combined together can be formed. It is sufficient for the manifold to pass through the fluid.
  • the surface of the heat exchange plate may be provided with a pattern of a herringbone (A/V shape), a double herringbone (M/W shape) pattern structure or a more heavy herringbone pattern structure.
  • A/V shape a herringbone
  • M/W shape double herringbone
  • the pattern features on the heat exchanger plate may also be a hemi- or more-heavy semi-human figure.
  • Fig. 1 shows a heat exchange plate 10 which is a heat exchange plate having a herringbone (or fishbone) pattern structure. That is, a plurality of ridges 1 and grooves 2 are alternately arranged along the longitudinal direction of the heat exchange plate 10. The bottom of the trench 2 is shown by the dashed line in FIG. Those skilled in the art will appreciate that this structural arrangement is a typical design of existing herringbone heat exchanger plate patterns. Of course, the width of the ridge 1 and the groove 2 as well as the height of the ridge 1 and the depth of the groove 2 can be designed as needed. In Fig.
  • both the ridge 1 and the groove 2 have flat peaks and valleys 3, 4, respectively, the widths of which are indicated by the marks w1 and w2, respectively.
  • the widths w1 and w2 can be set to be the same or different. As shown in Figure 2 It is shown that the width w1 of the flat peak 3 of the ridge 1 is greater than the width w2 of the flat bottom 4 of the trench 2. Further, in the present example, the widths of the flat peaks 3 of the ridges 1 are all set to be the same, and accordingly the widths of the flat valleys 4 of the grooves 2 are also set to be identical to each other.
  • those skilled in the art can set the above structural parameters as needed. The above is only an example and is not to be construed as limiting the invention.
  • the present invention adds a plurality of fluid distribution adjustment structures to the flat peaks 3 of the ridges 1.
  • a plurality of fluid distribution adjustment structures may be added to the valley bottom 4.
  • the fluid distribution adjustment structure may include any one of a cylinder, a rounded rectangular parallelepiped, a trapezoidal structure, an arcuate protrusion, or any combination thereof.
  • the fluid split adjustment structure is provided only on the crests 3 of the ridge 1 of the heat exchange plate 10, but those skilled in the art can understand that the ditch can be similarly in the same manner based on the disclosure of the present invention.
  • the fluid distribution adjustment structure is provided on the bottom 4 of the tank 2. That is, the person skilled in the art can select the fluid distribution adjustment structure on one or both of the crests and valleys 3, 4 of the ridge 1 and/or the groove 2 as needed, without being limited to the present invention. The situation shown.
  • the adjacent one of the ridges 1 and 2 is referred to herein as a flow unit, although one skilled in the art can also consider two or more ridges and grooves.
  • the combination of slots is a flow unit.
  • the two edges of the crest 3 of the ridge 1 are designated or referred to as a leading edge 31 and a trailing edge 32.
  • the plurality of fluid distribution adjustment structures 5 are disposed at predetermined distances along the leading edge 31 and/or the trailing edge 32, respectively.
  • the fluid distribution adjustment structure 5 acts primarily to further adjust and distribute the fluid so that any structural arrangement such as a cylinder, a rounded rectangular parallelepiped, a trapezoidal structure, an arcuate projection can be used as the fluid described herein. Assign adjustment structure, not limited to any form of rest. In the present example, a small cylindrical recess and an intermediate gap between them are used as the fluid distribution adjusting structure 5.
  • the cylinders 51 can be arranged at the same spacing along the leading edge 31 or the trailing edge 32, and the cylinders 51 on the leading edge 31 and the trailing edge 32 can be one to one another in a direction perpendicular to the direction of extension of the leading edge 31 or the trailing edge 32. Corresponding or aligning settings, of course this is not required.
  • the cylinders 51 are located at the leading edge 31 and the trailing edge 32, respectively, in a direction perpendicular to the extending direction of the leading edge 31 or the trailing edge 32.
  • a central channel 6 between the cylinders 51 is also provided on the peak 3.
  • the fluid distribution adjustment structure 5 includes projections (e.g., cylinders 51) at the leading edge 31 and trailing edge 32 of the crests 3 of each ridge 1 and a central channel 6 between the two projections.
  • the protrusion is not limited to a regular-shaped structure such as a cylinder, a pit, a rounded rectangular parallelepiped, a trapezoidal structure, or the like, and may be an irregularly shaped structure such as an ellipse or a tip.
  • the central channel 6 comprises a straight channel and/or a channel formed by a multi-element curved structure. In this example, the central channel is set to be substantially V-shaped for illustrative purposes.
  • a cylindrical or small cylinder 51 is spaced apart along the leading edge 31 or the trailing edge 32.
  • a substantially opaque cross section is obtained in the longitudinal direction of the heat exchange plate 10 as shown in Fig. 3c.
  • This opaque or quasi-opaque cross-sectional feature is very important for the evaporation process.
  • the gaseous refrigerant in the two-phase refrigerant flowing from the fluid inlet of the heat exchanger plate 10 will flow away from the side to trigger the "boiling" process of the liquid refrigerant.
  • a small central channel 6 is located between the two cylinders 51, i.e., an intermediate gap between the two cylinders 51.
  • the central channel 6 can be used to evaporate liquid refrigerant. Since the depth of the central channel 6 is small, the boundary layer or liquid film thickness of the liquid refrigerant is relatively small, which is advantageous for enhancing the boiling process. In addition, there is considerable turbulence as the refrigerant passes through the above-mentioned regions. This is also advantageous for enhancing the boiling process.
  • the projections and the central channel are specifically illustrated in Figures 3a-3c, it will be appreciated that for better fluid dispensing adjustment, a smooth connection between the projections and the surface of the heat exchanger plate is provided, i.e., the projections There is a balanced transition between the surface of the heat exchanger plate.
  • the central channel 6 is generally formed by a multi-dimensional curved structure including a curved arc, a multivariate curve, a multivariate arc, and a combination of a plurality of straight lines, curves, and arcs. That is to say, the central channel 6 is also typically arranged to have a curved, smoothly transitioning curved surface structure.
  • center channel 6 may be disposed in a V-shaped shape that is concave with respect to the peak 3 as shown in FIG. 3, but is disposed on the two opposite edges 31 and 32 of the peak 3.
  • the open space between two adjacent cylindrical recesses 51 on the leading edge 31 or the trailing edge 32 is the inlet 71 of the flow cell formed by the adjacent one of the ridge 1 and the groove 2 and Exit 72.
  • the arrows show the flow direction of the fluid, and inlets 71 and outlets 72 on the leading edge 31 and the trailing edge 32 are employed to break the liquid refrigerant into small droplets. This is advantageous for the evaporation of the refrigerant.
  • the turbulence obtained here also enhances heat transfer.
  • the central channel 6 can be used to homogenize fluid distribution and reduce the thickness of the refrigerant boundary layer and liquid film.
  • FIG. 1 Another variation of the central channel in accordance with the present invention is illustrated in FIG. It will be apparent that the central channel 6 is arranged to extend substantially parallel to the leading edge 31 and/or the trailing edge 32 of the ridge 1 in Figure 3a.
  • the variation shown in Figure 5 differs from that the central channel 6' is arranged to be curved along the leading edge 31 and/or the trailing edge 32.
  • the central channel 6' is arranged in a curved form along the leading edge 31 and/or the trailing edge 32, although the central channel 6' may also be arranged to be curved in a direction other than the direction described above. Or bend in any form. Doing so will make the flow of the refrigerant smoother. Therefore, more active heat transfer zones (ie, heat transfer surfaces) will be obtained. product). In addition, more turbulence is created to enhance the boiling process.
  • FIG. 6 a discontinuous layout of the inlet and outlet is shown.
  • the small cylinders 51 having the same structure are no longer spaced apart along the leading edge 31 and/or the trailing edge 32, but are alternately arranged at predetermined intervals along the leading edge 31 and/or the trailing edge 32.
  • the flow cross section of the basic flow unit is reduced as compared to that shown in Figure 4, and the flow rate of the fluid such as the refrigerant will increase. This will generate more turbulence. This is advantageous for enhancing heat transfer.
  • top regions on the two edges of the leading edge 31 and the trailing edge 32 are enlarged such that greater strength is obtained when the two heat exchange plates are assembled to form a flow path for the fluid.
  • the arrows indicate the flow direction of a fluid such as a refrigerant.
  • FIG. 6 An example in which the peak top of the ridge has a discontinuous central channel is shown in FIG.
  • the central channel 6 is shown as being continuous in Figure 4, the central channel 6 may also be arranged in a form that is intermittently blocked.
  • the spacing between the small cylinders 51 disposed along the leading edge 31 and the trailing edge 32 is enlarged compared to the situation of FIG. 4 to be adjacent in the direction of extension of the leading edge 31 and/or the trailing edge 32.
  • the two small cylinders 51 accommodate a larger structural body 82 between them.
  • the structure 82 is sized to remain spaced apart from the adjacent small cylinder 51 on the leading edge 31 and/or the trailing edge 32 while partially or completely blocking the central channel 6.
  • the octagonal body, the oblong body or the chamfered rectangular parallelepiped 82 completely blocks the central channel 6 in a direction perpendicular to the leading edge 31 or the trailing edge 32, wherein the rectangular parallelepiped 82 is adjacent to four adjacent
  • the small cylinders 51 are spaced apart.
  • FIGs 8a and 8b an overall view of a heat exchange plate 10 in accordance with another embodiment of the present invention, and main features in the optimized technical solution of Figure 8a, are shown, respectively.
  • the heat exchange plate 10 includes ports 11, 12, 13, 14 for fluid. It will be appreciated that those skilled in the art will be able to select the appropriate ports 11, 12, 13, 14 for fluid inflow and outflow as desired.
  • FIG. 8b An enlarged view of the intermediate portion of the heat exchange plate 10 of Fig. 8a is shown in Fig. 8b.
  • the ridge 1 and the groove 2 are alternately disposed from left to right, and the plurality of fluid distribution adjusting structures 5 are disposed at intervals on the leading edge 31 and the trailing edge 32 of the ridge 1 (in the direction from the bottom to the top).
  • the fluid distribution adjustment structure 5 is arranged in a curved or meandering configuration as shown (for example, a generally double hook shape), such that at the leading edge 31 and the trailing edge 32
  • the middle portion produces a curved central channel 6'.
  • what is shown here is only an example, the purpose of which is to illustrate that a different manner of setting the fluid distribution adjustment structure as described above can be used for the heat exchange plate 10.
  • the structure shown in Figures 8a and 8b embodies a significant advantage of the present invention in the design of the groove and ridge width ratio. That is, by adjusting the proportional relationship between the width of the ridge and the groove, and corresponding to the size of the fluid adjusting structure, it is easy to obtain a heat exchange plate having a large degree of asymmetry.
  • the invention will provide a better evaporation effect, and under the same conditions, provide the user with Higher evaporation temperature; on the other hand, the invention also effectively reduces the channel pressure drop on the water side (auxiliary side) and improves the energy efficiency of the pump in the user unit system.
  • solder joints of two adjacent heat exchanger plates should be matched to each other when assembled together.
  • plate design patterns of generally W and M-shaped patterns can also be used in the present invention for common herringbone plate heat exchangers.
  • Two plates having the structural features described above can be assembled to form a manifold.
  • a herringbone plate heat exchanger one of the heat exchange plates is referred to as an A (M) shaped heat exchange plate, and the other matching heat exchange plate is referred to as a V (W) shaped heat exchange plate.
  • M A
  • W V
  • the above is a general terminology used in herringbone or fishbone plate heat exchangers. Pairs of heat exchange plates are assembled to form a plate heat exchanger.
  • the idea of the present invention is to combine the advantages of a herringbone heat exchange plate and a point wave heat exchanger.
  • the detailed advantages are explained and illustrated by the flow pattern and the heat transfer process within the plate heat exchanger.
  • the invention is used in an evaporator of a plate heat exchanger in which a two-phase refrigerant flows into a fluid passage on a heat exchanger plate.
  • a clear gap such as the groove 2 shown in Figure 1
  • the refrigerant will preferably flow away from the side.
  • the entire V/A (M/W) shaped center channel will be filled or filled. This is advantageous for the flow break allocation.
  • the refrigerant will enter from the inlet 71 on the leading edge 31 of the ridge 1.
  • a small entry space will control the liquid refrigerant to evenly distribute them.
  • the quasi-closed cross-sectional space will force the vapor of the gaseous refrigerant to flow in a meandering manner to prevent bypass flow.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种换热板(10)和使用这种换热板(10)的板式换热器,其中每个换热板(10)的至少一个表面包括交替布置的脊(1)和沟槽(2)。脊(1)的峰顶(3)和/或沟槽的谷底(4)上设置有多个流体分配调整结构。

Description

换热板及板式换热器
本申请要求于2014年3月4日递交的、申请号为201410076347.4、发明名称为“换热板及板式换热器”的中国专利申请的优先权,其全部内容通过引用并入本申请中。
技术领域
本发明涉及暖通空调、汽车、制冷以及运输领域,尤其涉及换热板以及使用该换热板的板式换热器。
背景技术
当前板式换热器主要是以人字形(鱼骨状)为特征的通道结构。这种结构具有较好横向流动优先性,能够很好的实现侧向的流动分配,从而具有较好的换热效果。然而,对于蒸发器和冷凝器这样的应用,人字形结构的角度范围相对固定,对于显著实现强化换热和增加强度(以实现减薄材料厚度)而言,其改进和改善的空间较小。人字形结构的波纹宽度及其装配效果,决定了单位面积上的焊接空间,因此强度上受到了限制。人字形板片之间的槽道交叉方式及其焊点密度等,决定了流体通过该位置时所产生的湍流强度。在有限的参量变化条件下,湍流强度受限,从而无法获得较大的强化换热效果。
有鉴于此,确有需要提供一种能够至少部分地解决上述问题的新型的换热板和板式换热器。
发明内容
本发明的目的旨在解决现有技术中存在的上述问题和缺陷的至少一个方面。
在本发明的一个方面中,提供了一种换热板,每一换热板的至少一个表面包括交替地布置的脊和沟槽。所述脊的峰顶和/或沟槽的谷底上设置有多个流体分配调整结构。
具体地,所述流体分配调整结构中的每个包括分别在峰顶或谷底的两边沿处的凸起以及在所述两个边沿之间的中心槽道。
具体地,所述凸起包括圆柱体、圆角长方体、梯形结构体、弧形突起中的任一种 或它们的任一组合,所述中心槽道包括平直槽道和/或由多元的曲面结构体形成的槽道。
具体地,所述凸起与所述换热板的表面之间设置有平滑的连接结构,所述多元的曲面结构体包括曲线弧线、多元曲线、多元弧线以及直线、曲线、弧线的多元体的组合。
具体地,所述中心槽道的底部相对于峰顶或谷底是大致平齐的或下凹的。
具体地,在每一边沿上的所述两个凸起之间的部分构成了中心槽道的入口或出口。
具体地,所述凸起间隔地设置在峰顶或谷底的前沿和/或后沿上。
具体地,所述前沿上的凸起与所述后沿上的凸起在垂直于中心槽道的延伸方向的水平方向上是错开的。
具体地,所述中心槽道在峰顶或谷底的延伸方向上是弯曲的。
具体地,所述凸起中的至少一部分凸起设置成至少部分地覆盖所述中心槽道以形成间断的中心槽道。
具体地,所述表面的一部分或全部设置有一重半人字形和/或人字形、或两重及两重以上的半人字形和/或人字形的结构图案,每一换热板包括沿着其换热板的延伸方向分别位于相对的两端处的流体进口和流体出口,所述两个换热板装配在一起以形成集流腔。
在本发明的另一方面中,提供了一种板式换热器。所述板式换热器包括上述的换热板。
本发明的发明构思在于在现有技术中的人字形或鱼骨状的换热板中的脊和/或沟槽的平坦边缘上设置各种凸起结构、弯曲结构或凹陷结构。通过这样的布置,换热板将产生更多的湍流并且提高了传热,同时保持了一致的流体分配。另外,还增强了换热板内的流体通道的强度,这对于减小换热板的厚度是有利的。
附图说明
本发明的这些和/或其他方面和优点从下面结合附图对优选实施例的描述中将变得明显和容易理解,其中:
图1是现有技术的所述的人字形换热板的一个表面的部分视图;
图2是沿图1中的线A-A切割的截面视图;
图3a是根据本发明一个实施例所述的人字形换热板的一个表面的脊的一部分视图,图3b和3c分别是沿图3a中的线B-B和线C-C切割的截面视图;
图4是图3a显示的换热板的一个表面的流体流向的视图;
图5是图3a显示的换热板的一个表面的另一变形例的视图;
图6是图3a显示的换热板的一个表面的又一变形例的视图;
图7是图3a显示的换热板的一个表面的又一变形例的视图;
图8a是根据本发明所述的换热板的另一变例的视图;和
图8b是图8a的局部放大视图。
具体实施方式
下面通过实施例,并结合附图1-8b,对本发明的技术方案作进一步具体的说明。在说明书中,相同或相似的附图标号指示相同或相似的部件。下述参照附图对本发明实施方式的说明旨在对本发明的总体发明构思进行解释,而不应当理解为对本发明的一种限制。
参见图1和2,示出本发明所述的板式换热器中的一个换热板的整体结构视图和相应的截面视图。如本领域技术人员所公知的,板式换热器包括在端板和底板之间的多个相互叠置在一起的A形换热板和V形换热板(以下为了描述简便,称为一对换热板)。当然,所述换热板还可以是W形和M形换热板的组合,这在本领域中是公知的,在此不再详细描述,只要组合在一起的多个换热板能够形成用于流体通过的集流腔即可。也就是说,所述换热板的表面可以设置有一重人字形(A/V形)的图案结构、两重人字形(M/W形)的图案结构或更多重的人字形图案结构。当然,所述换热板上的图案特征还可以是一重或更多重的半人字形。
需要注意的是,在下文将仅以板式换热器中相互配合的一对换热板中的一个换热板10为例进行说明,而在实际中可以以相同或相类似的方法将与之配合的另一换热板设置成具有与其配合或对称的结构图案。
图1示出了换热板10为具有人字形(或鱼骨状)图案结构的换热板。也就是,沿着换热板10的纵长方向交替地布置了多个脊1和沟槽2。沟槽2的底部由图1中的虚线示出。本领域技术人员可知,这种结构布置是现有的人字形换热板图案的典型设计。当然,可以根据需要设计脊1和沟槽2的宽度以及脊1的高度、沟槽2的深度等参数。在图2中,可见脊1和沟槽2都分别具有平坦峰顶和谷底3、4,它们的宽度分别由标记w1和w2表示。宽度w1和w2可以被设置成相同或不同。如图2所 示,脊1的平坦的峰顶3的宽度w1大于沟槽2的平坦的谷底4的宽度w2。另外,在本实例中,脊1的平坦峰顶3的宽度都设置成相同,相应地沟槽2的平坦的谷底4的宽度也设置成彼此相同。但是本领域技术人员可以根据需要设置上述结构参数。以上仅是一种示例,而不能理解成对本发明的一种限制。
如图3a-3c所示,为了实现产生更多的湍流和增强换热板10上的流体通道的强度,本发明在脊1的平坦的峰顶3上增设了多个流体分配调整结构。另外,还可以在谷底4上增设多个流体分配调整结构。所述流体分配调整结构可以包括圆柱体、圆角长方体、梯形结构体、弧形突起中的任一种或它们的任一组合。这里为了说明描述简明,仅在换热板10的脊1的峰顶3上设置了所述流体分流调整结构,但是本领域技术人员可以基于本发明的公开内容明白同样可以以类似的方式在沟槽2的谷底4上设置该流体分配调整结构。也就是,本领域技术人员可以根据需要选择在脊1和/或沟槽2的峰顶和谷底3、4中的一者或两者上设置所述流体分配调整结构,而不必限于本发明图示的情形。
如图3a所示,出于描述简便的目的,在此限定相邻的一个脊1和沟槽2被称为一个流动单元,当然本领域技术人员也可以认为两个或更多个脊和沟槽的组合为一个流动单元。脊1的峰顶3的两个边沿被定为或称为前沿31和后沿32。多个流体分配调整结构5被分别沿着前沿31和/或后沿32间隔预定距离设置。可以理解,流体分配调整结构5主要是起到进一步调整和分配流体的作用,因此诸如圆柱体、圆角长方体、梯形结构体、弧形突起的任何结构布置都可以用作此处所述的流体分配调整结构,而不限于任何具休的形式。在本示例中,小的圆柱休和它们之间的中间间隙被用作流体分配调整结构5。显然,圆柱体51可以沿着前沿31或后沿32以相同的间隔设置,且前沿31和后沿32上的圆柱体51可以在垂直于前沿31或后沿32的延伸方向的方向彼此一一对应或对齐设置,当然这不是必须的。
如图3b所示,在垂直于前沿31或后沿32的延伸方向的方向上,圆柱体51分别位于前沿31和后沿32处。为了进一步促进湍流的产生,还在峰顶3上设置在圆柱体51之间的中心槽道6。通常,流体分配调整结构5包括在每一个脊1的峰顶3的前沿31和后沿32处的凸起(例如圆柱体51)以及在两个凸起之间的中心槽道6。
显然,凸起不限于例如圆柱体、凹坑、圆角长方体、梯形结构体等规则形状的结构体,还可以是诸如椭圆、尖端等不规则形状的结构体。中心槽道6包括平直槽道和/或由多元的曲面结构体形成的槽道。在本示例中,为了说明的目的,将中心槽道设置成大致V字形。
如图3c所示,沿着前沿31或后沿32间隔地设置圆柱体或小圆柱体51。或者说,诸如图3c所示在换热板10的长度方向上获得了大致不透光的截面。这种不透光或准不透光的截面特征对于蒸发过程来说是非常重要的。从换热板10的流体进口流入的两相制冷剂中的气态制冷剂将会从侧面流走,以触发液态制冷剂的“沸腾”过程。参见图3b,小的中心槽道6位于两个圆柱体51之间,即在两个圆柱体51之间的中间间隙。该中心槽道6可以用于蒸发液态制冷剂。由于该中心槽道6的深度很小,液态制冷剂的边界层或液膜厚度相当小,这对于增强沸腾过程是有利的。另外,当制冷剂通过上述的区域时,存在相当大的湍流。这对于增强沸腾过程也是有利的。
虽然在图3a-3c中具体地图示了凸起和中心槽道,但是可以理解为了更好地进行流体分配调节,凸起与换热板的表面之间设置有平滑的连接结构,即凸起与换热板的表面之间是平衡过渡的。另外,所述中心槽道6通常由多元的曲面结构体形成,所述多元的曲面结构体包括曲线弧线、多元曲线、多元弧线以及直线、曲线、弧线的多元体的组合。也就是说,中心槽道6也通常设置成具有弯曲的平滑地过渡的曲面结构。
另外,需要说明的是,中心槽道6可以设置成如图3所示相对于峰顶3是下凹的V字形形状,但是由于在峰顶3的两个相对的边沿31和32上设置了多个凸起,这样即使将中心槽道6设置成与峰顶大致平齐,该设置在相对边沿31和32之间的中间部分或间隙也可以起到中心槽道的功能。
可以理解,上述针对于峰顶3进行的结构设置均适用于谷底4,因为峰顶3和谷底4是相对称的,故可以以类似的方式进行相对应的设置。
如图4所示,在前沿31或后沿32上的两个相邻的圆柱休51之间的敞开的空间为由相邻的一个脊1和沟槽2所构成的流动单元的入口71和出口72。箭头示出了流体的流向,在前沿31和后沿32上的入口71和出口72被采用,以将液态制冷剂破碎成小的液滴。这对于制冷剂的蒸发来说是有利的。另外,此处所获得的湍流也增强传热。如上所述,中心槽道6可以用于均匀化流体分配,并减小制冷剂边界层和液膜的厚度。
在图5中示出了根据本发明的中心槽道的另一变形例。显然,在图3a中将中心槽道6设置成大致平行于脊1的前沿31和/或后沿32平直地延伸。图5显示的变形例与之的区别在于中心槽道6’设置成沿着前沿31和/或后沿32是弯曲的。在一个实施例中,中心槽道6’设置成沿前沿31和/或后沿32成弯曲的形式,当然中心槽道6’还可以被设置成沿除上述的方向之外的方向是弯曲的或以任何形式弯曲。这样做将使得制冷剂的流动过程更加平顺。因此,将获得更多的主动传热区(即换热面 积)。另外,更多的湍流被产生以强化沸腾过程。
参见图6,示出了入口和出口的间断的布局。与图4相比,不再沿着前沿31和/或后沿32间隔地设置具有相同结构的小圆柱体51,而是沿着前沿31和/或后沿32交替地以预定间隔布置小的圆柱体51和比之更大的结构体(在此示例为倒角或圆角的长方体)81。这样,与图4显示的相比,基本的流动单元的流动横截面降低,诸如制冷剂的流体的流速将增大。这样将产生更多的湍流。这对于增强传热是有利的。另外,在前沿31和后沿32的两个边沿上的顶部区域被增大,使得在两个换热板被组装以形成用于流体的流道时将获得更大的强度。其中箭头示出了诸如制冷剂的流体的流向。
在图7中示出了脊的峰顶具有间断的中心槽道的示例。虽然在图4中示出了中心槽道6是连续的,但是中心槽道6也可以设置成被间断地阻塞的形式。如图所示,相比图4的情形,沿着前沿31和后沿32所设置的小圆柱体51之间的间隔被扩大,以在前沿31和/或后沿32的延伸方向上相邻的两个小圆柱体51之间容纳比其更大的结构体82。该结构体82的尺寸被设置成保持在前沿31和/或后沿32上与其相邻的小圆柱体51间隔开,同时部分地或全部地阻塞中心槽道6。在图7中示出,由椭圆体、长圆体或倒角的长方体82在垂直于前沿31或后沿32的方向上完全阻塞中心槽道6的情形,其中长方体82分别与四个相邻的小圆柱体51间隔开。
上述的设置方式仅是一个示例,然而只要能够使得将中心槽道6设置成被间断地阻塞的方式,都适用于本发明。本领域技术人员容易明白,这种图案结构对于换热板10内的流休通道的强度增强和压降的增大(即产生更多的湍流)是有利的。当然,中心槽道6内的流体分配的限制将被弱化;但是仍然可以在人字形图案的换热板10的流体通道中(具体是在图1显示的沟槽2内)进行流体分配调整。最终效果依赖于换热板10的整体设计(或其他结构参数)。
如图8a和8b所示,分别显示了根据本发明另一实施例的换热板10的整体视图,以及图8a中的优化的技术方案中的主要特征。在图8a中,换热板10包括用于流体的端口11、12、13、14。可以理解,本领域技术人员可以根据需要选择适当的端口11、12、13、14,用于流体的流入和流出。
在图8b中示出了图8a中的换热板10的中间部分的放大视图。通过放大视图可知,从左至右交替地设置有脊1和沟槽2,脊1的前沿31和后沿32上(在从下至上的方向上)间隔地设置有多个流体分配调整结构5。由于该流体分配调整结构5被设置成如图所示的弯曲或蜿蜒结构(例如大体双弯钩形状),这样在前沿31和后沿32 的中间部分产生了弯曲的中心槽道6’。当然,此处所示的仅是一个示例,其的目的是说明可以将如上所述的不同的设置流体分配调整结构的方式用于换热板10。
此外,图8a和图8b所示的结构,在槽和脊宽度比例的设计上体现了本发明的一个显著的优势。即通过调整脊和沟槽之间的宽度比例关系,以及对应流体调整结构的尺寸,很容易获得非对称程度较大的换热板片。对于应用于通道流量较大的制冷机蒸发器和以乙二醇水溶液等为载冷剂的热泵蒸发器而言,一方面,本发明将提供较好的蒸发效果,同等条件下,为用户提供更高的蒸发温度;另一方面,本发明也有效地降低了水侧(辅侧)的通道压降,提高了用户机组系统中水泵的能效。
除了上述的特点之外,两个相邻的换热板的焊点在装配在一起时应当彼此匹配。另外,针对于常见的人字形板式换热器来说,大体W和M形图案的板设计图案也可以用于本发明。
具有上述的结构特征的两个板可以装配在一起,以形成集流腔。针对于人字形板式换热器,其中的一个换热板被称为A(M)形换热板,而另一与之匹配的换热板被称为V(W)形换热板。上述是人字形或鱼骨状板式换热器中的通用专业术语。成对的换热板被装配以形成板式换热器。
通过上述可知,本发明的构思在于将人字形换热板和点波式换热器的优点结合在一起。详细的优点被通过流动方式和板式换热器内的热传递过程进行解释和说明。
在板式换热器的蒸发器中使用本发明,两相制冷剂流入到换热板上的流体通道内。当所述制冷剂遇到净间隙(如图1中显示的沟槽2),制冷剂将优选地从侧面流走。整个V/A(M/W)形的中心槽道将被充满或填充。这对于流休分配是有利的。之后,制冷剂将从脊1的前沿31上的入口71进入。小的进入空间将控制液态制冷剂以均匀地分配它们。此外,准封闭的截面空间将迫使气态制冷剂的蒸汽以弯曲蜿蜒的方式流动,用于防止旁通式流动。使用产生湍流的结构和小的沟道深度将确保在中心槽道中发生有效的沸腾过程。所述气态制冷剂的蒸汽将推动液态制冷剂从脊1的后沿32上的出口72离开中心槽道6。另外,这将增强沸腾。这一过程被交替地执行。基于A-V(M-W)形板的装配特征,在此将获得回流作用。这对于流体分配和增强传热也是有利的。
以上仅为本发明的一些实施例,本领域普通技术人员将理解,在不背离本发明总体构思的原则和精神的情况下,可对这些实施例做出改变,本发明的范围以权利要求和它们的等同物限定。

Claims (12)

  1. 一种换热板,每一换热板的至少一个表面包括交替地布置的脊和沟槽,
    其特征在于,
    所述脊的峰顶和/或沟槽的谷底上设置有多个流体分配调整结构。
  2. 根据权利要求1所述的换热板,其特征在于,
    所述流体分配调整结构中的每个包括分别在峰顶或谷底的两边沿处的凸起以及在所述两个边沿之间的中心槽道。
  3. 根据权利要求2所述的换热板,其特征在于,
    所述凸起包括圆柱体、圆角长方体、梯形结构体、弧形突起中的任一种或它们的任一组合,所述中心槽道包括平直槽道和/或由多元的曲面结构体形成的槽道。
  4. 根据权利要求2或3所述的换热板,其特征在于,
    所述凸起与所述换热板的表面之间设置有平滑的连接结构,所述多元的曲面结构体包括曲线弧线、多元曲线、多元弧线以及直线、曲线、弧线的多元体的组合。
  5. 根据权利要求2或3所述的换热板,其特征在于,
    所述中心槽道的底部相对于峰顶或谷底是大致平齐的或下凹的。
  6. 根据权利要求2-5中任一项所述的换热板,其特征在于,
    在每一边沿上的所述两个凸起之间的部分构成了中心槽道的入口或出口。
  7. 根据权利要求2-6中任一项所述的换热板,其特征在于,
    所述凸起间隔地设置在峰顶或谷底的前沿和/或后沿上。
  8. 根据权利要求7所述的换热板,其特征在于,
    所述前沿上的凸起与所述后沿上的凸起在垂直于中心槽道的延伸方向的水平方向上是错开的。
  9. 根据权利要求1-8中任一项所述的换热板,其特征在于,
    所述中心槽道在峰顶或谷底的延伸方向上是弯曲的。
  10. 根据权利要求2-9中任一项所述的换热板,其特征在于,
    所述凸起中的至少一部分凸起设置成至少部分地覆盖所述中心槽道以形成间断的中心槽道。
  11. 根据权利要求1-10中任一项所述的换热板,其特征在于,
    所述表面的一部分或全部设置有一重半人字形和/或人字形、或两重及两重以上的半人字形和/或人字形的结构图案,每一换热板包括沿着其换热板的延伸方向分别位于相对的两端处的流体进口和流体出口,所述两个换热板装配在一起以形成集流腔。
  12. 一种板式换热器,其特征在于,所述板式换热器包括根据权利要求1-11中任一项所述的换热板。
PCT/CN2015/073025 2014-03-04 2015-02-13 换热板及板式换热器 WO2015131759A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15758812.0A EP3115732A4 (en) 2014-03-04 2015-02-13 Heat exchange plate and plate-type heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410076347.4A CN103822521B (zh) 2014-03-04 2014-03-04 换热板及板式换热器
CN201410076347.4 2014-03-04

Publications (1)

Publication Number Publication Date
WO2015131759A1 true WO2015131759A1 (zh) 2015-09-11

Family

ID=50757700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/073025 WO2015131759A1 (zh) 2014-03-04 2015-02-13 换热板及板式换热器

Country Status (3)

Country Link
EP (1) EP3115732A4 (zh)
CN (1) CN103822521B (zh)
WO (1) WO2015131759A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110095007A (zh) * 2019-05-28 2019-08-06 西安热工研究院有限公司 一种紧凑式换热器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103822521B (zh) * 2014-03-04 2017-02-08 丹佛斯微通道换热器(嘉兴)有限公司 换热板及板式换热器
DK3351886T3 (da) 2017-01-19 2019-08-12 Alfa Laval Corp Ab Varmeudvekslingsplade og varmeveksler
CN114909929A (zh) * 2021-02-08 2022-08-16 浙江三花汽车零部件有限公司 换热器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000283682A (ja) * 1999-03-31 2000-10-13 Hisaka Works Ltd プレート式熱交換器
CN2415336Y (zh) * 2000-04-17 2001-01-17 刘澄清 换热器
CN101970907A (zh) * 2008-07-10 2011-02-09 韩国德尔福汽车系统公司 变速箱油冷却器
CN102395853A (zh) * 2009-04-16 2012-03-28 韩国德尔福汽车系统公司 板式热交换器
CN103822521A (zh) * 2014-03-04 2014-05-28 丹佛斯微通道换热器(嘉兴)有限公司 换热板及板式换热器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3372743A (en) * 1967-01-25 1968-03-12 Pall Corp Heat exchanger
SE353954B (zh) * 1971-02-19 1973-02-19 Alfa Laval Ab
ATA166091A (de) * 1991-08-23 1996-02-15 Faigle Heinz Kg Füllkörper
JP3094979B2 (ja) * 1997-12-10 2000-10-03 ダイキン工業株式会社 プレート式熱交換器
EP1630510B2 (en) * 2004-08-28 2014-03-05 SWEP International AB A plate heat exchanger
FR2876179B1 (fr) * 2004-10-04 2007-02-16 Alfa Laval Vicarb Sa Echangeur de chaleur a plaques specifiques
DE202007007169U1 (de) * 2007-05-16 2008-09-25 Akg-Thermotechnik Gmbh & Co. Kg Wärmeaustauscher für gasförmige Medien
CN101158561A (zh) * 2007-11-26 2008-04-09 北京市京海换热设备制造有限责任公司 板式换热器复合波纹板束

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000283682A (ja) * 1999-03-31 2000-10-13 Hisaka Works Ltd プレート式熱交換器
CN2415336Y (zh) * 2000-04-17 2001-01-17 刘澄清 换热器
CN101970907A (zh) * 2008-07-10 2011-02-09 韩国德尔福汽车系统公司 变速箱油冷却器
CN102395853A (zh) * 2009-04-16 2012-03-28 韩国德尔福汽车系统公司 板式热交换器
CN103822521A (zh) * 2014-03-04 2014-05-28 丹佛斯微通道换热器(嘉兴)有限公司 换热板及板式换热器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3115732A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110095007A (zh) * 2019-05-28 2019-08-06 西安热工研究院有限公司 一种紧凑式换热器

Also Published As

Publication number Publication date
EP3115732A4 (en) 2017-12-27
EP3115732A1 (en) 2017-01-11
CN103822521A (zh) 2014-05-28
CN103822521B (zh) 2017-02-08

Similar Documents

Publication Publication Date Title
RU2520767C1 (ru) Теплообменная пластина и пластинчатый теплообменник
KR101300964B1 (ko) 열교환기
US10578367B2 (en) Plate heat exchanger with alternating symmetrical and asymmetrical plates
EP2977704B1 (en) Plate-type heat exchanger and refrigeration cycle device with same
WO2015131759A1 (zh) 换热板及板式换热器
RU2502932C2 (ru) Теплообменник
JP5872859B2 (ja) 熱交換器
WO2017016414A1 (zh) 用于换热器的翅片组件和具有该翅片组件的换热器
RU2715123C1 (ru) Теплопередающая пластина и пластинчатый теплообменник, содержащий множество таких теплопередающих пластин
US11118848B2 (en) Heat-exchanging plate, and plate heat exchanger using same
BRPI0413194B1 (pt) Trocador de calor, especialmente radiador para óleo de veículos automotores
KR101952938B1 (ko) 판형 디스트리뷰터가 구비되는 열교환기
WO2015131758A1 (zh) 用于板式换热器的热交换板以及具有该热交换板的板式换热器
RU2722078C1 (ru) Теплопередающая пластина и теплообменник, содержащий множество таких теплопередающих пластин
JP2008082650A (ja) 熱交換器及びその製造方法
JP2011017516A (ja) プレート積層型冷却装置及びその製造方法
SE2050094A1 (en) A brazed plate heat exchanger and use thereof
CN112912682B (zh) 热传递板
US10145625B2 (en) Dimple pattern gasketed heat exchanger
KR102122781B1 (ko) 판 열교환기를 위한 열교환기 판, 및 판 열교환기
CN211903861U (zh) 板式换热器
TWI752723B (zh) 傳熱板
CN112146484B (zh) 板式换热器
US20190162478A1 (en) Plate heat exchanger with dual flow path
CN217504442U (zh) 一种换热器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15758812

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015758812

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015758812

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE