JP2011019891A - Multispectral detector for x-ray - Google Patents

Multispectral detector for x-ray Download PDF

Info

Publication number
JP2011019891A
JP2011019891A JP2009186869A JP2009186869A JP2011019891A JP 2011019891 A JP2011019891 A JP 2011019891A JP 2009186869 A JP2009186869 A JP 2009186869A JP 2009186869 A JP2009186869 A JP 2009186869A JP 2011019891 A JP2011019891 A JP 2011019891A
Authority
JP
Japan
Prior art keywords
ray
rays
energy
layer
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009186869A
Other languages
Japanese (ja)
Inventor
Katsuhisa Hosono
勝久 細野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009186869A priority Critical patent/JP2011019891A/en
Publication of JP2011019891A publication Critical patent/JP2011019891A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20181Stacked detectors, e.g. for measuring energy and positional information

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve density resolution of an examination object in a radioparent examination. <P>SOLUTION: X-ray detecting parts (such as combinations of scintillators and photodiodes) different in X-ray transmittance and absorbance are arranged in multiple layers along the traveling direction of X-rays, and X-ray filters using metal plates or the like are put between the respective layers if necessary to detect while changing sensitivity-centered energy for each layer detecting part. Density resolution is improved by the mutual operation of respective layer detection data. This configuration is usable particularly for an X-ray CT apparatus. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

発明の詳細な説明Detailed Description of the Invention

本案は、X線検査分野全般にわたり透過X線の検出能力向上に寄与するものである。その効果は特に医療分野において効果大である。
医療分野の中でもX線CT装置での使用が最も有為な利用法と思われるので、本案の説明においては、X線CT装置での利用を中心に説明する。
This proposal contributes to the improvement of transmission X-ray detection capability over the entire X-ray inspection field. The effect is particularly great in the medical field.
In the medical field, use with an X-ray CT apparatus seems to be the most prominent use method. Therefore, in the description of the present plan, the use with an X-ray CT apparatus will be mainly described.

今までのX線CT装置の検出部は、X線フィルム等に比べて高い強度(線量)分解能が得られるという事で、その発達は検出するX線の進行方向に対して直角となる方向に検出器を多数配列するという方法で発達してきた。
第二世代、第三世代と言う様な、スキャンの回転方向への多数化と、マルチスライス化の様に、スキャン回転方向に対して直角の方向(回転軸方向)への多数化に分かれるが、いずれも検出するX線の当たる面に多数の検出器を配するという考え方である。
X線の強度検出においては、シンチレーターの改善やフォトダイオードの高感度化、プリアンプの低雑音化、また検出器を細かくして複数の検出器の信号を足し合わせて1つの信号とする一種の量子化ノイズ対策的な物も含め、さまざまな改善はされてきているが、X線のエネルギーに関係なく全体の線量を検出するという方法は、今までのいずれの装置も変わってはいない。
The detection unit of the conventional X-ray CT apparatus has a higher intensity (dose) resolution than that of an X-ray film or the like, and its development is in a direction perpendicular to the traveling direction of the detected X-ray. It has been developed by arranging many detectors.
There are two types: the second generation and the third generation, the number of scans in the rotation direction, and the number of scans in the direction perpendicular to the scan direction (rotation axis direction), such as multi-slice. The idea is that a large number of detectors are arranged on the surface where the X-rays to be detected hit.
In X-ray intensity detection, a kind of quantum that improves the scintillator, increases the sensitivity of the photodiode, reduces the noise of the preamplifier, and finely combines the signals from multiple detectors into one signal. Various improvements have been made, including countermeasures against noise, but the method of detecting the total dose regardless of the energy of X-rays has not changed in any of the devices so far.

発明が解決しようとする課題Problems to be solved by the invention

X線CTの技術は従来のX線撮影に比べて多くの成果をもたらしたが、軟部組織や脳組織内病変に対する密度分解能などにおいて不足な部分もある。
これを補うべく存在しているのがMRI(NMR−CT)であることは周知の事実である。
また比較的高いX線管電圧を用いるとはいえ、診断領域のX線は、光電効果領域に多くのエネルギーが分布しており、各元素のX線の吸収端の影響が大きく(それゆえに診断像が得られるのだが)骨などのX線高吸収物によるアーチファクトは払拭できていない。
この辺りの欠点は、マルチスライス化がいくら進んでも改善されていない。
Although the X-ray CT technique has yielded many results compared to conventional X-ray imaging, there are insufficient parts in the density resolution for lesions in soft tissue and brain tissue.
It is a well-known fact that MRI (NMR-CT) exists to compensate for this.
In addition, although a relatively high X-ray tube voltage is used, X-rays in the diagnosis region have a large amount of energy distributed in the photoelectric effect region, and the influence of the X-ray absorption edge of each element is large (hence, diagnosis). Artifacts caused by X-ray superabsorbents such as bones cannot be wiped out.
This shortcoming is not improved no matter how much multi-slicing progresses.

課題を解決するための手段Means for solving the problem

本案は、検出するX線の進行方向にそう型で、重なる様にシンチレーター等のX線を検出し光等に変換する素子と、フォトダイオード等の光電変換素子とを多層配置する。X線を検出する素子は、検出するX線の進行方向にそって重なっていなくてはならないが、発光等を電荷量(電気信号)等に変換する素子は必ずしも重なっている必要はなく、X線の発光等を光ファイバーなどで導き異なる所で光電変換してもよい。
重なったシンチレーター等のX線検出素子の間には、必要に応じて金属板等を用いたX線用フィルターを入れていき、重なった各層のX線検出素子が検出素子自体によるフィルター効果も含め、検出するX線のエネルギー帯が異なる様にしていく。当然X線の発生側(多層の検出部の表面側)はエネルギーの低い軟線を多く検出し、X線の発生元から遠い側(多層の検出部の表面からみて深い層)はエネルギーの高い硬いX線を多く検出することとなる。
軟線は表面近くで減っていくが、表面のX線検出層はエネルギーの高い硬いX線も検出する。
したがって表面のX線検出層は厚さを薄くしたり、材質をくふうし、表面(表面近く)の検出層ではなるべく軟線成分のみを減衰させ検出する配慮が必要となる。また表面層にかぎらず各層が検出するX線のエネルギー帯はなるべく分離していることが望ましい。
各層のX線検出の感度の条件は従来の物より厳しくなるので、シンチレーターの高効率化、光電変換の高感度化、増幅のローノイズ化だけでなく、それぞれのX線検出素子の配置デザインや、各素子間のX線シールドのありかたも重要となる。
ただ近年半導体技術は、小信号領域における高速化という方向に大きく進歩しており、本案を実用化しうる技術環境はあると思われる。
In the present plan, an element that detects the X-ray such as a scintillator and converts it into light and the like and a photoelectric conversion element such as a photodiode are arranged in multiple layers so as to overlap each other in the traveling direction of the detected X-ray. The elements that detect X-rays must overlap along the direction of travel of the detected X-rays, but the elements that convert light emission or the like into a charge amount (electric signal) or the like do not necessarily overlap. The light emission or the like of the line may be guided by an optical fiber or the like, and photoelectric conversion may be performed at different places.
An X-ray filter using a metal plate or the like is inserted between the X-ray detection elements such as overlapping scintillators, and the X-ray detection elements of each layer including the filter effect by the detection element itself are included. The X-ray energy band to be detected is made different. Naturally, the X-ray generation side (the surface side of the multi-layer detection unit) detects many soft lines with low energy, and the side far from the X-ray generation source (the deep layer as viewed from the surface of the multi-layer detection unit) is hard with high energy. Many X-rays will be detected.
Although soft rays decrease near the surface, the surface X-ray detection layer detects hard X-rays with high energy.
Therefore, it is necessary to consider that the surface X-ray detection layer is thinned or made of a material, and the detection layer on the surface (near the surface) attenuates and detects only the soft line component as much as possible. Further, it is desirable that the energy band of X-rays detected by each layer is separated as much as possible, not just the surface layer.
Since the conditions of X-ray detection sensitivity of each layer are stricter than the conventional one, not only the efficiency of the scintillator, the sensitivity of photoelectric conversion, the low noise of amplification, but also the layout design of each X-ray detection element, The manner of X-ray shielding between the elements is also important.
However, in recent years, semiconductor technology has greatly advanced in the direction of speeding up in the small signal region, and it seems that there is a technical environment in which this proposal can be put into practical use.

発明の効果The invention's effect

本案の効果は実施例により異なるので、実施例ごとに効果を説明する。
始めに、現在のCT装置で、使い方次第で本案の効果の一部と近い効果を得るものがあるので、そのことにふれておく。
現在のCT装置で、X線管と検出器を二組持ち、高電圧と通常電圧の撮影を同時に行えるものがある。それぞれの画像は、機械的には同一の位置を撮影しているので、二種類の画像を使いアーチファクトの低減処理等が行われている。
上記の装置と本案の違いは、上記の二種類の画像は同時に同じスライス位置を撮影したというだけで、それぞれは厳密には重ならない。
本案は、各層の検出器が同一の透過X線を検出しているといってよく、(各層の検出器は同一のX線を、感度を得るエネルギーの中心を異ならせて検出しているだけ)各層の検出器ごとに構成された像は、完全に重ねることができる。
また、各層のデーターを混合した画像構成を行っても、構成画像に位置的不合理が発生することはない。
上記の違いが元となり、本案でなければ得られない効果が多く存在するので、以下にそれを述べる。
例1 軟線撮影相当の画像構成
通常X線CT装置では、軟線撮影はできない。軟線では体全体をX線が透過しないからである。
本案の検出器を用いて撮影したデーターを使い、体表近くの画像構成を軟線検出層の検出器のデーターに重きをおいて画像構成演算を行えば、体表近くの組織において軟線撮影相当の画像の生成が可能となる。
これは、マンモグラフィーなどの軟線撮影相当の撮影がCT装置で行える事をいみする。
例2 X線高吸収物体によるアーチファクトの低減
上記例1の軟線撮影相当の画像生成に対して、エネルギー的に逆の利用例である。
X線CTは、比較的高い管電圧で撮影されるが、骨や金属でみると、光電効果吸収の影響が大きく高吸収物体によるアーチファクトはさけられない。
高吸収物体がある場合、本案の検出器を用い高エネルギー帯検出層の検出データーに重きをおいて、高吸収物体によるX線吸収量の数値が過大にならない様にしたうえで、画像構成演算を行えばアーチファクトの少ない画像を生成できる。
この様な手法は、現在複数のX線管と検出器を持つCT装置でも行われているが、本案は同一のX線を検出するので、より完成度の高い画像が得られる。
例3 造影剤の増感ができる。
X線検査に用いられる造影剤は、成分中元素固有のX線吸収端を持ち、特定のエネルギー以下のX線を吸収し大きく減衰させる。
本案を用い、造影剤により減衰するエネルギー帯を敏感に検出する検出器層を設け、その層のデーターに重きをおいて画像構成演算を行えば、造影剤の効果が増強された画像を得ることができる。
かつて、放射光X線を用い、静脈注射の造影で、動脈カテーテルを使った造影相当の画像を得ようとする試みが行われたが、本案を用いれば、通常のX線管のX線を使って放射光X線撮影相当の画像が得られることが期待できる。
例4 超高電圧撮影による、高精度電子密度測定
X線はもちろんのこと、陽子、重イオン等の放射線を用いた放射線治療において、X線CTのCT値から、人体の電子密度分布を算出することは、治療計画上重要な作業である。
しかし今のX線CT装置では、比較的高いX線管電圧を使うとはいえ、光電吸収領域の影響は大きく、CT値からの電子密度換算は理想から程遠いものといえる。
かといって陽子線等を用いたCTは、現状研究、実験的なものであり、実用性は今の所みえていない。
本案はこれに対して、リニアック等の治療域の超高圧X線を用いたCT装置を提案する。
しかしそのまま超高圧X線を用いるだけだと、リニアックグラフィーの様にまともな診療用画像とならない。そこで、X線のフィルターは通常のCT装置並みにして、本案の検出器に超高エネルギー帯検出用の検出層を設けて実用化すれば、超高エネルギー帯検出層のデーターから電子密度算出用のCT像を構成し、診療域エネルギー帯検出層のデーターから診断用のCT像を構成できる。
この2種類の画像は完全に重なるので、治療計画の入力は診断像で行い、線量分布計算は、電子密度算出用CT像のCT値から換算された電子密度を用い計算し、計算結果を診断像上に表示させればよい。
注意として、この超高圧撮影の目的は、電子密度算出に適したコンプトン領域で撮影することにある。したがってX線のエネルギーは高ければ良いというわけではない。エネルギーが高いと電子対生成も起こるからである。
光電領域における各原子固有のX線の吸収端の影響が十分回避できるエネルギーなら良いということである。
ここで、X線の振る舞いと本案の原理的な考え方に触れておく。
X線は可視光の様にプリズム等でスペクトル分離できるものではない。しかもエネルギーごとに回折、光電効果、コンプトン散乱、電子対生成と大きく振る舞いが異なる現象がその領域をだぶらせて存在するため、各エネルギー領域を完全に分離して検出できたとしても、透過X線の情報から、透過物体を完全に分析するのは困難である。
またX線の発生においても、病院の装置のサイズで診療画像撮影が可能な単色のX線(放射光)を得ることも極めて困難である。
それならば、不可能を無理に求めるのではなく、連続X線の透過像を検出するX線の感度のエネルギー中心(どのエネルギー帯のX線を最も高感度で検出するのかという意味)を変えて多数のエネルギー帯で検出しようとするのが本案である。
各エネルギー帯ごとの検出強度をどう濃淡に変換するかを変えたり。(ガンマ値の変更)特定のエネルギー帯を増減させてからたし合わせて像を作ったりすることで、今までのX線検査ではできなかった多様な特殊画像を作ることができるようになる。
これは、単なる高圧撮影、低圧撮影の組み合わせでは不可能であり、同時、同位置で複数のエネルギー中心でX線強度を独立検出できる本案だからできることである。
例 5 フラットパネル型X線検出器の多層化
例 1−4の実施例は、フラットパネル型X線検出器を多スペクトル型に多層化しても同様に応用できる。
過去にイメージングプレートに金属板をはさみ撮影したという本案と同一の原理の実験例があり本案はそれをセンサー化しただけに見えるかもしれないが、センサー化しなければCT装置への利用は不可能であり、上記例の画像処理も事実上不可能であることを考えれば、本案によって新たな進歩が生じているのはまちがいない。
例 6 巨大物体の非破壊検査
超高圧X線を利用した大型構造物用のX線CT装置はすでに存在するが、本案の検出器を利用することでより大型の物をよりくわしく検査できることが期待できる。
それを実現するためには、シンチレーター部の散乱線対策と、光電変換部の感度レンジの拡大が必要である。
本案はX線検出の条件がきびしいのでこれは共通の問題である。
感度レンジの拡大は、1つのシンチレーターに感度の異なる複数の光電変換部を付けるというような対策が考えられる。
Since the effect of this plan changes with embodiments, the effect will be described for each embodiment.
First, there are some of the current CT devices that have effects close to some of the effects of the present plan, depending on how they are used.
Some of today's CT apparatuses have two sets of X-ray tubes and detectors, and can perform high voltage and normal voltage imaging simultaneously. Since each image is mechanically photographed at the same position, artifact reduction processing and the like are performed using two types of images.
The difference between the above apparatus and the present plan is that the above two types of images are taken at the same slice position at the same time, and they do not exactly overlap each other.
In this proposal, it can be said that the detectors in each layer detect the same transmitted X-rays. (The detectors in each layer detect the same X-rays with different centers of energy to obtain sensitivity. ) Images constructed for each layer of detectors can be completely overlaid.
In addition, even if an image configuration in which data of each layer is mixed is performed, positional unreasonableness does not occur in the configuration image.
Based on the above differences, there are many effects that can only be obtained with this proposal.
Example 1 Image configuration equivalent to soft-line imaging Soft-line imaging is not possible with a normal X-ray CT apparatus. This is because soft rays do not transmit X-rays throughout the body.
Using the data photographed with the detector of the present plan, and performing image composition calculation with emphasis on the image composition near the body surface to the data of the detector of the soft line detection layer, it is equivalent to soft radiation imaging in the tissue near the body surface An image can be generated.
This means that imaging equivalent to soft line imaging such as mammography can be performed with a CT apparatus.
Example 2 Reduction of Artifact by X-ray High Absorption Object This is an application example that is energetically opposite to the image generation equivalent to soft-line imaging in Example 1 above.
X-ray CT is imaged with a relatively high tube voltage, but when viewed with bones or metal, the influence of photoelectric effect absorption is great and artifacts due to highly absorbing objects cannot be avoided.
If there is a high-absorption object, use the detector of the present plan and place emphasis on the detection data of the high-energy band detection layer so that the X-ray absorption value by the high-absorption object does not become excessive, and image composition calculation Can generate an image with few artifacts.
Such a method is currently performed in a CT apparatus having a plurality of X-ray tubes and detectors, but since the present method detects the same X-ray, an image with a higher degree of completeness can be obtained.
Example 3 A contrast agent can be sensitized.
The contrast agent used for the X-ray examination has an X-ray absorption edge unique to the element in the component, and absorbs X-rays having a specific energy or less and greatly attenuates.
By using this proposal and providing a detector layer that sensitively detects the energy band attenuated by the contrast agent, and performing image composition calculation with emphasis on the data of that layer, an image with enhanced contrast agent effect can be obtained. Can do.
In the past, an attempt was made to obtain an image equivalent to a contrast using an arterial catheter by contrast-enhanced intravenous injection using synchrotron radiation X-rays. It can be expected that an image equivalent to synchrotron radiation X-ray imaging will be obtained.
Example 4 High-accuracy electron density measurement by ultra high voltage imaging X-rays as well as radiotherapy using protons, heavy ions, and other radiations, the electron density distribution of the human body is calculated from the CT values of the X-ray CT This is an important task in treatment planning.
However, in the present X-ray CT apparatus, although a relatively high X-ray tube voltage is used, the influence of the photoelectric absorption region is large, and the electron density conversion from the CT value is far from ideal.
However, CT using a proton beam or the like has been studied and experimental at present, and its practicality has not been seen so far.
In contrast to this, the present proposal proposes a CT apparatus using ultrahigh-pressure X-rays in a therapeutic area such as linac.
However, just using ultra-high pressure X-rays as it is does not give a decent medical image like linacography. Therefore, if the X-ray filter is used in the same manner as a normal CT device, and the detector of this proposal is provided with a detection layer for detection of an ultrahigh energy band, it can be used for calculating electron density from the data of the detection layer of the ultrahigh energy band. CT images for diagnosis can be constructed, and CT images for diagnosis can be constructed from the data of the medical zone energy band detection layer.
Since these two types of images overlap completely, the treatment plan is input as a diagnostic image, and the dose distribution is calculated using the electron density converted from the CT value of the CT image for electron density calculation, and the calculation result is diagnosed. What is necessary is just to display on an image.
Note that the purpose of this ultra-high pressure imaging is to shoot in the Compton region suitable for electron density calculation. Therefore, the energy of X-rays is not necessarily high. This is because electron pair generation also occurs when the energy is high.
That is, any energy that can sufficiently avoid the influence of the X-ray absorption edge specific to each atom in the photoelectric region is sufficient.
Here, let us touch on the behavior of X-rays and the basic idea of this proposal.
X-rays cannot be spectrally separated by a prism or the like like visible light. In addition, there is a phenomenon in which diffraction, photoelectric effect, Compton scattering, and electron pair generation greatly differ depending on the energy, so that even if each energy region can be detected completely separated, transmission X From the line information, it is difficult to completely analyze the transmitted object.
Also, in the generation of X-rays, it is extremely difficult to obtain monochromatic X-rays (radiated light) that can be used for taking medical images with the size of a hospital apparatus.
Then, instead of forcing the impossible, change the energy center of the sensitivity of the X-ray to detect the transmission image of continuous X-rays (meaning which energy band X-ray is detected with the highest sensitivity). The idea is to detect in many energy bands.
Change how the detected intensity for each energy band is converted to light and shade. (Change of Gamma Value) Various special images that could not be obtained by the conventional X-ray inspection can be created by adding and reducing a specific energy band and then forming an image.
This is not possible with a combination of simple high-pressure imaging and low-pressure imaging, and is possible because it is a proposal in which X-ray intensities can be independently detected simultaneously at a plurality of energy centers at the same position.
Example 5 Multi-layering of flat panel X-ray detector The example of Example 1-4 can be similarly applied even if the flat panel X-ray detector is multi-layered into a multi-spectral type.
There is an experimental example based on the same principle as the present plan of taking a metal plate on the imaging plate in the past, and this plan may seem to be only a sensor, but if it is not sensorized, it cannot be used for CT equipment. In view of the fact that the image processing in the above example is virtually impossible, there is no doubt that new progress has been made by this proposal.
Example 6 Non-destructive inspection of huge objects Although there are already X-ray CT systems for large structures using ultra-high pressure X-rays, it is expected that larger objects can be inspected more closely by using the detector of this proposal. it can.
In order to realize this, it is necessary to deal with scattered radiation in the scintillator section and expand the sensitivity range of the photoelectric conversion section.
This is a common problem because the X-ray detection conditions are severe in the present plan.
To increase the sensitivity range, a countermeasure such as attaching a plurality of photoelectric conversion units having different sensitivities to one scintillator can be considered.

本案の原理的構造図である。  It is a fundamental structure figure of this plan. 従来型センサーの原理的構造図である。  It is a principle structure figure of a conventional type sensor.

1 X線管焦点 2 X線 3 光電変換素子
4 X線フィルター用金属板層 5 低エネルギー用シンチレーター
6 中エネルギー用シンチレーター 7 高エネルギー用シンチレーター
8 全エネルギー用シンチレーター
DESCRIPTION OF SYMBOLS 1 X-ray tube focus 2 X-ray 3 Photoelectric conversion element 4 Metal plate layer for X-ray filter 5 Low energy scintillator 6 Medium energy scintillator 7 High energy scintillator 8 Total energy scintillator

Claims (1)

検出するX線の進行方向にそう様に複数個の検出器を重なる様に多層配置し、必要に応じ金属板等を用いたX線用のフィルターを各層の間に入れ検査物体を透過したX線の強度を異なる複数のエネルギー帯で検出する複合型検出器。  A multi-layer arrangement is made so that a plurality of detectors overlap in the traveling direction of the X-ray to be detected, and an X-ray filter using a metal plate or the like is inserted between the layers as necessary to pass through the inspection object. A compound detector that detects the intensity of a line in different energy bands.
JP2009186869A 2009-07-20 2009-07-20 Multispectral detector for x-ray Pending JP2011019891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009186869A JP2011019891A (en) 2009-07-20 2009-07-20 Multispectral detector for x-ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009186869A JP2011019891A (en) 2009-07-20 2009-07-20 Multispectral detector for x-ray

Publications (1)

Publication Number Publication Date
JP2011019891A true JP2011019891A (en) 2011-02-03

Family

ID=43630476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009186869A Pending JP2011019891A (en) 2009-07-20 2009-07-20 Multispectral detector for x-ray

Country Status (1)

Country Link
JP (1) JP2011019891A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130195244A1 (en) * 2012-01-31 2013-08-01 X-Ray Inspector X-Ray Inspector
US9012857B2 (en) 2012-05-07 2015-04-21 Koninklijke Philips N.V. Multi-layer horizontal computed tomography (CT) detector array with at least one thin photosensor array layer disposed between at least two scintillator array layers
KR101915397B1 (en) 2017-05-23 2018-12-28 경희대학교 산학협력단 Applicator capable of measuring radiation dose

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61143038A (en) * 1984-11-21 1986-06-30 ピカー インターナシヨナル インコーポレイテツド Radiographic system
JPS62161348A (en) * 1985-11-15 1987-07-17 ピカ− インタ−ナシヨナル インコ−ポレイテツド X-ray photographing method and apparatus
JP2000023963A (en) * 1998-02-19 2000-01-25 Advanced Optical Technol Inc Device and method for binary energy x-ray imaging
JP2009082250A (en) * 2007-09-28 2009-04-23 Ge Medical Systems Global Technology Co Llc X-ray ct apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61143038A (en) * 1984-11-21 1986-06-30 ピカー インターナシヨナル インコーポレイテツド Radiographic system
JPS62161348A (en) * 1985-11-15 1987-07-17 ピカ− インタ−ナシヨナル インコ−ポレイテツド X-ray photographing method and apparatus
JP2000023963A (en) * 1998-02-19 2000-01-25 Advanced Optical Technol Inc Device and method for binary energy x-ray imaging
JP2009082250A (en) * 2007-09-28 2009-04-23 Ge Medical Systems Global Technology Co Llc X-ray ct apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130195244A1 (en) * 2012-01-31 2013-08-01 X-Ray Inspector X-Ray Inspector
US9012857B2 (en) 2012-05-07 2015-04-21 Koninklijke Philips N.V. Multi-layer horizontal computed tomography (CT) detector array with at least one thin photosensor array layer disposed between at least two scintillator array layers
JP2015521283A (en) * 2012-05-07 2015-07-27 コーニンクレッカ フィリップス エヌ ヴェ Multi-layer horizontal computed tomography (CT) detector array having at least one thin photosensor disposed between at least two scintillator array layers
KR101915397B1 (en) 2017-05-23 2018-12-28 경희대학교 산학협력단 Applicator capable of measuring radiation dose

Similar Documents

Publication Publication Date Title
Kappler et al. First results from a hybrid prototype CT scanner for exploring benefits of quantum-counting in clinical CT
Taguchi et al. Vision 20/20: single photon counting x‐ray detectors in medical imaging
US7342233B2 (en) Method and arrangement relating to x-ray imaging
EP2640270B1 (en) Pet-ct system with single detector
Yorkston Recent developments in digital radiography detectors
US8995609B2 (en) X-ray compton scatter imaging on volumetric CT systems
Ay et al. Experimental assessment of the influence of beam hardening filters on image quality and patient dose in volumetric 64-slice X-ray CT scanners
JP2012148068A (en) Radiographic image obtainment method and radiographic apparatus
JP6842694B2 (en) Partial ring PET device and PET device
WO2015016205A1 (en) Low-energy x-ray image forming device and method for forming image thereof
Acciavatti et al. Optimization of continuous tube motion and step-and-shoot motion in digital breast tomosynthesis systems with patient motion
US20230161054A1 (en) Radiation detection system
JP2011019891A (en) Multispectral detector for x-ray
JP7167201B2 (en) X-ray phase detector
Ghani et al. Evaluation and comparison of a CdTe based photon counting detector with an energy integrating detector for X-ray phase sensitive imaging of breast cancer
JP2010243395A (en) X ray-gamma ray imaging device
Després et al. Physical characteristics of a low‐dose gas microstrip detector for orthopedic x‐ray imaging
WO2012056992A1 (en) Radiograph detection device, radiography device, radiography system
KR102449932B1 (en) Sensitivity enhancing method and system for radiation using compton effect
EP3617750B1 (en) Theranostic imaging
Skrzynski X-Ray Detectors in Medical Imaging
Liew et al. Noise, resolution, and sensitivity considerations in the design of a single‐slice emission–transmission computed tomographic system
WO2012057045A1 (en) X-ray imaging device, x-ray imaging system
Kim et al. Performance comparison of water phantom based flat field correction methods for photon-counting spectral CT images: experimental results
Bergamaschi et al. Edge on silicon microstrip detectors for medical imaging

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120611

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121218