WO2015131373A1 - 一种用于efd装置的油击穿受控开启系统及其制造方法 - Google Patents

一种用于efd装置的油击穿受控开启系统及其制造方法 Download PDF

Info

Publication number
WO2015131373A1
WO2015131373A1 PCT/CN2014/072997 CN2014072997W WO2015131373A1 WO 2015131373 A1 WO2015131373 A1 WO 2015131373A1 CN 2014072997 W CN2014072997 W CN 2014072997W WO 2015131373 A1 WO2015131373 A1 WO 2015131373A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
efd
pixel
region
thickness
Prior art date
Application number
PCT/CN2014/072997
Other languages
English (en)
French (fr)
Inventor
周国富
李发宏
海耶斯罗伯特·安德鲁
Original Assignee
华南师范大学
深圳市国华光电科技有限公司
深圳市国华光电研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南师范大学, 深圳市国华光电科技有限公司, 深圳市国华光电研究所 filed Critical 华南师范大学
Priority to EP14884630.6A priority Critical patent/EP3116231B1/en
Priority to US15/123,970 priority patent/US9779672B2/en
Priority to PCT/CN2014/072997 priority patent/WO2015131373A1/zh
Publication of WO2015131373A1 publication Critical patent/WO2015131373A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/348Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on the deformation of a fluid drop, e.g. electrowetting
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/004Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid
    • G02B26/005Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid based on electrowetting
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones

Definitions

  • the invention relates to an oil breakdown controlled opening system for an EFD device and a manufacturing method thereof, and belongs to the technical field of EFD display.
  • EFD Electro Fluidic Display System
  • IPS In-Plane-Switching
  • Elctro- osmosis display system and liquid crystal display LCD.
  • Some of these display structures use a reflective display, such as EFD for electronic ink (E ink) or electronic paper.
  • EFD can also be called electrowetting display. Electrowetting refers to changing the wettability of a droplet on a substrate by changing the voltage between the droplet and the insulating substrate, that is, changing the contact angle to cause the droplet to occur. The phenomenon of deformation and displacement.
  • wetting is meant the process by which one fluid on a solid surface is replaced by another fluid.
  • the liquid can spread on the solid surface, and the solid-liquid contact surface has a tendency to expand, that is, the adhesion of the liquid to the solid surface is greater than the cohesive force, that is, wetting.
  • the liquid does not spread on the solid surface, and the contact surface has a tendency to shrink into a spherical shape, that is, it does not wet.
  • the non-wetting is the adhesion of the liquid to the solid surface is less than its cohesion.
  • the wetting effect of the hydrophobic surface can be changed by voltage (namely electrowetting), making the surface more hydrophilic (wet).
  • a schematic structural view of the EFD pixel cell structure is shown in Figs. la and lb, and a pixel wall 3 is disposed above the dielectric layer and the photolithographic lower electrode 5.
  • the uppermost insulating layer is hydrophobic and is therefore also referred to as a hydrophobic insulating layer 6.
  • the first liquid 1 e.g., the oil layer
  • the second liquid 2 and the hydrophobic insulating layer 6 are not wetted, which is incompatible with the oil layer, which fills the top of the unit structure.
  • a suitable pigment such as a black pigment
  • the pixel is opaque black when viewed from the pixel unit; and at the position of the panel lb, the pixel is transparent, and if it is a reflective display, it is presented.
  • the color of the reflective layer under the pixel such as white.
  • the proper charge strength In order to penetrate the oil layer, the proper charge strength must be used, which is defined as Instruction book
  • V is the applied voltage
  • is the dielectric constant
  • d is the thickness. Due to process effects, such as variations in the thickness of the dielectric layer and unevenness in the filling of the oil layer, the charge intensity on the surface of the oil layer may be different. This will cause the following problems:
  • the breakdown point of the oil layers of different pixels may be different
  • the horizontal axis is the applied voltage V
  • the vertical axis is the open pixel area.
  • the applied voltage is increased from zero point 0 to the turn-on voltage Vth (opening point A in the figure), causing the oil layer to be broken by the second liquid 2.
  • Vth opening point A in the figure
  • the shrinkage of the oil in the pixel is very sensitive to the applied voltage, which makes modulation of the open area very difficult.
  • the applied voltage exceeds a certain value, the open area becomes saturated (saturation point B in the figure). If the applied voltage is reduced, the open area of the pixel is reduced by following a different path (as indicated by the closed path BCO in the figure).
  • the hysteresis effect in the EFD display device is small, whereby the pixel gray level (which proportionally corresponds to the size of the open area of the pixel) can be easily modulated by the applied voltage.
  • An object of the present invention is to overcome the deficiencies of the prior art problems, and to provide a display structure having a high-intensity diffuse reflector and a method of fabricating the same.
  • an oil breakdown controlled opening system for an EFD device comprising an EFD display structure, the EFD display structure comprising an EFD display structure a top electrode at the top, a lower electrode disposed at the bottom of the EFD display structure, a dielectric layer disposed on the lower electrode, and a pixel wall disposed on the dielectric layer, wherein the first liquid is filled in a region defined by the pixel wall, A liquid is filled between the liquid and the upper electrode, the dielectric layer comprises a hydrophobic insulating layer, and the first liquid and the hydrophobic insulating layer have sufficient wettability so that the first liquid is not applied between the upper electrode and the lower electrode.
  • the pixel wall includes pixel walls having different heights, wherein the pixel walls of different heights comprise a higher pixel wall having a first height, which is located a first region of the EFD display structure, and a lower pixel wall having a lower height than the first height, which is located in the EFD display structure Second area.
  • the height of the lower pixel wall is set such that when a predetermined lower voltage is applied between the upper electrode and the lower electrode, the first liquid of the second region is first broken down.
  • a substrate is disposed under the lower electrode, and the substrate is provided with a step at a portion thereof located in the second region such that the lower electrode and the dielectric layer are higher in the portion of the step than the step.
  • the second thickness of the first liquid on the step is made smaller than the first thickness outside the step.
  • the difference in thickness between the second thickness of the first liquid and the first thickness is set such that when a predetermined lower voltage is applied between the upper electrode and the lower electrode, the first liquid located on the step is firstly The second liquid breaks down and the first liquid is The second liquid is pushed by the instructions to move from the second zone to the first zone.
  • the substrate is provided with a plurality of steps at a portion thereof located in the second region, wherein a vertical height of the step farther from the first region is greater than a vertical height of the step closer to the first region.
  • the first liquid is an inert liquid comprising a colored oil layer.
  • a hydrophilic layer is disposed between the upper electrode and the second liquid.
  • an EFD display device comprising a plurality of EFD pixel units having the above-described oil breakdown controlled opening system, wherein oil breakdown in each of the EFD pixel units is The arrangement direction of the first area and the second area in the control opening system is the same.
  • a method of controlled control of oil breakdown for an EFD device comprising the steps of:
  • a substrate is disposed, and a step is formed on the substrate such that the step is higher than a base region outside the substrate .
  • a lower electrode is formed on the substrate and a dielectric layer is applied such that the vertical height of the lower electrode and the portion of the dielectric layer on the step thereof is higher than a portion thereof outside the step, wherein the dielectric layer is disposed to include a hydrophobic insulating layer.
  • a pixel wall is fabricated on the periphery of the dielectric layer using a photolithography process, wherein the pixel wall includes pixel walls having different heights, the pixel wall of different heights includes a lower pixel wall above the step, and a pixel outside the step High pixel wall.
  • a first liquid is filled in the pixel wall, wherein the first liquid has a second thickness above the step that is smaller than a first thickness outside of the step.
  • An upper electrode is disposed above the pixel wall, and a second liquid is filled between the upper electrode and the pixel wall.
  • the difference in thickness between the second thickness and the first thickness is set such that when a predetermined lower voltage is applied between the upper electrode and the lower electrode, the first liquid located above the step is first hit by the second liquid Wearing, and the first liquid is pushed by the second liquid, moving from the area above the step to the area outside the step.
  • the present invention has the following significant advantages and beneficial effects:
  • An oil breakdown controlled opening system for an EFD device and a method of manufacturing the same, first, in an EFD pixel unit, a breakdown point of an oil layer as an inert liquid is in an ideal region required, and an oil receiving layer More or less fill has less impact.
  • the oil layer breakdown points of each pixel unit are all in the same region, and thus the oil layer movement direction and characteristics of each pixel are uniform.
  • Figure la is a schematic diagram of the principle of the prior EFD display structure when no voltage is applied between the upper and lower electrodes
  • Figure lb is a schematic diagram of the principle of applying voltage between the upper and lower electrodes of the existing EFD display structure
  • Figure 2 shows the schematic diagram of the hysteresis effect of the existing EFD display structure
  • Figure 3 is a schematic diagram showing the electrical representation of the existing EFD display structure
  • FIG. 4a is a top plan view showing an EFD display structure of pixel walls having different heights according to an embodiment of the invention
  • Figure 4b is a cross-sectional side elevational view of the EFD display structure of the pixel wall having different heights in the direction Z of Figure 4a, in accordance with an embodiment of the present invention
  • FIG. 5 is a schematic diagram showing the principle of capacitance characteristics in an EFD display structure of pixel walls having different heights according to an embodiment of the invention
  • Figure 6 is a schematic diagram showing the principle of capacitance characteristics in an EFD display structure having different pixel wall heights in accordance with another embodiment of the present invention.
  • the structure may also include an upper electrode 4 disposed on top of the EFD display structure, a lower electrode 5 disposed at the bottom of the EFD display structure, a dielectric layer 8 disposed on the lower electrode 5, and a dielectric layer
  • the pixel wall 3 on layer 8, according to the invention, may be composed of one or more layers of dielectric material, which electrically form a capacitance with the upper and lower electrodes 4, 5.
  • a region defined by the pixel wall 3 is filled with a first liquid 1, such as a colored oil layer, which is an inert liquid, and a second liquid 2 is filled between the first liquid 1 and the upper electrode 4, including but not limited.
  • a voltage is not applied between the upper and lower electrodes 4, 5 in water, a water electrolyte solution, or other non-aqueous liquid, the second liquid 2 and the hydrophobic insulating layer 6 are not wetted.
  • the dielectric layer 8 comprises a lower insulating layer and a hydrophobic insulating layer 6, and in other possible embodiments, only the hydrophobic insulating layer 6 may be used.
  • the oil layer and the hydrophobic insulating layer 6 have sufficient wettability so that the oil layer contacts the hydrophobic insulating layer 6 in a closed state where no voltage is applied between the upper electrode 4 and the lower electrode 5 and completely covers the hydrophobic insulating layer 6, according to the implementation.
  • the pixel wall 3 includes pixel walls 3 having different heights, wherein the pixel walls 3 of different heights include a higher pixel wall 31 having a first height, which is located in a first region 21 of the EFD display structure. And a lower pixel wall 32 having a lower height than the first height, which is located in a second region 22 of the EFD display structure.
  • the height of the lower pixel wall 32 is set such that a predetermined lower electric current is applied between the upper electrode 4 and the lower electrode 5.
  • the oil layer of the second region 22 is first broken down by the second liquid 2.
  • C11 and C12 are the capacitances of the first liquid 1 located in the first region and the second region, respectively, C21 and C22.
  • C21 C22.
  • the charge intensity P1 in the first region 21 having the higher pixel wall 31 is obtained by the following formula:
  • 3 ⁇ 4 is the dielectric constant of the dielectric layer 8, which is the dielectric constant of the oil layer, which is the height of the dielectric layer 8, and ⁇ is the height of the higher pixel wall 31, such as the first height.
  • a plurality of EFD pixel units having the above-described oil breakdown controlled opening system are included, wherein the first region 21 in the oil breakdown controlled opening system in each of the EFD pixel units It is aligned with the arrangement direction of the second region 22.
  • the structure having a plurality of different pixel wall 3 heights according to the present invention can be conveniently implemented using existing process recipes.
  • a substrate is disposed under the lower electrode 5, and the substrate is provided with a step 9 at a portion thereof located at the second region 22 such that the lower electrode 5 and the dielectric layer 8 are located on the step 9 higher than the step 9
  • the other portion is such that the second thickness of the oil layer on the step 9 is smaller than the first thickness outside the step 9.
  • the lower pixel wall 32 and the higher pixel wall 31 are arranged to be flush with the top to facilitate the implementation of subsequent processes.
  • the difference in thickness between the second thickness of the oil layer and the first thickness is set such that when a predetermined lower voltage is applied between the upper electrode 4 and the lower electrode 5, the oil layer on the step 9 is firstly Two liquid 2 breakdown, and the oil layer is second The liquid 2 is pushed to move from the second region 22 to the first region 21.
  • the substrate is provided with a plurality of steps 9 at its portion located at the second region 22, wherein the vertical height of the step 9 farther from the first region 21 is greater than the vertical height of the step 9 closer to the first region 21.
  • the motion characteristics of the oil layer will be smoother and the modulation of the displayed gray scale will be easier.
  • a hydrophilic layer is disposed between the upper electrode 4 and the second liquid 2.
  • a step 9 is first fabricated on the substrate, and then the electrodes are formed and the dielectric layer 8 is applied. Finally, the pixel wall 3 is fabricated using a photolithographic process.
  • the structure of Figure 6 has similar effects for the movement of the oil layer and the control of the oil layer.
  • pixel walls 3 having different heights are constructed by using different process methods.
  • the charge intensity is higher.
  • the oil layer in the second region 22 is first broken down.
  • a method for controlled opening of oil breakdown for an EFD device comprising the steps of: providing an EFD display structure in the oil breakdown controlled opening system; In the display structure, a substrate is provided, and a step 9 is formed on the substrate such that the step 9 is higher than the substrate region other than the substrate.
  • the lower electrode 5 is formed on the substrate and the dielectric layer 8 is applied such that the vertical height of the lower electrode 5 and the portion of the dielectric layer 8 on the step 9 is higher than the portion thereof outside the step 9, wherein the dielectric layer 8 It is provided to include an insulating layer and a hydrophobic insulating layer 6.
  • the thickness of the insulating layer of the dielectric layer 8 at the portion of the step 9 can be very close to the thickness of the portion other than the step 9 by the existing process, which can electrically make the insulating layer located therein. Portions on the step 9 and beyond the step 9 have nearly equal capacitance values.
  • a pixel wall 3 is fabricated on the periphery of the dielectric layer 8 using a photolithography process, wherein the pixel wall 3 includes pixel walls 3 having different heights, and the pixel walls 3 of different heights include lower pixel walls 32 above the steps 9. And a higher pixel wall 31 outside the step 9, optionally, the lower pixel wall 32 and the higher pixel wall 31 can be fabricated as a top flush to facilitate subsequent implementation of the process, such that the lower pixel wall 32 The size of the relatively high pixel wall 31 in the vertical direction is small.
  • An oil layer is filled in the pixel wall 3, wherein the oil layer has a second thickness above the step 9 that is smaller than a first thickness outside the step 9.
  • the upper electrode 4 is disposed above the pixel wall 3, and the second liquid 2 is filled between the upper electrode 4 and the pixel wall 3.
  • the difference in thickness between the second thickness and the first thickness is set such that when a predetermined lower voltage is applied between the upper electrode 4 and the lower electrode 5, the oil layer above the step 9 is firstly used by the second liquid 2 breakdown, and the oil layer is pushed by the second liquid 2, moving from the area above the step 9 to the area other than the step 9.
  • the height of the step 9 of the multi-stage can be expressed in the EFD pixel.
  • the top height of the pixel wall 3 can be made uniform with respect to the bottom of the substrate, i.e., the top is flush so that the thickness of the first liquid 1 on each step 9
  • the description is different; in other examples, the height of the pixel wall 3 relative to the bottom thereof may be made uniform, so that the thickness of the first liquid 1 on each step 9 may be different to achieve the technical effect of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

本发明公开了一种用于EFD装置的油击穿受控开启系统及其制造方法,其下电极下方的基底上设置有台阶,以使使第一液体在台阶上的第二厚度,比其在台阶以外的第一厚度小。该厚度差使在上电极与下电极之间施加一预设的较低电压时,位于台阶上的第一液体首先被第二液体击穿,并且第一液体被第二液体推挤,从第二区域向第一区域运动。由此,在EFD像素单元中,作为惰性液体的油层的击穿点处于所需要的理想的区域,受油层的过多或过少填充的影响更少;为击穿油层,只需要更低的电势差,因此,减轻了滞后效应,这使像素的灰度等级易于控制。

Description

一种用于 EFD装置的油击穿受控开启系统及其制造方法
¾b ^领域
本发明涉及一种用于 EFD装置的油击穿受控开启系统及其制造方法, 属于 EFD显示技术 领域。
背景
目前, 用于文字、 图像、 视频以及交互界面的显示单元一般采用平板显示结构, 在这一 领域中, 广泛使用的有, 例如, 微流控显示系统(Electro fluidic display system, EFD)、 电泳显示系统 (Electrophoretic display system)、平面转换 ( In- Plane- Switching, IPS)、 电渗透显示系统 (Elctro- osmosis display system), 以及液晶显示 LCD等。 其中的一部分 显示结构采用反射式显示, 例如, 应用于电子墨水 (E ink) 或电子纸的 EFD。 EFD也可称为 电湿润显示(Electrowetting display) , 电润湿是指通过改变液滴与绝缘基板之间电压, 来 改变液滴在基板上的润湿性, 即改变接触角, 使液滴发生形变、 位移的现象。 所谓润湿是指 固体表面的一种流体被另一种流体所取代的过程。 液体在固体表面能铺展, 固液接触面有扩 大的趋势, 即液体对固体表面的附着力大于其内聚力, 就是润湿。液体在固体表面不能铺展, 接触面有收缩成球形的趋势, 就是不润湿, 不润湿就是液体对固体表面的附着力小于其内聚 力。其中, 疏水性表面的湿润效果可以使用电压来改变(故名电润湿), 令该表面变得更亲水 (湿润)。 由于原先疏水的表面现在变得更吸水, 原先与疏水表面良好接触的惰性液体, 例如 油层, 不得不改变其形式。 这种界面属性控制是电润湿应用的基础。 关于电湿润显示原理的 应用,在专利 W003071347, 以及在出版物《自然》的 425383385发表的内容中有详细的描述。
EFD像素单元结构的原理性的结构图如图 la和图 lb所示,在电介质层和光刻的下电极 5 上方设置有像素墙 3。最上层的绝缘层具有疏水性,因此也称为疏水绝缘层 6。第一液体 1 (例 如油层) 在疏水绝缘层 6上具有良好的湿润性, 因此其用于填充由像素墙 3所限定的区域。 第二液体 2与疏水绝缘层 6不湿润, 其与油层不相容, 其填充单元结构的顶部。
当在电极上施加一电压时, 电荷在第二液体 2下表面积累,然后其克服电容力击穿油层。 通过进一步增加电压, 可将击穿的油层往像素区域的一角推挤。 如果消除电压, 被压缩的油 将返回至在施加电压之前的状态。如图 la所示, 在施加电压之前, 油层填充于图中所在的区 域; 图 lb所示, 在施加电压后, 油层被推至像素单元结构的一侧。若在油层中添加适当的颜 料, 例如黑色颜料, 在图 la位置, 俯视该像素单元, 像素呈现不透光的黑色; 而在图 lb位 置, 像素透光, 如果是反射式显示, 则呈现出像素下的反射层的颜色, 例如白色。 为了击穿油层, 必须使用恰当的电荷强度, 其定义为 说 明书
V 其中 V为施加的电压, ε为介电常数, d为厚度。 由于工艺上的影响, 例如, 电介质层的 厚度变化以及油层填充的不均匀性, 油层表面的电荷强度可能不同。 这样将造成以下问题:
1 ) 不同像素的油层的击穿点可能不同;
2 ) 由此击穿的油层的运动无法预测。
在 EFD装置工作期间, 以上问题将带来缺陷, 这是用户所不希望看到的。
此外, 现存的像素设计存在严重的滞后效应的问题, 如图 2所示。 水平轴为施加的电压 V,而垂直轴为打开的像素区域。施加的电压从零点 0增加至开启电压 Vth (图中的开启点 A), 致使油层被第二液体 2击穿。 在击穿之后, 像素中的油的收缩对施加的电压非常敏感, 这使 打开区域的调制非常困难。当施加的电压超过某个数值时,打开区域变饱和(图中饱和点 B)。 若施加的电压减少, 像素的打开区域则跟随不同的路径(如图中关闭路径 BCO所示)减小。 这就是所谓的滞后效应。然而,一般希望 EFD显示装置中的滞后效应较小, 由此像素灰度等 级 (其按比例地对应像素的打开区域大小) 可以容易地通过施加的电压来调制。
发明内容
本发明的目的在于克服现有技术问题的缺陷, 提供一种具有高亮度漫反射体的显示结构 以及其制造方法。
为了实现上述目的, 本发明采用以下的技术方案:
根据本发明的一个方面, 提出了一种用于 EFD装置的油击穿受控开启系统, 所述油击穿 受控开启系统包括一 EFD显示结构, 所述 EFD显示结构包括设置在 EFD显示结构顶部的上电 极、 设置在 EFD显示结构底部的下电极、 设置在下电极上的电介质层、 设置在电介质层上的 像素墙, 其中在所述像素墙限定的区域内填充有第一液体, 在第一液体和上电极之间填充有 第二液体, 所述电介质层包括疏水绝缘层, 第一液体与疏水绝缘层具有足够的湿润性, 以使 第一液体在上电极与下电极之间未施加电压的状态下与疏水绝缘层接触并完全覆盖疏水绝缘 层, 其中所述像素墙包括具有不同高度的像素墙, 其中所述不同高度的像素墙包括具有第一 高度的较高像素墙, 其位于 EFD显示结构的一第一区域, 以及具有比第一高度低的较低像素 墙, 其位于 EFD显示结构的第二区域。
其中, 较低像素墙的高度设置为, 使在上电极与下电极之间施加一预设的较低电压时, 第二区域的第一液体首先被击穿。
优选地, 下电极的下方设置有基底, 所述基底在其位于第二区域的部分设置有一台阶, 以使下电极以及电介质层在其位于台阶上的部分, 高出其位于台阶以外的部分, 从而使第一 液体在台阶上的第二厚度, 比其在台阶以外的第一厚度小。
优选地, 第一液体的第二厚度与第一厚度之间的厚度差设置为, 使在上电极与下电极之 间施加一预设的较低电压时, 位于台阶上的第一液体首先被第二液体击穿, 并且第一液体被 说 明书 第二液体推挤, 从第二区域向第一区域运动。
优选地, 所述基底在其位于第二区域的部分设置有多个台阶, 其中较远离第一区域的台 阶的垂直高度大于较靠近第一区域的台阶的垂直高度。
优选地, 所述第一液体为惰性液体, 其包括着色的油层。
优选地, 上电极和第二液体之间设置有亲水层。
根据本发明的另一方面, 提出了一种 EFD显示装置, 其包括多个具有上述的油击穿受控 开启系统的 EFD像素单元, 其中, 所述每一 EFD像素单元内的油击穿受控开启系统中的第一 区域和第二区域的排列方向一致。
根据本发明的再一方面, 提出了一种用于 EFD装置的油击穿受控开启的方法, 其包括以 下步骤:
在所述油击穿受控开启系统中设置一 EFD显示结构; 在所述 EFD显示结构中, 设置一基 底, 在所述基底上制造一台阶, 以使所述台阶高于其以外的基底区域。
在基底上成型下电极并涂敷电介质层, 以使下电极以及电介质层在其位于台阶上的部分 的垂直高度高于其位于台阶以外的部分, 其中所述电介质层设置为包括疏水绝缘层。
在电介质层外围上使用光刻工艺制造一像素墙, 其中所述像素墙包括具有不同高度的像 素墙, 所述不同高度的像素墙包括位于台阶上方的较低像素墙, 以及位于台阶以外的较高像 素墙。
在所述像素墙中填充第一液体, 其中第一液体在其位于台阶上方的第二厚度比其位于台 阶以外的第一厚度小。
在像素墙的上方设置上电极, 在上电极与像素墙之间填充第二液体。
优选地, 第二厚度与第一厚度之间的厚度差设置为, 使在上电极与下电极之间施加一预 设的较低电压时, 位于台阶上方的第一液体首先被第二液体击穿, 并且第一液体被第二液体 推挤, 从台阶上方的区域向台阶以外的区域运动。
与现有技术相比, 本发明具有以下显著优点和有益效果:
根据本发明的用于 EFD装置的油击穿受控开启系统及其制造方法, 首先, 在 EFD像素单 元中, 作为惰性液体的油层的击穿点处于所需要的理想的区域, 受油层的过多或过少填充的 影响更少。 在有多个这样的像素单元组成的 EFD显示装置中, 每一像素单元的油层击穿点均 在同一区域, 因此每一像素的油层运动方向和特性均一致。 第二, 为击穿油层, 只需要更低 的电势差。 因此, 减轻了滞后效应。 这使像素的灰度等级易于控制。 因此, 从整体上大大提 高了 EFD显示装置的显示效果。
附图说明
以下结合附图, 对本发明的实施例进行详细的描述:
图 la为现有 EFD显示结构的在上下电极间未施加电压时的原理示意图; 说 明 书 图 lb为现有 EFD显示结构的在上下电极间施加电压后的原理示意图;
图 2所示为现有 EFD显示结构的滞后效应的原理图;
图 3所示为现有 EFD显示结构的电学表示原理图;
图 4a所示为根据本发明的一实施例的具有不同高度的像素墙的 EFD显示结构的顶视示意 图;
图 4b所示为根据本发明的一实施例的具有不同高度的像素墙的 EFD显示结构的沿图 4a 的方向 Z的剖面侧视示意图;
图 5所示为根据本发明的一实施例的具有不同高度的像素墙的 EFD显示结构中的电容特 性原理示意图;
图 6所示为根据本发明的另一实施例的具有不同像素墙高度的 EFD显示结构中的电容特 性的原理示意图。
具体实施方式
如图 3所示, 在现有的 EFD像素设计中, 像素墙 3的高度是均一的, 其使像素的操作 对本文所述的现有 EFD显示结构的缺陷问题较敏感, 例如油层运动方向不一致和滞后效应。 从电学的角度来看, 一个 EFD像素可以看作是两个电容的组合: C1是代表惰性液体的第一 液体 (例如油层) 电容, C2 是代表电介质层的电介质层电容。 因此, 总电容 C =
CrC2/(C1 +C2) 0 在界面上积累的电荷与总电容成比例。 在以下的根据本发明的实施例, 将 使用这一原理来制造新型的像素墙 3结构, 并解决上述的问题。
如图 4a和图 4b所示为根据本发明的一实施例的具有不同高度的像素墙 3的 EFD显示结 构, 所述结构是在图 la所示的结构上的改进。 和图 la所示的结构一样, 所述结构也可包括 设置在 EFD显示结构顶部的上电极 4、 设置在 EFD显示结构底部的下电极 5、 设置在下电极 5 上的电介质层 8、设置在电介质层 8上的像素墙 3, 根据本发明, 所述电介质层 8可由一层或 多层电介质材料构成, 在电学上其与上下电极 4、 5形成电容。在所述像素墙 3限定的区域内 填充有第一液体 1, 例如着色的油层, 其属于惰性液体, 在第一液体 1和上电极 4之间填充 有第二液体 2, 其包括但不局限于水、 水电解质溶液, 或其它非水液体, 未在上下电极 4、 5 之间施加电压时, 第二液体 2与疏水绝缘层 6不湿润。 在如图 5、 6所示的示范性实施例中, 所述电介质层 8包括下部绝缘层和疏水绝缘层 6, 在其他可行的实例中, 也可以仅有疏水绝 缘层 6。 油层与疏水绝缘层 6具有足够的湿润性, 以使油层在上电极 4与下电极 5之间未施 加电压的一关状态下与疏水绝缘层 6接触并完全覆盖疏水绝缘层 6, 根据该实施例, 其中所 述像素墙 3包括具有不同高度的像素墙 3, 其中所述不同高度的像素墙 3包括具有第一高度 的较高像素墙 31,其位于 EFD显示结构的一第一区域 21, 以及具有比第一高度低的较低像素 墙 32, 其位于 EFD显示结构的一第二区域 22。
其中,较低像素墙 32的高度设置为,使在上电极 4与下电极 5之间施加一预设的较低电 说 明书 压时, 第二区域 22的油层首先被第二液体 2击穿。
通过这样的实施, EFD像素中的电容结构转变为如图 5中所示, 在该实施例中, C11和 C12分别为位于第一区域和第二区域的第一液体 1的电容, C21和 C22为电介质层 8的电容, 在该理论性的电学模型上, C21=C22。
其中, 具有较高像素墙 31的第一区域 21中的电荷强度 Pl由以下公式得出:
其中 ¾为电介质层 8的介电常数, 为油层的介电常数, 为电介质层 8的高度, ^为 较高像素墙 31的高度, 例如所述的第一高度。
而具有较低像素墙 32的第二区域 22中的电荷强度 ½由以下公式得出, 其中 为较低像 素墙 32的高度: 2 = ―
.Q十 £Q .2 由于较低像素墙 32的高度 d2较低, 对应第二区域 22的电荷强度更高。 因此可以预见, 通过施加相对较低的电势差, 在第二区域 22中的油层首先被第二液体 2击穿。如此, 可以预 见 EFD装置中的所有像素均在同一区域中发生击穿,并由此可预见,在装置的这一操作期间, 油层统一地向具有较高像素墙 31所在的第一区域 21运动。
在这样的 EFD显示装置中, 包括多个具有上述的油击穿受控开启系统的 EFD像素单元, 其中, 所述每一 EFD像素单元内的油击穿受控开启系统中的第一区域 21和第二区域 22的排 列方向一致。
根据本发明的具有多个不同的像素墙 3高度的结构, 可以便利地使用现有的工艺制程来 实现。
根据本发明的另一实施例, 如图 6所示。 下电极 5的下方设置有基底, 所述基底在其位 于第二区域 22的部分设置有一台阶 9, 以使下电极 5以及电介质层 8在其位于台阶 9上的部 分, 高出其位于台阶 9以外的部分, 从而使油层在台阶 9上的第二厚度, 比其在台阶 9以外 的第一厚度小。
在这一实例中, 较低像素墙 32和较高像素墙 31设置为顶部齐平, 以方便后续工艺的实 施。
优选地, 油层的第二厚度与第一厚度之间的厚度差设置为, 使在上电极 4与下电极 5之 间施加一预设的较低电压时, 位于台阶 9上的油层首先被第二液体 2击穿, 并且油层被第二 说 明书 液体 2推挤, 从第二区域 22向第一区域 21运动。
优选地, 所述基底在其位于第二区域 22的部分设置有多个台阶 9, 其中较远离第一区域 21的台阶 9的垂直高度大于较靠近第一区域 21的台阶 9的垂直高度。 如此, 油层的运动特 性将更加平滑, 以及对显示的灰度的调制将更加容易。
优选地, 上电极 4和第二液体 2之间设置有亲水层。
在该实施例中, 首先在基底制造一台阶 9, 随后成型电极并涂敷电介质层 8。最后使用光 刻工艺制造像素墙 3。 对于击穿油层和控制油层的运动, 图 6的结构具有相近的效果。
根据本发明的原理, 通过使用不同的工艺方法, 构建具有不同高度的像素墙 3。 在具有 较低像素高度的第二区域 22, 电荷强度更高。 结果是, 当施加相对较低的电势差时, 在第二 区域 22中的油层首先击穿。
根据本发明的再一实施例,为用于 EFD装置的油击穿受控开启的方法,其包括以下步骤: 在所述油击穿受控开启系统中设置一 EFD显示结构; 在所述 EFD显示结构中, 设置一基 底, 在所述基底上制造一台阶 9, 以使所述台阶 9高于其以外的基底区域。
在基底上成型下电极 5并涂敷电介质层 8, 以使下电极 5以及电介质层 8在其位于台阶 9上的部分的垂直高度高于其位于台阶 9以外的部分, 其中所述电介质层 8设置为包括绝缘 层和疏水绝缘层 6。
进一步, 可以通过现有工艺, 使电介质层 8的绝缘层在其位于台阶 9的部分的厚度, 与 其位于台阶 9以外的部分的厚度非常接近, 这在电学特性上, 可以使绝缘层在其位于台阶 9 上以及台阶 9以外的部分均具有接近相等的电容值。
在电介质层 8外围上使用光刻工艺制造一像素墙 3, 其中所述像素墙 3包括具有不同高 度的像素墙 3, 所述不同高度的像素墙 3包括位于台阶 9上方的较低像素墙 32, 以及位于台 阶 9以外的较高像素墙 31,可选地,可以将较低像素墙 32和较高像素墙 31制造为顶部齐平, 以方便后续工艺的实施, 这样, 较低像素墙 32将比较高像素墙 31在垂直方向上的尺寸小。
在所述像素墙 3中填充油层, 其中油层在其位于台阶 9上方的第二厚度比其位于台阶 9 以外的第一厚度小。
在像素墙 3的上方设置上电极 4, 在上电极 4与像素墙 3之间填充第二液体 2。
优选地, 第二厚度与第一厚度之间的厚度差设置为, 使在上电极 4与下电极 5之间施加一预 设的较低电压时, 位于台阶 9上方的油层首先被第二液体 2击穿, 并且油层被第二液体 2推 挤, 从台阶 9上方的区域向台阶 9以外的区域运动。
以上实施例用于示范性地对本发明进行说明, 其并不排除其他不同的结构。 例如, EFD 像素中可以表现为多级的台阶 9的高度变化。 根据现有工艺, 在一些实例中, 像素墙 3的顶 部高度可制造为相对于基底底部一致, 即顶部齐平, 以使第一液体 1在每一台阶 9上的厚度 说 明书 不同; 在另一些实例中, 也可以使像素墙 3相对于其底部的高度一致, 如此仍可以使第一液 体 1在每一台阶 9上的厚度不同, 以实现本发明的技术效果。
以上所述, 只是本发明的较佳实施例而已, 本发明并不局限于上述实施方式, 只要其以 相同的手段达到本发明的技术效果, 都应属于本发明的保护范围。 在本发明的保护范围内其 技术方案和 /或实施方式可以有各种不同的修改和变化。即使个别的技术特征在不同的权利要 求中引用, 本发明还可包含共有这些特征的实施例。

Claims

权利要求书
1. 一种用于 EFD装置的油击穿受控开启系统, 其特征在于,所述油击穿受控开启系统包括一 EFD显示结构, 所述 EFD显示结构包括设置在 EFD显示结构顶部的上电极、 设置在 EFD显 示结构底部的下电极、 设置在下电极上的电介质层、 设置在电介质层上的像素墙, 其中在 所述像素墙限定的区域内填充有第一液体,在第一液体和上电极之间填充有第二液体,所 述电介质层包括疏水绝缘层,第一液体与疏水绝缘层具有足够的湿润性, 以使第一液体在 上电极与下电极之间未施加电压的一关状态下与疏水绝缘层接触并完全覆盖疏水绝缘层, 其中所述像素墙包括具有不同高度的像素墙,其中所述不同高度的像素墙包括具有第一高 度的较高像素墙, 其位于 EFD显示结构的一第一区域, 以及具有比第一高度低的较低像素 墙, 其位于 EFD显示结构的一第二区域,
其中, 较低像素墙的高度设置为, 使在上电极与下电极之间施加一预设的较低电压时, 第 二区域的第一液体首先被击穿。
2. 根据权利要求 1所述的一种用于 EFD装置的油击穿受控开启系统,其特征在于, 下电极的 下方设置有基底,所述基底在其位于第二区域的部分设置有一台阶, 以使下电极以及电介 质层在其位于台阶上的部分, 高出其位于台阶以外的部分,从而使第一液体在台阶上的第 二厚度, 比其在台阶以外的第一厚度小。
3. 根据权利要求 2所述的一种用于 EFD装置的油击穿受控开启系统,其特征在于,第一液体 的第二厚度与第一厚度之间的厚度差设置为,使在上电极与下电极之间施加一预设的较低 电压时, 位于台阶上的第一液体首先被第二液体击穿, 并且第一液体被第二液体推挤, 从 第二区域向第一区域运动。
4. 根据权利要求 2所述的一种用于 EFD装置的油击穿受控开启系统,其特征在于,所述基底 在其位于第二区域的部分设置有多个台阶,其中较远离第一区域的台阶的垂直高度大于较 靠近第一区域的台阶的垂直高度。
5. 根据权利要求 1所述的一种用于 EFD装置的油击穿受控开启系统,其特征在于,所述第一 液体为惰性液体, 其包括着色的油层。
6. 根据权利要求 1所述的一种用于 EFD装置的油击穿受控开启系统,其特征在于, 上电极和 第二液体之间设置有亲水层。
7. 一种 EFD显示装置, 其特征在于,其包括多个具有如权利要求 1-6任一项所述的油击穿受 控开启系统的 EFD像素单元, 其中,所述每一 EFD像素单元内的油击穿受控开启系统中的 第一区域和第二区域的排列方向一致。
8. 一种用于 EFD装置的油击穿受控开启的方法, 其特征在于, 包括以下步骤: 在所述油击穿 受控开启系统中设置一 EFD显示结构; 在所述 EFD显示结构中, 设置一基底, 在所述基底 上制造一台阶, 以使所述台阶高于其以外的基底区域;在基底上成型下电极并涂敷电介质 层,以使下电极以及电介质层在其位于台阶上的部分的垂直高度高于其位于台阶以外的部 分,其中所述电介质层设置为包括疏水绝缘层;在电介质层外围上使用光刻工艺制造一像 素墙,其中所述像素墙包括具有不同高度的像素墙,所述不同高度的像素墙包括位于台阶 上方的较低像素墙, 以及位于台阶以外的较高像素墙; 在所述像素墙中填充第一液体, 其 中第一液体在其位于台阶上方的第二厚度比其位于台阶以外的第一厚度小;在像素墙的上 方设置上电极, 在上电极与像素墙之间填充第二液体。
9. 根据权利要求 8所述的一种用于 EFD装置的油击穿受控开启的方法,其特征在于,第二厚 度与第一厚度之间的厚度差设置为, 使在上电极与下电极之间施加一预设的较低电压时, 位于台阶上方的第一液体首先被第二液体击穿, 并且第一液体被第二液体推挤, 从台阶上 方的区域向台阶以外的区域运动。
PCT/CN2014/072997 2014-03-06 2014-03-06 一种用于efd装置的油击穿受控开启系统及其制造方法 WO2015131373A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14884630.6A EP3116231B1 (en) 2014-03-06 2014-03-06 Oil puncture controlled starting system for efd apparatus and manufacturing method therefor
US15/123,970 US9779672B2 (en) 2014-03-06 2014-03-06 Oil puncture controlled starting system for EFD apparatus and manufacturing method therefor
PCT/CN2014/072997 WO2015131373A1 (zh) 2014-03-06 2014-03-06 一种用于efd装置的油击穿受控开启系统及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/072997 WO2015131373A1 (zh) 2014-03-06 2014-03-06 一种用于efd装置的油击穿受控开启系统及其制造方法

Publications (1)

Publication Number Publication Date
WO2015131373A1 true WO2015131373A1 (zh) 2015-09-11

Family

ID=54054377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/072997 WO2015131373A1 (zh) 2014-03-06 2014-03-06 一种用于efd装置的油击穿受控开启系统及其制造方法

Country Status (3)

Country Link
US (1) US9779672B2 (zh)
EP (1) EP3116231B1 (zh)
WO (1) WO2015131373A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1633624A (zh) * 2002-02-19 2005-06-29 皇家飞利浦电子股份有限公司 显示器件
CN101726847A (zh) * 2008-10-31 2010-06-09 索尼株式会社 电润湿设备、其驱动方法和采用电润湿设备的装置
CN102012560A (zh) * 2009-09-03 2011-04-13 索尼公司 光学装置和摄像装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101852916B (zh) * 2010-06-01 2013-01-02 高婧 一种可调光学开关
TW201239392A (en) * 2011-03-25 2012-10-01 Ind Tech Res Inst Electro-wetting display device
TWI442088B (zh) * 2012-02-24 2014-06-21 Ind Tech Res Inst 電濕潤顯示元件

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1633624A (zh) * 2002-02-19 2005-06-29 皇家飞利浦电子股份有限公司 显示器件
CN101726847A (zh) * 2008-10-31 2010-06-09 索尼株式会社 电润湿设备、其驱动方法和采用电润湿设备的装置
CN102012560A (zh) * 2009-09-03 2011-04-13 索尼公司 光学装置和摄像装置

Also Published As

Publication number Publication date
EP3116231A4 (en) 2017-11-08
US9779672B2 (en) 2017-10-03
EP3116231B1 (en) 2018-10-24
EP3116231A1 (en) 2017-01-11
US20170162129A1 (en) 2017-06-08

Similar Documents

Publication Publication Date Title
KR101211199B1 (ko) 광학 장치
KR101719158B1 (ko) 전기영동 표시장치 및 그 제조방법
US8896904B2 (en) Electrowetting display device
JP2007532942A (ja) ディスプレイデバイス
WO2014190708A1 (zh) 彩色电泳显示面板及其制造方法、显示装置
JP2013092701A (ja) エレクトロウェッティングディスプレイ
CN105425385B (zh) 一种控制油墨运动的电润湿显示器及其制备方法
CN106773445B (zh) 一种显示单元、显示装置及其触控方法
WO2024046506A1 (zh) 电润湿显示器件用的下基板、电润湿显示器件及制备方法
KR20120038226A (ko) 전기영동 표시장치와 이의 제조방법
WO2015131373A1 (zh) 一种用于efd装置的油击穿受控开启系统及其制造方法
CN110609384B (zh) 基于电润湿技术的可控制油墨运动的器件及其制备方法
CN207488614U (zh) 一种双稳态电润湿显示装置
WO2020007023A1 (en) Electrowetting display panel, electrowetting display apparatus, method of driving electrowetting display panel, and method of fabricating electrowetting display panel
CN210005795U (zh) 一种基于导电柱的电润湿显示器件
CN103149766B (zh) 一种电泳显示装置以及电泳显示装置的制备方法
CN103901606B (zh) 一种用于efd装置的油击穿受控开启系统及其制造方法
CN103941512B (zh) 像素分隔墙的制作方法、阵列基板、以及amecd
KR20130129672A (ko) 전기영동 표시장치와 이의 제조방법
KR101350425B1 (ko) 전기영동 표시장치 및 그 제조방법
KR101492001B1 (ko) 전기영동 표시장치와 이의 제조방법
CN107561688B (zh) 一种设置有像素墙的电润湿显示装置
US8553313B2 (en) Electrophorises display unit and its production method
KR101841708B1 (ko) 전기영동 표시장치의 제조방법
KR20130131625A (ko) 전기영동 표시장치의 제조를 위한 마스크 및 전기영동 표시장치의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14884630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15123970

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014884630

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014884630

Country of ref document: EP