WO2015131475A1 - 一种液晶面板及其制作方法、3d显示装置 - Google Patents

一种液晶面板及其制作方法、3d显示装置 Download PDF

Info

Publication number
WO2015131475A1
WO2015131475A1 PCT/CN2014/083105 CN2014083105W WO2015131475A1 WO 2015131475 A1 WO2015131475 A1 WO 2015131475A1 CN 2014083105 W CN2014083105 W CN 2014083105W WO 2015131475 A1 WO2015131475 A1 WO 2015131475A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
alignment film
light
crystal molecules
crystal panel
Prior art date
Application number
PCT/CN2014/083105
Other languages
English (en)
French (fr)
Inventor
严巍
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/421,855 priority Critical patent/US9798152B2/en
Publication of WO2015131475A1 publication Critical patent/WO2015131475A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • G02B30/31Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers involving active parallax barriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133631Birefringent elements, e.g. for optical compensation with a spatial distribution of the retardation value
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133633Birefringent elements, e.g. for optical compensation using mesogenic materials

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a liquid crystal panel, a manufacturing method thereof, and a 3D display device. Background technique
  • the external scene seen by the human eye is not flat, but a stereoscopic three-dimensional with depth of field. This ability to perceive three-dimensional is because the left and right eyes of human beings are separated by about 6.5 cm, so they will be produced when looking at the same object position. A slight offset will cause parallax. Using this parallax to generate images for the left and right eyes, you can see a three-dimensional (3D) picture.
  • the user needs to use special glasses having different polarization components on both the left and right sides, and the 3D display mode in which the glasses are required to be worn is inconvenient to the user, and the user's comfort is also greatly reduced.
  • the eye 3D display technology has been widely used in recent years.
  • the observer can see the 3D stereoscopic image without using other devices such as glasses.
  • the two conventional methods of forming the parallax method will be made after the liquid crystal cell is manufactured. An additional bonding process exists. As shown in FIG.
  • a device for separating left and right eye images such as a lenticular lens and a second liquid crystal cell for realizing spectroscopic control
  • a device for separating left and right eye images such as a lenticular lens and a second liquid crystal cell for realizing spectroscopic control
  • the more precise attaching process in the later stage of the assembly attaches the additional spectroscopic device to the liquid crystal cell, which increases the difficulty of the process while increasing the process.
  • a liquid crystal panel including an upper substrate, a lower substrate, and a liquid crystal cell formed by liquid crystal molecules between the upper and lower substrates, the liquid crystal cell including a display layer and a grating layer, the grating layer being close to
  • the grating layer includes a light shielding region and a light transmission region, and the light shielding region includes light shielding liquid crystal molecules, and the light transmission region includes light transmissive liquid crystal molecules, and the light shielding region and the light transmission region are spaced apart from each other.
  • a liquid crystal panel includes a display layer and a grating layer, wherein the grating layer is disposed adjacent to the upper substrate, the grating layer includes a light shielding region and a light transmission region, and the light shielding region includes light shielding liquid crystal molecules.
  • the light-emitting region includes light-transmitting liquid crystal molecules, and the light-shielding region and the light-transmitting region are spaced apart. Therefore, the liquid crystal panel provided by one embodiment of the present invention can directly separate the left and right eye images through the liquid crystal cell, thereby simplifying the manufacturing process of the eye-catching 3D mode liquid crystal cell. .
  • the light shielding region is provided with a first alignment film provided with a second alignment film.
  • the light-shielding region is provided with the first alignment film which is provided with the second alignment film, it is simple and convenient in actual production.
  • the first alignment film is a vertical alignment film
  • the second alignment film is a horizontal alignment film
  • the first alignment film is a horizontal alignment film and the second alignment film is a vertical alignment film, it is simple and convenient in actual production.
  • the width of the first alignment film is the same as the width of the second alignment film.
  • the width of the first alignment film is the same as the width of the second alignment film, it is convenient and simple in actual production.
  • the total width Q of the first alignment film and the second alignment film satisfies:
  • P represents the width of the liquid crystal panel sub-pixel
  • D represents the vertical distance between the observer's eye and the upper substrate
  • G represents the distance between the upper substrate and the lower substrate.
  • the embodiment of the invention further provides a 3D display device, which comprises the above liquid crystal panel.
  • a 3D display device which comprises the above liquid crystal panel.
  • the display device since the display device includes the liquid crystal panel described above, the display device can directly separate the left and right eye images through the liquid crystal cell, thereby simplifying the manufacturing process of the eye 3D mode liquid crystal cell.
  • the embodiment of the present invention further provides a method for fabricating a liquid crystal panel, the method comprising: performing a box-on process on an upper substrate and a lower substrate to form a liquid crystal cell;
  • the liquid crystal cell comprises a display layer and a grating layer
  • the grating layer is disposed adjacent to the upper substrate
  • the grating layer comprises a light shielding region and a light transmission region
  • the light shielding region comprises light shielding liquid crystal molecules
  • the light region includes light-transmitting liquid crystal molecules, and the light-shielding region and the light-transmitting region are spaced apart.
  • a method for fabricating a liquid crystal panel includes: performing a process of a box on an upper substrate and a lower substrate to form a liquid crystal cell; injecting liquid crystal molecules into the liquid crystal cell, wherein the liquid crystal cell includes a display layer and a grating layer, The grating layer is disposed adjacent to the upper substrate, the grating layer includes a light shielding region and a light transmission region, the light shielding region includes light shielding liquid crystal molecules, the light transmission region includes light transmissive liquid crystal molecules, and the light shielding region and the light transmission region are spaced apart, thereby
  • the method for fabricating the liquid crystal panel provided by the embodiment of the invention can directly separate the left and right eye images through the liquid crystal box, and simplify the manufacturing process of the eye 3D mode liquid crystal cell.
  • the grating layer is disposed adjacent to the upper substrate, and includes:
  • the alignment film Forming an alignment film having a photosensitive feature on a side of the upper substrate facing the lower substrate, the alignment film comprising a plurality of first alignment films and second alignment films which are strip-shaped in the vertical direction and are inter-phase-distributed; wherein, the first The alignment film is an alignment film formed by irradiation with ultraviolet polarized light, and a long-axis direction of liquid crystal molecules in a predetermined distance region facing the first alignment film is perpendicular to a plane in which the alignment film is located.
  • the method includes: forming an alignment film having a photosensitive feature on a side of the upper substrate facing the lower substrate, wherein the alignment film includes a plurality of first strips in a vertical direction and spaced apart from each other An alignment film and a second alignment film; wherein the first alignment film is an alignment film formed by irradiation with ultraviolet polarized light, and a long axis direction of liquid crystal molecules in a predetermined distance region facing the first alignment film
  • the plane of the alignment film is vertical. Therefore, the method for fabricating the liquid crystal panel provided by the embodiment of the present invention can directly separate the left and right eye images through the liquid crystal cell, and simplify the manufacturing process of the 3D mode liquid crystal cell.
  • the alignment film includes a plurality of first alignment films and second alignment films which are strip-shaped in the vertical direction and are inter-phase-distributed, and include:
  • a mask plate is disposed between the light-transmitting region and the non-light-transmitting region which are strip-shaped in the vertical direction Blocking the alignment film, irradiating the mask plate with ultraviolet polarized light, and decomposing molecules in the alignment film corresponding to the light-transmitting region of the mask plate to form the first alignment film; the non-transparent region of the mask plate corresponds to The region forms the second alignment film.
  • the alignment film is shielded by using a mask disposed between the light-transmissive region and the non-transmissive region in the vertical direction, the mask is irradiated by ultraviolet polarized light, and the transparent region of the mask corresponds to Decomposing a molecule in the alignment film to form the first alignment film; a region corresponding to the non-transmissive region of the mask layer forms the second alignment film, so that the actual production process can be easily and conveniently obtained including a plurality of A first alignment film and a second alignment film which are strip-shaped and spaced apart in the vertical direction.
  • the method also includes:
  • liquid crystal molecules are injected into the liquid crystal cell, the liquid crystal cell is irradiated with ultraviolet light, and liquid crystal molecules in the alignment film facing the alignment film and molecules in the alignment film are polymerized to fix the liquid crystal which is polymerized with the alignment film.
  • the orientation of the molecule is a simple matter, a polymerized by reacting liquid crystal molecules in the alignment film with the alignment film with the alignment film.
  • the method further includes: after injecting liquid crystal molecules into the liquid crystal cell, irradiating the liquid crystal cell by ultraviolet light, causing polymerization of liquid crystal molecules in the alignment film of the alignment film and molecules in the alignment film, and fixing
  • the alignment of the liquid crystal molecules in which the alignment film undergoes polymerization can easily and conveniently fix the orientation of the liquid crystal molecules facing the alignment film in an actual production process.
  • FIG. 1 is a schematic structural view of a liquid crystal panel for realizing a 3D display of a tree eye in the prior art
  • FIG. 2 is a schematic structural view of a liquid crystal panel according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a liquid crystal panel for realizing 3D display of a tree eye according to another embodiment of the present invention.
  • the invention provides a liquid crystal panel, a manufacturing method thereof and a 3D display device, which are capable of separating left and right eye images inside the liquid crystal cell and simplifying the manufacturing process of the eye 3D mode liquid crystal cell.
  • an embodiment of the present invention provides a liquid crystal panel including an upper substrate 20, a lower substrate 21, and a liquid crystal between the upper substrate 20 and the lower substrate 21.
  • the liquid crystal panel 25 is formed on the side of the upper substrate 20 facing the lower substrate 21 and has an alignment film with photosensitive features on the side of the upper substrate 20 facing the lower substrate 21.
  • the alignment film 22 includes a plurality of first regions 221 and second regions 222 which are strip-shaped and spaced apart in the vertical direction; wherein the first region 221 is irradiated with ultraviolet polarized light to make the first region 221
  • the long-axis direction of the liquid crystal molecules 242 in the opposite predetermined distance region is perpendicular to the plane in which the alignment film 22 is located.
  • the second region 222 of the alignment film 22 is a region that is not irradiated with ultraviolet polarized light, and the molecules in the alignment film 22 having the photosensitive feature pass the intermolecular force between the liquid crystal molecules 241 facing the second region 222,
  • the long-axis direction of the liquid crystal molecules 241 in the region facing the second region 222 is made parallel to the plane in which the alignment film 22 is located.
  • the first region 221 of the alignment film 22 is a region formed by irradiation with ultraviolet polarized light, and a part of the polymer chain in the alignment film 22 having the photosensitive feature is decomposed, and the alignment film 22 having the photosensitive feature at this time is formed.
  • the molecules in the medium and the liquid crystal molecules 242 facing the first region 221 pass the intermolecular force such that the long-axis direction of the liquid crystal molecules 242 in the region facing the first region 221 is perpendicular to the plane in which the alignment film 22 is located.
  • the alignment film 23 on the lower substrate 21 in one embodiment of the present invention is the same orientation film obtained by rubbing alignment as in the prior art, and the liquid crystal molecules 243 located on the alignment film 23 during the display of the liquid crystal panel. Used for normal display.
  • a liquid crystal cell in a liquid crystal panel includes a display layer, liquid crystal molecules 241, and a grating layer composed of liquid crystal molecules 242, and the alignment layer is disposed adjacent to the upper substrate 20, and the grating layer includes a light-shielding region and a light-transmitting region, the light-shielding region comprising light-shielding liquid crystal molecules 242, the light-transmitting region comprising light-transmitting liquid crystal molecules 241, the light-shielding region and the light-transmitting region being spaced apart.
  • the light-shielding region is provided with a first alignment film corresponding to the first region 221 of the alignment film 22 in the drawing, and the light-transmissive region is provided with a second alignment film corresponding to the second region 222 of the alignment film 22 in the drawing.
  • the width of the first region 221 in the alignment film 22 is the same as the width of the second region 222.
  • the width of the first region 221 and the width of the second region 222 may be different according to a specific process, which is not limited by an embodiment of the present invention, but only the first region 221
  • the width is the same as the width of the second region 222 as a preferred embodiment.
  • the alignment film 22 in one embodiment of the present invention is a polyimide PI having photosensitive characteristics.
  • an embodiment of the present invention further provides a method for fabricating a liquid crystal panel, the method comprising:
  • the liquid crystal cell includes a display layer and a grating layer, wherein the grating layer is disposed adjacent to the upper substrate, the grating layer includes a light shielding region and a light transmission region, and the light shielding region includes light shielding liquid crystal molecules.
  • the light transmissive region includes light transmissive liquid crystal molecules, and the light shielding region and the light transmissive region are spaced apart.
  • the alignment film 22 is shielded by using a mask plate which is distributed between the light-transmitting region and the non-light-transmitting region which are strip-shaped in the vertical direction, and the mask is irradiated by ultraviolet polarized light. a part of the polymer chain in the alignment film 22 corresponding to the light-transmitting region of the mask is decomposed to form a first region 221 of the alignment film 22; a region corresponding to the non-transmissive region of the mask forms the alignment film 22 Two areas 222.
  • the upper substrate 20 and the lower substrate 21 are subjected to a process of forming a cell to form a liquid crystal cell; and liquid crystal molecules 24 are injected into the liquid crystal cell, wherein a long axis direction of the liquid crystal molecules in a predetermined distance region facing the first region 221 It is perpendicular to the plane in which the alignment film 22 is located, and the value of the preset distance here has different values in different processes.
  • the preset distance in one embodiment of the present invention is 0.1 micrometer to 0.5 micrometer, which is not limited by the specific embodiment of the present invention, and the specific distance is related to the time and intensity of ultraviolet polarized light irradiation.
  • the liquid crystal cell is irradiated by ultraviolet light, preferably, the direction of ultraviolet light irradiation is the same as the light direction of the light source 42 in the figure, and the first time In the area where the area 221 and the second area 222 are opposite
  • the liquid crystal molecules are polymerized with the molecules in the alignment film 22, and the liquid crystal molecules perpendicular to the alignment film 22 and the liquid crystal molecules parallel to the alignment film 22 are fixed, thereby better ensuring that the electric field change does not affect the alignment film 22.
  • the process of distinguishing left and right eye images in one embodiment of the present invention is specifically as follows: since the 3D display is displayed by sub-pixels, one column of sub-pixels displays a left-eye image, and the adjacent column of sub-pixels displays a right-eye image.
  • the leftmost one of the sub-pixels 43 is taken as an example.
  • the light emitted by the light source 42 passes through the liquid crystal panel to reach the liquid crystal molecules parallel to the alignment film 22 before reaching the left eye 40.
  • the liquid crystal molecules parallel to the alignment film 22 can pass the polarized light, so that the pixel image can be seen by the left eye; the light emitted from the light source 42 passes through the liquid crystal panel to reach the right eye 41 before passing through the liquid crystal molecules perpendicular to the alignment film 22, due to the alignment film
  • the 22 vertical liquid crystal molecules cannot pass the polarized light, so the right eye cannot see the pixel image, that is, the leftmost sub-pixel 43 is visible to the left eye; for the leftmost sub-pixel 43 adjacent to the sub-pixel 44, the light source 42 emits
  • the light passing through the liquid crystal panel before reaching the left eye 40 passes through the liquid crystal molecules perpendicular to the alignment film 22,
  • the liquid crystal molecules perpendicular to the film 22 cannot pass the polarized light, so the left eye cannot see the pixel image; the light emitted from the light source 42 passes through the liquid crystal panel to reach the right eye 41 before passing through the liquid crystal molecules parallel to the alignment film 22, due to the alignment film 22 parallel liquid crystal molecules can pass the
  • the liquid crystal molecules perpendicular to the alignment film 22 and the liquid crystal molecules parallel to the alignment film 22 are arranged to form a parallax barrier, thereby separating the left and right eye images, and finally Achieve 3D stereo display.
  • the left and right eye images on the entire liquid crystal panel described above are alternated.
  • the related distance needs to be designed.
  • An embodiment of the present invention further provides a display device including the liquid crystal panel above.
  • the liquid crystal panel of the present invention is an advanced super-dimensional field conversion.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

一种液晶面板及其制作方法、3D显示装置,用以直接通过液晶盒(25)就可以分开左右眼影像,简化裸眼3D模式液晶盒(25)的制作工艺。该液晶面板,包括上基板(20)、下基板(21)以及位于该上下基板(20,21)之间的液晶分子(24)形成的液晶盒(25),该液晶盒(25)包括显示层和光栅层,该光栅层靠近上基板(20)设置,该光栅层包括遮光区域和透光区域,该遮光区域包括遮光液晶分子(242),该透光区域包括透光液晶分子(241),该遮光区域和该透光区域间隔设置。

Description

一种液晶面板及其制作方法、 3D显示装置 技术领域
本发明涉及显示器技术领域, 尤其涉及一种液晶面板及其制作方 法、 3D显示装置。 背景技术
人眼所看到的外界景象不是平面的, 而是具有景深的立体三维, 这种感知三维的能力是因为人类的左眼和右眼相隔约 6.5厘米,所以在 看同一个物体位置时会产生轻微偏移现象, 即会产生视差。 利用这种 视差分别给左眼和右眼产生影像就可以看到三维 (3D ) 画面。 为了达 到这种目的, 使用者需要借助左右两眼偏振成分不同的特殊眼镜, 而 这种需要佩戴眼镜的 3D显示模式给使用者带来了不便, 同时使用者的 舒适度也大幅度下降。
为了改善使用者观看 3D显示设备时的不便, 棵眼 3D显示技术近 年来被广泛应用, 在棵眼 3D显示模式下, 观察者在不借助眼镜等其它 装置的情况下就可以看到 3D立体图像。 目前较为成熟的棵眼 3D技术 主要有两种, 第一种是柱透镜光栅方式, 第二种是视差障碍方式, 这 两种传统的形成视差的方式的制作工艺都会在液晶盒制成后有额外的 贴合工艺存在, 如图 1所示, 在液晶盒 10制成后, 需要在液晶盒外贴 附透镜 11等, 额外的贴合工艺会增加工艺难度及生产成本, 同时制成 的液晶模组整体厚度也会有所增加, 对后续液晶模组的整机组装也带 来一定的难度。
综上所述,现有技术中的棵眼 3D工艺中都是在普通的液晶盒上附 加可以实现分开左右眼影像的装置, 如柱状透镜及实现分光控制的第 二液晶盒, 这就需要在组装的后期较为精确的贴附工艺将附加分光装 置与液晶盒贴合在一起, 在增加工序的同时还提高了工艺的难度。 发明内容
本发明实施例提供了一种液晶面板及其制作方法、 3D显示装置, 用以直接通过液晶盒就可以分开左右眼影像, 简化棵眼 3D模式液晶盒 的制作工艺。 根据本发明的一个方面, 提供一种液晶面板, 该面板包括上基板、 下基板以及位于该上下基板之间的液晶分子形成的液晶盒, 该液晶盒 包括显示层和光栅层, 该光栅层靠近上基板设置, 该光栅层包括遮光 区域和透光区域, 该遮光区域包括遮光液晶分子, 该透光区域包括透 光液晶分子, 该遮光区域和该透光区域间隔设置。
由本发明一个实施例提供的液晶面板, 由于该液晶盒包括显示层 和光栅层, 该光栅层靠近上基板设置, 该光栅层包括遮光区域和透光 区域, 该遮光区域包括遮光液晶分子, 该透光区域包括透光液晶分子, 该遮光区域和该透光区域间隔设置, 因此, 由本发明一个实施例提供 的液晶面板能够直接通过液晶盒分开左右眼影像 , 简化棵眼 3D模式液 晶盒的制作工艺。
优选地, 该遮光区域设置有第一取向膜, 该透光区域设置有第二 取向膜。
这样, 当该遮光区域设置有第一取向膜, 该透光区域设置有第二 取向膜时, 在实际生产中简单、 方便。
优选地, 该第一取向膜为垂直取向膜, 该第二取向膜为水平取向 膜。
这样, 当该第一取向膜为水平取向膜, 该第二取向膜为垂直取向 膜时, 在实际生产中简单、 方便。
优选地, 该第一取向膜的宽度与该第二取向膜的宽度相同。
这样, 当该第一取向膜的宽度与该第二取向膜的宽度相同时, 在 实际生产中方便、 简单。
优选地, 该第一取向膜和第二取向膜的总宽度 Q满足:
Q: 2P=D: ( D+G ) ,
其中, P表示液晶面板子像素的宽度, D表示观察者的眼睛与该上基板 之间的垂直距离, G表示该上基板和该下基板之间的距离。
这样, 当第一取向膜和第二取向膜的总宽度 Q满足公式 Q: 2P=D: ( D+G ) , 其中, Ρ表示液晶面板子像素的宽度, D表示观察者的眼睛 与该上基板之间的垂直距离, G 表示该上基板和该下基板之间的距离 时, 在实际生产中可以方便的观看到 3D图像。
本发明实施例还提供了一种 3D显示装置,该显示装置包括上述的 液晶面板。 由本发明实施例提供的 3D显示装置, 由于该显示装置包括上述的 液晶面板, 因此该显示装置能够直接通过液晶盒分开左右眼影像, 简 化棵眼 3 D模式液晶盒的制作工艺。
本发明实施例还提供了一种液晶面板的制作方法, 该方法包括: 将上基板和下基板进行对盒工艺, 形成液晶盒;
在该液晶盒内注入液晶分子, 其中, 该液晶盒包括显示层和光栅 层, 该光栅层靠近上基板设置, 该光栅层包括遮光区域和透光区域, 该遮光区域包括遮光液晶分子, 该透光区域包括透光液晶分子, 该遮 光区域和该透光区域间隔设置。
由本发明实施例提供的液晶面板的制作方法, 包括: 将上基板和 下基板进行对盒工艺, 形成液晶盒; 在该液晶盒内注入液晶分子, 其 中, 该液晶盒包括显示层和光栅层, 该光栅层靠近上基板设置, 该光 栅层包括遮光区域和透光区域, 该遮光区域包括遮光液晶分子, 该透 光区域包括透光液晶分子, 该遮光区域和该透光区域间隔设置, 因此, 本发明实施例提供的液晶面板的制作方法, 能够直接通过液晶盒分开 左右眼影像, 简化棵眼 3D模式液晶盒的制作工艺。
优选地, 该光栅层靠近上基板设置, 包括:
在上基板面向下基板一侧上制作具有光敏特征的取向膜, 使该取 向膜包括多个在垂直方向上呈条状且相间分布的第一取向膜和第二取 向膜; 其中, 该第一取向膜为经过紫外偏振光照射后形成的取向膜, 与该第一取向膜正对的预设距离区域内的液晶分子的长轴方向与该取 向膜所在平面垂直。
这样, 由于该光栅层靠近上基板设置, 包括: 在上基板面向下基 板一侧上制作具有光敏特征的取向膜, 使该取向膜包括多个在垂直方 向上呈条状且相间分布的第一取向膜和第二取向膜; 其中, 该第一取 向膜为经过紫外偏振光照射后形成的取向膜, 与该第一取向膜正对的 预设距离区域内的液晶分子的长轴方向与该取向膜所在平面垂直, 因 此, 本发明实施例提供的液晶面板的制作方法, 能够直接通过液晶盒 分开左右眼影像 , 简化棵眼 3D模式液晶盒的制作工艺。
优选地, 该取向膜包括多个在垂直方向上呈条状且相间分布的第 一取向膜和第二取向膜, 包括:
使用在垂直方向上呈条状的透光区与非透光区相间分布的掩膜板 遮挡该取向膜, 通过紫外偏振光照射该掩膜板, 该掩膜板透光区对应 的取向膜中的分子发生分解反应, 形成该第一取向膜; 该掩膜板非透 光区对应的区域形成该第二取向膜。
这样, 由于使用在垂直方向上呈条状的透光区与非透光区相间分 布的掩膜板遮挡该取向膜, 通过紫外偏振光照射该掩膜板, 该掩膜板 透光区对应的取向膜中的分子发生分解反应, 形成该第一取向膜; 该 掩膜板非透光区对应的区域形成该第二取向膜, 因此在实际生产过程 中可以简单、 方便的得到包括多个在垂直方向上呈条状且相间分布的 第一取向膜和第二取向膜。
^尤选地, 该方法还包括:
在该液晶盒内注入液晶分子后, 通过紫外光照射该液晶盒, 使该 取向膜正对区域内的液晶分子和该取向膜中的分子发生聚合反应, 固 定与该取向膜发生聚合反应的液晶分子的取向。
这样, 由于该方法还包括: 在该液晶盒内注入液晶分子后, 通过 紫外光照射该液晶盒, 使该取向膜正对区域内的液晶分子和该取向膜 中的分子发生聚合反应, 固定与该取向膜发生聚合反应的液晶分子的 取向, 在实际生产过程中可以简单、 方便的固定与取向膜正对的液晶 分子的取向。 附图说明
图 1为现有技术中实现棵眼 3D显示的液晶面板的结构示意图; 图 2为本发明一个实施例提供的一种液晶面板的结构示意图; 图 3为本发明另一实施例提供的一种液晶面板的制作方法流程图; 图 4为本发明又一实施例提供的一种液晶面板实现棵眼 3D显示时 的示意图。 具体实施方式
本发明提供了一种液晶面板及其制作方法、 3D显示装置, 用以在 液晶盒内部就可以实现分开左右眼影像 , 简化棵眼 3D模式液晶盒的制 作工艺。
如图 2 所示, 本发明的一个实施例提供了一种液晶面板, 该面板 包括上基板 20、下基板 21 以及位于上基板 20和下基板 21之间的液晶 分子 24 , 上基板 20与下基板 21经过对盒工艺后形成液晶盒 25 , 本发 明一个实施例提供的液晶面板还包括位于该上基板 20面向该下基板 21 一侧的具有光敏特征的取向膜 22 , 其中, 取向膜 22包括多个在垂直方 向上呈条状且相间分布的第一区域 221和第二区域 222; 其中, 第一区 域 221 经过紫外偏振光照射后使得与该第一区域 221正对的预设距离 区域内的液晶分子 242的长轴方向与该取向膜 22所在平面垂直。
其中, 取向膜 22的第二区域 222为没有被紫外偏振光照射到的区 域, 具有光敏特征的取向膜 22中的分子与第二区域 222正对的液晶分 子 241之间通过分子间作用力, 使得与该第二区域 222正对的区域内 的液晶分子 241 的长轴方向与取向膜 22所在平面平行。 而取向膜 22 的第一区域 221 为经过紫外偏振光照射后形成的区域, 被照射到的具 有光敏特征的取向膜 22中的部分高分子链发生分解反应, 此时具有光 敏特征的取向膜 22中的分子与第一区域 221正对的液晶分子 242之间 通过分子间作用力, 使得与该第一区域 221 正对的区域内的液晶分子 242的长轴方向与取向膜 22所在平面垂直。
其中, 本发明一个实施例中的下基板 21 上的取向膜 23 为与现有 技术相同的经过摩擦取向后得到的取向膜, 在液晶面板的显示过程中, 位于取向膜 23上的液晶分子 243用于正常显示。
如图 2 所示, 本发明一个实施例提供的液晶面板中的液晶盒包括 显示层、 液晶分子 241 以及液晶分子 242组成的光栅层和取向膜, 该 光栅层靠近上基板 20设置, 光栅层包括遮光区域和透光区域, 该遮光 区域包括遮光液晶分子 242 , 该透光区域包括透光液晶分子 241 , 该遮 光区域和该透光区域间隔设置。 该遮光区域设置有第一取向膜, 对应 图中取向膜 22的第一区域 221 , 该透光区域设置有第二取向膜, 对应 图中取向膜 22的第二区域 222。
优选地, 取向膜 22中的第一区域 221的宽度与第二区域 222的宽 度相同。 其中, 在实际的生产设计中, 可以根据具体的工艺将第一区 域 221 的宽度与第二区域 222的宽度设置为不同, 本发明一个实施例 并不对其作限定, 只是以第一区域 221 的宽度与第二区域 222的宽度 相同为较佳实施例进行说明。 本发明一个实施例中的取向膜 22为具有 光敏特性的聚酰亚胺 PI。
除非另作定义, 此处使用的技术术语或者科学术语应当为本发明 所属领域内具有一般技能的人士所理解的通常意义。 本发明专利申请 说明书以及权利要求书中使用的 "第一" 、 "第二" 以及类似的词语 并不表示任何顺序、 数量或者重要性, 而只是用来区分不同的组成部 分。 同样, "一个" 、 "一" 或者 "该" 等类似词语也不表示数量限 制, 而是表示存在至少一个。 "包括" 或者 "包含" 等类似的词语意 指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者 物件及其等同, 而不排除其他元件或者物件。 "上" 、 "下" 、 "左" 、 "右" 、 "底" 、 "顶" 等仅用于表示相对位置关系, 当被描述对象 的绝对位置改变后, 则该相对位置关系也可能相应地改变。
如图 3 所示, 本发明一个实施例还提供了一种液晶面板的制作方 法, 该方法包括:
5301、 将上基板和下基板进行对盒工艺, 形成液晶盒;
5302、 在该液晶盒内注入液晶分子, 其中, 该液晶盒包括显示层 和光栅层, 该光栅层靠近上基板设置, 该光栅层包括遮光区域和透光 区域, 该遮光区域包括遮光液晶分子, 该透光区域包括透光液晶分子, 该遮光区域和该透光区域间隔设置。
下面详细介绍本发明具体实施例中提供的液晶面板实现棵眼 3D 显示的过程。
如图 4 所示, 本发明一个实施例中通过使用在垂直方向上呈条状 的透光区与非透光区相间分布的掩膜板遮挡取向膜 22 , 通过紫外偏振 光照射该掩膜板, 该掩膜板透光区对应的取向膜 22中的部分高分子链 发生分解反应, 形成取向膜 22的第一区域 221 ; 该掩膜板非透光区对 应的区域形成取向膜 22 的第二区域 222。 接着将上基板 20和下基板 21进行对盒工艺, 形成液晶盒; 在该液晶盒内注入液晶分子 24 , 其中, 与第一区域 221 正对的预设距离区域内的液晶分子的长轴方向与取向 膜 22所在平面垂直, 这里的预设距离的值在不同工艺中有不同的值。 优选的, 本发明一个实施例中的预设距离为 0.1微米 -0.5微米, 本发明 具体实施例并不对其进行限定, 具体的距离与紫外偏振光照射的时间 以及强度有关。
另外, 为了更好的固定与取向膜 22正对的区域中的液晶分子的取 向, 通过紫外光照射液晶盒, 优选紫外光照射的方向与图中光源 42的 光线方向相同, 此时该第一区域 221 和第二区域 222正对的区域内的 液晶分子会与取向膜 22 中的分子发生聚合反应, 将图中与取向膜 22 垂直的液晶分子和与取向膜 22平行的液晶分子固定, 从而更好的保证 电场改变不影响与取向膜 22垂直的液晶分子和与取向膜 22平行的液 晶分子的取向。
如图 4所示, 本发明一个实施例中区分左右眼影像的过程具体为: 由于 3D 显示时是以子像素进行显示的, 其中一列子像素显示左眼图 像, 相邻列子像素显示右眼图像, 光源 42照射过来的光通过下基板 21 后, 以最左边的一个子像素 43为例说明, 光源 42发射的光线通过液 晶面板到达左眼 40之前经过与取向膜 22平行的液晶分子, 由于与取 向膜 22平行的液晶分子可以使偏振光通过, 因此左眼可以看到该像素 图像; 光源 42发射的光线通过液晶面板到达右眼 41之前经过与取向 膜 22垂直的液晶分子, 由于与取向膜 22垂直的液晶分子不能使偏振 光通过, 因此右眼不能看到该像素图像, 即最左边的子像素 43为左眼 可见; 对于最左边的子像素 43相邻的子像素 44 , 光源 42发射的光线 通过液晶面板到达左眼 40之前经过与取向膜 22垂直的液晶分子, 由 于与取向膜 22垂直的液晶分子不能使偏振光通过, 因此左眼不能看到 该像素图像; 光源 42发射的光线通过液晶面板到达右眼 41之前经过 与取向膜 22平行的液晶分子, 由于与取向膜 22平行的液晶分子可以 使偏振光通过, 因此右眼可以看到该像素图像, 即子像素 44为右眼可 见, 以此类推, 整个液晶面板上左右眼图像如此交替最终实现左右眼 分别看到各自图像的目的。 因此本发明一个实施例中, 通过设置取向 膜 22配合光控取向, 使得与取向膜 22垂直的液晶分子和与取向膜 22 平行的液晶分子排列形成视差屏障, 实现分离左右眼影像的作用, 最 终达到 3D立体显示。
如图 4 所示, 本发明一个实施例中要实现上面描述的整个液晶面 板上左右眼图像交替, 最终实现左右眼分别看到各自图像时, 还需要 对相关距离进行设计, 具体设计为, Q: 2P=D : ( D+G ) , 其中, Q 表示取向膜 22中第一区域 221和第二区域 222的总宽度; P表示液晶 面板子像素的宽度, 如子像素 43的宽度, D表示观察者的眼睛与上基 板 20之间的垂直距离, G表示上基板 20和下基板 21之间的距离。 另 外, 观察者左眼 40和右眼 41之间的距离 E满足, E: P=D: G, 满足 上述比例式即可获得 3D立体视觉。 本发明一个实施例还提供了一种显示装置, 该显示装置包括上面 该的液晶面板, 优选的, 本发明中的液晶面板为高级超维场转换
( Advanced Super Dimension Switch , ADS ) 型或平面方向转换 ( In-Plane-Switching, IPS ) 型液晶面板。 脱离本发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于 本发明权利要求及其等同技术的范围之内, 则本发明也意图包含这些 改动和变型在内。

Claims

权 利 要 求
1、 一种液晶面板, 其特征在于, 包括上基板、 下基板以及位于所 述上下基板之间的液晶分子形成的液晶盒,
所述液晶盒包括显示层和光栅层, 所述光栅层靠近上基板设置, 所述光栅层包括遮光区域和透光区域, 所述遮光区域包括遮光液晶分 子, 所述透光区域包括透光液晶分子, 所述遮光区域和所述透光区域 间隔设置。
2、 根据权利要求 1所述的液晶面板, 其特征在于, 所述遮光区域 设置有第一取向膜, 所述透光区域设置有第二取向膜。
3、 根据权利要求 2所述的液晶面板, 其特征在于, 所述第一取向 膜为垂直取向膜, 所述第二取向膜为水平取向膜。
4、 根据权利要求 3所述的液晶面板, 其特征在于, 所述第一取向 膜的宽度与所述第二取向膜的宽度相同。
5、 根据权利要求 4所述的液晶面板, 其特征在于, 所述第一取向 膜和第二取向膜的总宽度 Q满足:
Q: 2P=D: ( D+G ) ,
其中, P表示液晶面板子像素的宽度, D表示观察者的眼睛与所述 上基板之间的垂直距离, G表示所述上基板和所述下基板之间的距离。
6、 一种 3D显示装置, 其特征在于, 所述显示装置包括权利要求 1-5任一项所述的液晶面板。
7、 一种液晶面板的制作方法, 其特征在于, 所述方法包括: 将上基板和下基板进行对盒工艺, 形成液晶盒;
在所述液晶盒内注入液晶分子, 其中, 所述液晶盒包括显示层和 光栅层, 所述光栅层靠近上基板设置, 所述光栅层包括遮光区域和透 光区域, 所述遮光区域包括遮光液晶分子, 所述透光区域包括透光液 晶分子, 所述遮光区域和所述透光区域间隔设置。
8、 根据权利要求 7所述的方法, 其特征在于, 所述光栅层靠近上 基板设置, 包括:
在上基板面向下基板一侧上制作具有光敏特征的取向膜, 使所述 取向膜包括多个在垂直方向上呈条状且相间分布的第一取向膜和第二 取向膜; 其中, 所述第一取向膜为经过紫外偏振光照射后形成的取向 膜, 与所述第一取向膜正对的预设距离区域内的液晶分子的长轴方向 与所述取向膜所在平面垂直。
9、 根据权利要求 8所述的方法, 其特征在于, 所述取向膜包括多 个在垂直方向上呈条状且相间分布的第一取向膜和第二取向膜, 包括: 使用在垂直方向上呈条状的透光区与非透光区相间分布的掩膜板 遮挡所述取向膜, 通过紫外偏振光照射所述掩膜板, 所述掩膜板透光 区对应的取向膜中的分子发生分解反应, 形成所述第一取向膜; 所述 掩膜板非透光区对应的区域形成所述第二取向膜。
10、 根据权利要求 7所述的方法, 其特征在于, 所述方法还包括: 在所述液晶盒内注入液晶分子后, 通过紫外光照射所述液晶盒,使 所述取向膜正对区域内的液晶分子和所述取向膜中的分子发生聚合反 应, 固定与所述取向膜发生聚合反应的液晶分子的取向。
PCT/CN2014/083105 2014-03-07 2014-07-28 一种液晶面板及其制作方法、3d显示装置 WO2015131475A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/421,855 US9798152B2 (en) 2014-03-07 2014-07-28 Liquid crystal panel and method for the manufacture thereof, and a 3D display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410084049.X 2014-03-07
CN201410084049.XA CN103885229B (zh) 2014-03-07 2014-03-07 一种液晶面板及其制作方法、3d显示装置

Publications (1)

Publication Number Publication Date
WO2015131475A1 true WO2015131475A1 (zh) 2015-09-11

Family

ID=50954203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/083105 WO2015131475A1 (zh) 2014-03-07 2014-07-28 一种液晶面板及其制作方法、3d显示装置

Country Status (3)

Country Link
US (1) US9798152B2 (zh)
CN (1) CN103885229B (zh)
WO (1) WO2015131475A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103885229B (zh) * 2014-03-07 2017-01-11 京东方科技集团股份有限公司 一种液晶面板及其制作方法、3d显示装置
CN105572889B (zh) * 2016-01-08 2018-09-21 京东方科技集团股份有限公司 一种3d显示装置
CN106855675B (zh) * 2017-03-14 2020-01-07 京东方科技集团股份有限公司 防窥装置和防窥显示设备
CN108490703B (zh) * 2018-04-03 2021-10-15 京东方科技集团股份有限公司 一种显示系统及其显示控制方法
CN110850640B (zh) * 2019-11-29 2020-12-08 武汉华星光电技术有限公司 液晶显示面板及其制备方法
CN112327505B (zh) * 2020-11-17 2022-04-05 武汉华星光电技术有限公司 裸眼3d显示装置及其制作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040239835A1 (en) * 2001-04-27 2004-12-02 Jin-Hee Jung Autostereoscopic display apparatus and method of manufacturing the same
US20050200781A1 (en) * 2004-03-11 2005-09-15 Sharp Kabushiki Kaisha Liquid crystal display panel and liquid crystal display device
CN101000430A (zh) * 2007-01-05 2007-07-18 何开成 一种液晶立体平面兼容显示器
TW201222103A (en) * 2010-10-18 2012-06-01 Jsr Corp Liquid crystal cell, liquid crystal display element, a method for producing liquid crystal cell and photoorientation agent
CN102830546A (zh) * 2012-09-03 2012-12-19 京东方科技集团股份有限公司 3d显示装置及其制作方法
TW201337350A (zh) * 2012-03-01 2013-09-16 Dainippon Printing Co Ltd 長型圖案配向膜及使用其之長型圖案相位差薄膜
CN103885229A (zh) * 2014-03-07 2014-06-25 京东方科技集团股份有限公司 一种液晶面板及其制作方法、3d显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100578310C (zh) * 2007-11-13 2010-01-06 友达光电股份有限公司 制作液晶显示面板的方法
TWI328714B (en) * 2008-10-09 2010-08-11 Au Optronics Corp Switchable two and three dimensional display
WO2012086090A1 (ja) * 2010-12-24 2012-06-28 富士通フロンテック株式会社 フィルム基板の液晶封止方法
KR101279515B1 (ko) * 2011-05-24 2013-06-28 엘지전자 주식회사 디스플레이 모듈 및 이를 구비한 이동 단말기
US20150015826A1 (en) * 2012-01-06 2015-01-15 Sharp Kabushiki Kaisha Liquid crystal display device and method for manufacturing same
JP5711826B2 (ja) * 2012-01-11 2015-05-07 株式会社東芝 液晶光学素子及び立体画像表示装置
WO2015012347A1 (ja) * 2013-07-24 2015-01-29 大日本印刷株式会社 位相差フィルム、位相差フィルムの製造方法、この位相差フィルムを用いた偏光板及び画像表示装置、この画像表示装置を使用した3d画像表示システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040239835A1 (en) * 2001-04-27 2004-12-02 Jin-Hee Jung Autostereoscopic display apparatus and method of manufacturing the same
US20050200781A1 (en) * 2004-03-11 2005-09-15 Sharp Kabushiki Kaisha Liquid crystal display panel and liquid crystal display device
CN101000430A (zh) * 2007-01-05 2007-07-18 何开成 一种液晶立体平面兼容显示器
TW201222103A (en) * 2010-10-18 2012-06-01 Jsr Corp Liquid crystal cell, liquid crystal display element, a method for producing liquid crystal cell and photoorientation agent
TW201337350A (zh) * 2012-03-01 2013-09-16 Dainippon Printing Co Ltd 長型圖案配向膜及使用其之長型圖案相位差薄膜
CN102830546A (zh) * 2012-09-03 2012-12-19 京东方科技集团股份有限公司 3d显示装置及其制作方法
CN103885229A (zh) * 2014-03-07 2014-06-25 京东方科技集团股份有限公司 一种液晶面板及其制作方法、3d显示装置

Also Published As

Publication number Publication date
CN103885229A (zh) 2014-06-25
US9798152B2 (en) 2017-10-24
CN103885229B (zh) 2017-01-11
US20160266394A1 (en) 2016-09-15

Similar Documents

Publication Publication Date Title
WO2015131475A1 (zh) 一种液晶面板及其制作方法、3d显示装置
US9448412B2 (en) Color filter substrate, fabrication method thereof and display device
US20150109666A1 (en) Array substrate and manufacturing method thereof, 3d display device
EP2530942B1 (en) 3D display panel and method of manufacturing a phase difference plate
KR20150116974A (ko) 영상 표시 장치
KR20130140960A (ko) 액티브 리타더 역할을 하는 패널과 이의 제조 방법 및 이를 구비한 입체 영상 구현 시스템
KR101207861B1 (ko) 입체 엘씨디 패널 및 그 제조 방법
US8455181B2 (en) Method for manufacturing a patterned retarder
CN103941322B (zh) 一种相位差板的制作方法
WO2018040709A1 (zh) 一种视差挡板、显示装置及其制造方法
KR102080488B1 (ko) 액티브 리타더 역할을 하는 패널과 이의 제조 방법 및 이를 구비한 입체 영상 구현 시스템
KR101879860B1 (ko) 표시 패널 및 그 제조 방법
US9083966B2 (en) Display device and method for manufacturing phase retarder film thereof
KR100811818B1 (ko) 2차원/3차원 영상 표시용 렌티큘러 액정셔터 및 이를 갖는디스플레이 장치
KR101373200B1 (ko) 광학필름, 이를 포함하는 서브 패널, 및 이를 포함하는 입체영상 표시장치
KR101977250B1 (ko) 입체영상표시장치 및 이의 제조방법
KR101706579B1 (ko) 영상 표시장치용 리타더 제조 방법
KR101313652B1 (ko) 입체영상표시장치와 이의 제조방법
TWM497789U (zh) 用於液晶顯示器的電控式立體光柵結構
KR20120119488A (ko) 입체 영상 구현 시스템 및 이의 제조 방법
KR20140008730A (ko) 편광제어 셀, 그의 제조방법, 및 그를 이용한 입체영상 표시장치
KR101971047B1 (ko) 리타더 패널을 포함하는 표시장치 및 그 제조방법
KR101702078B1 (ko) 3디 영상 구현 시스템
KR101875022B1 (ko) 입체영상 표시장치 및 그 제조방법
TWI581009B (zh) 液晶顯示器及其製作方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14421855

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14884809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07.02.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14884809

Country of ref document: EP

Kind code of ref document: A1