WO2015130063A1 - Digital radiation detector - Google Patents

Digital radiation detector Download PDF

Info

Publication number
WO2015130063A1
WO2015130063A1 PCT/KR2015/001771 KR2015001771W WO2015130063A1 WO 2015130063 A1 WO2015130063 A1 WO 2015130063A1 KR 2015001771 W KR2015001771 W KR 2015001771W WO 2015130063 A1 WO2015130063 A1 WO 2015130063A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
medium layer
sensing
layer
radiation medium
Prior art date
Application number
PCT/KR2015/001771
Other languages
French (fr)
Korean (ko)
Inventor
김정민
김기현
윤용수
김현지
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2015130063A1 publication Critical patent/WO2015130063A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/42Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/42Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4283Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by a detector unit being housed in a cassette
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/42Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4291Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis the detector being combined with a grid or grating
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/025Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using multiple collimators, e.g. Bucky screens; other devices for eliminating undesired or dispersed radiation

Definitions

  • the present invention relates to a digital radiation detector, and more particularly, it is possible to remove scattering lines without installing a scattering line removing grid for removing scattering lines, and to reduce the size of the radiographic examination apparatus and reduce the surface dose of the patient. It relates to a digital radiation detector that can be.
  • the conversion of X-rays and other radiation into a signal that can be perceived by humans, that is, an electrical signal, is called radiation detection.
  • the sensor for this purpose that is, a sensor that detects radiation, is a radiation detector.
  • a device for capturing an image of a human body by applying a radiation detector is called a radiation detector.
  • the digital radiography apparatus includes a radiation irradiator 10 for irradiating radiation and a digital radiation detector for detecting radiation transmitted by the radiation irradiator 10 and passing through the patient with the patient in between. 30 and an image processing apparatus 40 such as a computer that forms an image on the basis of the radiation detected by the digital radiation detector 30.
  • an image processing apparatus 40 such as a computer that forms an image on the basis of the radiation detected by the digital radiation detector 30.
  • a grating is disposed between the patient and the digital radiation detector 30 to remove the scattered lines 3 in the radiation.
  • FIG. 2 is a view showing the structure of a conventional digital radiation detector 30.
  • FIG. 2A is a view showing a cross section of the digital radiation detector 30, and
  • FIG. 2B is a view showing a sensing substrate of the digital radiation gun detector.
  • the conventional digital radiation detector 30 includes a radiation medium layer 32, a sensing substrate layer 31, and a support layer 33.
  • the radiation medium layer 32 is made of a material sensitive to radiation.
  • the sensing substrate layer 31 is coupled to one surface of the radiation medium layer 32 to sense the sensitivity of the radiation medium layer 32.
  • the sensing substrate layer 31 is composed of a plurality of sensing pixels Pixel.
  • the sensing pixels Pixel are electrically connected to each other through the data line DL and the voltage line VL.
  • the sensing substrate layer 31 is generally provided in the form of a thin film transistor (TFT) substrate.
  • a support layer 33 is provided on top of the radiation medium layer 32 to protect the radiation medium layer 32.
  • FIG. 3 is a view showing the shape of the radiation line that appears when the radiation irradiated from the radiation irradiation section 10 to the patient's body.
  • the radiation irradiated by the radiation irradiator 10 is transmitted through the transmission line 1 penetrating the patient's body, the absorption line 2 absorbed by the patient's body, and the inside of the patient's body.
  • the scattering is divided into scattering lines 3.
  • the transmission line 1 and the scattering line 3 contribute to the image formation acquired by the digital radiation detection unit, and the transmission line 1 is detected by the digital radiation detection unit to form a dark portion of the image, and the absorption line (2) forms a bright part of the image. That is, the sensing pixel Pixel detecting the transmission line 1 of each sensing pixel Pixel of the digital radiation detector forms a dark image, and the sensing pixel Pixel not detecting the transmission line 1 is bright. It forms an image.
  • the scattering line 3 has a characteristic that it is distributed to the slope or side without direction, and when detected by the digital radiation detector, it causes noise of the image and lowers the contrast ratio of the image.
  • the scattering line removing grating 20 is disposed between the digital radiation detectors 30 of the patient as described above.
  • FIG. 4 is a view showing the structure of a conventional scattering line removal grating 20.
  • a conventional scattering line removing grating 20 is formed inside an intermediate material 22 made of a material that transmits radiation, for example, aluminum (Al) or carbon fiber.
  • the lattice pattern 21 is formed of a material such as lead (Pb) having good absorption efficiency of radiation, so that the transmission line 1 penetrates the intermediate material 22, and the scattering line 3 forms the lattice pattern 21. By being absorbed in, the scattering line 3 is removed.
  • the scattering line removing grid 20 is not used. If more radiation is irradiated than to obtain the desired image, the exposure multiple of the radiation should be increased according to the grid ratio, which is the ratio of the pitch of the grid pattern 21 and the thickness of the grid pattern 21, so that the patient There is a problem of increasing the surface dose of.
  • the scattering line removing grid 20 pattern also appears in the image.
  • a structure for reciprocating the scattering line removal grid 20 in the plate direction for example, a motor, is installed in the digital radiography apparatus, which not only complicates the structure but also the size of the product. There is a growing problem.
  • the digital radiation detector 30 is further separated from the radiation irradiator 10. As a result, the sharpness decreases, which increases the irradiated radiation to improve the sharpness, resulting in an increase in the surface dose of the patient.
  • the grid-integrated digital X-ray detector disclosed in Korean Patent No. 10-0687654 integrates a grid (lattice) and a digital X-ray detector at a predetermined interval, and proposes a pattern for removing a moire pattern generated by the grid.
  • the above-described problems caused by using the scattering grating removing grid 20 are held as they are.
  • the present invention has been made to solve the above problems, it is possible to remove the scattering line without installing the scattering line removal grid for removing the scattering line, to reduce the size of the radiographic apparatus and to reduce the surface dose of the patient
  • the purpose is to provide a digital radiation detector that can be reduced.
  • the object is according to the present invention, a radiation substrate layer sensitive to radiation, a sensing substrate layer having a plurality of sensing pixels coupled to one surface of the radiation medium layer to sense the sensitivity of the radiation medium layer, and the radiation medium
  • a support layer coupled to the other surface of the layer to protect the radiation medium layer, and a scattering line removal pattern formed on the support layer to shield scatter lines;
  • the surface facing the radiation medium layer of the sensing substrate layer is divided into an effective sensitive region for detecting the sensitivity of the radiation medium layer, including at least one region of each sensing pixel, and an insensitive region other than the effective sensitive region.
  • the scattering line removal pattern is achieved by a digital radiation detector, characterized in that formed in a pattern corresponding to the insensitive region.
  • a removal groove corresponding to the scattering line removal pattern is formed on a surface opposite the radiation medium layer of the support layer;
  • the scattering line removing pattern may be formed by filling a radiation shielding material in the removing groove.
  • the non-sensitive region may include a plurality of data lines spaced apart from each other in a first direction to be connected to the plurality of sensing pixels, and spaced apart from each other in a first direction crossing the first direction to be connected to the plurality of sensing pixels.
  • the scattering line removal pattern may be formed in a pattern corresponding to at least one side of the plurality of data lines and the plurality of voltage lines.
  • the support layer is made of graphite or aluminum;
  • the shielding material may comprise a lead material.
  • the depth of the removal groove may be determined based on the size of the sensing pixel and a preset grating ratio.
  • the radiation medium layer comprises a photoconductor that generates a charge signal in response to radiation;
  • Each of the sensing pixels of the sensing substrate layer may sense the charge signal.
  • the radiation medium layer comprises a scintillator for generating light in response to radiation;
  • Each of the sensing pixels of the sensing substrate layer may sense light from the scintillator.
  • the removal grooves adjacent to each other may be formed to be parallel to each other in the vertical direction.
  • the present invention it is possible to remove the scattering line without installing the scattering line removal grid for removing the scattering line, it is possible to reduce the size of the radiographic apparatus and reduce the surface dose of the patient A digital radiation detector is provided.
  • FIG. 1 is a view showing an example of the configuration of a digital radiation inspection apparatus
  • FIG. 2 is a view showing the structure of a conventional digital radiation detector
  • 3 is a view showing the shape of the line of sight that appears when the radiation irradiated from the radiation irradiation to the body of the patient,
  • FIG. 4 is a view showing the structure of a conventional scattering line removal grating
  • FIG. 5 is an exploded perspective view of a digital radiation detector according to the present invention.
  • FIG. 6 is a cross-sectional view of a digital radiation detector according to the present invention.
  • FIG 7 and 8 are views for explaining the effect of the digital radiation detector according to the present invention.
  • the present invention relates to a digital radiation detector, comprising a radiation substrate layer sensitive to radiation, a sensing substrate layer having a plurality of sensing pixels coupled to one surface of the radiation medium layer to sense the response of the radiation medium layer, A support layer coupled to the other surface of the radiation medium layer to protect the radiation medium layer, and a scattering line removal pattern formed on the support layer to shield scatter lines;
  • the surface facing the radiation medium layer of the sensing substrate layer is divided into an effective sensitive region for detecting the sensitivity of the radiation medium layer, including at least one region of each sensing pixel, and an insensitive region other than the effective sensitive region.
  • the scattering line removal pattern may be formed in a pattern corresponding to the insensitive region.
  • FIG. 5 is an exploded perspective view of the digital radiation detector 30 according to the present invention
  • FIG. 6 is a cross-sectional view of the digital radiation detector 300 according to the present invention.
  • the digital radiation detector 300 according to the present invention includes a sensing substrate layer 310, a radiation medium layer 320, a support layer 330, and a scattering line removal pattern 340. do.
  • the radiation medium layer 320 is sensitive to radiation transmitted from the radiation irradiator 10 and transmitted through the patient.
  • the sensing substrate layer 310 is composed of a plurality of sensing pixels (Pixel) coupled to one surface of the radiation medium layer 320 to sense the response of the radiation medium layer 320.
  • the radiation medium layer 320 includes a photoconductor for generating a charge signal in response to radiation, and each sensing pixel of the sensing substrate layer 310 is formed of the radiation medium layer 320.
  • An example is provided to detect a charge signal.
  • electron-ion pairs in the radiation medium layer 320 may be formed by ionization during interaction between radiation such as X-rays and the radiation medium layer 320 such as the photoconductor. Electron-ion pairs or electron-hole pairs, or charge signals, are generated to induce these electrical signals, which are then detected by each pixel. Will form.
  • the radiation medium layer 320 may include a scintillator that generates light in response to radiation, and each sensing pixel of the sensing substrate layer 310 may detect light from the scintillator. It may be arranged.
  • the sensing substrate layer 310 has a plurality of sensing pixels Pixel arranged in a matrix to sense the sensitivity of the radiation medium layer 320.
  • the surface facing the radiation medium layer 320 of the sensing substrate layer 310 is divided into an effective sensitive area VSA and an insensitive area NSA.
  • the effective sensitive area VSA includes at least one area of each sensing pixel Pixel, and senses the sensitivity of the radiation medium layer 320. That is, the effective sensitive area VSA constitutes a pixel for the actual image shape.
  • the non-sensitive region is a region other than the effective sensitive region VSA, and corresponds to a region in which the radiation medium layer 320 does not sense the sensitivity.
  • the sensing substrate layer 310 may include a plurality of data lines DL and a plurality of voltage lines VL electrically connected to the plurality of sensing pixels Pixel. .
  • the data lines DL are spaced apart in the first direction, and the voltage lines VL are spaced apart in the second direction crossing the first direction.
  • the plurality of data lines DL and the plurality of voltage lines VL correspond to insensitive regions.
  • the support layer 330 is coupled to the other surface of the radiation medium layer 320 to protect and support the radiation medium layer 320.
  • the support layer 330 is made of graphite or aluminum (Al).
  • the scattering line removal pattern 340 is formed on the support layer 330 to absorb the scattering line 3 to shield the scattering line 3.
  • the scattering line removal pattern 340 is provided as a pattern corresponding to the non-sensitized area NSA of the sensing substrate layer 310, and the plurality of data lines DL and the plurality of non-sensitized areas NSA are provided.
  • the voltage line VL may be provided in a pattern corresponding to at least one side.
  • a plurality of data lines DL and a plurality of voltage lines VL are provided in a pattern corresponding to both of the plurality of data lines DL and a plurality of voltage lines VL, but the plurality of data lines DL and the plurality of voltage lines VL are illustrated. Of course, it can be provided in a pattern corresponding to any one side.
  • the scattering line removing pattern 340 according to the present invention, as shown in Figure 6, the removal groove 331 corresponding to the scattering line removing pattern 340 on the surface opposite the radiation medium layer 320 of the support layer 330.
  • a radiation shielding material may be filled in the removal groove 331.
  • the removal groove 331 may be formed through physical processing or laser processing by a fine saw blade.
  • lead (Pb) is applied as a radiation shielding material filled in the removal groove 331.
  • other shielding materials such as bismuth, barium, and tungsten may be applied as the radiation shielding material.
  • the depth of the removal groove 331 for forming the scattering line removal pattern 340 may be determined based on the size of the sensing pixel Pixel and the grid ratio. More specifically, referring to FIG. 6, the grating ratio is defined as a ratio of the pitch of the grating and the thickness of the shielding pattern.
  • the pitch D of the grating in the scattering line removal pattern 340 according to the present invention is a sensing pixel ( As the lattice ratio is determined, the thickness h of the scattering line removal pattern 340, that is, the depth h of the removal groove 331 can be determined.
  • the transmission line 1 and the scattering line 3 is directed to the digital radiation detector 300 according to the present invention.
  • the transmission line 1 having the straightness passes through the scattering line removal pattern 340 formed in the support layer 330 and is incident on the radiation medium layer 320.
  • the scattering line 3 may be absorbed into the scattering line removing pattern 340 because of its scattering properties.
  • an area other than the scattering line removal pattern 340 that is, the remaining area of the support layer 330 through which the transmission line 1 is transmitted, is detected by the sensing substrate layer 310 as shown in FIG. 5.
  • the transmission line 1 whose transmission is blocked by the scattering line removal pattern 340 does not reach the effective sensitive area VSA even if it goes straight, resulting in scattering. Image loss due to the line removal pattern 340 is not generated.
  • the scattering line removal pattern 340 forms a transmission region having a shape corresponding to the plurality of sensing pixels Pixel, so that the scattering line removing pattern 340 for removing the scattering line 3 forms a radiographic image. Only the scattering line 3 is removed without any effect on the scattering line 3.
  • mutually adjacent removal grooves may be formed in parallel to each other in the vertical direction, as shown in FIG. 6.
  • the grid pattern may be radially spread in the vertical direction. This is because the conventional scattering line removing grating 20 and the digital radiation detector 30 are separated from each other. It was formed to correspond to the radiation spread from the radiation irradiation section (10). Therefore, in the manufacturing of the scattering line removal grid 20, the farther away from the center to produce a different angle in the vertical direction of the grid pattern, there was a difficulty in the production, especially the distance of the radiation unit 10 If the angle is different, it may adversely affect the image.
  • the scattering line removing pattern 340 is located close to the sensing substrate layer 310, the scattering line removing pattern 340 is disposed in the vertical direction, that is, in the depth direction. It is not necessary to give an angle, so that the manufacture is easy and can be applied irrespective of the distance to the radiation irradiation section 10.
  • the conventional scattering line removing grating 20 shields a part of the transmission line 1 regardless of the position of the detection pixel Pixel and transmits the transmission line 1 toward the detection pixel Pixel.
  • the shielding of the light emitting device causes a problem that more radiation is to be irradiated.
  • the scattering line removal pattern 340 according to the present invention it is formed in the boundary region of the sensing pixel Pixel, that is, the non-sensitive region, so that the transmission line ( 1) Reduced image loss due to shielding, resulting in the effect of reducing the radiation dose.
  • the scattering line removal pattern 340 since the scattering line removal pattern 340 according to the present invention does not affect the formation of the image, the scattering line is removed to remove the moire pattern generated in the image due to the use of the conventional scattering line removal grid 20.
  • the structure for reciprocating the dragon grating 20 in the plate direction can be eliminated, thereby simplifying the structure and reducing the size of the product.
  • FIG. 8 is a view showing a simulation result for verifying the effect of the digital radiation detector 300 according to the present invention.
  • FIG. 8A is a result when the scattering line removing grating 20 is not used
  • FIG. 8B is a result when the scattering line removing grating 20 is used.
  • (C) shows the result of using the digital radiation detector 300 according to the present invention.
  • removal groove 340 scattering line removal pattern
  • the present invention is applicable to a digital radiation detector.

Abstract

The present invention relates to a digital radiation detector, which comprises: a radiation medium layer for responding to radiation; a sensing substrate layer having a plurality of sensing pixels coupled to the surface of one side of the radiation medium layer to sense a response of the radiation medium layer; a support layer coupled to the surface of the other side of the radiation medium layer to protect the radiation medium layer; and a scattered ray removal pattern formed on the support layer to shield a scattered ray, wherein a surface of the sensing substrate layer, which faces the radiation medium layer, is divided into an effective response area, which includes at least one area of each of the sensing pixels to sense the response of the radiation medium layer, and a non-response area corresponding to the part other than the effective response area, and the scattered ray removal pattern is formed in a pattern corresponding to the non-response area. Therefore, the present invention can remove a scattered ray even without installing a scattered ray removal lattice for removing the scattered ray, and can reduce the size of a radioactive examination apparatus and can reduce the surface dose of a patient.

Description

디지털 방사선 검출기Digital radiation detector
본 발명은 디지털 방사선 검출기에 관한 것으로서, 보다 상세하게는 산란선을 제거하기 위한 산란선 제거용 격자를 설치하지 않고도 산란선의 제거가 가능하며, 방사선 검사 장치의 사이즈를 줄이고 환자의 표면선량을 감소시킬 수 있는 디지털 방사선 검출기에 관한 것이다.The present invention relates to a digital radiation detector, and more particularly, it is possible to remove scattering lines without installing a scattering line removing grid for removing scattering lines, and to reduce the size of the radiographic examination apparatus and reduce the surface dose of the patient. It relates to a digital radiation detector that can be.
엑스선(X-ray)을 비롯한 방사선을 인간이 인지할 수 있는 신호, 즉 전기적인 신호로 변환하는 것을 방사선 검출(Radiation detection)이라 하며, 이를 위한 센서, 즉 방사선을 검출하는 센서를 방사선 검출기(Radiation detector)라고 하며, 방사선 검출기를 적용하여 인체를 촬영하여 영상을 취득하는 장치를 방사선 검출 장치라고 한다.The conversion of X-rays and other radiation into a signal that can be perceived by humans, that is, an electrical signal, is called radiation detection. The sensor for this purpose, that is, a sensor that detects radiation, is a radiation detector. A device for capturing an image of a human body by applying a radiation detector is called a radiation detector.
고전적인 방사선 검사장치는 필름에 직접 인화하는 방식의 아날로그 방식이 적용되었으나, 근래에는 디지털 방사선 검출기(30, 도 1 참조)(Digital radiation detector)를 이용하여 영상을 전기적인 신호로 취득하는 디지털 방사선 검사장치가 널리 사용되고 있다.Conventional radiographic inspection apparatus has been applied to the analog method of direct printing on the film, but in recent years digital radiation inspection that acquires the image as an electrical signal using a digital radiation detector (30, Fig. 1) (Digital radiation detector) The device is widely used.
도 1은 디지털 방사선 검사장치의 구성의 예를 도시한 도면이다. 도 1에 도시된 바와 같이, 디지털 방사선 검사장치는 환자를 사이에 두고, 방사선을 조사하는 방사선 조사부(10)와, 방사선 조사부(10)에 의해 조사되어 환자를 투과한 방사선을 검출하는 디지털 방사선 검출기(30)와, 디지털 방사선 검출기(30)에 의해 검출된 방사선에 기초하여 영상읠 형성하는 컴퓨터와 같은 영상 처리 장치(40)를 포함한다. 그리고, 환자와 디지털 방사선 검출기(30) 사이에는 방사선 중 산란선(3)을 제거하기 위한 격자가 배치된다.1 is a diagram showing an example of the configuration of a digital radiation inspection apparatus. As shown in FIG. 1, the digital radiography apparatus includes a radiation irradiator 10 for irradiating radiation and a digital radiation detector for detecting radiation transmitted by the radiation irradiator 10 and passing through the patient with the patient in between. 30 and an image processing apparatus 40 such as a computer that forms an image on the basis of the radiation detected by the digital radiation detector 30. In addition, a grating is disposed between the patient and the digital radiation detector 30 to remove the scattered lines 3 in the radiation.
도 2는 종래의 디지털 방사선 검출기(30)의 구조를 나타낸 도면이다. 도 2의 (a)는 디지털 방사선 검출기(30)의 단면을 나타낸 도면이고, 도 2의 (b)는 디지털 방사건 검출기의 감지 기판을 도시한 도면이다.2 is a view showing the structure of a conventional digital radiation detector 30. FIG. 2A is a view showing a cross section of the digital radiation detector 30, and FIG. 2B is a view showing a sensing substrate of the digital radiation gun detector.
도 2를 참조하여 설명하면, 종래의 디지털 방사선 검출기(30)는 방사선 매질층(32), 감지 기판층(31) 및 지지층(33)을 포함한다. 방사선 매질층(32)은 방사선에 감응하는 재질로 마련된다. 그리고, 감지 기판층(31)은 방사선 매질층(32)의 일측 표면에 결합되어 방사선 매질층(32)의 감응을 감지한다.Referring to FIG. 2, the conventional digital radiation detector 30 includes a radiation medium layer 32, a sensing substrate layer 31, and a support layer 33. The radiation medium layer 32 is made of a material sensitive to radiation. In addition, the sensing substrate layer 31 is coupled to one surface of the radiation medium layer 32 to sense the sensitivity of the radiation medium layer 32.
감지 기판층(31)은 다수의 감지 픽셀(Pixel)들로 구성되며, 감지 픽셀(Pixel)은 데이터 라인(DL)과 전압 라인(VL)으로 통해 전기적으로 연결되어, 각각의 감지 픽셀(Pixel)이 방사선 매질층(32)의 감응을 감지하여 전기 신호를 생성하게 된다. 여기서, 감지 기판층(31)은 TFT(Thin Film Transistor) 기판 형태로 마련되는 것이 일반적이다. 지지층(33)은 방사선 매질층(32)의 상부에 마련되어, 방사선 매질층(32)을 보호한다.The sensing substrate layer 31 is composed of a plurality of sensing pixels Pixel. The sensing pixels Pixel are electrically connected to each other through the data line DL and the voltage line VL. Sensing the radiation medium layer 32 to generate an electrical signal. Here, the sensing substrate layer 31 is generally provided in the form of a thin film transistor (TFT) substrate. A support layer 33 is provided on top of the radiation medium layer 32 to protect the radiation medium layer 32.
도 3은 방사선 조사부(10)에서 조사된 방사선이 환자의 몸에 조사될 때 나타나는 방시선의 형태를 나타낸 도면이다. 도 3을 참조하여 설명하면, 방사선 조사부(10)에 의해 조사되는 방사선은 환자의 몸을 투과하는 투과선(1)과, 환자의 몸에 흡수되는 흡수선(2), 그리고, 환자의 몸 내부 등에서 산란하는 산란선(3)으로 구분된다.3 is a view showing the shape of the radiation line that appears when the radiation irradiated from the radiation irradiation section 10 to the patient's body. Referring to FIG. 3, the radiation irradiated by the radiation irradiator 10 is transmitted through the transmission line 1 penetrating the patient's body, the absorption line 2 absorbed by the patient's body, and the inside of the patient's body. The scattering is divided into scattering lines 3.
여기서, 투과선(1)과 산란선(3)은 디지털 방사선 검출부에 의해 취득되는 영상 형성에 기여하는 것으로, 투과선(1)은 디지털 방사선 검출부에 의해 검출되어 영상의 어두운 부분을 형성하고, 흡수선(2)은 영상의 밝은 부분을 형성하게 된다. 즉, 디지털 방사선 검출부의 각각의 감지 픽셀(Pixel) 중 투과선(1)을 감지하는 감지 픽셀(Pixel)이 어두운 영상을 형성하고, 투과선(1)을 감지하지 못한 감지 픽셀(Pixel)이 밝은 영상을 형성하게 된다.Here, the transmission line 1 and the scattering line 3 contribute to the image formation acquired by the digital radiation detection unit, and the transmission line 1 is detected by the digital radiation detection unit to form a dark portion of the image, and the absorption line (2) forms a bright part of the image. That is, the sensing pixel Pixel detecting the transmission line 1 of each sensing pixel Pixel of the digital radiation detector forms a dark image, and the sensing pixel Pixel not detecting the transmission line 1 is bright. It forms an image.
그러나, 산란선(3)의 경우 방향성이 없이 사면 또는 측면으로 분산되는 특성을 갖고 있어, 디지털 방사선 검출부에 의해 검출될 경우, 영상의 잡음을 형성하고 영상의 대조비를 저하시키는 원인으로 작용하게 된다. 이와 같은 산란선(3)을 제거하기 위해 상술한 바와 같이 환자의 디지털 방사선 검출기(30) 사이에 산란선 제거용 격자(20)을 배치시키게 된다.However, the scattering line 3 has a characteristic that it is distributed to the slope or side without direction, and when detected by the digital radiation detector, it causes noise of the image and lowers the contrast ratio of the image. In order to remove the scattering line 3, the scattering line removing grating 20 is disposed between the digital radiation detectors 30 of the patient as described above.
도 4는 종래의 산란선 제거용 격자(20)의 구조를 나타낸 도면이다. 도 4에 도시된 바와 같이, 종래의 산란선 제거용 격자(20)은 방사선을 투과시키는 재질, 예를 들어 알루미늄(Al)이나 탄소 섬유(Carbon fiber)와 같은 재질의 중간 물질(22) 내부에, 방사선의 흡수 효율이 좋은 납(Pb)과 같은 재질로 격자 패턴(21)을 형성하여, 투과선(1)이 중간 물질(22)을 투과하고, 산란선(3)이 격자 패턴(21)에 흡수되도록 함으로써, 산란선(3)을 제거하게 된다.4 is a view showing the structure of a conventional scattering line removal grating 20. As shown in FIG. 4, a conventional scattering line removing grating 20 is formed inside an intermediate material 22 made of a material that transmits radiation, for example, aluminum (Al) or carbon fiber. The lattice pattern 21 is formed of a material such as lead (Pb) having good absorption efficiency of radiation, so that the transmission line 1 penetrates the intermediate material 22, and the scattering line 3 forms the lattice pattern 21. By being absorbed in, the scattering line 3 is removed.
그런데, 상기와 같은 산란선 제거용 격자(20)의 격자 패턴(21)의 경우, 환자를 투과한 투과선(1)도 해당 영역에서는 차폐하기 때문에, 산란선 제거용 격자(20)을 사용하지 않는 경우에서보다 더 많은 방사선을 조사하여야 원하는 영상을 얻게 되는데, 격자 패턴(21)의 피치와 격자 패턴(21)의 두께의 비인 격자비에 따라 방사선의 노출 배수를 증가시켜야 하는 바, 결과적으로 환자의 표면선량을 증가시키는 문제가 있다.By the way, in the case of the grid pattern 21 of the scattering line removal grid 20 as described above, since the transmission line 1 that has passed through the patient is also shielded in the region, the scattering line removing grid 20 is not used. If more radiation is irradiated than to obtain the desired image, the exposure multiple of the radiation should be increased according to the grid ratio, which is the ratio of the pitch of the grid pattern 21 and the thickness of the grid pattern 21, so that the patient There is a problem of increasing the surface dose of.
또한, 산란선 제거용 격자(20)의 사용으로 인해, 산란선 제거용 격자(20) 패턴이 영상에도 나타나게 된다. 이와 같은 현상을 제거하기 위해 디지털 방사선 검사장치에는 산란선 제거용 격자(20)을 판면 방향으로 왕복 이동시키는 구조, 예를 들어 모터 등이 설치되는데, 이로 인해 구조가 복잡해질 뿐만 아니라 제품의 사이즈 또한 커지는 문제점이 있다.In addition, due to the use of the scattering line removing grid 20, the scattering line removing grid 20 pattern also appears in the image. In order to eliminate such a phenomenon, a structure for reciprocating the scattering line removal grid 20 in the plate direction, for example, a motor, is installed in the digital radiography apparatus, which not only complicates the structure but also the size of the product. There is a growing problem.
또한, 도 1에 도시된 바와 같이, 환자와 디지털 방사선 검출기(30) 사이에 산란선 제거용 격자(20)이 설치되기 때문에, 디지털 방사선 검출기(30)가 방사선 조사부(10)로부터 그만큼 더 멀어지게 되어 선예도가 감소하게 되는데, 선예도의 향상을 위해 조사되는 방사선을 증가시키게 되어 결과적으로 환자의 표면선량이 증가되는 문제가 있다.In addition, as shown in FIG. 1, since the scattering line removal grating 20 is installed between the patient and the digital radiation detector 30, the digital radiation detector 30 is further separated from the radiation irradiator 10. As a result, the sharpness decreases, which increases the irradiated radiation to improve the sharpness, resulting in an increase in the surface dose of the patient.
이에, 한국등록특허 제10-0687654호에 개시된 그리드 일체형 디지털 X선 검출기는 그리드(격자)와 디지털 X선 검출기를 소정 간격 이격시켜 일체화하고, 격자에 의해 발생하는 모아레 무늬를 제거하는 패턴을 제안하고 있으나, 산란선 제거용 격자(20)을 사용함에 따라 발생하는 상술한 문제점은 그대로 안고 있다.Accordingly, the grid-integrated digital X-ray detector disclosed in Korean Patent No. 10-0687654 integrates a grid (lattice) and a digital X-ray detector at a predetermined interval, and proposes a pattern for removing a moire pattern generated by the grid. However, the above-described problems caused by using the scattering grating removing grid 20 are held as they are.
이에 본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 산란선을 제거하기 위한 산란선 제거용 격자를 설치하지 않고도 산란선의 제거가 가능하며, 방사선 검사 장치의 사이즈를 줄이고 환자의 표면선량을 감소시킬 수 있는 디지털 방사선 검출기를 제공하는데 그 목적이 있다.Accordingly, the present invention has been made to solve the above problems, it is possible to remove the scattering line without installing the scattering line removal grid for removing the scattering line, to reduce the size of the radiographic apparatus and to reduce the surface dose of the patient The purpose is to provide a digital radiation detector that can be reduced.
상기 목적은 본 발명에 따라, 방사선에 감응하는 방사선 매질층과, 상기 방사선 매질층의 일측 표면에 결합되어 상기 방사선 매질층의 감응을 감지하는 복수의 감지 픽셀을 갖는 감지 기판층과, 상기 방사선 매질층의 타측 표면에 결합되어 상기 방사선 매질층을 보호하는 지지층과, 상기 지지층에 형성되어 산란선을 차폐하기 위한 산란선 제거 패턴을 포함하고; 상기 감지 기판층의 상기 방사선 매질층과 대면하는 표면은 각각의 감지 픽셀의 적어도 일 영역을 포함하여 상기 방사선 매질층의 감응을 감지하는 유효 감응 영역과, 상기 유효 감응 영역 이외의 무 감응 영역으로 구분되며; 상기 산란선 제거 패턴은 상기 무 감응 영역에 대응하는 패턴으로 형성되는 것을 특징으로 하는 디지털 방사선 검출기에 의해서 달성된다.The object is according to the present invention, a radiation substrate layer sensitive to radiation, a sensing substrate layer having a plurality of sensing pixels coupled to one surface of the radiation medium layer to sense the sensitivity of the radiation medium layer, and the radiation medium A support layer coupled to the other surface of the layer to protect the radiation medium layer, and a scattering line removal pattern formed on the support layer to shield scatter lines; The surface facing the radiation medium layer of the sensing substrate layer is divided into an effective sensitive region for detecting the sensitivity of the radiation medium layer, including at least one region of each sensing pixel, and an insensitive region other than the effective sensitive region. Become; The scattering line removal pattern is achieved by a digital radiation detector, characterized in that formed in a pattern corresponding to the insensitive region.
여기서, 상기 지지층의 상기 방사선 매질층 반대측 표면에는 상기 산란선 제거 패턴에 대응하는 제거 홈이 형성되고; 상기 산란선 제거 패턴은 상기 제거 홈에 방사선 차폐 물질이 충진되어 형성될 수 있다.Wherein a removal groove corresponding to the scattering line removal pattern is formed on a surface opposite the radiation medium layer of the support layer; The scattering line removing pattern may be formed by filling a radiation shielding material in the removing groove.
또한, 상기 무 감응 영역은 상기 복수의 감지 픽셀과 연결되도록 제1 방향으로 이격되어 형성된 데이터 라인과, 상기 복수의 감지 픽셀과 연결되도록 상기 제1 방향과 교차하는 제1 방향으로 이격되어 형성된 복수의 전압 라인을 포함하며; 상기 산란선 제거 패턴은 상기 복수의 데이터 라인과 상기 복수의 전압 라인 중 적어도 어느 일측에 대응하는 패턴으로 형성될 수 있다.The non-sensitive region may include a plurality of data lines spaced apart from each other in a first direction to be connected to the plurality of sensing pixels, and spaced apart from each other in a first direction crossing the first direction to be connected to the plurality of sensing pixels. A voltage line; The scattering line removal pattern may be formed in a pattern corresponding to at least one side of the plurality of data lines and the plurality of voltage lines.
그리고, 상기 지지층은 그라파이트 재질 또는 알루미늄 재질로 마련되며; 상기 차폐 물질은 납 재질을 포함할 수 있다.The support layer is made of graphite or aluminum; The shielding material may comprise a lead material.
그리고, 상기 제거 홈의 깊이는 상기 감지 픽셀의 크기와 기 설정된 격자비에 기초하여 결정될 수 있다.The depth of the removal groove may be determined based on the size of the sensing pixel and a preset grating ratio.
그리고, 상기 방사선 매질층은 방사선에 감응하여 전하 신호를 생성하는 광도전체를 포함하며; 상기 감지 기판층의 각각의 상기 감지 픽셀은 상기 전하 신호를 감지할 수 있다.And the radiation medium layer comprises a photoconductor that generates a charge signal in response to radiation; Each of the sensing pixels of the sensing substrate layer may sense the charge signal.
또한, 상기 방사선 매질층은 방사선에 감응하여 빛을 발생하는 섬광체를 포함하며; 상기 감지 기판층의 각각의 상기 감지 픽셀은 상기 섬광체로부터의 빛을 감지할 수 있다.In addition, the radiation medium layer comprises a scintillator for generating light in response to radiation; Each of the sensing pixels of the sensing substrate layer may sense light from the scintillator.
그리고, 상호 인접한 상기 제거 홈은 상하 방향으로 서로 평행하게 형성될 수 있다.The removal grooves adjacent to each other may be formed to be parallel to each other in the vertical direction.
상기와 같은 구성에 따라, 본 발명에 따르면, 산란선을 제거하기 위한 산란선 제거용 격자를 설치하지 않고도 산란선의 제거가 가능하며, 방사선 검사 장치의 사이즈를 줄이고 환자의 표면선량을 감소시킬 수 있는 디지털 방사선 검출기가 제공된다.According to the configuration as described above, according to the present invention, it is possible to remove the scattering line without installing the scattering line removal grid for removing the scattering line, it is possible to reduce the size of the radiographic apparatus and reduce the surface dose of the patient A digital radiation detector is provided.
도 1은 디지털 방사선 검사장치의 구성의 예를 도시한 도면이고,1 is a view showing an example of the configuration of a digital radiation inspection apparatus,
도 2는 종래의 디지털 방사선 검출기의 구조를 나타낸 도면이고,2 is a view showing the structure of a conventional digital radiation detector,
도 3은 방사선 조사부에서 조사된 방사선이 환자의 몸에 조사될 때 나타나는 방시선의 형태를 나타낸 도면이고,3 is a view showing the shape of the line of sight that appears when the radiation irradiated from the radiation irradiation to the body of the patient,
도 4는 종래의 산란선 제거용 격자의 구조를 나타낸 도면이고,4 is a view showing the structure of a conventional scattering line removal grating,
도 5는 본 발명에 따른 디지털 방사선 검출기의 분해 사시도이고,5 is an exploded perspective view of a digital radiation detector according to the present invention,
도 6은 본 발명에 따른 디지털 방사선 검출기의 단면도이고,6 is a cross-sectional view of a digital radiation detector according to the present invention,
도 7 및 도 8은 본 발명에 따른 디지털 방사선 검출기의 효과를 설명하기 위한 도면이다.7 and 8 are views for explaining the effect of the digital radiation detector according to the present invention.
본 발명은 디지털 방사선 검출기에 관한 것으로, 방사선에 감응하는 방사선 매질층과, 상기 방사선 매질층의 일측 표면에 결합되어 상기 방사선 매질층의 감응을 감지하는 복수의 감지 픽셀을 갖는 감지 기판층과, 상기 방사선 매질층의 타측 표면에 결합되어 상기 방사선 매질층을 보호하는 지지층과, 상기 지지층에 형성되어 산란선을 차폐하기 위한 산란선 제거 패턴을 포함하고; 상기 감지 기판층의 상기 방사선 매질층과 대면하는 표면은 각각의 감지 픽셀의 적어도 일 영역을 포함하여 상기 방사선 매질층의 감응을 감지하는 유효 감응 영역과, 상기 유효 감응 영역 이외의 무 감응 영역으로 구분되며; 상기 산란선 제거 패턴은 상기 무 감응 영역에 대응하는 패턴으로 형성되는 것을 특징으로 한다.The present invention relates to a digital radiation detector, comprising a radiation substrate layer sensitive to radiation, a sensing substrate layer having a plurality of sensing pixels coupled to one surface of the radiation medium layer to sense the response of the radiation medium layer, A support layer coupled to the other surface of the radiation medium layer to protect the radiation medium layer, and a scattering line removal pattern formed on the support layer to shield scatter lines; The surface facing the radiation medium layer of the sensing substrate layer is divided into an effective sensitive region for detecting the sensitivity of the radiation medium layer, including at least one region of each sensing pixel, and an insensitive region other than the effective sensitive region. Become; The scattering line removal pattern may be formed in a pattern corresponding to the insensitive region.
이하에서는 첨부된 도면들을 참조하여 본 발명에 따른 실시예에 대해 상세히 설명한다. 본 발명에 따른 디지털 방사선 검출기(30)를 설명하는데 있어, 디지털 방사선 검사장치의 다른 구성은 도 1을 참조하여 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail an embodiment according to the present invention. In describing the digital radiation detector 30 according to the present invention, another configuration of the digital radiation inspection apparatus will be described with reference to FIG. 1.
도 5는 본 발명에 따른 디지털 방사선 검출기(30)의 분해 사시도이고, 도 6은 본 발명에 따른 디지털 방사선 검출기(300)의 단면도이다. 도 5 및 도 6을 참조하여 설명하면, 본 발명에 따른 디지털 방사선 검출기(300)은 감지 기판층(310), 방사선 매질층(320), 지지층(330) 및 산란선 제거 패턴(340)을 포함한다.5 is an exploded perspective view of the digital radiation detector 30 according to the present invention, and FIG. 6 is a cross-sectional view of the digital radiation detector 300 according to the present invention. Referring to FIGS. 5 and 6, the digital radiation detector 300 according to the present invention includes a sensing substrate layer 310, a radiation medium layer 320, a support layer 330, and a scattering line removal pattern 340. do.
방사선 매질층(320)은 방사선 조사부(10)로부터 조사되어 환자를 투과한 방사선에 감응한다. 감지 기판층(310)은 방사선 매질층(320)의 일측 표면에 결합되어 방사선 매질층(320)의 감응을 감지하는 복수의 감지 픽셀(Pixel)로 구성된다.The radiation medium layer 320 is sensitive to radiation transmitted from the radiation irradiator 10 and transmitted through the patient. The sensing substrate layer 310 is composed of a plurality of sensing pixels (Pixel) coupled to one surface of the radiation medium layer 320 to sense the response of the radiation medium layer 320.
본 발명에서는 방사선 매질층(320)이 방사선에 감응하여 전하 신호를 생성하는 광도전체(Photoconductor)를 포함하고, 감지 기판층(310)의 각각의 감지 픽셀(Pixel)은 방사선 매질층(320)의 전하 신호를 감지하도록 마련되는 것을 예로 한다.In the present invention, the radiation medium layer 320 includes a photoconductor for generating a charge signal in response to radiation, and each sensing pixel of the sensing substrate layer 310 is formed of the radiation medium layer 320. An example is provided to detect a charge signal.
보다 구체적으로 설명하면, 엑스선(X-ray)과 같은 방사선과 광도전체와 같은 방사선 매질층(320) 간의 상호 작용 중 전리 작용(Ionization)을 이용하여 방사선 매질층(320) 내부의 전자-이온쌍(Electron-ion pair) 또는 전자-전공쌍(Electron-hole pair), 즉 전하 신호(Charge signal)를 생성시켜 이러한 전기 신호를 유도하게 되며, 이러한 전기 신호를 각각의 감지 픽셀(Pixel)이 감지하여 영상을 형성하게 된다.In more detail, electron-ion pairs in the radiation medium layer 320 may be formed by ionization during interaction between radiation such as X-rays and the radiation medium layer 320 such as the photoconductor. Electron-ion pairs or electron-hole pairs, or charge signals, are generated to induce these electrical signals, which are then detected by each pixel. Will form.
다른 예로, 방사선 매질층(320)은 방사선에 감응하여 빛을 발생하는 섬광체(Scintillator)를 포함할 수 있고, 감지 기판층(310)의 각각의 감지 픽셀(Pixel)은 섬광체로부터의 빛을 감지하도록 마련될 수도 있다.As another example, the radiation medium layer 320 may include a scintillator that generates light in response to radiation, and each sensing pixel of the sensing substrate layer 310 may detect light from the scintillator. It may be arranged.
감지 기판층(310)은 상술한 바와 같이, 복수의 감지 픽셀(Pixel)이 매트릭스 형태로 배열되어, 방사선 매질층(320)의 감응을 감지한다. 여기서, 감지 기판층(310)의 방사선 매질층(320)과 대면하는 표면은 유효 감응 영역(VSA)과 무 감응 영역(NSA)으로 구분된다.As described above, the sensing substrate layer 310 has a plurality of sensing pixels Pixel arranged in a matrix to sense the sensitivity of the radiation medium layer 320. Here, the surface facing the radiation medium layer 320 of the sensing substrate layer 310 is divided into an effective sensitive area VSA and an insensitive area NSA.
유효 감응 영역(VSA)은 각각의 감지 픽셀(Pixel)의 적어도 일 영역을 포함하고, 방사선 매질층(320)의 감응을 감지한다. 즉, 유효 감응 영역(VSA)이 실제 영상 형상을 위한 픽셀을 구성하게 된다.The effective sensitive area VSA includes at least one area of each sensing pixel Pixel, and senses the sensitivity of the radiation medium layer 320. That is, the effective sensitive area VSA constitutes a pixel for the actual image shape.
비 감응 영역은 유효 감응 영역(VSA) 이외의 영역으로, 방사선 매질층(320)의 감응을 감지하지 않는 영역에 해당한다. 도 5 및 도 6을 참조하여 설명하면, 감지 기판층(310)은 다수의 감지 픽셀(Pixel)과 전기적으로 연결되는 복수의 데이터 라인(DL)과 복수의 전압 라인(VL)을 포함할 수 있다.The non-sensitive region is a region other than the effective sensitive region VSA, and corresponds to a region in which the radiation medium layer 320 does not sense the sensitivity. Referring to FIGS. 5 and 6, the sensing substrate layer 310 may include a plurality of data lines DL and a plurality of voltage lines VL electrically connected to the plurality of sensing pixels Pixel. .
도 5에 도시된 바와 같이, 데이터 라인(DL)이 제1 방향으로 이격되어 형성되고, 전압 라인(VL)이 제1 방향과 교차하는 제2 방향으로 이격되어 형성된다. 여기서, 복수의 데이터 라인(DL)과 복수의 전압 라인(VL)은 비 감응 영역에 해당하게 된다.As illustrated in FIG. 5, the data lines DL are spaced apart in the first direction, and the voltage lines VL are spaced apart in the second direction crossing the first direction. Here, the plurality of data lines DL and the plurality of voltage lines VL correspond to insensitive regions.
지지층(330)은 방사선 매질층(320)의 타측 표면에 결합되어 방사선 매질층(320)을 보호 및 지지한다. 본 발명에서는 지지층(330)로 그라파이트(Graphite) 재질이나 알루미늄(Al) 재질로 마련되는 것을 예로 한다.The support layer 330 is coupled to the other surface of the radiation medium layer 320 to protect and support the radiation medium layer 320. In the present invention, for example, the support layer 330 is made of graphite or aluminum (Al).
산란선 제거 패턴(340)은 지지층(330)에 형성되어 산란선(3)을 흡수하여 산란선(3)을 차폐한다. 여기서, 산란선 제거 패턴(340)은 감지 기판층(310)의 무 감응 영역(NSA)에 대응하는 패턴으로 마련되는 것을 예로 하는데, 무 감응 영역(NSA) 중 복수의 데이터 라인(DL)과 복수의 전압 라인(VL) 중 적어도 어느 일측에 대응하는 패턴으로 마련될 수 있다.The scattering line removal pattern 340 is formed on the support layer 330 to absorb the scattering line 3 to shield the scattering line 3. Here, the scattering line removal pattern 340 is provided as a pattern corresponding to the non-sensitized area NSA of the sensing substrate layer 310, and the plurality of data lines DL and the plurality of non-sensitized areas NSA are provided. The voltage line VL may be provided in a pattern corresponding to at least one side.
도 5에서는 복수의 데이터 라인(DL) 및 복수의 전압 라인(VL) 모두에 대응하는 패턴으로 마련되어, 바둑판 형태로 마련되는 것을 예로 하고 있으나, 복수의 데이터 라인(DL)과 복수의 전압 라인(VL) 중 어느 일측에 대응하는 패턴으로 마련될 수 있음은 물론이다.In FIG. 5, a plurality of data lines DL and a plurality of voltage lines VL are provided in a pattern corresponding to both of the plurality of data lines DL and a plurality of voltage lines VL, but the plurality of data lines DL and the plurality of voltage lines VL are illustrated. Of course, it can be provided in a pattern corresponding to any one side.
여기서, 본 발명에 따른 산란선 제거 패턴(340)은 도 6에 도시된 바와 같이, 지지층(330)의 방사선 매질층(320) 반대측 표면에 산란선 제거 패턴(340)에 대응하는 제거 홈(331)을 형성하고, 제거 홈(331)에 방사선 차폐 물질을 충진하여 형성할 수 있다. 여기서, 제거 홈(331)은 미세 톱날에 의한 물리적인 가공이나, 레이저 가공을 통해 형성할 수 있다. 본 발명에서는 제거 홈(331)에 충진되는 방사선 차폐 물질로 납(Pb)이 적용되는 것을 예로 한다. 이외에도 방사선 차폐 물질로는 비스무스(Bismuth), 바륨(Barium), 텅스텐(Tungsten)과 같은 다른 차폐 물질도 적용될 수 있다.Here, the scattering line removing pattern 340 according to the present invention, as shown in Figure 6, the removal groove 331 corresponding to the scattering line removing pattern 340 on the surface opposite the radiation medium layer 320 of the support layer 330. ) And a radiation shielding material may be filled in the removal groove 331. Here, the removal groove 331 may be formed through physical processing or laser processing by a fine saw blade. In the present invention, for example, lead (Pb) is applied as a radiation shielding material filled in the removal groove 331. In addition, other shielding materials such as bismuth, barium, and tungsten may be applied as the radiation shielding material.
그리고, 산란선 제거 패턴(340)을 형성하기 위한 제거 홈(331)의 깊이, 즉 산란선 제거 패턴(340)의 두께는 감지 픽셀(Pixel)의 크기와 격자비에 기초하여 결정될 수 있다. 도 6을 참조하여 보다 구체적으로 설명하면, 격자비는 격자의 피치와 차폐 패턴의 두께의 비로 정의되는데, 본 발명에 따른 산란선 제거 패턴(340)에서의 격자의 피치(D)는 감지 픽셀(Pixel)의 크기에 따라 결정되는 바, 격자비가 결정되면 산란선 제거 패턴(340)의 두께(h), 즉 제거 홈(331)의 깊이(h)가 결정 가능하게 된다.In addition, the depth of the removal groove 331 for forming the scattering line removal pattern 340, that is, the thickness of the scattering line removal pattern 340 may be determined based on the size of the sensing pixel Pixel and the grid ratio. More specifically, referring to FIG. 6, the grating ratio is defined as a ratio of the pitch of the grating and the thickness of the shielding pattern. The pitch D of the grating in the scattering line removal pattern 340 according to the present invention is a sensing pixel ( As the lattice ratio is determined, the thickness h of the scattering line removal pattern 340, that is, the depth h of the removal groove 331 can be determined.
상기와 같은 구성에 따라, 방사선 조사부(10)로부터 조사된 방사선은 환자에게 입사된 후, 투과선(1)과 산란선(3)이 본 발명에 따른 디지털 방사선 검출기(300)로 향하게 된다. 여기서, 직진성을 갖는 투과선(1)은 지지층(330)에 형성된 산란선 제거 패턴(340) 사이를 통과하여 방사선 매질층(320)에 입사된다. 반면, 산란선(3)이 산란선 제거 패턴(340) 사이로 입사되더라도 그 산란성 때문에 산란선 제거 패턴(340)으로 흡수될 수 있다.According to the configuration as described above, after the radiation irradiated from the radiation irradiator 10 is incident on the patient, the transmission line 1 and the scattering line 3 is directed to the digital radiation detector 300 according to the present invention. Here, the transmission line 1 having the straightness passes through the scattering line removal pattern 340 formed in the support layer 330 and is incident on the radiation medium layer 320. On the other hand, even when the scattering line 3 is incident between the scattering line removing patterns 340, the scattering line 3 may be absorbed into the scattering line removing pattern 340 because of its scattering properties.
이 때, 산란선 제거 패턴(340) 이외의 영역, 즉, 투과선(1)이 투과하게 되는 지지층(330)의 나머지 영역은, 도 5에 도시된 바와 같이, 감지 기판층(310)의 감지 픽셀(Pixel)의 패턴과 동일한 패턴을 갖게 되는 바, 산란선 제거 패턴(340)에 의해 투과가 차단되는 투과선(1)은 결과적으로 직진하더라도 유효 감응 영역(VSA)에 도달하지 않게 되므로, 산란선 제거 패턴(340)에 의한 영상 손실은 발생하지 않게 된다.At this time, an area other than the scattering line removal pattern 340, that is, the remaining area of the support layer 330 through which the transmission line 1 is transmitted, is detected by the sensing substrate layer 310 as shown in FIG. 5. As a result of having the same pattern as that of the pixel, the transmission line 1 whose transmission is blocked by the scattering line removal pattern 340 does not reach the effective sensitive area VSA even if it goes straight, resulting in scattering. Image loss due to the line removal pattern 340 is not generated.
즉, 산란선 제거 패턴(340)이 복수의 감지 픽셀(Pixel)에 대응하는 형태의 투과 영역을 형성하게 되어, 산란선(3)을 제거하기 위한 산란선 제거 패턴(340)이 방사선 영상의 형성에 어떠한 영향도 미치지 않고 산란선(3) 만을 제거하게 된다.That is, the scattering line removal pattern 340 forms a transmission region having a shape corresponding to the plurality of sensing pixels Pixel, so that the scattering line removing pattern 340 for removing the scattering line 3 forms a radiographic image. Only the scattering line 3 is removed without any effect on the scattering line 3.
또한, 본 발명에 따른 디지털 방사선 검출기(300)에서 상호 인접한 제거 홈은, 도 6에 도시된 바와 같이, 상하 방향으로 서로 평행하게 형성될 수 있다. 종래의 산란선 제거용 격자(20)의 경우, 격자 패턴이 상하 방향으로 방사상으로 퍼지는 형태를 갖는 경우가 있는데, 이는 종래의 산란선 제거용 격자(20)와 디지털 방사선 검출기(30)가 서로 떨어져 있어 방사선 조사부(10)로부터 퍼져 나온 방사선에 대응하도록 형성하였다. 따라서, 종래의 산란선 제거용 격자(20)의 제작에 있어 중심으로부터 멀어질수록 격자 패턴의 상하 방향으로의 각도를 다르게 제작하게 되어 그 제작에 어려움이 있었으며, 특히 방사선 조사부(10)의 거리가 달라지는 경우 각도가 맞지 않아 영상에 악영향을 미치는 경우가 발생하였다.In addition, in the digital radiation detector 300 according to the present invention, mutually adjacent removal grooves may be formed in parallel to each other in the vertical direction, as shown in FIG. 6. In the case of the conventional scattering line removing grating 20, the grid pattern may be radially spread in the vertical direction. This is because the conventional scattering line removing grating 20 and the digital radiation detector 30 are separated from each other. It was formed to correspond to the radiation spread from the radiation irradiation section (10). Therefore, in the manufacturing of the scattering line removal grid 20, the farther away from the center to produce a different angle in the vertical direction of the grid pattern, there was a difficulty in the production, especially the distance of the radiation unit 10 If the angle is different, it may adversely affect the image.
반면, 본 발명에 따른 디지털 방사선 검출기(300)의 경우 산란선 제거 패턴(340)이 감지 기판층(310)에 근접하게 위치하기 때문에, 산란선 제거 패턴(340)을 상하 방향, 즉 깊이 방향으로 각도를 줄 필요가 없게 되어, 그 제조가 용이할 뿐만 아니라 방사선 조사부(10)와의 거리와 무관하게 적용 가능하게 된다.On the other hand, in the case of the digital radiation detector 300 according to the present invention, since the scattering line removing pattern 340 is located close to the sensing substrate layer 310, the scattering line removing pattern 340 is disposed in the vertical direction, that is, in the depth direction. It is not necessary to give an angle, so that the manufacture is easy and can be applied irrespective of the distance to the radiation irradiation section 10.
상기와 같은 구성에 따라, 종래의 산란선 제거용 격자(20)이 감지 픽셀(Pixel)의 위치와 무관하게 투과선(1)의 일부를 차폐하여 감지 픽셀(Pixel)로 향하는 투과선(1)의 차폐하여, 더 많은 방사선을 조사하여야 하는 문제를 야기시켰는데, 본 발명에 따른 산란선 제거 패턴(340)의 경우 감지 픽셀(Pixel)의 경계 영역, 즉 비 감응 영역에 형성됨으로써, 투과선(1) 차폐에 의한 영상 손실을 줄여, 결과적으로 방사선의 조사량을 줄일 수 있는 효과를 제공하게 된다.According to the above configuration, the conventional scattering line removing grating 20 shields a part of the transmission line 1 regardless of the position of the detection pixel Pixel and transmits the transmission line 1 toward the detection pixel Pixel. The shielding of the light emitting device causes a problem that more radiation is to be irradiated. In the case of the scattering line removal pattern 340 according to the present invention, it is formed in the boundary region of the sensing pixel Pixel, that is, the non-sensitive region, so that the transmission line ( 1) Reduced image loss due to shielding, resulting in the effect of reducing the radiation dose.
또한, 본 발명에 따른 산란선 제거 패턴(340)이 영상의 형성에 영향을 미치지 않으므로, 종래의 산란선 제거용 격자(20)의 사용으로 인해 영상에서 발생하는 모아레 무늬의 제거를 위해 산란선 제거용 격자(20)을 판면 방향으로 왕복 이동시키는 구조를 제거할 수 있게 되어, 구조가 간소화되고 제품의 사이즈 또한 감소시킬 수 있게 된다.In addition, since the scattering line removal pattern 340 according to the present invention does not affect the formation of the image, the scattering line is removed to remove the moire pattern generated in the image due to the use of the conventional scattering line removal grid 20. The structure for reciprocating the dragon grating 20 in the plate direction can be eliminated, thereby simplifying the structure and reducing the size of the product.
또한, 도 7의 (a)에 도시된 바와 같이, 종래의 방사선 검사 장치의 경우 환자와 디지털 방사선 검출기(300) 사이에 산란선 제거용 격자(20)이 설치되어 선예도가 감소하는 문제가 있었으나, 본 발명에 따른 디지털 방사선 검출기(300)이 적용되는 방사선 검사 장치의 경우 환자의 하부에 바로 디지털 방사선 검출기(300)이 설치되어 방사선 조사부(10)와 디지털 방사선 검출기(300)까지의 거리(d2)가 종래의 방사선 검사 장치의 거리(d1)보다 짧아지는 효과를 제공하게 되어, 동일한 조건에서 선예도의 향상을 가져와 결과적으로 환자의 표면선량을 감소시키는 효과를 제공하게 된다.In addition, as shown in FIG. 7A, in the case of the conventional radiographic inspection apparatus, there is a problem in that the sharpness is reduced because the scattering line removal grating 20 is installed between the patient and the digital radiation detector 300. In the case of a radiation inspection apparatus to which the digital radiation detector 300 according to the present invention is applied, a digital radiation detector 300 is installed directly under the patient, and thus the distance d2 between the radiation irradiation unit 10 and the digital radiation detector 300 is provided. This provides the effect of being shorter than the distance d1 of the conventional radiographic inspection apparatus, thereby improving the sharpness under the same conditions and consequently providing the effect of reducing the surface dose of the patient.
도 8은 본 발명에 따른 디지털 방사선 검출기(300)의 효과를 검증하기 위한 시뮬레이션 결과를 나타낸 도면이다. 도 8의 (a)는 산란선 제거용 격자(20)을 사용하지 않은 경우의 결과이고, 도 8의 (b)는 종래의 산란선 제거용 격자(20)을 사용한 경우의 결과이고, 도 8의 (c)는 본 발명에 따른 디지털 방사선 검출기(300)을 사용한 경우의 결과이다.8 is a view showing a simulation result for verifying the effect of the digital radiation detector 300 according to the present invention. FIG. 8A is a result when the scattering line removing grating 20 is not used, and FIG. 8B is a result when the scattering line removing grating 20 is used. (C) shows the result of using the digital radiation detector 300 according to the present invention.
시뮬레이션은 몬테 카를로(Monte Carlo) 시뮬레이션 툴인 MCNPX 2.6.0을 사용하여 전산모사를 진행하였으며, 격자의 성능을 비교하는데 사용되는 인자인 산란선 함유율은 격자를 사용하지 않았을 때와 비교하여 모든 에너지 영역(40~120kVp) 에서 10% 이상 저감시키는 것이 가능했으며, 기존의 격자와 비교하였을 때도 약 5% 정도의 산란선을 제거할 수 있음을 확인할 수 있었다. 대조도 또한 시각적으로 대폭 향상되었음을 확인할 수 있다. Simulation was performed using MCNPX 2.6.0, Monte Carlo simulation tool, and the scattering line content, a factor used to compare the performance of the lattice, was compared to that of all energy regions (when not using the lattice). At 40 ~ 120kVp), it was possible to reduce more than 10%, and it was confirmed that about 5% of scattered lines could be removed even when compared with the existing lattice. Contrast can also be seen to be significantly improved visually.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경 가능함은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명백할 것이다.The present invention described above is not limited to the above-described embodiments and the accompanying drawings, and various substitutions, modifications, and changes within the scope not departing from the technical idea of the present invention are common in the art. It will be apparent to those who have knowledge.
[부호의 설명][Description of the code]
300 : 디지털 방사선 검출기 310 : 검사 기판층300: digital radiation detector 310: inspection substrate layer
320 : 방사선 매질층 330 : 지지층320: radiation medium layer 330: support layer
331 : 제거 홈 340 : 산란선 제거 패턴331: removal groove 340: scattering line removal pattern
10 : 방사선 조사부10: radiation irradiation unit
본 발명은 디지털 방사선 검출기에 적용 가능하다.The present invention is applicable to a digital radiation detector.

Claims (8)

  1. 방사선에 감응하는 방사선 매질층과,A radiation medium layer sensitive to radiation,
    상기 방사선 매질층의 일측 표면에 결합되어 상기 방사선 매질층의 감응을 감지하는 복수의 감지 픽셀을 갖는 감지 기판층과,A sensing substrate layer having a plurality of sensing pixels coupled to one surface of the radiation medium layer to sense the sensitivity of the radiation medium layer;
    상기 방사선 매질층의 타측 표면에 결합되어 상기 방사선 매질층을 보호하는 지지층과,A support layer coupled to the other surface of the radiation medium layer to protect the radiation medium layer;
    상기 지지층에 형성되어 산란선을 차폐하기 위한 산란선 제거 패턴을 포함하고;A scattering line removal pattern formed on the support layer to shield scattering lines;
    상기 감지 기판층의 상기 방사선 매질층과 대면하는 표면은 각각의 감지 픽셀의 적어도 일 영역을 포함하여 상기 방사선 매질층의 감응을 감지하는 유효 감응 영역과, 상기 유효 감응 영역 이외의 무 감응 영역으로 구분되며;The surface facing the radiation medium layer of the sensing substrate layer is divided into an effective sensitive region for detecting the sensitivity of the radiation medium layer, including at least one region of each sensing pixel, and an insensitive region other than the effective sensitive region. Become;
    상기 산란선 제거 패턴은 상기 무 감응 영역에 대응하는 패턴으로 형성되는 것을 특징으로 하는 디지털 방사선 검출기.The scattering line removal pattern is formed in a pattern corresponding to the insensitive region.
  2. 제1항에 있어서,The method of claim 1,
    상기 지지층의 상기 방사선 매질층 반대측 표면에는 상기 산란선 제거 패턴에 대응하는 제거 홈이 형성되고;A removal groove corresponding to the scattering line removal pattern is formed on a surface opposite the radiation medium layer of the support layer;
    상기 산란선 제거 패턴은 상기 제거 홈에 방사선 차폐 물질이 충진되어 형성되는 것을 특징으로 하는 디지털 방사선 검출기.The scattering line removal pattern is formed by filling a radiation shielding material in the removal groove.
  3. 제2항에 있어서,The method of claim 2,
    상기 무 감응 영역은The non-sensitive area is
    상기 복수의 감지 픽셀과 연결되도록 제1 방향으로 이격되어 형성된 데이터 라인과,A data line spaced apart in a first direction to be connected to the plurality of sensing pixels;
    상기 복수의 감지 픽셀과 연결되도록 상기 제1 방향과 교차하는 제1 방향으로 이격되어 형성된 복수의 전압 라인을 포함하며;A plurality of voltage lines spaced apart in a first direction crossing the first direction to be connected to the plurality of sensing pixels;
    상기 산란선 제거 패턴은 상기 복수의 데이터 라인과 상기 복수의 전압 라인 중 적어도 어느 일측에 대응하는 패턴으로 형성되는 것을 특징으로 하는 디지털 방사선 검출기.The scattering line removal pattern is formed in a pattern corresponding to at least one side of the plurality of data lines and the plurality of voltage lines.
  4. 제2항에 있어서,The method of claim 2,
    상기 지지층은 그라파이트 재질 또는 알루미늄 재질로 마련되며;The support layer is made of graphite or aluminum;
    상기 차폐 물질은 납 재질을 포함하는 것을 특징으로 하는 디지털 방사선 검출기.And the shielding material comprises a lead material.
  5. 제2항에 있어서,The method of claim 2,
    상기 제거 홈의 깊이는 상기 감지 픽셀의 크기와 기 설정된 격자비에 기초하여 결정되는 것을 특징으로 하는 디지털 방사선 검출기.And the depth of the removal groove is determined based on the size of the sensing pixel and a preset grating ratio.
  6. 제2항에 있어서,The method of claim 2,
    상기 방사선 매질층은 방사선에 감응하여 전하 신호를 생성하는 광도전체를 포함하며;The radiation medium layer comprises a photoconductor that generates a charge signal in response to radiation;
    상기 감지 기판층의 각각의 상기 감지 픽셀은 상기 전하 신호를 감지하는 것을 특징으로 하는 디지털 방사선 검출기.Each sensing pixel of the sensing substrate layer senses the charge signal.
  7. 제2항에 있어서,The method of claim 2,
    상기 방사선 매질층은 방사선에 감응하여 빛을 발생하는 섬광체를 포함하며;The radiation medium layer comprises a scintillator for generating light in response to radiation;
    상기 감지 기판층의 각각의 상기 감지 픽셀은 상기 섬광체로부터의 빛을 감지하는 것을 특징으로 하는 디지털 방사선 검출기.Each sensing pixel of the sensing substrate layer senses light from the scintillator.
  8. 상호 인접한 상기 제거 홈은 상하 방향으로 서로 평행하게 형성되는 것을 특징으로 하는 디지털 방사선 검출기.The removal grooves adjacent to each other are formed parallel to each other in the vertical direction.
PCT/KR2015/001771 2014-02-25 2015-02-24 Digital radiation detector WO2015130063A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140021799A KR101684730B1 (en) 2014-02-25 2014-02-25 Digital radiation detector
KR10-2014-0021799 2014-02-25

Publications (1)

Publication Number Publication Date
WO2015130063A1 true WO2015130063A1 (en) 2015-09-03

Family

ID=54009326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/001771 WO2015130063A1 (en) 2014-02-25 2015-02-24 Digital radiation detector

Country Status (2)

Country Link
KR (1) KR101684730B1 (en)
WO (1) WO2015130063A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000512084A (en) * 1997-04-02 2000-09-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ X-ray apparatus having a sensor matrix
JP2001061101A (en) * 1999-08-23 2001-03-06 Fuji Photo Film Co Ltd Image processing method and system
JP2002529712A (en) * 1998-10-29 2002-09-10 ディレクト レディオグラフィ コーポレーション Anti-scatter radiation grid with detectors for detectors
JP2009195512A (en) * 2008-02-22 2009-09-03 Fujifilm Corp Radiation image processing apparatus
JP2011101686A (en) * 2009-11-10 2011-05-26 Shimadzu Corp Radiographic apparatus
JP2011218147A (en) * 2010-03-26 2011-11-04 Fujifilm Corp Radiographic system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000512084A (en) * 1997-04-02 2000-09-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ X-ray apparatus having a sensor matrix
JP2002529712A (en) * 1998-10-29 2002-09-10 ディレクト レディオグラフィ コーポレーション Anti-scatter radiation grid with detectors for detectors
JP2001061101A (en) * 1999-08-23 2001-03-06 Fuji Photo Film Co Ltd Image processing method and system
JP2009195512A (en) * 2008-02-22 2009-09-03 Fujifilm Corp Radiation image processing apparatus
JP2011101686A (en) * 2009-11-10 2011-05-26 Shimadzu Corp Radiographic apparatus
JP2011218147A (en) * 2010-03-26 2011-11-04 Fujifilm Corp Radiographic system

Also Published As

Publication number Publication date
KR20150100243A (en) 2015-09-02
KR101684730B1 (en) 2016-12-08

Similar Documents

Publication Publication Date Title
US7110493B1 (en) X-ray detector system having low Z material panel
CN101002109B (en) Anti-scatter-grid for a radiation detector
CN104391316B (en) The detection method of three-dimensional space curved surface multi-energy scintillation detector
WO2006037169A3 (en) Radiographic equipment
US5751000A (en) Prefilter collimator for PET gamma camera
EP2008285B1 (en) Production of x-ray images containing a reduced proportion of scattered radiation
JP4510823B2 (en) Device for collimating electromagnetic radiation
WO2014196914A1 (en) An arrangement for measuring an x-ray dose parameter in an x-ray image apparatus and an x-ray detector.
CA1121918A (en) Device for examining and object by means of penetrating radiation
WO2012141420A2 (en) Gamma ray detection apparatus and method for detecting gamma rays using same
WO2015130063A1 (en) Digital radiation detector
CN108369283A (en) Scintillator panel and radiation detector
WO2010064287A1 (en) Radiation imaging device
WO2020022664A1 (en) Dual energy x-ray photographing device
WO2014193110A1 (en) Apparatus for measuring radiation dosage of charged particle and imaging apparatus
WO2015102255A1 (en) Device for detecting therapeutic proton beam emitted in scattering mode
WO2014014205A1 (en) Insertable collimator and x-ray generator containing same
WO2015102254A1 (en) Device for detecting therapeutic proton beam emitted in pencil beam scanning mode
WO2017171130A1 (en) Dual energy x-ray detector using multiple gas electron multiplier detector, and x-ray image capturing system
JP3075647B2 (en) Design method of X-ray inspection apparatus and X-ray inspection apparatus
JP2011019891A (en) Multispectral detector for x-ray
WO2015005671A1 (en) X-ray detector and x-ray imaging apparatus including same
Hinderer et al. Development of a new multielement detector system for megavoltage photons
WO2022010199A1 (en) Collimator for detecting radiation and radiation detection device using same
DE102009033304A1 (en) Detector for use in X-ray computed tomography device for generating X-ray radiation on patient during scanning patient for diagnosis purpose, has digital camera arranged in region estimatable by X-ray radiation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15755062

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15755062

Country of ref document: EP

Kind code of ref document: A1