WO2015131633A1 - 滚动转子式压缩机构及包括该机构的压缩机 - Google Patents

滚动转子式压缩机构及包括该机构的压缩机 Download PDF

Info

Publication number
WO2015131633A1
WO2015131633A1 PCT/CN2014/094950 CN2014094950W WO2015131633A1 WO 2015131633 A1 WO2015131633 A1 WO 2015131633A1 CN 2014094950 W CN2014094950 W CN 2014094950W WO 2015131633 A1 WO2015131633 A1 WO 2015131633A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
compression mechanism
seal
cylinder
rolling rotor
Prior art date
Application number
PCT/CN2014/094950
Other languages
English (en)
French (fr)
Inventor
孙庆丰
Original Assignee
艾默生环境优化技术(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410081937.6A external-priority patent/CN104895791A/zh
Priority claimed from CN201420101983.3U external-priority patent/CN203756529U/zh
Application filed by 艾默生环境优化技术(苏州)有限公司 filed Critical 艾默生环境优化技术(苏州)有限公司
Publication of WO2015131633A1 publication Critical patent/WO2015131633A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/001Radial sealings for working fluid
    • F04C27/002Radial sealings for working fluid of rigid material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/60Assembly methods
    • F04C2230/602Gap; Clearance

Definitions

  • the present invention relates to a rolling rotor type compression mechanism, and more particularly to a rolling rotor type compression mechanism that eliminates a radial gap between a rotor and a cylinder.
  • the invention also relates to a compressor comprising the rolling rotor compression mechanism.
  • the rolling rotor type compression mechanism and the compressors and pumps using the mechanism are widely used in many fields such as refrigeration and fluid transportation due to the advantages of few components and reliable operation.
  • the present invention is directed to a high efficiency rolling rotor compression mechanism and a compressor including the same in which a radial gap between the rotor and the cylinder wall is eliminated and relative rotation of the rotor and the eccentric shaft is prevented.
  • One of the objects of the present invention is to provide a highly efficient rolling rotor compression mechanism in which the radial clearance between the rotor and the cylinder wall is eliminated during the entire operation of the mechanism.
  • Another object of the present invention is to provide a highly efficient rolling rotor compression mechanism in which relative movement between the rotor and the eccentric shaft is avoided.
  • a rolling rotor type compression mechanism comprising: an eccentric shaft; a cylinder; a rotor, the rotor being driven by the eccentric shaft, a rotary motion in the cylinder; and a sliding vane that is pressed against the rotor to separate the working chamber in the cylinder, wherein in the rotor At a minimum radial distance between the cylinders, a seal is provided on the rotor that is capable of abutting the cylinder.
  • the seal is achieved simply and reliably throughout the operation of the compression mechanism.
  • a compressor including the rolling rotor compression mechanism is provided.
  • the rolling rotor type compression mechanism according to the present invention has a small number of parts, a simple structure, low cost, and reliable operation.
  • Figure 1 shows the operation of a conventional rolling rotor compression mechanism.
  • Figure 2 shows the radial and tangential forces experienced by the rotor at the position closest to the cylinder as a function of the eccentric shaft angle.
  • Figure 3 schematically shows the radial clearance between the rotor and the cylinder.
  • Fig. 4 schematically shows the structure of a rolling rotor type compression mechanism according to an embodiment of the present invention.
  • Fig. 5 schematically shows an enlarged view of the seal and its surroundings.
  • Figure 10 shows the variation of the contact force of the seal according to the present invention with the eccentric shaft angle.
  • FIGS 11 and 12 illustrate additional embodiments of a seal in accordance with the present invention.
  • FIGS 13, 14 and 15 schematically illustrate several embodiments of a groove in accordance with the present invention.
  • FIG. 1 shows the operation of a conventional rolling rotor compression mechanism.
  • the rolling rotor compression mechanism is generally designated 100 and includes a drive shaft 102, a rotor 104, a cylinder 106, a slide 108, a spring 110, and an intake device 112 and an exhaust device 114.
  • the slide 108 is always abutted against the rotor 104 by the action of the spring 110.
  • the eccentric cam 103 on the drive shaft 102 is frictionally engaged with the rotor 104.
  • the eccentric cam 103 drives the rotor 104 to abut against the inner wall of the cylinder 106, thereby rotating the rotor 104.
  • Two working chambers are formed with the cylinder 106, and the volumes of the two working chambers are increased or decreased as the rotor angle changes, completing the process of suction, compression, and exhaust.
  • Figure 1 shows several positions in one duty cycle of the compression mechanism in which the rotor is rotated counterclockwise in the cylinder.
  • suction chamber A the working chamber on the left side of the slide
  • compression chamber B the working chamber on the right side of the slide
  • the exhaust valve opens and the compression chamber B begins to exhaust; At position IV, the suction chamber A continues to inhale, and the compression chamber B exhaust ends; at the position V, the suction chamber A intake ends, the compression chamber B becomes in communication with the suction chamber A, and proceeds to the next cycle. .
  • Figure 2 shows the radial and tangential forces of the rotor at the position closest to the cylinder as a function of the angle of the drive shaft.
  • the upper right corner of the figure symbolically shows the relative position of the drive shaft and the rotor (large circle representation)
  • the sign of the radial force changes when the rotor is in different positions, and when the radial force is positive, it means that the rotor will be close to the cylinder wall, thereby reducing the radial clearance between the two.
  • FIG. 3 schematically shows the radial gap D between the rotor and the cylinder.
  • Figure 2 also shows the considerable tangential force experienced by the rotor. Due to constant In the rolling rotor compression mechanism of the gauge, the rotor and the drive shaft are only assembled by friction (interference) fit. In some cases, the tangential force causes frequent occurrence between the rotor and the drive shaft. Relative rotation, that is, the rotor rotates in addition to being driven by the drive shaft. This causes friction between the parts and also reduces the efficiency of the compression mechanism, which has an adverse effect on energy utilization.
  • a modification of the rolling rotor type compression mechanism 10 according to the present invention is that at the position where the radial clearance between the rotor 30 and the cylinder 40 is the smallest, in addition to the slider possessed by the conventional rolling piston compression mechanism, at the rotor 30 A seal 60 capable of abutting against the cylinder 40 is provided thereon.
  • a groove 32 is provided on the outer surface of the rotor 30, and the axial length of the groove 32 may be substantially equal to the axial length of the rotor 30.
  • the seal 60 is embedded in the recess 32 such that the surface 62 of the seal 60 is in contact with the inner wall 42 of the cylinder 40.
  • the sealing member 60 may be made of, for example, a resin material such as Teflon, or may be made of a metal material such as copper, iron, or aluminum as long as the material can withstand the working environment inside the rolling rotor compression mechanism and provide a sealing chamber. The strength required can be.
  • Figure 5 exaggerates the details of the recess 32 and the seal 60 and shows the force of the seal 60. It should be noted that the components in FIG. 5 are not drawn to scale.
  • the sealing member 60 is in the form of a slider. In the cross section perpendicular to the axial direction, the thickness in the circumferential direction of the sealing member 60 is smaller than the thickness of the groove 32, in the radial direction of the groove 60. The width is less than the sum of the width of the groove 32 and the radial gap so as to have a gap in both directions between the seal 60 and the groove 32 to allow the pressure of the compression chamber to be introduced to the seal through one side of the seal 60 The back of the member 60 is opposite the back 64 of the cylinder 40. Additionally, the seal 60 should be sized to ensure that the seal 60 can remain within the recess 32 without escaping during the entire duty cycle of the compression mechanism.
  • the seal 60 is subjected to a force applied by the compression chamber pressure Pc and the suction chamber compression Ps, and the compression chamber
  • the contact force F between the seal 60 and the cylinder wall 42 is proportional to the pressure difference ⁇ P and the force receiving area S of the seal 60.
  • the force receiving area S of the sealing member 60 is L ⁇ W, where L is the length in the axial direction of the sealing member 60 (the direction perpendicular to the paper surface in Fig. 5) (not shown), and W is the slider The thickness in the circumferential direction.
  • the contact force F can always maintain a positive value.
  • the seal 60 is prevented from disengaging from the cylinder wall 42 throughout the operation. Thereby, the radial gap between the rotor 30 and the cylinder 40 is eliminated, and the seal between the compression chamber and the suction chamber is achieved.
  • the force F of the sealing member 60 is related to the pressure difference between the two sides of the slider, when the pressure difference is small, the force F is small, and when the pressure difference is large, the force F is large, so that it can be automatically Adjusting the contact force without causing additional resistance to the rotation of the rotor 30.
  • the surface 62 of the seal 60 has a shape that is complementary to the cylinder wall 42, thereby improving the sealing effect as much as possible. It should be understood, however, that the seal 60 can have many different shapes, such as a curved surface having a different curvature than the cylinder wall 42, or other convex shapes.
  • the rotor 30 and the eccentric shaft 20 are preferably fixedly connected by the fixing portion 70.
  • the degree of firmness of the fixed connection is preferably higher than a conventional friction fit.
  • the securing portion 70 can be detachable, such as a keyway securing portion, a pinhole securing portion, etc., and can be any non-removable securing portion known to those skilled in the art, such as a welded securing portion.
  • the position of the fixing portion 70 may be diametrically opposed to the position of the sealing member 60 (as shown), or may be located at any suitable position on the rotor 30 and/or the eccentric shaft 20 as long as the rotor 30 and the eccentric shaft can be 20 Securely attach the connection. Thereby, the synchronous rotation of the rotor 30 and the eccentric shaft 20 is achieved, the rotation speed of the rotor 30 is improved, and thus it is advantageous to form an oil film between the seal 60 and the adjacent parts, further improving the sealing property.
  • FIGS. 6 to 9 show, in order, one duty cycle of the rolling rotor type compression mechanism according to the present invention. As shown in Figures 6-9, in any event, the seal 60 is always maintained at a minimum radial distance between the rotor 30 and the cylinder wall 40, thereby achieving a good seal.
  • Figure 10 shows the variation of the contact force of the seal according to the present invention with the eccentric shaft angle. Similar to Fig. 2, the upper part of the figure symbolically shows the eccentric shaft and the rotor (the large circle represents the rotor, and the small circle represents the eccentric shaft), thereby showing the rotor position represented by the point where the eccentric shaft angle is 0 degrees (can be seen) That is, the starting point of the eccentric shaft in Fig. 10 is different from that in Fig. 2). It can be seen from Fig. 10 that in addition to the eccentric shaft rotation angle of 0 degrees (when the compression chamber is in communication with the suction chamber), the contact force is approximately zero, and the total operation is realized during the entire working process of the rolling rotor. A satisfactory contact force for positive values.
  • seal 60 which employs a movable slider that utilizes a pressure differential between the compression chamber and the suction chamber to effect a seal.
  • Fig. 11 shows another embodiment of the seal 60 in which a resilient member such as a spring or the like is provided between the bottom wall of the recess 32 and the back surface of the seal 60 in the radial direction. This can further squeeze the seal 60 toward the cylinder wall 42 to ensure that the radial clearance between the rotor 30 and the cylinder wall 42 is eliminated.
  • a resilient member such as a spring or the like
  • FIG. 12 illustrates another embodiment of a seal 60 in which the seal 60 is an elastomeric seal that abuts the groove 32 and the cylinder 40 in a radial direction.
  • the seal 60 is an elastomeric seal that abuts the groove 32 and the cylinder 40 in a radial direction.
  • the sealing member 60 is disposed in the recess 32, it should be understood that the sealing member 60 may be directly disposed on the rotor 30 by bonding or the like, as appropriate. Set the groove.
  • the slide 50 As shown in Figure 6, as the rotor 30 rotates, as the seal 60 approaches the slide 50, it is possible for the slide 50 to project downwardly and into the rotor under the action of a spring (e.g., spring 108, see Figure 1). 30 in the recess 32, resulting in jamming or damage to the part.
  • a spring e.g., spring 108, see Figure 1.
  • at least one of the parameters such as the number, shape and size of the grooves 32 may be designed to prevent the slide 50 from entering.
  • it can be realized by providing a wall portion on the rotor 30, one side or both sides of the groove 32.
  • the axial length of the groove 32 is smaller than the axial length of the rotor 30.
  • the groove 32 is axially located at the center of the rotor 30, that is, has walls on both sides in the axial direction of the groove 32.
  • two grooves 32 are provided which are separated by a wall portion, and each of the two grooves 32 has a seal.
  • the groove 32 is axially close to one end of the rotor 30, i.e., a wall portion is provided on one side of the groove 32. It should be understood that in the embodiment of Figures 13-15, the number, size and shape of the seals are matched to the grooves 32, respectively.
  • the number of recesses 32 may be further varied, or the shape of the recess 32 may be designed to be in contact with the slider 50. The shape does not match, thus avoiding the entry of the slider 50.
  • a groove is provided on the rotor, and a seal is received in the groove.
  • the eccentric shaft and the rotor are fixed together in a manner that is not rotatable relative to each other.
  • the fixing portion between the eccentric shaft and the rotor is detachable or non-detachable.
  • the fixing portion includes one or more of the following: a key groove fixing portion, a pin hole fixing portion, and a welding fixing portion.
  • the seal By fixing the eccentric shaft and the rotor in a rotationally fixed manner, the seal can always be kept at a minimum radial distance between the rotor and the cylinder, and the rotation of the rotor relative to the eccentric shaft can be avoided. Friction and efficiency are reduced. In addition, it helps to form an oil film between the seal and the adjacent part, further improving the sealing property.
  • the recess receives the seal in a manner that has a gap between the seal in the circumferential direction and in the radial direction.
  • the seal is movable based on the pressure difference between the working chambers.
  • the seal can be pressed against the cylinder wall by the pressure difference across the seal. Moreover, since the sealing force of the sealing member is related to the pressure difference, the contact force between the sealing member and the cylinder can be adaptively adjusted without causing excessive resistance to the rotation of the rotor.
  • a spring is disposed between the bottom wall of the recess and the back of the seal.
  • the seal is an elastomeric seal that abuts the groove and the cylinder in a radial direction.
  • the sealing can be reliably and stably achieved in another way.
  • the surface of the seal that is in contact with the cylinder has a shape that matches the surface of the cylinder.
  • the area of the sealing surface can be increased, thereby improving the sealing effect.
  • the seal is received in a recess in the rotor, at least one of the number, size and shape of the recess being designed to block entry of the slide.
  • the axial length of the groove is less than the axial length of the rotor.
  • a wall portion that blocks the entry of the slider is provided on one or both sides of the groove.
  • two grooves are provided, the two grooves being spaced apart by walls that block the entry of the slide.
  • a compressor including the rolling rotor compression mechanism is also provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

一种滚动转子式压缩机构(10),包括:偏心轴(20);气缸(40);转子(30),转子(30)由偏心轴(20)驱动,在气缸(40)中作回转运动;滑片(50),滑片(50)被朝向转子(30)抵压,以在气缸(40)中分隔出工作腔,在转子(30)与气缸(40)之间的径向距离最小处,在转子(30)上设置有能够抵靠气缸(40)的密封件(60)。还批露了一种包括该滚动转子式压缩机构的压缩机,该滚动转子式压缩机构消除了转子与气缸壁之间的径向间隙,将压缩腔之间的泄漏降至最低,提高了压缩机构的容积效率,避免了转子与偏心轴之间的相对转动。该滚动转子式压缩机构的零件数量少,结构简单,成本低并且运行可靠。

Description

滚动转子式压缩机构及包括该机构的压缩机
本申请要求于2014年3月6日提交的、名称为“滚动转子式压缩机构及包括该机构的压缩机”的中国发明申请No.201410081937.6和同日提交的名称为“滚动转子式压缩机构及包括该机构的压缩机”的中国实用新型申请No.201420101983.3的优先权,这些申请的全部内容在此并入本文。
技术领域
本发明涉及一种滚动转子式压缩机构,更具体地,涉及一种消除了转子与气缸之间的径向间隙的滚动转子式压缩机构。本发明还涉及一种包括该滚动转子式压缩机构的压缩机。
背景技术
本节中的陈述仅提供涉及本公开的背景信息,其未必构成现有技术。
滚动转子式压缩机构以及利用该机构的压缩机、泵等设备由于零部件少、运行可靠等优点,在制冷、流体输送等很多领域得到广泛应用。
本发明旨在提供一种高效率的滚动转子式压缩机构以及包括该机构的压缩机,其中,消除了转子与气缸壁之间的径向间隙并防止转子与偏心轴相对转动。
发明内容
本发明的目的之一在于提供一种高效率的滚动转子式压缩机构,在该机构的整个工作过程中,消除了转子与气缸壁之间的径向间隙。
本发明的另一目的在于提供一种高效率的滚动转子式压缩机构,其中,避免了转子与偏心轴之间的相对运动。
根据本发明的一方面,提供了一种滚动转子式压缩机构而实现了以上目的,该滚动转子式压缩机构包括:偏心轴;气缸;转子,所述转子由所述偏心轴驱动,在所述气缸中作回转运动;和滑片,所述滑片被朝向所述转子抵压,以在所述气缸中分隔出工作腔,其中,在所述转子与 所述气缸之间的径向距离最小处,在所述转子上设置有能够抵靠所述气缸的密封件。
通过在转子与气缸之间的径向距离最小处设置密封件,在压缩机构的整个工作过程中简单、可靠地实现密封。
根据本发明的另一方面,提供了一种包括该滚动转子式压缩机构的压缩机。
通过本发明的以上方面,消除了转子与气缸壁之间的径向间隙,将压缩腔之间的泄漏降至最低,提高了压缩机构的容积效率。并且,避免了转子与偏心轴之间的相对转动。根据本发明的滚动转子式压缩机构的零件数量少,结构简单,成本低并且运行可靠。
附图说明
以下将参照附图仅以示例方式描述本发明的实施方式,在附图中:
图1示出了常规的滚动转子式压缩机构的工作原理。
图2示出了转子在最靠近气缸的位置处受到的径向力和切向力随偏心轴转角的变化曲线。
图3示意性地示出了转子与气缸之间的径向间隙。
图4示意性地示出了根据本发明一个实施方式的滚动转子式压缩机构的结构。
图5示意性地示出了密封件及其周围的放大图。
图6、图7、图8和图9按顺序示意性地示出了根据本发明的滚动转子式压缩机构的一个工作循环。
图10示出了根据本发明的密封件的接触力随偏心轴转角的变化情况。
图11和图12示出了根据本发明的密封件的另外的实施方式。
图13、图14和图15示意性地示出了根据本发明的凹槽的若干实施方式。
具体实施方式
图1示出了常规的滚动转子式压缩机构的工作原理。滚动转子式压缩机构总体上标为100,其包括驱动轴102、转子104、气缸106、滑片108、弹簧110以及进气装置112和排气装置114等。其中,滑片108在弹簧110的作用下始终抵靠在转子104上。驱动轴102上的偏心凸轮103与转子104摩擦配合,当驱动轴102在马达等动力装置的带动下绕轴线转动时,偏心凸轮103带动转子104紧贴气缸106的内壁做公转,从而在转子104与气缸106之间形成两个工作腔,这两个工作腔的容积随着转子转角的变化而增大或缩小,完成吸气、压缩和排气的过程。
具体地,图1示出了该压缩机构的一个工作循环中的几个位置,其中,转子在气缸中沿逆时针方向回转。在位置I处,滑片左侧的工作腔(下称“吸气腔A”)开始吸气,滑片右侧的工作腔(下称“压缩腔B”)开始压缩气体;在位置II处,吸气腔A继续吸气,压缩腔B继续压缩;在位置III处,吸气腔A继续吸气,当压缩腔B中达到一定压力时,排气门打开,压缩腔B开始排气;在位置IV处,吸气腔A继续吸气,压缩腔B排气结束;在位置V处,吸气腔A进气结束,压缩腔B变得与吸气腔A连通,并进入下一循环。
图2示出了转子在最靠近气缸的位置处受到的径向力和切向力随驱动轴转角的变化曲线,图的右上角象征性地示出了驱动轴和转子的相对位置(大圆表示转子,小圆表示驱动轴),从而示出驱动轴转角为0度的点所表示的转子位置。从该图中可以看出,当转子处于不同位置时,径向力的符号会出现变化,当径向力为正时,表示转子会靠近气缸壁,从而使二者之间的径向间隙减小;当径向力为负时,表示转子会远离气缸壁,从而使二者之间的径向间隙增大。由于转子的上述运动,滚动转子压缩机构的径向间隙不能做得太小,否则在某些区域可能发生转子与气缸壁的干涉,导致摩擦和撞击。图3示意性地示出了转子与气缸之间的径向间隙D。
由于存在该不可避免的径向间隙,使得滚动转子压缩机构的压缩腔(图1中的右腔)与吸气腔(图1中的左腔)之间发生泄漏损失,容积效率较低。
另一方面,图2还示出了转子所受到的相当大的切向力。由于在常 规的滚动转子式压缩机构中,转子与驱动轴之间仅采用摩擦(过盈)配合的方式装配在一起,在某些情况下,该切向力会导致转子与驱动轴之间频繁地发生相对转动,即转子除了在驱动轴的带动下做公转,还会进行自转。这造成了零件之间的磨擦,并且也降低了压缩机构的效率,对于能量利用产生不良影响。
为了更清楚地展现本发明的原理,图4中仅示意性地示出了根据本发明的一个优选实施方式的滚动转子式压缩机构10中的偏心轴20、转子30、气缸40以及滑片50,而省略了弹簧、进气装置、排气装置以及其它部件,这些部件是本领域技术人员已知的。
根据本发明的滚动转子式压缩机构10的一个改进之处在于,除了常见滚动活塞压缩机构所具有的滑片以外,在转子30与气缸40之间的径向间隙最小的位置处,在转子30上设置有能够抵靠气缸40的密封件60。
具体而言,在转子30的、转动过程中距气缸壁42最近的位置处,在转子30的外表面上设置有凹槽32,凹槽32的轴向长度可以大致等于转子30的轴向长度。密封件60嵌入到凹槽32中,从而使得密封件60的表面62与气缸40的内壁42相接触。
密封件60例如可以由特氟龙等树脂材料制成,也可以由铜、铁、铝等金属材料制成,只要该材料能够耐受该滚动转子式压缩机构内部的工作环境,并且提供密封所需的强度即可。
图5夸大地示出了凹槽32和密封件60的细节,并且示出了密封件60的受力。应当注意,图5中的部件并非按比例绘制。如图5所示,密封件60呈滑块的形式,在垂直于轴向的截面中,密封件60的周向方向上的厚度小于凹槽32的厚度,凹槽60的径向方向上的宽度小于凹槽32与径向间隙的宽度之和,从而在密封件60与凹槽32之间的两个方向上都具有间隙,以允许压缩腔的压力通过密封件60的一侧引入到密封件60的背对气缸40的背面64处。另外,密封件60的尺寸应当确保在压缩机构的整个工作循环中,密封件60都能够保持在凹槽32内而不会脱落。
密封件60受到压缩腔压力Pc和吸气腔压缩Ps施加的力,压缩腔 压力Pc大于吸气腔压力Ps,在如上所述的结构中,两者的压力差ΔP(ΔP=Pc-Ps)导致将密封件60朝下并朝向气缸壁42挤压。
密封件60与气缸壁42之间的接触力F与压力差ΔP和密封件60的受力面积S成正比。
密封件60的受力面积S=L×W,其中,L为密封件60的轴向方向(图5中与纸面垂直的方向)上的长度(图中未示出),W为滑块的周向方向上的厚度。
由于在滚动式转子压缩机构10的几乎整个工作过程中,压缩腔压力Pc都大于吸气腔压力Ps,因此接触力F总能保持正值。通过将接触力F保持为正值,在整个工作过程中防止了密封件60脱离气缸壁42。从而消除了转子30与气缸40之间的径向间隙,实现了压缩腔与吸气腔之间的密封。
另一方面,由于密封件60的受力F与滑块两侧的压力差有关,当压力差较小时,受力F较小,压力差较大时,受力F较大,因此,能够自动地调节接触力,不会给转子30的转动带来额外的阻力。
虽然图中示出了密封件60的表面62具有与气缸壁42互补的形状,从而尽可能地提高密封效果。但是应当理解,密封件60可以具有很多不同的形状,如呈与气缸壁42具有不同曲率的曲面,或者呈其它凸起的形状。
为了使密封件60总是处于转子30与气缸壁40之间的径向距离最小的位置,优选地,将转子30与偏心轴20之间通过固定部70进行固定连接。该固定连接的牢固程度优选地高于普通的摩擦配合。如图所示,固定部70可以是可拆卸的,如键槽固定部、销孔固定部等,也可以是本领域技术人员所知的任何不可拆卸的固定部,如焊接固定部。
该固定部70的位置可以与密封件60的位置在直径方向上相对(如图所示),也可以位于转子30和/或偏心轴20上任何适当的位置,只要能够将转子30与偏心轴20牢固地固定连接即可。由此,实现了转子30与偏心轴20的同步旋转,提高了转子30的转速,并且因此有利于在密封件60与相邻的零件之间形成油膜,进一步改善密封性。
图6至图9按顺序示出了根据本发明的滚动转子式压缩机构的一个工作循环。如图6至图9所示,在任何情况下,密封件60总是保持处于转子30与气缸壁40之间的径向距离最小处,从而实现了良好的密封。
图10示出了根据本发明的密封件的接触力随偏心轴转角的变化情况。与图2中类似,图的上方象征性地示出了偏心轴和转子(大圆表示转子,小圆表示偏心轴),从而示出偏心轴转角为0度的点所表示的转子位置(能够看到,图10中的偏心轴转角起点与图2中不同)。由图10中可以看到,除了在偏心轴转角为0度附近(此时压缩腔与吸力腔相连通),接触力大致为0之外,在滚动转子的整个工作过程中,都实现了总为正值的令人满意的接触力。
以上仅仅示出了密封件60的一种优选实施方式,其采用可活动的滑块,利用压缩腔与吸气腔之间的压力差实现密封。
图11示出了密封件60的另一实施方式,其中,在凹槽32的底壁与密封件60的背面之间设置沿径向方向的弹性件,如弹簧等。这能够进一步将密封件60朝气缸壁42挤压,确保消除转子30与气缸壁42之间的径向间隙。
图12示出了密封件60的另一实施方式,其中,密封件60是在径向方向上抵靠于凹槽32和气缸40的弹性密封件。在压缩机构10的整个工作过程中,利用密封件60自身的弹性,密封件60的背面64始终抵靠凹槽32的底部,接触面62抵靠气缸壁42。
虽然在本发明的优选实施方式中,密封件60都设置在凹槽32中,但是应当理解,在适当的情况下,也可以将密封件60通过粘接等方式直接设置在转子30上而不设置凹槽。
如图6中所示,随着转子30的转动,当密封件60靠近滑片50时,滑片50有可能在弹簧(如弹簧108,参见图1)的作用下向下伸出并进入转子30的凹槽32中,从而导致卡死或零件受到破坏。为了避免这种情况,优选地,可以通过对凹槽32的数量、形状和尺寸等参数中的至少一种进行设计,以阻止滑片50进入。例如,能够通过在转子30上、凹槽32的一侧或两侧设置壁部来实现。图13至图15示出了凹槽32的几种实施方式。在图13中,凹槽32的轴向长度小于转子30的轴向长 度,并且凹槽32在轴向上位于转子30的中央处,即,在凹槽32的轴向方向上的两侧具有壁部。在图14中,设置有由壁部隔开的两个凹槽32,在两个凹槽32中分别有一个密封件。在图15中,凹槽32在轴向上靠近转子30的一端,即,在凹槽32的一侧设置有壁部。应当理解,在图13至图15的实施方式中,密封件的数量、尺寸和形状分别与凹槽32相匹配。根据这些实施方式,本领域技术人员能够设想防止滑片50进入凹槽32中的多种构型,例如,可以进一步改变凹槽32的数量,或者将凹槽32的形状设计成与滑片50不匹配的形状,从而避免滑片50进入。
根据本发明的一个方面,在转子上设置有凹槽,密封件容纳在所述凹槽中。
优选地,偏心轴与转子以不能够相对转动的方式固定在一起。偏心轴与转子之间的固定部是可拆卸的或不可拆卸的。固定部包括以下中的一种或几种:键槽固定部、销孔固定部、焊接固定部。
通过将偏心轴与转子以不能够相对转动的方式固定在一起,能够始终将密封件保持在转子与气缸之间的径向距离最小处,并且避免了由于转子相对于偏心轴转动而带来的摩擦和效率降低。另外,有助于在密封件与相邻的零件之间形成油膜,进一步改善密封性。
优选地,凹槽以在周向方向上和径向方向上与密封件之间有间隙的方式容纳密封件。密封件能够基于工作腔之间的压力差而运动。
通过以这种方式设计可活动的密封件,能够利用密封件两侧的压力差将密封件压靠在气缸壁上。并且由于密封件的密封力与压力差有关,因此能够自适应地调节密封件与气缸的接触力,不会给转子的转动带来过大的阻力。
可选地,在凹槽的底壁与密封件的背面之间设置有弹簧。
通过设置弹簧,能够进一步提高密封的稳定性。
可选地,密封件是在径向方向上抵靠于凹槽和气缸的弹性密封件。
通过弹性密封件,能够以另一种方式可靠、稳定地实现密封。
优选地,密封件的与气缸接触的表面具有与气缸的表面相匹配的形状。
通过使密封件的与气缸的接触面具有与气缸表面相匹配的形状,能够增大密封表面的面积,从而提高密封效果。
优选地,密封件容纳在转子上的凹槽中,凹槽的数量、尺寸和形状中的至少一者设计成阻挡滑片的进入。凹槽的轴向长度小于转子的轴向长度。可选地,在凹槽的一侧或两侧设置有阻挡滑片进入的壁部。替代性地,设置有两个凹槽,两个凹槽由阻挡滑片进入的壁部间隔开。
通过对凹槽的数量、尺寸和形状进行设计,能够避免因滑片进入凹槽而造成的卡死或零件损坏。
还提供了一种包括该滚动转子式压缩机构的压缩机。
以上仅仅是本发明的示例性实施方式,在结合附图及说明书后,本领域技术人员能够容易地对本发明做出多种改造,所有这些改造都落入所附权利要求的范围内。

Claims (15)

  1. 一种滚动转子式压缩机构(10),包括:
    偏心轴(20);
    气缸(40);
    转子(30),所述转子(30)由所述偏心轴(20)驱动,在所述气缸(40)中作回转运动;和
    滑片(50),所述滑片(50)被朝向所述转子(30)抵压,以在所述气缸(40)中分隔出工作腔,
    其特征在于,在所述转子(30)与所述气缸(40)之间的径向距离最小处,在所述转子(30)上设置有能够抵靠所述气缸(40)的密封件(60)。
  2. 如权利要求1所述的滚动转子式压缩机构(10),其特征在于,在所述转子(30)上设置有凹槽(32),所述密封件(60)容纳在所述凹槽(32)中。
  3. 如权利要求2所述的滚动转子式压缩机构(10),其特征在于,所述偏心轴(20)与所述转子(30)以不能够相对转动的方式固定在一起。
  4. 如权利要求3所述的滚动转子式压缩机构(10),其特征在于,所述偏心轴(20)与所述转子(30)之间的固定部(70)是可拆卸的或不可拆卸的。
  5. 如权利要求4所述的滚动转子式压缩机构(10),其特征在于,所述固定部(70)包括以下中的一种或几种:键槽固定部、销孔固定部、焊接固定部。
  6. 如权利要求2所述的滚动转子式压缩机构(10),其特征在于,所述凹槽(32)以在周向方向上和/或径向方向上与所述密封件(60)之间有间隙的方式容纳所述密封件(60)。
  7. 如权利要求6所述的滚动转子式压缩机构(10),其特征在于,所述密封件(60)能够基于工作腔之间的压力差而运动。
  8. 如权利要求6所述的滚动转子式压缩机构(10),其特征在于,在所述凹槽(32)的底壁与所述密封件(60)的背面之间设置有弹簧。
  9. 如权利要求2所述的滚动转子式压缩机构(10),其特征在于,所述密封件(60)是在径向方向上抵靠于所述凹槽(32)和所述气缸(40)的弹性密封件。
  10. 如权利要求1至9中任一项所述的滚动转子式压缩机构(10),其特征在于,所述密封件(60)的与所述气缸(40)接触的表面具有与所述气缸(40)的表面相匹配的形状。
  11. 如权利要求1至9中任一项所述的滚动转子式压缩机构(10),其特征在于,所述凹槽(32)的数量、尺寸和形状中的至少一者设计成阻挡所述滑片(50)的进入。
  12. 如权利要求11所述的滚动转子式压缩机构(10),其特征在于,所述凹槽(32)的轴向长度小于所述转子(30)的轴向长度。
  13. 如权利要求11所述的滚动转子式压缩机构(10),其特征在于,在所述凹槽(32)的一侧或两侧设置有阻挡所述滑片(50)进入的壁部。
  14. 如权利要求11所述的滚动转子式压缩机构(10),其特征在于,设置有两个凹槽(32),所述两个凹槽(32)由阻挡所述滑片(50)进入的壁部间隔开。
  15. 一种包括如权利要求1至14中任一项所述的滚动转子式压缩机构的压缩机。
PCT/CN2014/094950 2014-03-06 2014-12-25 滚动转子式压缩机构及包括该机构的压缩机 WO2015131633A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201410081937.6A CN104895791A (zh) 2014-03-06 2014-03-06 滚动转子式压缩机构及包括该机构的压缩机
CN201420101983.3 2014-03-06
CN201410081937.6 2014-03-06
CN201420101983.3U CN203756529U (zh) 2014-03-06 2014-03-06 滚动转子式压缩机构及包括该机构的压缩机

Publications (1)

Publication Number Publication Date
WO2015131633A1 true WO2015131633A1 (zh) 2015-09-11

Family

ID=54054498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/094950 WO2015131633A1 (zh) 2014-03-06 2014-12-25 滚动转子式压缩机构及包括该机构的压缩机

Country Status (1)

Country Link
WO (1) WO2015131633A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108105086A (zh) * 2018-02-08 2018-06-01 北京丰联奥睿科技有限公司 一种双偏心滚柱泵
CN108194358A (zh) * 2018-02-08 2018-06-22 北京丰联奥睿科技有限公司 一种双偏心滚柱压缩机
CN112796989A (zh) * 2020-12-30 2021-05-14 北京星油科技有限公司 缸体、转动装置、转动系统和流体机械

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316455A (en) * 1989-10-25 1994-05-31 Matsushita Refrigeration Company Rotary compressor with stabilized rotor
JPH06341386A (ja) * 1993-06-02 1994-12-13 Daikin Ind Ltd ローリングピストン型圧縮機
JP2003214368A (ja) * 2002-01-23 2003-07-30 Denso Corp 回転ポンプ
CN101113734A (zh) * 2006-07-26 2008-01-30 云晓璎 转子式压缩机
CN201155460Y (zh) * 2008-01-29 2008-11-26 江苏超力机械有限公司 旋转式压缩机
CN203756529U (zh) * 2014-03-06 2014-08-06 艾默生环境优化技术(苏州)有限公司 滚动转子式压缩机构及包括该机构的压缩机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316455A (en) * 1989-10-25 1994-05-31 Matsushita Refrigeration Company Rotary compressor with stabilized rotor
JPH06341386A (ja) * 1993-06-02 1994-12-13 Daikin Ind Ltd ローリングピストン型圧縮機
JP2003214368A (ja) * 2002-01-23 2003-07-30 Denso Corp 回転ポンプ
CN101113734A (zh) * 2006-07-26 2008-01-30 云晓璎 转子式压缩机
CN201155460Y (zh) * 2008-01-29 2008-11-26 江苏超力机械有限公司 旋转式压缩机
CN203756529U (zh) * 2014-03-06 2014-08-06 艾默生环境优化技术(苏州)有限公司 滚动转子式压缩机构及包括该机构的压缩机

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108105086A (zh) * 2018-02-08 2018-06-01 北京丰联奥睿科技有限公司 一种双偏心滚柱泵
CN108194358A (zh) * 2018-02-08 2018-06-22 北京丰联奥睿科技有限公司 一种双偏心滚柱压缩机
CN112796989A (zh) * 2020-12-30 2021-05-14 北京星油科技有限公司 缸体、转动装置、转动系统和流体机械
CN112796989B (zh) * 2020-12-30 2022-08-23 北京星油科技有限公司 转动装置、转动系统和流体机械

Similar Documents

Publication Publication Date Title
JP5637755B2 (ja) ベーン型圧縮機
JP5570603B2 (ja) ベーン型圧縮機
WO2015131633A1 (zh) 滚动转子式压缩机构及包括该机构的压缩机
CN203756529U (zh) 滚动转子式压缩机构及包括该机构的压缩机
JP5442638B2 (ja) 回転式圧縮機
CN103591022B (zh) 一种滚动活塞类流体机械的滑块式径向柔性补偿机构
KR101581692B1 (ko) 압축기
WO2010045767A1 (zh) 静止叶片式压缩机
KR101568640B1 (ko) 자유 회전식 유체 기계
US20070104600A1 (en) Oscillating piston pump
JPS6165081A (ja) 流体機械
KR102201409B1 (ko) 로터리 압축기
US11428223B2 (en) Rotary compressor with wear avoiding portion
CN109441816B (zh) 一种类椭圆形滚动活塞及滚动活塞压缩机
KR20090118014A (ko) 도넛 베인 로터리 압축기
CN104895791A (zh) 滚动转子式压缩机构及包括该机构的压缩机
US20150377023A1 (en) Eccentric motor
CN110966188A (zh) 转缸活塞压缩机的泵体结构及转缸活塞压缩机
CN218816978U (zh) 一种滑片及具有该滑片的压缩机
KR102212215B1 (ko) 로터리 압축기
CN211397892U (zh) 转缸活塞压缩机的泵体结构及转缸活塞压缩机
CN109026696B (zh) 压缩机泵体、压缩机、空调器
JP2011231744A (ja) 容積型ガス圧縮機
JP2588911Y2 (ja) 回転式圧縮機
KR100455487B1 (ko) 복동식 압축기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14884835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14884835

Country of ref document: EP

Kind code of ref document: A1