WO2014193110A1 - Apparatus for measuring radiation dosage of charged particle and imaging apparatus - Google Patents

Apparatus for measuring radiation dosage of charged particle and imaging apparatus Download PDF

Info

Publication number
WO2014193110A1
WO2014193110A1 PCT/KR2014/004501 KR2014004501W WO2014193110A1 WO 2014193110 A1 WO2014193110 A1 WO 2014193110A1 KR 2014004501 W KR2014004501 W KR 2014004501W WO 2014193110 A1 WO2014193110 A1 WO 2014193110A1
Authority
WO
WIPO (PCT)
Prior art keywords
box
water
water phantom
proton
thickness
Prior art date
Application number
PCT/KR2014/004501
Other languages
French (fr)
Korean (ko)
Inventor
이세병
김주영
박세준
신동호
신재익
임영경
정치영
조성구
Original Assignee
국립암센터
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국립암센터 filed Critical 국립암센터
Publication of WO2014193110A1 publication Critical patent/WO2014193110A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1075Monitoring, verifying, controlling systems and methods for testing, calibrating, or quality assurance of the radiation treatment apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/169Exploration, location of contaminated surface areas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T3/00Measuring neutron radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1075Monitoring, verifying, controlling systems and methods for testing, calibrating, or quality assurance of the radiation treatment apparatus
    • A61N2005/1076Monitoring, verifying, controlling systems and methods for testing, calibrating, or quality assurance of the radiation treatment apparatus using a dummy object placed in the radiation field, e.g. phantom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1087Ions; Protons

Definitions

  • the present invention relates to an apparatus for measuring radiation dose, and more particularly, to obtain a proton beam dose distribution in a patient body so that the energy of the proton beam output from the nozzle beam is optimized for treatment during proton treatment.
  • the present invention relates to a radiation dose measuring apparatus and an imaging apparatus of a charged particle which acquires image information of) based on protons and precisely measures the maximum reaching distance of the actual proton beam.
  • Radiation therapy is the use of radiation in the treatment of disease, which uses wave-like radiation such as X-rays, gamma rays, or particle-like radiation such as electron beams or protons to delay the growth of malignant diseases such as cancer cells, Refers to treatment that destroys the cause.
  • the radiation source In radiation therapy, the radiation source must be positioned very precisely according to the location of the radiation target, for example, the tumor to be treated, and then focused only on the target to maximize the radiation treatment effect. In other words, when performing radiation therapy, it is important to intensively irradiate radiation only to the tumor site and not to reach normal tissues.
  • Proton therapy is a method that utilizes the characteristic of delivering the small energy in the front of the medium where the proton beam enters and passing all the remaining energy into the medium just before stopping.
  • proton therapy has the advantage of minimizing the risk of damage to healthy normal tissue surrounding the tumor as compared to conventional radiation (X-ray) treatment.
  • Proton therapy that offers this advantage is important to set to output the optimal energy proton beam at the beam nozzle. This is because the best therapeutic effect can be obtained by irradiating a proton beam of optimal energy corresponding to the condition, size or depth of the tumor.
  • the patient may be irradiated with more radiation than necessary to cause a medical accident.
  • Proton therapy uses imaging devices to photograph various tumors. If the size or location of the tumor is determined by the imaging device, the tumor is removed using a proton beam. Therefore, the imaging apparatus must ensure accurate and accurate shooting performance so that the doctor can make a correct judgment.
  • X-ray-based CT images used in proton treatment planning currently have the advantage of providing precise anatomical image information, but CT image-based treatment planning algorithms accurately calculate the maximum range that a proton passes through the medium. There was a limit to pay.
  • an object of the present invention is to solve the above problems, the radiation dose of the charged particles to obtain the accurate distribution of the proton beam dose in the patient by setting the energy size of the proton beam to the optimum conditions according to the patient to be treated for proton treatment To provide a measuring device.
  • Another object of the present invention is to provide an imaging apparatus capable of more accurately and accurately measuring the maximum reach distance of a real proton beam in a medium by acquiring image information on an object to be photographed, such as a tumor, based on a proton. .
  • a dark box housing of the outer and sealed structure A fixed bar installed at an upper end of the dark box housing and a guide rail installed at a lower end thereof; A water phantom box configured within the dark box housing and moving along the guide rail; A transparent box connected to the fixed bar and fixed in the water phantom box; And a sensing element provided on one surface of the transparent box and configured to sense an intensity of radiation energy emitted from the nozzle beam in response to a change in thickness of the water according to the movement of the water phantom box. do.
  • One surface of the transparent box provided with the sensing element is a surface to which the radiation first reaches.
  • the radiation is a proton or medium particle beam.
  • the thickness of the water corresponds to a change in distance between one surface of the water phantom box and one surface of the transparent box provided with the sensing element.
  • the dark box housing of the outer and sealed structure A water phantom box installed in the dark box housing and moved by a driving force; A transparent box fixedly installed in the water phantom box; A flash plate installed in one surface of the transparent box through which a proton beam first arrives; A mirror installed at a predetermined angle with the flash plate; And when the proton beam emitted toward the object located in the emission path of the beam nozzle passes through the object and the remaining energy passes through the flash plate, light emitted in proportion to the remaining energy is captured in the mirror. It provides an imaging device comprising a camera.
  • the image of the object is provided at a different value according to the change in the thickness of water in the water phantom box.
  • the thickness of the water corresponds to a change in distance from the fixed transparent box according to the movement of the water phantom box.
  • the present invention can adjust the energy intensity of the proton beam emitted from the nozzle beam according to the change in the thickness of the water in the water phantom box (that is, the maximum reaching distance of the proton beam can be adjusted by the change in the thickness of the water), the actual proton treatment
  • the dose distribution of the proton beam to be irradiated at the optimal condition for each patient can be accurately identified before the actual treatment, so that a safe and effective treatment effect can be expected.
  • the present invention can obtain a proton-based image of a desired object by adjusting the thickness of the water when photographing an object such as a human body or an animal, information that accurately reflects the reaction in the proton's medium than the conventional X-ray-based device It also has the effect of improving the accuracy of the treatment plan.
  • FIG. 1 and 2 is an overall configuration diagram for explaining the radiation dose measuring apparatus of the charged particles according to an embodiment of the present invention
  • 3A to 3C are reference views showing changes in water thickness according to the movement of the water phantom box.
  • FIG. 4 is a diagram illustrating a configuration of applying a radiation dose measuring apparatus as an imaging apparatus according to another embodiment of the present invention.
  • the present invention is applied to a proton or heavy particle treatment method, and uses a proton or a medium particle exhibiting a phenomenon known as a Bragg peak. That is, protons (hydrogen ions) and heavy particles (carbon ions) have a Bragg peak with a nearly similar curve, and thus can be applied to the treatment of not only protons but also heavy particles.
  • a proton treatment method uses a proton or a medium particle exhibiting a phenomenon known as a Bragg peak. That is, protons (hydrogen ions) and heavy particles (carbon ions) have a Bragg peak with a nearly similar curve, and thus can be applied to the treatment of not only protons but also heavy particles.
  • protons hydrogen ions
  • heavy particles carbon ions
  • the basic feature is that the proton beam can pre-adjust the energy of the proton beam output through the beam nozzle to treat only tumors of cancer cells. That is, the proton beam is irradiated from the beam nozzle, and a signal corresponding to the energy level of the irradiated proton beam is generated and notified to the outside, thereby providing a principle of checking how much the proton beam is to be used before treatment.
  • FIG. 1 and 2 are the overall configuration to explain the radiation dose measuring apparatus according to a preferred embodiment of the present invention
  • Figures 3a to 3c is a reference diagram showing a change in water thickness with the movement of the water phantom box.
  • a beam nozzle 10 is comprised.
  • the beam nozzle 10 has the characteristics of a Bragg curve in the accelerator and converts the accelerated output proton beam into a depth dose curve suitable for treatment or the proton beam of a dotted circle reaches a large area. It is a device that includes components to disperse.
  • a dark box housing 100 is configured in front of the beam nozzle 10.
  • the dark box housing 100 may be configured to prevent light from passing through at all in a sealed form.
  • the dark box housing 100 has a fixing bar 110 is installed on the upper side of the inside, the guide rail 120 is installed on the lower side.
  • the dark box housing 100 includes a water phantom box 130 positioned horizontally in the direction in which the proton beam is output from the beam nozzle 10. Water is filled in the water phantom box 130.
  • the water phantom box 130 moves along the guide rail 120.
  • a driving motor 140 for moving the water phantom box 130 is mounted in the dark box housing 100.
  • the drive shaft of the drive motor is connected to one side of the water phantom box 130.
  • a gear group was used. However, it is obvious that the water phantom box 130 may be moved using other methods.
  • a transparent box 150 is provided with an outer surface surrounded by water.
  • the transparent box 150 is positioned in the water phantom box 130 with its upper end hanging on the fixed bar 110. In other words, the transparent box 150 is fixed without changing its position.
  • the water phantom box 130 moves along the guide rail 120 according to the driving of the driving motor 140, but because the transparent box 150 is fixed to the fixing bar 110, the water phantom box 130 moves closer to the beam nozzle 10.
  • the thickness of the water between one surface of the water phantom box 100 and one surface of the transparent box 150 is changed. Water thickness will be described with reference to FIG. 3 below.
  • the transparent box 150 is provided with a sensing element 152 for sensing a proton beam.
  • the sensing element 152 can be applied to anything as long as it can sense the energy intensity of the proton beam. Therefore, the sensing element 152 may be provided on the inner surface of the transparent box 150 to which the proton beam emitted from the beam nozzle 10 first arrives. Or it may be a device mounted separately in the transparent box 150. Alternatively, the sensing element 152 may be a scintillation screen. If a scintillation plate is applied, it can sense the light emitted in proportion to the proton's energy as it passes through the scintillator. The scintillation plate should also be provided on the inner surface of the transparent box 150 where the proton beam emitted from the beam nozzle 10 first arrives.
  • the controller 160 is configured to control the driving of the driving motor 140 for the movement of the water phantom box 130 based on the sensing result of the proton beam.
  • the controller 160 is located outside the dark box housing 100 and also stores information such as energy intensity of the proton beam for each thickness of the water as a result of the sensing.
  • the controller 160 may be a PC or the like. In this case, the controller 160 should be spaced apart from the beam nozzle 10 and the dark box housing 100 by a predetermined distance in order to minimize the influence of the proton beam. Alternatively, a shielding plate may be provided therebetween.
  • FIG. 3 schematically illustrates the nozzle beam 10 and the dark box housing 100 shown in FIGS. 1 and 2 when viewed in plan view.
  • FIG. 3 schematically illustrates the nozzle beam 10 and the dark box housing 100 shown in FIGS. 1 and 2 when viewed in plan view.
  • the water phantom box 130 in the dark box housing 100 moves according to the driving force of the driving motor 140, the thickness change of the water according to the change in the gap difference with the transparent box 150 is illustrated.
  • the present invention measures the maximum range by measuring the proton beam energy that varies depending on the thickness of the water between one surface of the water phantom box 130 and one surface of the transparent box 150 located close to the beam nozzle 10. To measure. This will be measured while varying the water thickness continuously or discontinuously.
  • a user controls the driving of the driving motor 140 by manipulating the controller 160.
  • the water phantom box 130 is moved along the guide rail 120.
  • the water phantom box 130 is positioned closest to a predetermined position, for example, the beam nozzle 10, so that the distance between the water phantom box 130 and the transparent box 150 becomes d 1 ( Proton beam is emitted from the beam nozzle 10 at the " first position. &Quot; When the water phantom box 130 is in the first position, the water thickness is the thickest.
  • the emitted proton beam passes through one surface of the dark box housing 100 and water having a predetermined thickness to reach one surface of the transparent box 150.
  • the arrived proton beam is provided to the sensing element 152 located on the inner surface of the transparent box 150.
  • the sensing element 152 measures the energy intensity of the proton beam, and the result is transmitted to the controller 160.
  • the driving motor 140 is driven again to move the water phantom box 130.
  • the moved position will be referred to as a point at which the distance between the water phantom box 130 and the transparent box 150 becomes d 2 (hereinafter referred to as a “second position”) as shown in FIG. 3B.
  • the second position the water thickness becomes thinner than the first position.
  • the proton beam is emitted when the water phantom box 130 is in the second position.
  • the controller 160 receives the energy intensity of the proton beam measured by the sensing element 152 located on the inner surface of the transparent box 150.
  • the driving motor 140 is driven again to move the water phantom box 130.
  • d 3 hereinafter referred to as 'third position'
  • the sensing element 152 senses the energy intensity of the proton beam and allows the controller 160 to receive it.
  • the present embodiment may set the thickness of the water differently by moving the water phantom box 130, and measure the maximum range by substantially measuring the energy intensity of the proton beam. According to the measured energy intensity of the proton beam, the maximum distance of the proton beam can be adjusted by the thickness of the water so that the number of proton beams to be provided for each patient can be selected when treating the actual patient.
  • the water phantom box 130 is set to be set in the first to third positions, it will be obvious that the water phantom box 130 can be further subdivided and moved.
  • the energy intensity of the proton beam is measured, but is not necessarily limited thereto. That is, when the water phantom box 130 is continuously moved by the driving motor 140 while the proton beam is continuously emitted from the beam nozzle 10, the size / intensity of the proton beam may be sensed.
  • FIG. 4 is a configuration diagram when a radiation dose measuring apparatus is applied to an imaging apparatus according to another exemplary embodiment of the present invention.
  • the same components as those of the radiation dose measuring apparatus described with reference to FIG. 1 are denoted by the same reference numerals, and redundant descriptions thereof will be omitted. That is, the dark box housing 100, the water phantom box 130, the driving motor 140, and the controller 160 in which the beam nozzle 10, the fixing bar 110, and the guide rail 120 are installed are connected to the radiation dose measuring device. The difference is the same, except that a mirror 156 configured in the transparent box 150 and a CCD camera 170 for acquiring image information are further added.
  • the flash plate installed in the transparent box 150 is indicated by reference numeral 154.
  • a beam nozzle 10 is constructed.
  • the dark box housing 100 is configured in front of the beam nozzle 10.
  • the object 180 is positioned between the front of the beam nozzle 10 and the dark box housing 100.
  • the dark box housing 100 has a fixing bar 110 is installed on the upper side, the guide rail 120 is installed on the lower side.
  • the dark box housing 100 includes a water phantom box 130 positioned horizontally in the direction in which the proton beam is output from the beam nozzle 10.
  • the water phantom box 130 moves along the guide rail 120 by the driving motor 140.
  • a transparent box 150 formed of a material through which light is allowed to pass through the outer surface is surrounded by water.
  • the transparent box 150 is fixed in a state of being suspended from the fixing bar 110. Therefore, when the water phantom box 130 moves, the thickness of the water between one surface of the water phantom box 130 and one surface of the transparent box 150 that is located close to the beam nozzle 10 is variable.
  • the transparent box 150 is mounted in the water phantom box 130, it is preferable that the transparent box 150 is mounted at a position where there is little thickness of water in the direction of the CCD camera in order to measure the light of the flash plate reflected on the mirror. For example, in the drawing, the transparent box 150 is positioned to be in close contact with the bottom of the water phantom box 130.
  • a scintillation screen 154 is formed inside the transparent box 150.
  • the scintillator plate 154 emits light in proportion to the intensity of energy passing through the proton beam emitted from the beam nozzle 10 after the remaining energy passes through the object described later.
  • the flash plate 154 should be installed at one inner surface of the transparent box 150 through which the proton beam first arrives.
  • a mirror 156 is configured to face the glare plate 154 while maintaining an angle of 45 ° with respect to the traveling direction of the proton beam.
  • an image of light emitted in proportion to the energy intensity when passing through the flash plate 154 is formed.
  • the angle between the flash plate 154 and the mirror 156 may vary depending on the position of the CCD camera 170.
  • the CCD camera 170 is mounted to capture an image formed on the mirror 156.
  • the imaging device configured as described above can selectively use the energy of the proton beam while changing the thickness of the water, thereby obtaining an image of the object 180.
  • the thickness of the water in the water phantom box 130 is changed.
  • the proton beam having a predetermined energy is emitted from the nozzle beam 10 in this state, the proton beam passes through the object 180 and reaches the flash plate 154.
  • the scintillator plate 154 emits light while receiving energy of a proton beam represented by different values according to the shape and thickness of the object 180. This light is transmitted to the mirror 156 in the transparent box 150 as it is, the image is formed on the surface of the mirror 156 in proportion to the emitted light.
  • the image formed on the mirror 156 is captured by the CCD camera 170 located in the dark box housing 100 and transmitted to the controller 160.
  • an image of the object 180 may be captured according to the thickness of the water.
  • Image acquisition of the object 180 may provide information that accurately reflects the properties of the protons rather than the existing X-rays.
  • the present invention can measure the energy of the proton beam while varying the thickness of the water, so that it is possible to set the proton beam in an optimal condition suitable for treatment, and to accurately capture the properties of the proton. Able to know.
  • the present invention can control the maximum reaching distance of the proton beam by the change in the thickness of the water, the radiation distribution using the proton can be accurately known before treatment, since the dose distribution of the proton beam to be irradiated with optimum conditions for each patient in the actual proton treatment can be accurately known before the treatment. It is expected to be able to improve the safety and efficacy of treatment.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Radiation-Therapy Devices (AREA)
  • Measurement Of Radiation (AREA)

Abstract

The present invention relates to an apparatus for measuring a radiation dosage of a charged particle and an imaging apparatus. According to the present invention, it is possible to adjust the energy intensity of a proton or baryon beam emitted from a nozzle beam according to the variation in water depth within a water phantom box, and to obtain a desired proton- or baryon-based object image required for treatment planning.

Description

하전입자의 방사선량 측정 장치 및 영상장치Radiation dose measuring device and imaging device of charged particles
본 발명은 방사선량 측정 장치에 관한 것으로, 더욱 상세하게는 양성자 치료시에 노즐 빔에서 출력되는 양성자 빔의 에너지가 치료에 최적화되게 하도록 환자체내 양성자빔 선량분포를 획득함을 물론 촬영 대상인 오브젝트(object)의 영상 정보를 양성자를 기반으로 획득하여 실제 양성자 빔의 최대도달거리를 정밀하게 측정하도록 하는 하전입자의 방사선량 측정장치 및 영상장치에 관한 것이다. The present invention relates to an apparatus for measuring radiation dose, and more particularly, to obtain a proton beam dose distribution in a patient body so that the energy of the proton beam output from the nozzle beam is optimized for treatment during proton treatment. The present invention relates to a radiation dose measuring apparatus and an imaging apparatus of a charged particle which acquires image information of) based on protons and precisely measures the maximum reaching distance of the actual proton beam.
방사선 치료는 질병의 치료에 방사선을 사용하는 것으로, X선, 감마선과 같은 파동 형태의 방사선, 전자선이나 양성자와 같은 입자 형태의 방사선을 이용하여 암 세포와 같은 악성 질병의 성장을 지연시키거나 질병의 원인을 파괴하는 치료를 말한다. Radiation therapy is the use of radiation in the treatment of disease, which uses wave-like radiation such as X-rays, gamma rays, or particle-like radiation such as electron beams or protons to delay the growth of malignant diseases such as cancer cells, Refers to treatment that destroys the cause.
방사선 치료는 방사선 소스(source)를 방사선 타깃, 예컨대 치료하고자 하는 종양의 위치에 맞게 매우 정밀하게 위치를 결정한 후 상기 타깃에만 집중적으로 조사해야 방사선 치료 효과를 극대화할 수 있다. 즉 방사선 치료를 수행할 때에 방사선을 종양 부위에만 집중적으로 조사하고 정상조직에는 도달하지 않도록 하는 것이 무엇보다 중요하다.In radiation therapy, the radiation source must be positioned very precisely according to the location of the radiation target, for example, the tumor to be treated, and then focused only on the target to maximize the radiation treatment effect. In other words, when performing radiation therapy, it is important to intensively irradiate radiation only to the tumor site and not to reach normal tissues.
그런데 기존의 방사선(X선) 치료는 암세포뿐만 아니라 방사선에 노출되는 정상세포들도 대량으로 파괴하는 부작용이 있었다. However, conventional radiation (X-ray) treatment had side effects of destroying not only cancer cells but also normal cells exposed to radiation in large quantities.
이를 해결하고자 최근에는 양성자 치료가 소개되고 있다. 양성자 치료는 양성자 빔이 입사하는 매질(medium)의 앞 부분에서 작은 에너지를 전달하며 통과하다가 멈추기 바로 전에 남은 모든 에너지를 매질 안에 전달하며 정지하는 특성을 치료에 이용하는 방법이다. Recently, proton therapy has been introduced to solve this problem. Proton therapy is a method that utilizes the characteristic of delivering the small energy in the front of the medium where the proton beam enters and passing all the remaining energy into the medium just before stopping.
따라서 양성자 빔이 암 표적 부위에 도달하기 전까지 일반 정상 조직에는 거의 방사선을 조사하지 않으며 종양에 도달하면 모든 에너지를 방출하고 제거되어서 종양 뒤의 정상 조직에는 전형 영향을 주지 않는다. 이 때문에, 양성자 치료는 기존의 방사선(X선) 치료에 비하여 종양을 둘러싼 건강한 정상 조직의 손상 위험을 최소화할 수 있는 장점이 있다. Therefore, normal normal tissue is rarely irradiated until the proton beam reaches the cancer target site, and when it reaches the tumor, it releases and removes all energy, thus having no typical effect on the normal tissue behind the tumor. Because of this, proton therapy has the advantage of minimizing the risk of damage to healthy normal tissue surrounding the tumor as compared to conventional radiation (X-ray) treatment.
이와 같은 장점을 제공하는 양성자 치료는 빔 노즐에서 최적 에너지의 양성자 빔을 출력하도록 셋팅(setting) 하는 것이 중요하다. 이는 종양의 상태나 크기 또는 깊이에 대응한 최적 에너지의 양성자 빔을 조사하여야 최대의 치료 효과를 거둘 수 있기 때문이다. Proton therapy that offers this advantage is important to set to output the optimal energy proton beam at the beam nozzle. This is because the best therapeutic effect can be obtained by irradiating a proton beam of optimal energy corresponding to the condition, size or depth of the tumor.
만약 양성자 빔의 에너지 크기를 환자 종양의 특성에 맞추어 최적화할 수 없다면, 환자에게 필요 이상의 강한 방사선을 가하여 의료사고를 일으킬 수도 있다. If the energy size of the proton beam cannot be optimized for the characteristics of the patient's tumor, the patient may be irradiated with more radiation than necessary to cause a medical accident.
한편 양성자 치료에는 각종 종양을 촬영하는 영상장치를 사용한다. 영상장치를 통해 종양의 크기나 위치가 파악되었다면 양성자 빔을 이용하여 종양을 제거하게 된다. 따라서 영상장치는 의사로 하여금 올바른 판단을 내릴 수 있도록 정밀하고 정확한 촬영 성능이 담보되어야 한다. Proton therapy, on the other hand, uses imaging devices to photograph various tumors. If the size or location of the tumor is determined by the imaging device, the tumor is removed using a proton beam. Therefore, the imaging apparatus must ensure accurate and accurate shooting performance so that the doctor can make a correct judgment.
현재 양성자 치료계획에 사용되는 X선 기반의 CT 영상은 정밀한 해부학적 영상정보를 제공하는 장점이 있으나 CT 영상기반의 치료계획 알고리즘으로는 양성자가 매질 내에서 통과하는 최대도달거리(range)를 정확히 계산해내는데 한계가 있었다. X-ray-based CT images used in proton treatment planning currently have the advantage of providing precise anatomical image information, but CT image-based treatment planning algorithms accurately calculate the maximum range that a proton passes through the medium. There was a limit to pay.
따라서 본 발명의 목적은 상기한 문제점을 해결하기 위한 것으로, 양성자 치료를 위해 양성자 빔의 에너지 크기를 치료 대상인 환자에 따라 최적 조건으로 셋팅하여 정확한 환자체내 양성자빔 선량 분포를 획득하는 하전입자의 방사선량 측정장치를 제공하는 것이다. Therefore, an object of the present invention is to solve the above problems, the radiation dose of the charged particles to obtain the accurate distribution of the proton beam dose in the patient by setting the energy size of the proton beam to the optimum conditions according to the patient to be treated for proton treatment To provide a measuring device.
본 발명의 다른 목적은 종양 등과 같은 촬영 대상인 오브젝트(object)에 대한 영상 정보를 양성자 기반으로 획득하여 매질 안에서 실제 양성자 빔의 최대도달거리를 더 정확하고 정밀하게 측정할 수 있는 영상장치를 제공하는 것이다. Another object of the present invention is to provide an imaging apparatus capable of more accurately and accurately measuring the maximum reach distance of a real proton beam in a medium by acquiring image information on an object to be photographed, such as a tumor, based on a proton. .
상기한 목적을 달성하기 위한 본 발명의 특징에 따르면, 외부와 밀폐된 구조의 다크 박스 하우징; 상기 다크 박스 하우징의 상단에 설치되는 고정 바 및 하단에 설치되는 가이드 레일; 상기 다크 박스 하우징 내에 구성되고 상기 가이드 레일을 따라 이동하는 워터 팬텀 박스; 상기 고정 바와 연결되며 상기 워터 팬텀 박스 내에 위치가 고정되는 투명 박스; 및 상기 투명 박스의 일면에 구비되고, 상기 워터 팬텀 박스의 이동에 따른 물의 두께 변화에 대응되어 노즐 빔에서 방출되는 방사선 에너지의 세기를 센싱하는 센싱 소자를 포함하는 하전입자의 방사선량 측정장치를 제공한다. According to a feature of the present invention for achieving the above object, a dark box housing of the outer and sealed structure; A fixed bar installed at an upper end of the dark box housing and a guide rail installed at a lower end thereof; A water phantom box configured within the dark box housing and moving along the guide rail; A transparent box connected to the fixed bar and fixed in the water phantom box; And a sensing element provided on one surface of the transparent box and configured to sense an intensity of radiation energy emitted from the nozzle beam in response to a change in thickness of the water according to the movement of the water phantom box. do.
상기 센싱 소자가 구비되는 상기 투명 박스의 일면은 상기 방사선이 먼저 도달하는 면이 된다. One surface of the transparent box provided with the sensing element is a surface to which the radiation first reaches.
상기 방사선은 양성자 또는 중입자 빔이다. The radiation is a proton or medium particle beam.
상기 물의 두께는 상기 워터 팬텀 박스의 일면과 상기 센싱 소자가 구비된 투명 박스의 일면 사이의 거리 변화에 대응된다. The thickness of the water corresponds to a change in distance between one surface of the water phantom box and one surface of the transparent box provided with the sensing element.
본 발명의 다른 특징에 따르면, 외부와 밀폐된 구조의 다크 박스 하우징; 상기 다크 박스 하우징 내에 설치되고 구동력에 의해 이동되는 워터 팬텀 박스; 상기 워터 팬텀 박스 내에 고정되게 설치되는 투명 박스; 양성자 빔이 먼저 도달하는 상기 투명 박스 일면 내에 설치되는 섬광판; 상기 섬광판과 소정 각도를 이루면서 설치되는 미러; 및 빔 노즐의 방출 경로에 위치한 오브젝트를 향해 방출된 양성자 빔이 상기 오브젝트를 통과하며 잃고 남은 에너지가 상기 섬광판을 통과할 때 남은 에너지의 세기에 비례하여 방출되는 빛이 상기 미러에 맺히는 영상을 촬영하는 카메라를 포함하는 영상장치를 제공한다. According to another feature of the invention, the dark box housing of the outer and sealed structure; A water phantom box installed in the dark box housing and moved by a driving force; A transparent box fixedly installed in the water phantom box; A flash plate installed in one surface of the transparent box through which a proton beam first arrives; A mirror installed at a predetermined angle with the flash plate; And when the proton beam emitted toward the object located in the emission path of the beam nozzle passes through the object and the remaining energy passes through the flash plate, light emitted in proportion to the remaining energy is captured in the mirror. It provides an imaging device comprising a camera.
상기 오브젝트의 영상은 상기 워터 팬텀 박스 내의 물의 두께 변화에 따라서 다른 값으로 제공된다. The image of the object is provided at a different value according to the change in the thickness of water in the water phantom box.
상기 물의 두께는 워터 팬텀 박스의 이동에 따라서 고정된 투명 박스와의 거리 변화에 대응된다. The thickness of the water corresponds to a change in distance from the fixed transparent box according to the movement of the water phantom box.
이와 같은 본 발명의 하전입자의 방사선량 측정장치 및 영상장치에 따르면 다음과 같은 효과가 있다. According to the radiation dose measuring device and the imaging device of the charged particles of the present invention as follows.
먼저 본 발명은 워터 팬텀 박스 내의 물의 두께 변화에 따라 노즐 빔에서 방출되는 양성자 빔의 에너지 세기를 조절할 수 있기 때문에(즉, 양성자 빔의 최대도달거리를 물의 두께 변화만큼 조절할 수 있음), 실제 양성자 치료에서 환자마다 최적 조건으로 조사되어야 할 양성자 빔의 선량분포를 실제 치료전에 정확히 확인할 수 있어, 안전하고 효율적인 치료 효과를 기대할 수 있다. First, since the present invention can adjust the energy intensity of the proton beam emitted from the nozzle beam according to the change in the thickness of the water in the water phantom box (that is, the maximum reaching distance of the proton beam can be adjusted by the change in the thickness of the water), the actual proton treatment The dose distribution of the proton beam to be irradiated at the optimal condition for each patient can be accurately identified before the actual treatment, so that a safe and effective treatment effect can be expected.
또한, 본 발명은 인체 또는 동물 등의 오브젝트를 촬영할 경우 물의 두께를 조절함으로써 원하는 오브젝트의 양성자 기반 영상을 획득할 수 있기 때문에, 종래 X선 기반의 장치보다 양성자의 매질 내 반응을 정확하게 반영하는 정보를 획득하여 치료 계획의 정확성을 향상시키는 효과도 있다.In addition, since the present invention can obtain a proton-based image of a desired object by adjusting the thickness of the water when photographing an object such as a human body or an animal, information that accurately reflects the reaction in the proton's medium than the conventional X-ray-based device It also has the effect of improving the accuracy of the treatment plan.
도 1 및 도 2는 본 발명의 바람직한 실시 예에 따른 하전입자의 방사선량 측정장치를 설명하기 위해 전체 구성도1 and 2 is an overall configuration diagram for explaining the radiation dose measuring apparatus of the charged particles according to an embodiment of the present invention
도 3a 내지 도 3c는 워터 팬텀 박스의 이동에 따른 물 두께 변화를 보인 참고 도면3A to 3C are reference views showing changes in water thickness according to the movement of the water phantom box.
도 4는 본 발명의 다른 실시 예에 따라 방사선량 측정장치를 영상장치로 적용할 경우의 구성을 보인 도면4 is a diagram illustrating a configuration of applying a radiation dose measuring apparatus as an imaging apparatus according to another embodiment of the present invention;
이하 본 발명에 따른 하전입자의 방사선량 측정장치 및 영상장치의 실시 예를 첨부된 도면을 참조하여 상세하게 설명한다. Hereinafter, embodiments of an apparatus for measuring radiation dose of a charged particle and an imaging device according to the present invention will be described in detail with reference to the accompanying drawings.
본 발명은 양성자 또는 중입자 치료방법에 적용되는 것으로, 브래그 피크(bragg peak)로써 공지된 현상을 나타내는 양성자 또는 중입자를 이용한다. 즉 양성자(수소 이온)와 중입자(탄소 이온)는 거의 비슷한 곡선의 브래그 피크를 가지 때문에 양성자뿐만 아니라 중입자의 치료에도 적용할 수 있는 것이다. 다만, 본 실시 예에서는 양성자 치료 방법으로 한정하여 설명하기로 한다. The present invention is applied to a proton or heavy particle treatment method, and uses a proton or a medium particle exhibiting a phenomenon known as a Bragg peak. That is, protons (hydrogen ions) and heavy particles (carbon ions) have a Bragg peak with a nearly similar curve, and thus can be applied to the treatment of not only protons but also heavy particles. However, in the present embodiment will be described limited to the proton treatment method.
그리고 양성자 빔이 암 세포의 종양만을 치료하도록 빔 노즐(beam nozzle)을 통해 출력되는 양성자 빔의 에너지 크기를 미리 조절할 수 있도록 하는 것에 그 기본적인 특징이 있다. 즉 빔 노즐로부터 양성자 빔을 조사받고, 조사된 양성자 빔의 에너지 크기에 대응하는 신호를 발생하여 외부로 알려줌으로써, 치료 이전에 어느 정도의 양성자 빔을 사용할지 미리 체크할 수 있는 원리를 제공한다. The basic feature is that the proton beam can pre-adjust the energy of the proton beam output through the beam nozzle to treat only tumors of cancer cells. That is, the proton beam is irradiated from the beam nozzle, and a signal corresponding to the energy level of the irradiated proton beam is generated and notified to the outside, thereby providing a principle of checking how much the proton beam is to be used before treatment.
이어서는 방사선량 측정장치와 영상장치를 구분하여 설명하기로 한다. Next, the radiation dose measuring apparatus and the imaging apparatus will be described separately.
도 1 및 도 2는 본 발명의 바람직한 실시 예에 따른 방사선량 측정장치를 설명하기 위해 전체 구성도이고, 도 3a 내지 도 3c는 워터 팬텀 박스의 이동에 따른 물 두께 변화를 보인 참고 도면이다. 1 and 2 are the overall configuration to explain the radiation dose measuring apparatus according to a preferred embodiment of the present invention, Figures 3a to 3c is a reference diagram showing a change in water thickness with the movement of the water phantom box.
도 1 및 도 2에 도시한 바와 같이 빔 노즐(beam nozzle)(10)이 구성된다. 빔 노즐(10)은 가속기에서 브래그 곡선(bragg curve)의 특성을 가지고 가속되어 출력된 양성자 빔을 치료에 적합한 깊이 대 선량 곡선(Depth dose curve)으로 바꿔주거나 점선원의 양성자 빔이 넓은 면적에 도달할 수 있도록 분산시키는 부품들을 포함하여 구성된 장치이다. As shown in FIG. 1 and FIG. 2, a beam nozzle 10 is comprised. The beam nozzle 10 has the characteristics of a Bragg curve in the accelerator and converts the accelerated output proton beam into a depth dose curve suitable for treatment or the proton beam of a dotted circle reaches a large area. It is a device that includes components to disperse.
빔 노즐(10)의 전방에는 다크 박스 하우징(Dark Box Housing)(100)가 구성된다. 다크 박스 하우징(100)은 밀폐된 형태로서 빛이 전혀 통과하지 못하도록 구성되어야 할 것이다. 그리고 다크 박스 하우징(100)은 내부의 상측에 고정 바(110)가 설치되고, 하측에는 가이드 레일(120)이 설치된다. A dark box housing 100 is configured in front of the beam nozzle 10. The dark box housing 100 may be configured to prevent light from passing through at all in a sealed form. And the dark box housing 100 has a fixing bar 110 is installed on the upper side of the inside, the guide rail 120 is installed on the lower side.
다크 박스 하우징(100) 내에는 빔 노즐(10)에서 양성자 빔이 출력되는 방향과 수평방향으로 위치하는 워터 팬텀 박스(Water Phantom Box)(130)가 구비된다. 워터 팬텀 박스(130) 내에는 물이 채워져 있다. 워터 팬텀 박스(130)는 가이드 레일(120)을 따라 이동한다. 이를 위해 워터 팬텀 박스(130)를 이동시키기 위한 구동 모터(140)가 다크 박스 하우징(100) 내에 장착된다. 구동 모터의 구동축은 워터 팬텀 박스(130)의 일측과 연결된다. 도면에서는 기어군을 이용하였다. 그러나 다른 방식을 이용하여 워터 팬텀 박스(130)를 이동시킬 수 있음은 당연하다. The dark box housing 100 includes a water phantom box 130 positioned horizontally in the direction in which the proton beam is output from the beam nozzle 10. Water is filled in the water phantom box 130. The water phantom box 130 moves along the guide rail 120. To this end, a driving motor 140 for moving the water phantom box 130 is mounted in the dark box housing 100. The drive shaft of the drive motor is connected to one side of the water phantom box 130. In the figure, a gear group was used. However, it is obvious that the water phantom box 130 may be moved using other methods.
워터 팬텀 박스(130) 내에는 외면이 물(water)로 둘러싸인 상태로 투명 박스(150)가 제공된다. 투명 박스(150)는 상단이 고정 바(110)에 매달려서 워터 팬텀 박스(130) 내에 위치한다. 즉 투명 박스(150)는 그 위치가 변하지 않고 고정되어 있다. In the water phantom box 130, a transparent box 150 is provided with an outer surface surrounded by water. The transparent box 150 is positioned in the water phantom box 130 with its upper end hanging on the fixed bar 110. In other words, the transparent box 150 is fixed without changing its position.
따라서 구동 모터(140)의 구동에 따라 워터 팬텀 박스(130)는 가이드 레일(120)을 따라 이동하게 되지만 투명 박스(150)는 고정 바(110)에 고정되기 때문에, 빔 노즐(10)과 가깝게 위치한 워터 팬텀 박스(100)의 일면과 투명 박스(150)의 일면 사이의 물의 두께가 달라지게 된다. 물 두께에 대해서는 아래의 도 3을 참조하여 설명할 것이다. Accordingly, the water phantom box 130 moves along the guide rail 120 according to the driving of the driving motor 140, but because the transparent box 150 is fixed to the fixing bar 110, the water phantom box 130 moves closer to the beam nozzle 10. The thickness of the water between one surface of the water phantom box 100 and one surface of the transparent box 150 is changed. Water thickness will be described with reference to FIG. 3 below.
투명 박스(150)에는 양성자 빔을 센싱하는 센싱 소자(152)가 구비된다. 센싱 소자(152)는 그 양성자 빔의 에너지 세기 등을 센싱할 수 있는 것이면 어떠한 것도 적용 가능하다. 따라서, 센싱 소자(152)는 빔 노즐(10)로부터 방출되는 양성자 빔이 먼저 도달하는 투명 박스(150)의 내면에 구비될 수 있다. 또는 투명 박스(150) 내에 별도로 장착되는 장치가 될 수 있다. 또는 센싱 소자(152)의 예로 섬광판(Scintillation Screen)이 될 수도 있다. 섬광판이 적용될 경우, 양성자가 그 섬광판을 통과할 때 양성자의 에너지에 비례하여 방출되는 빛을 센싱할 수 있는 것이다. 섬광판 역시 빔 노즐(10)로부터 방출되는 양성자 빔이 먼저 도달하는 투명 박스(150)의 내면에 구비되어야 한다.The transparent box 150 is provided with a sensing element 152 for sensing a proton beam. The sensing element 152 can be applied to anything as long as it can sense the energy intensity of the proton beam. Therefore, the sensing element 152 may be provided on the inner surface of the transparent box 150 to which the proton beam emitted from the beam nozzle 10 first arrives. Or it may be a device mounted separately in the transparent box 150. Alternatively, the sensing element 152 may be a scintillation screen. If a scintillation plate is applied, it can sense the light emitted in proportion to the proton's energy as it passes through the scintillator. The scintillation plate should also be provided on the inner surface of the transparent box 150 where the proton beam emitted from the beam nozzle 10 first arrives.
양성자 빔의 센싱 결과를 기초로 하여 워터 팬텀 박스(130)의 이동을 위한 구동 모터(140)의 구동을 제어하도록 컨트롤러(controller)(160)가 구성된다. 컨트롤러(160)는 다크 박스 하우징(100)의 외부에 위치하며, 상기 센싱 결과로서 물의 두께별로 양성자 빔의 에너지 세기 등과 같은 정보를 저장하는 역할도 한다. 컨트롤러(160)는 PC 등이 될 수 있다. 이때 컨트롤러(160)는 양성자 빔의 영향을 최소화하기 위하여 빔 노즐(10) 및 다크 박스 하우징(100)과 일정 거리 이격 되어야 한다. 또는 그 사이에 차폐판이 설치될 수도 있다.The controller 160 is configured to control the driving of the driving motor 140 for the movement of the water phantom box 130 based on the sensing result of the proton beam. The controller 160 is located outside the dark box housing 100 and also stores information such as energy intensity of the proton beam for each thickness of the water as a result of the sensing. The controller 160 may be a PC or the like. In this case, the controller 160 should be spaced apart from the beam nozzle 10 and the dark box housing 100 by a predetermined distance in order to minimize the influence of the proton beam. Alternatively, a shielding plate may be provided therebetween.
이어서는 상기와 같이 구성된 방사선량 측정장치의 동작에 대해 살펴보기로 한다. 이는 도 3을 참조하기로 하며, 이때 도 3은 도 1 및 도 2에 도시된 노즐 빔(10) 및 다크 박스 하우징(100)을 평면에서 봤을 때를 개략적으로 도시하였다. 그리고 다크 박스 하우징(100) 내의 워터 팬텀 박스(130)가 구동 모터(140)의 구동력에 따라 이동할 경우 투명 박스(150)와의 간격 차이의 변화에 따른 물의 두께 변화를 도시하였다.Next, the operation of the radiation dose measuring apparatus configured as described above will be described. This will refer to FIG. 3, where FIG. 3 schematically illustrates the nozzle beam 10 and the dark box housing 100 shown in FIGS. 1 and 2 when viewed in plan view. In addition, when the water phantom box 130 in the dark box housing 100 moves according to the driving force of the driving motor 140, the thickness change of the water according to the change in the gap difference with the transparent box 150 is illustrated.
전술한 바와 같이 본 발명은 빔 노즐(10)과 가깝게 위치한 워터 팬텀 박스(130)의 일면과 투명 박스(150)의 일면 사이의 물의 두께에 따라 변하는 양성자 빔 에너지를 측정함으로써 최대도달거리(range)를 측정하는 것이다. 이는 물 두께를 연속적 또는 불연속적으로 가변하면서 측정하게 된다. As described above, the present invention measures the maximum range by measuring the proton beam energy that varies depending on the thickness of the water between one surface of the water phantom box 130 and one surface of the transparent box 150 located close to the beam nozzle 10. To measure. This will be measured while varying the water thickness continuously or discontinuously.
이를 위해 사용자(user)는 컨트롤러(160)를 조작하여 구동 모터(140)의 구동을 제어한다. To this end, a user controls the driving of the driving motor 140 by manipulating the controller 160.
구동 모터(140)가 제어되면, 워터 팬텀 박스(130)는 가이드 레일(120)을 따라 이동된다. When the driving motor 140 is controlled, the water phantom box 130 is moved along the guide rail 120.
도 3a에 도시한 바와 같이 워터 팬텀 박스(130)를 소정 위치, 예컨대 빔 노즐(10)과 가장 가깝게 위치시켜 워터 팬텀 박스(130)와 투명 박스(150) 사이의 거리가 d1이 되는 지점('제1 위치'라고 하기로 함)이 될 때 빔 노즐(10)로부터 양성자 빔이 방출되게 한다. 워터 팬텀 박스(130)가 제1 위치일 경우 물 두께는 가장 두꺼운 상태이다. As shown in FIG. 3A, the water phantom box 130 is positioned closest to a predetermined position, for example, the beam nozzle 10, so that the distance between the water phantom box 130 and the transparent box 150 becomes d 1 ( Proton beam is emitted from the beam nozzle 10 at the " first position. &Quot; When the water phantom box 130 is in the first position, the water thickness is the thickest.
양성자 빔이 방출되면, 방출된 양성자 빔은 다크 박스 하우징(100)의 일면과 소정 두께의 물을 통과하여 투명 박스(150)의 일면에 도달한다. 그리고 도달한 양성자 빔은 투명 박스(150)의 내면에 위치한 센싱 소자(152)에 제공된다. 센싱 소자(152)는 양성자 빔의 에너지 세기를 측정하고, 그 결과는 컨트롤러(160)가 전달받는다. When the proton beam is emitted, the emitted proton beam passes through one surface of the dark box housing 100 and water having a predetermined thickness to reach one surface of the transparent box 150. The arrived proton beam is provided to the sensing element 152 located on the inner surface of the transparent box 150. The sensing element 152 measures the energy intensity of the proton beam, and the result is transmitted to the controller 160.
구동 모터(140)를 다시 구동시켜 워터 팬텀 박스(130)를 이동시킨다. 이동된 위치는 도 3b와 같이 워터 팬텀 박스(130)와 투명 박스(150) 사이의 거리가 d2가 되는 지점('제2 위치'라고 하기로 함)이라 하기로 한다. 제2 위치일 경우 물 두께는 상기 제1 위치보다 더 얇은 상태가 된다. The driving motor 140 is driven again to move the water phantom box 130. The moved position will be referred to as a point at which the distance between the water phantom box 130 and the transparent box 150 becomes d 2 (hereinafter referred to as a “second position”) as shown in FIG. 3B. In the second position, the water thickness becomes thinner than the first position.
워터 팬텀 박스(130)가 제2 위치에 있을 때 양성자 빔을 방출시킨다. 그리고 전술한 바와 같이 투명 박스(150)의 내면에 위치한 센싱 소자(152)가 측정한 양성자 빔의 에너지 세기를 컨트롤러(160)가 전달받도록 한다. The proton beam is emitted when the water phantom box 130 is in the second position. As described above, the controller 160 receives the energy intensity of the proton beam measured by the sensing element 152 located on the inner surface of the transparent box 150.
구동 모터(140)를 다시 구동시켜 워터 팬텀 박스(130)를 이동시킨다. 이동에 따라 워터 팬텀 박스(130)와 투명 박스(150) 사이의 거리가 도 3c에 도시된 바와 같이 d3 가 되는 지점('제 3 위치'라고 하기로 함)이 될 때, 전술한 바와 같이 센싱 소자(152)가 양성자 빔의 에너지 세기를 센싱하고 컨트롤러(160)가 전달받도록 한다. The driving motor 140 is driven again to move the water phantom box 130. As described above, when the distance between the water phantom box 130 and the transparent box 150 becomes d 3 (hereinafter referred to as 'third position') as shown in FIG. The sensing element 152 senses the energy intensity of the proton beam and allows the controller 160 to receive it.
이와 같이 본 실시 예는 워터 팬텀 박스(130)를 이동시켜 물의 두께를 다르게 설정할 수 있고, 그때마다 양성자 빔의 에너지 세기를 측정함으로써 실질적으로 최대도달거리(range)를 측정하는 것이다. 이처럼 측정된 양성자 빔의 에너지 세기에 따라 양성자 빔의 최대도달거리를 물의 두께만큼 조절할 수 있기 때문에 실제 환자를 치료할 때 그 환자별로 어느 정도의 양성자 빔을 제공할지를 선택할 수 있게 되는 것이다. As described above, the present embodiment may set the thickness of the water differently by moving the water phantom box 130, and measure the maximum range by substantially measuring the energy intensity of the proton beam. According to the measured energy intensity of the proton beam, the maximum distance of the proton beam can be adjusted by the thickness of the water so that the number of proton beams to be provided for each patient can be selected when treating the actual patient.
한편 상기 설명에서는 워터 팬텀 박스(130)가 상기 제1 내지 제3 위치에 셋팅되게 설명하고 있으나, 더 세분화시켜 이동시킬 수 있음은 당연할 것이다. Meanwhile, in the above description, although the water phantom box 130 is set to be set in the first to third positions, it will be obvious that the water phantom box 130 can be further subdivided and moved.
또한 워터 팬텀 박스(130)를 소정 위치(즉, 제1 내지 제3 위치)에 위치시킨 상태에서 양성자 빔을 방출시킨 후, 그 양성자 빔의 에너지 세기를 측정하고 있으나, 반드시 이에 한정하지는 않는다. 즉, 빔 노즐(10)에서 양성자 빔이 계속 방출되게 하면서 동시에 구동모터(140)에 의해 워터 팬텀 박스(130)가 연속적으로 이동될 때, 양성자 빔의 크기/세기를 센싱할 수도 있는 것이다. In addition, after emitting the proton beam in a state where the water phantom box 130 is positioned at a predetermined position (ie, first to third positions), the energy intensity of the proton beam is measured, but is not necessarily limited thereto. That is, when the water phantom box 130 is continuously moved by the driving motor 140 while the proton beam is continuously emitted from the beam nozzle 10, the size / intensity of the proton beam may be sensed.
도 4는 본 발명의 다른 실시 예에 따라 방사선량 측정장치를 영상장치로 적용할 경우의 구성도이다. 4 is a configuration diagram when a radiation dose measuring apparatus is applied to an imaging apparatus according to another exemplary embodiment of the present invention.
여기서, 본 발명의 다른 실시 예에 따른 영상장치를 설명함에 있어, 도 1에서 설명하고 있는 방사선량 측정장치와 동일한 구성에 대해서는 동일 부호를 부여하고 중복되는 설명은 생략하면서 설명하기로 한다. 즉 빔 노즐(10), 고정 바(110) 및 가이드 레일(120)이 설치된 다크 박스 하우징(100), 워터 팬텀 박스(130), 구동 모터(140), 컨트롤러(160)는 방사선량 측정장치와 동일하고, 다만 투명 박스(150) 내에 구성된 미러(mirror)(156) 및 영상 정보를 획득하기 위한 CCD 카메라(170)가 더 추가되는 것에 차이가 있다. 아울러 다른 실시 예에서는 투명 박스(150) 내에 설치된 섬광판은 도면부호 154로 표시한다. Here, in describing an imaging apparatus according to another exemplary embodiment of the present disclosure, the same components as those of the radiation dose measuring apparatus described with reference to FIG. 1 are denoted by the same reference numerals, and redundant descriptions thereof will be omitted. That is, the dark box housing 100, the water phantom box 130, the driving motor 140, and the controller 160 in which the beam nozzle 10, the fixing bar 110, and the guide rail 120 are installed are connected to the radiation dose measuring device. The difference is the same, except that a mirror 156 configured in the transparent box 150 and a CCD camera 170 for acquiring image information are further added. In addition, in another embodiment, the flash plate installed in the transparent box 150 is indicated by reference numeral 154.
도 4를 살펴보면, 빔 노즐(beam nozzle)(10)이 구성된다. Referring to FIG. 4, a beam nozzle 10 is constructed.
빔 노즐(10)의 전방에는 다크 박스 하우징(100)이 구성된다. The dark box housing 100 is configured in front of the beam nozzle 10.
빔 노즐(10)의 전방과 다크 박스 하우징(100) 사이에는 오브젝트(180)가 위치한다. The object 180 is positioned between the front of the beam nozzle 10 and the dark box housing 100.
다크 박스 하우징(100)은 상측에 고정 바(110)가 설치되고, 하측에는 가이드 레일(120)이 설치된다. The dark box housing 100 has a fixing bar 110 is installed on the upper side, the guide rail 120 is installed on the lower side.
다크 박스 하우징(100) 내에는 빔 노즐(10)에서 양성자 빔이 출력되는 방향과 수평방향으로 위치하는 워터 팬텀 박스(Water Phantom Box)(130)가 구비된다. 워터 팬텀 박스(130)는 구동모터(140)의 구동에 의하여 가이드 레일(120)을 따라 이동한다. The dark box housing 100 includes a water phantom box 130 positioned horizontally in the direction in which the proton beam is output from the beam nozzle 10. The water phantom box 130 moves along the guide rail 120 by the driving motor 140.
워터 팬텀 박스(130) 내에는 외면이 물(water)로 둘러싸인 상태이고 빛이 통과할 수 있는 재질로 형성된 투명 박스(150)가 구성된다. 투명 박스(150)는 고정 바(110)에 매달린 상태로 고정된 상태이다. 따라서 워터 팬텀 박스(130)가 이동하면 빔 노즐(10)과 가깝게 위치한 워터 팬텀 박스(130)의 일면과 투명 박스(150)의 일면 사이의 물의 두께는 가변한다. 한편 투명 박스(150)가 워터 팬텀 박스(130) 내에 장착될 때 후술하는 미러에 반사되는 섬광판의 빛을 측정하기 위해서 CCD 카메라 방향에는 물의 두께가 거의 없는 위치에 장착되는 것이 바람직하다. 예컨대 도면에서 봤을 때 투명 박스(150)는 워터 팬텀 박스(130)의 하단과 거의 접촉되게 위치한다. In the water phantom box 130, a transparent box 150 formed of a material through which light is allowed to pass through the outer surface is surrounded by water. The transparent box 150 is fixed in a state of being suspended from the fixing bar 110. Therefore, when the water phantom box 130 moves, the thickness of the water between one surface of the water phantom box 130 and one surface of the transparent box 150 that is located close to the beam nozzle 10 is variable. On the other hand, when the transparent box 150 is mounted in the water phantom box 130, it is preferable that the transparent box 150 is mounted at a position where there is little thickness of water in the direction of the CCD camera in order to measure the light of the flash plate reflected on the mirror. For example, in the drawing, the transparent box 150 is positioned to be in close contact with the bottom of the water phantom box 130.
투명 박스(150)의 내부에는 섬광판(Scintillation Screen)(154)이 구성된다. 섬광판(154)은 빔 노즐(10)에서 방출된 양성자 빔이 후술하는 오브젝트를 통과한 후 남은 에너지가 통과할 때 그 통과하게 되는 에너지의 세기에 비례하여 빛을 방출하는 역할을 한다. 섬광판(154)은 양성자 빔이 먼저 도달하는 투명 박스(150)의 일측 내면에 설치되어야 한다. A scintillation screen 154 is formed inside the transparent box 150. The scintillator plate 154 emits light in proportion to the intensity of energy passing through the proton beam emitted from the beam nozzle 10 after the remaining energy passes through the object described later. The flash plate 154 should be installed at one inner surface of the transparent box 150 through which the proton beam first arrives.
투명 박스(150)의 내부에는 양성자 빔의 진행 방향에 대해 섬광판(154)과 45°각도를 유지하면서 마주보도록 미러(mirror)(156)가 구성된다. 미러(156) 표면에는 섬광판(154)를 통과할 때의 에너지 세기에 비례하여 방출되는 빛의 영상이 맺히게 된다. 여기서 섬광판(154)과 미러(156) 사이의 각도는 CCD 카메라(170)의 위치에 따라 달라질 수도 있다. Inside the transparent box 150, a mirror 156 is configured to face the glare plate 154 while maintaining an angle of 45 ° with respect to the traveling direction of the proton beam. On the surface of the mirror 156, an image of light emitted in proportion to the energy intensity when passing through the flash plate 154 is formed. The angle between the flash plate 154 and the mirror 156 may vary depending on the position of the CCD camera 170.
미러(156)에 맺힌 영상을 촬영하도록 CCD 카메라(170)가 장착된다. The CCD camera 170 is mounted to capture an image formed on the mirror 156.
이처럼 구성된 영상장치는 물의 두께를 변화시키면서 양성자 빔의 에너지를 선택적으로 사용할 수 있고, 그에 따른 오브젝트(180)의 영상을 획득할 수 있게 된다. The imaging device configured as described above can selectively use the energy of the proton beam while changing the thickness of the water, thereby obtaining an image of the object 180.
즉, 상술한 예와 같이 구동모터(140)를 조작하여 워터 팬텀 박스(130)를 이동시키게 되면 워터 팬텀 박스(130) 내의 물의 두께는 변화된다. 그 상태에서 노즐 빔(10)에서 소정 에너지를 갖는 양성자 빔을 방출하게 되면, 양성자 빔은 오브젝트(180)를 투과하여 섬광판(154)에 도달한다. That is, when the water phantom box 130 is moved by operating the driving motor 140 as described above, the thickness of the water in the water phantom box 130 is changed. When the proton beam having a predetermined energy is emitted from the nozzle beam 10 in this state, the proton beam passes through the object 180 and reaches the flash plate 154.
섬광판(154)은 오브젝트(180)의 형상 및 두께 등에 따라 서로 다른 값으로 표현되는 양성자 빔의 에너지를 전달받으면서 빛을 방출하게 된다. 이러한 빛은 그대로 투명 박스(150) 내의 미러(156)로 전달되고, 미러(156)의 표면에는 방출된 빛에 비례하여 영상이 맺히게 된다. The scintillator plate 154 emits light while receiving energy of a proton beam represented by different values according to the shape and thickness of the object 180. This light is transmitted to the mirror 156 in the transparent box 150 as it is, the image is formed on the surface of the mirror 156 in proportion to the emitted light.
미러(156)에 맺힌 영상은 다크 박스 하우징(100) 내에 위치한 CCD 카메라(170)가 촬영하고, 컨트롤러(160)에 전달한다. The image formed on the mirror 156 is captured by the CCD camera 170 located in the dark box housing 100 and transmitted to the controller 160.
이와 같이 방사선량 측정장치 중 투명 박스(150) 내부의 구조를 약간 변경하면서 노즐 빔(10)의 전방에 오브젝트(180)를 위치시키게 되면, 물의 두께에 따라 오브젝트(180)의 영상을 촬영할 수 있는 것이다. 이러한 오브젝트(180)의 영상 획득은 기존의 X선보다 양성자의 특성을 정확하게 반영한 정보를 제공할 수 있다. As such, when the object 180 is positioned in front of the nozzle beam 10 while slightly changing the structure inside the transparent box 150 of the radiation dose measuring apparatus, an image of the object 180 may be captured according to the thickness of the water. will be. Image acquisition of the object 180 may provide information that accurately reflects the properties of the protons rather than the existing X-rays.
이상에서 설명한 바와 같이 본 발명은 물 두께를 변화시키면서 양성자 빔의 에너지를 측정할 수 있기 때문에, 치료에 적합한 최적 조건의 양성자 빔을 셋팅할 수 있고, 아울러 양성자의 특성을 정확하게 반영하여 촬영할 수 있게 됨을 알 수 있다. As described above, the present invention can measure the energy of the proton beam while varying the thickness of the water, so that it is possible to set the proton beam in an optimal condition suitable for treatment, and to accurately capture the properties of the proton. Able to know.
이상과 같이 본 발명의 도시된 실시 예를 참고하여 설명하고 있으나, 이는 예시적인 것들에 불과하며, 본 발명이 속하는 기술 분야의 통상의 지식을 가진자라면 본 발명의 요지 및 범위에 벗어나지 않으면서도 다양한 변형, 변경 및 균등한 타 실시 예들이 가능하다는 것을 명백하게 알 수 있을 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 청구범위의 기술적인 사상에 의해 정해져야 할 것이다. Although described with reference to the illustrated embodiment of the present invention as described above, this is merely exemplary, those skilled in the art to which the present invention pertains without departing from the spirit and scope of the invention It will be apparent that other variations, modifications and equivalents are possible. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.
본 발명은 양성자 빔의 최대도달 거리를 물의 두께 변화만큼 조절할 수 있기 때문에, 실제 양성자 치료에서 환자마다 최적 조건으로 조사되어야 할 양성자 빔의 선량 분포를 치료 전에 정확하게 알 수 있음으로서, 양성자를 이용한 방사성 치료의 안전성 및 치료 효능을 향상시킬 수 있을 것으로 기대된다. Since the present invention can control the maximum reaching distance of the proton beam by the change in the thickness of the water, the radiation distribution using the proton can be accurately known before treatment, since the dose distribution of the proton beam to be irradiated with optimum conditions for each patient in the actual proton treatment can be accurately known before the treatment. It is expected to be able to improve the safety and efficacy of treatment.

Claims (7)

  1. 외부와 밀폐된 구조의 다크 박스 하우징; A dark box housing in a sealed structure with the outside;
    상기 다크 박스 하우징의 상단에 설치되는 고정 바 및 하단에 설치되는 가이드 레일; A fixed bar installed at an upper end of the dark box housing and a guide rail installed at a lower end thereof;
    상기 다크 박스 하우징 내에 구성되고 상기 가이드 레일을 따라 이동하는 워터 팬텀 박스; A water phantom box configured within the dark box housing and moving along the guide rail;
    상기 고정 바와 연결되며 상기 워터 팬텀 박스 내에 위치가 고정되는 투명 박스; 및 A transparent box connected to the fixed bar and fixed in the water phantom box; And
    상기 투명 박스의 일면에 구비되고, 상기 워터 팬텀 박스의 이동에 따른 물의 두께 변화에 대응되어 노즐 빔에서 방출되는 방사선 에너지의 세기를 센싱하는 센싱 소자를 포함하는 하전입자의 방사선량 측정장치. And a sensing element provided on one surface of the transparent box and configured to sense an intensity of radiation energy emitted from a nozzle beam in response to a change in thickness of water according to movement of the water phantom box.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 센싱 소자가 구비되는 상기 투명 박스의 일면은 상기 방사선이 먼저 도달하는 면이 되는 하전입자의 방사선량 측정장치. One surface of the transparent box is provided with the sensing element is the radiation dose measuring device of the charged particles that is the surface that the radiation first reaches.
  3. 제 2 항에 있어서, The method of claim 2,
    상기 방사선은 양성자 또는 중입자 빔인 하전입자의 방사선량 측정장치. The radiation is a radiation dose measuring device of the charged particles which is a proton or a medium particle beam.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 물의 두께는 상기 워터 팬텀 박스의 일면과 상기 센싱 소자가 구비된 투명 박스의 일면 사이의 거리 변화에 대응되는 하전입자의 방사선량 측정장치. The thickness of the water is the radiation dose measurement device of the charged particles corresponding to a change in the distance between one surface of the water phantom box and one surface of the transparent box provided with the sensing element.
  5. 외부와 밀폐된 구조의 다크 박스 하우징; A dark box housing in a sealed structure with the outside;
    상기 다크 박스 하우징 내에 설치되고 구동력에 의해 이동되는 워터 팬텀 박스; A water phantom box installed in the dark box housing and moved by a driving force;
    상기 워터 팬텀 박스 내에 고정되게 설치되는 투명 박스; A transparent box fixedly installed in the water phantom box;
    양성자 빔이 먼저 도달하는 상기 투명 박스 일면 내에 설치되는 섬광판; A flash plate installed in one surface of the transparent box through which a proton beam first arrives;
    상기 섬광판과 소정 각도를 이루면서 설치되는 미러; 및A mirror installed at a predetermined angle with the flash plate; And
    빔 노즐의 방출 경로에 위치한 오브젝트를 향해 방출된 양성자 빔이 상기 오브젝트를 통과하며 잃고 남은 에너지가 상기 섬광판을 통과할 때 남은 에너지의 세기에 비례하여 방출되는 빛이 상기 미러에 맺히는 영상을 촬영하는 카메라를 포함하는 영상장치. When the proton beam emitted toward the object located in the emission path of the beam nozzle passes through the object and the remaining energy passes through the flash plate, the light emitted in proportion to the intensity of the remaining energy is captured in the mirror. Imaging device comprising a camera.
  6. 제 5 항에 있어서,The method of claim 5,
    상기 오브젝트의 영상은 상기 워터 팬텀 박스 내의 물의 두께 변화에 따라서 다른 값으로 제공되는 영상장치. The image of the object is provided with a different value according to the change in the thickness of the water in the water phantom box.
  7. 제 6 항에 있어서,The method of claim 6,
    상기 물의 두께는 워터 팬텀 박스의 이동에 따라서 고정된 투명 박스와의 거리 변화에 대응되는 영상장치.And the thickness of the water corresponds to a change in distance from the fixed transparent box as the water phantom box moves.
PCT/KR2014/004501 2013-05-29 2014-05-20 Apparatus for measuring radiation dosage of charged particle and imaging apparatus WO2014193110A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130061172A KR101448075B1 (en) 2013-05-29 2013-05-29 Charged Particle Beam Dosimetry Device and Imaging Device thereof
KR10-2013-0061172 2013-05-29

Publications (1)

Publication Number Publication Date
WO2014193110A1 true WO2014193110A1 (en) 2014-12-04

Family

ID=51989083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/004501 WO2014193110A1 (en) 2013-05-29 2014-05-20 Apparatus for measuring radiation dosage of charged particle and imaging apparatus

Country Status (2)

Country Link
KR (1) KR101448075B1 (en)
WO (1) WO2014193110A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101688172B1 (en) 2015-08-19 2016-12-20 한국원자력의학원 Scintillaiton Monitor without Images Distortion
CN107358988B (en) * 2017-07-14 2019-06-07 东莞中子科学中心 A kind of neutron insertion piece system and its alignment method
CN110354402B (en) * 2018-04-28 2021-05-11 北京铭杰医疗科技有限公司 Electron beam dose measuring system and detection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001346894A (en) * 2000-06-08 2001-12-18 Mitsubishi Electric Corp Dosimeter
JP2003240858A (en) * 2002-02-14 2003-08-27 Mitsubishi Electric Corp Absorbed dose distribution measuring device
KR20070027240A (en) * 2005-09-06 2007-03-09 서태석 Phantom device for radiation dosimetry

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3203211B2 (en) * 1997-08-11 2001-08-27 住友重機械工業株式会社 Water phantom type dose distribution measuring device and radiotherapy device
JP3839687B2 (en) 2001-08-07 2006-11-01 三菱電機株式会社 Water phantom type dose distribution measuring device
DE102005030648B3 (en) 2005-06-30 2007-04-05 Siemens Ag Water phantom for measuring ionizing radiation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001346894A (en) * 2000-06-08 2001-12-18 Mitsubishi Electric Corp Dosimeter
JP2003240858A (en) * 2002-02-14 2003-08-27 Mitsubishi Electric Corp Absorbed dose distribution measuring device
KR20070027240A (en) * 2005-09-06 2007-03-09 서태석 Phantom device for radiation dosimetry

Also Published As

Publication number Publication date
KR101448075B1 (en) 2014-10-08

Similar Documents

Publication Publication Date Title
US9939130B2 (en) Marker system with light source
US11813482B2 (en) Advanced cherenkov-based imaging systems, tools, and methods of feedback control, temporal control sequence image capture, and quantification in high resolution dose images
TW201318663A (en) Charged particle beam irradiation system, and charged particle beam irradiation planning method
WO2020111892A1 (en) Radiography and radiotherapy apparatus
WO2017219308A1 (en) Method, shield, treatment tip, and treatment apparatus for imaging technique using radiation source
CN105324684A (en) Detector for radiotherapy treatment guidance and verification
WO2016010398A1 (en) Radiation therapy device and quality control method for radiation therapy device
JP2011050585A (en) Particle beam irradiation apparatus and particle beam irradiation method
CN107261343A (en) The method and device that one kind of proton CT is imaged and treated
US11633627B2 (en) Dosimetry systems for radiation treatment using radiation-detector-triggered cameras to image Cherenkov emissions or thin-sheet scintillators
Black et al. An investigation of clinical treatment field delivery verification using cherenkov imaging: IMRT positioning shifts and field matching
WO2014193110A1 (en) Apparatus for measuring radiation dosage of charged particle and imaging apparatus
KR20120038794A (en) Dual-purpose digital x-ray system with reduced low radiation dose and the radiographic application methods
WO2015077480A1 (en) Method and system for using cherenkov radiation to monitor beam profiles and radiation therapy
WO2014189260A1 (en) Device for measuring radiation dose capable of horizontal and rotational operation and device for detecting radiation thereof
CN107497059A (en) One kind of proton CT accurate control methods
WO2019074153A1 (en) Method for operating eyeball tumor treatment system and eyeball tumor treatment system for same
US20220280815A1 (en) System and methods for optical imaging of dose deposited by therapeutic proton beams
KR101749324B1 (en) 3d scattering radiation imager and radiation medical apparatus
WO2020022664A1 (en) Dual energy x-ray photographing device
Yasuda et al. Two‐dimensional dose distribution of a miniature x‐ray device for stereotactic radiosurgery
CN106772530A (en) Preoperative line dose measurement device
WO2017003223A1 (en) Image acquisition device and method
WO2017043783A1 (en) Multileaf collimator
GB2375170A (en) Radiation sensor for measuring radiation dose and radiography apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14804637

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14804637

Country of ref document: EP

Kind code of ref document: A1