WO2015129862A1 - ポップノイズ低減具、それを具備するマイクロホン、ポップノイズ測定方法、及びポップノイズ測定装置 - Google Patents
ポップノイズ低減具、それを具備するマイクロホン、ポップノイズ測定方法、及びポップノイズ測定装置 Download PDFInfo
- Publication number
- WO2015129862A1 WO2015129862A1 PCT/JP2015/055882 JP2015055882W WO2015129862A1 WO 2015129862 A1 WO2015129862 A1 WO 2015129862A1 JP 2015055882 W JP2015055882 W JP 2015055882W WO 2015129862 A1 WO2015129862 A1 WO 2015129862A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pop noise
- sound
- pop
- noise reduction
- microphone
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R1/00—Details of transducers, loudspeakers or microphones
- H04R1/08—Mouthpieces; Microphones; Attachments therefor
- H04R1/083—Special constructions of mouthpieces
- H04R1/086—Protective screens, e.g. all weather or wind screens
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R29/00—Monitoring arrangements; Testing arrangements
- H04R29/004—Monitoring arrangements; Testing arrangements for microphones
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2410/00—Microphones
- H04R2410/03—Reduction of intrinsic noise in microphones
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2410/00—Microphones
- H04R2410/07—Mechanical or electrical reduction of wind noise generated by wind passing a microphone
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2499/00—Aspects covered by H04R or H04S not otherwise provided for in their subgroups
- H04R2499/10—General applications
- H04R2499/11—Transducers incorporated or for use in hand-held devices, e.g. mobile phones, PDA's, camera's
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R31/00—Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
Definitions
- the present invention relates to a pop noise reduction tool that can effectively prevent pop noise by being installed near a microphone or as a windshield of a microphone unit, a microphone including the pop noise reduction device, a pop noise measurement device, and a measurement method thereof.
- a pop noise reduction tool called a pop noise reduction tool in which a mesh made of elastic fibers in front of the microphone is attached to a ring-shaped frame, or an expanded metal “pop filter” that has been cut into a metal plate and stretched into a net shape. A tool is arranged to reduce the occurrence of pop noise.
- a pop filter of a type in which a mesh made of elastic fibers is attached to a ring-shaped frame (hereinafter also referred to as elastic fiber pop filter), the mesh part is displaced by the impact wind generated by the plosive sound, and the momentum of the impact wind is increased. By mitigating, the impact wind reaching the microphone can be reduced.
- an expanded metal type pop filter (hereinafter also referred to as an expanded metal) uses a regular slope formed by cutting a metal and stretching it into a net shape to change the direction of the impact wind. The impact wind reaching the microphone is reduced.
- Some of these types of pop filters are made of metal or plastic material processed into a net shape.
- the expanded metal is made of metal, incidental sounds (resonance, scratching sound, etc.) generated by the impact wind may be generated, and in general, there are few cases where it is used.
- the above-mentioned two types of combined type pop filters also have the above-mentioned disadvantages, and there is no pop noise reduction tool that can always be expected to have a satisfactory pop noise reduction effect.
- pop noise has a special feature such as the source of the human mouth (wind source) and pulsed shock wind, and the measurement method itself is The situation is not established.
- wind source the source of the human mouth
- pulsed shock wind the measurement method itself is The situation is not established.
- the sounded part acoustic part
- pop noise which is the wind noise part caused by the impact wind.
- device that can reproduce pop noise there was no device that can reproduce pop noise.
- the present invention has been made in view of the above problems, and provides a pop noise reduction tool that can exhibit a good pop noise reduction effect even if it is disposed relatively close to the microphone or the diaphragm of the microphone unit.
- Another object of the present invention is to provide a microphone, a pop noise measuring method, and a noise measuring device including the microphone.
- the present invention provides the following pop noise reduction tool, a microphone including the same, a pop noise measurement method, and a noise measurement device.
- Pop noise reduction characterized by having an acoustic transmission material that has fine holes leading from one surface to the other surface, fibers are entangled with each other, and linear light transmittance is 20% or less Ingredients.
- a pop noise reduction tool comprising at least two of the sound transmission materials.
- the pop noise reduction tool according to (1) wherein a linear distance from a diaphragm of the microphone unit to at least one of the pop noise reduction tools is 25 mm or more.
- the pop noise reducing tool according to (1) wherein the sound transmission material is vibration-proofed by an elastic member or the like.
- the pop noise reduction tool according to (1) further including a fixing member for fixing the pop noise reduction tool at a predetermined position.
- a pop noise attenuation measured by a pop noise measurement method including a pop noise reproduction process for generating a silent shock wind and a process for collecting the pop noise generated by the shock wind generated by the silent shock wind generation process.
- the pop noise reducing device according to (1) which is 25 db or more.
- a pop noise measuring method comprising: a pop noise reproducing step for generating a silent shock wind; and a step of collecting the pop noise generated by the shock wind generated by the silent shock wind generating step.
- Measuring method (12)
- a noise reproduction device having at least a device for driving a means for generating a silent shock wind, a generator for generating a silent shock wind, and collecting noise generated by the shock wind generated by the silent shock wind generating device. And a noise measuring device.
- the pop noise measuring device wherein the sound collecting device collects only the pop noise by dividing the plosive sound into a sound part and pop noise generated by a shock wind.
- the silent shock wind generating device reduces a generation of noise, a speaker, at least one speed-up adapter for accelerating the silent shock wind generated from the speaker, a rectifying unit for rectifying the silent shock wind, and
- the pop noise measuring device according to (13), further comprising: an impedance adjusting unit for performing the operation.
- the pop noise reduction tool is provided so as to cover the inside of the head case.
- the pop noise reducing device of the present invention includes a sound transmitting material having fine holes that communicate from one surface to the other surface, fibers entangled with each other, and a linear light transmittance of 20% or less. Therefore, the pop noise reduction power is higher than before.
- the pop noise reducing tool if used as a filter unit, the pop noise reducing tool has a higher pop noise reducing power than conventional ones.
- this pop noise reduction tool allows the sound that is air vibrations to pass through the fine holes, so that all sound transmission performance is maintained, and the impact wind that is the cause of pop noise can be effectively suppressed, In particular, it is useful as a so-called acoustic lossless wind noise reducing tool that is effective in reducing pop noise in the low sound range.
- the microphone of the present invention includes the pop noise reduction tool having the above-described excellent characteristics, it is possible to capture a sound in which the pop noise is reduced as compared with the related art.
- the pop noise measuring method and noise measuring device of the present invention it is possible to systematically evaluate the influence of the sound collecting device on the impact wind and the performance of the pop noise reducing tool.
- composition of a pop noise measuring device of the present invention It is an example of composition of a pop noise measuring device of the present invention. It is a figure which shows the silence impact wind generator which the pop noise measuring apparatus of this invention comprises. Relative sound pressure when the reference sound pressure in the initial part (pump “p” with impact wind) "and subsequent vowel part” u "when the voiced sound” pu "is emitted is set to 1.0, time, The graph (left) and the graph (right) showing the relationship between the relative sound pressure relative to the relative sound pressure relative to the reference sound pressure in the initial part (“p”) and the subsequent vowel (“u”) and the frequency (right). .
- FIG. 12 is a cross-sectional view showing a conventional microphone.
- the linear light transmittance of the sound transmission material which is a constituent member of the pop noise reduction tool of the present invention is 20% or less, preferably 15% or less, more preferably 10% or less. This is because if the linear light transmittance exceeds 20%, the impact wind easily escapes to the opposite surface of the sound transmitting material as the number of through holes increases, leading to an increase in pop noise. Further, even if the linear light transmittance is 0%, there is no problem as long as the entire sound transmittance can be maintained by ensuring a fine hole that leads from one surface to the other surface.
- the sound transmission material is formed of a fiber material obtained by entanglement of raw materials including metal fibers or resin fibers, and the air permeability is preferably less than 0.5 s / 100 ml. By having the property, the sound permeability is remarkably improved.
- the air permeability means a time required for a certain amount of air to pass through a certain area under a certain pressure, and here, a time required for 100 ml of air to pass through the sheet-like sound transmitting material. It is.
- the air permeability can be measured by the Gurley method defined in JIS P8117.
- the sound transmission material is a fiber material obtained by entanglement of raw materials including fibers, it has innumerable irregular voids. For this reason, all sound permeability is shown with respect to the sound which is vibration of air.
- the sound transmission material having a linear light transmittance of 20% or less due to the entanglement of the fibers is against the sudden impact wind when p, t, k, etc., which are the causes of pop noise, occur. It exhibits wind barrier properties as if it were a non-porous plate.
- the pop noise reduction of the present invention having an acoustic transmission material having a fine hole that leads from one surface to the other surface, fibers entangled with each other, and a linear light transmittance of 20% or less as a constituent member
- the tool especially against “impact wind”, which is a rapid movement of air molecular masses. Also functions as a shield. Furthermore, it has a characteristic of exhibiting almost complete transparency with respect to “sound”, which is a change in atmospheric pressure (the medium itself vibrates but does not move).
- micropores that lead from one surface to the other may not always confirm the presence of micropores at first glance due to the complex entanglement of the fiber, but while following a complex path, It means that there is a gap that leads to the surface. With respect to these micropores, the presence of pores can be confirmed and the maximum pore diameter can be measured by the bubble point method described later.
- the sound transmission material is obtained by entanglement of fibers with each other.
- a fiber material in which fibers are entangled with each other can be obtained.
- the raw material used for manufacturing the fiber material is a metal fiber or a fluorine fiber.
- the fiber member used as the sound transmitting material has a thickness of 3 mm or less, preferably 10 ⁇ m to 2,000 ⁇ m, more preferably 20 ⁇ m to 1,500 ⁇ m. With such a thickness, an effective pop noise reduction effect can be obtained with a certain degree of rigidity and a minimum simple configuration.
- the raw material of the fiber material is not limited to metal fibers or fluorine fibers, and the thickness is not limited to the above numerical values.
- the maximum hole diameter of the holes of the sound transmitting material is 1 ⁇ m or more and 2,000 ⁇ m or less, preferably 30 ⁇ m or more and 500 ⁇ m or less, and more preferably 50 ⁇ m or more and 300 ⁇ m or less. If the maximum pore diameter is equal to or greater than the above lower limit, it can be easily produced and thus can be obtained at a relatively low cost. If the maximum pore diameter is not more than the above upper limit, it is difficult to confirm the opening when approaching the metal fiber acoustic transmission material, which is preferable from an aesthetic point of view. Further, it is preferable that the number of penetrating portions leading from one surface to the other surface is small.
- metal fibers are entangled.
- the metal fiber has a fiber diameter of 1 ⁇ m to 50 ⁇ m, preferably 2 ⁇ m to 40 ⁇ m, more preferably 8 ⁇ m to 30 ⁇ m.
- Such a metal fiber is suitable for confounding metal fibers.
- a metal fiber sheet with less surface fluttering and having both sound transmission and pop noise reduction can be obtained.
- the shape of the metal fiber material is not particularly limited, but a metal fiber sheet is preferable.
- One type or two or more types of metal fibers which are metal fiber materials are one type selected from fibers made of metal materials such as stainless steel, aluminum, brass, copper, titanium, nickel, gold, platinum, lead, or the like, or A combination of two or more.
- the metal fiber material is obtained by papermaking a slurry containing one or more metal fibers by a wet papermaking method.
- the manufacturing method of the metal fiber material by the wet papermaking method includes a fiber entanglement treatment step in which the metal fibers forming the sheet containing moisture on the net are entangled with each other when the slurry is formed into a sheet by the wet papermaking method. Including.
- a fiber entanglement treatment step of injecting a high-pressure jet water stream onto the metal fiber sheet surface after papermaking is preferable. Specifically, by arranging a plurality of nozzles in a direction perpendicular to the flow direction of the sheet and simultaneously injecting a high-pressure jet water stream from the plurality of nozzles, it is possible to entangle the metal fibers over the entire sheet. It is.
- the metal fiber of the portion where the high-pressure jet water stream was jetted Are oriented in the Z-axis direction.
- This metal fiber oriented in the Z-axis direction is entangled between metal fibers irregularly oriented in the plane direction, and each fiber is entangled three-dimensionally, that is, the physical strength can be obtained by entanglement It is.
- a papermaking method various methods such as long net papermaking, circular net papermaking, and inclined wire papermaking can be adopted as necessary.
- a slurry containing long-fiber metal fibers the dispersibility of the metal fibers in water may deteriorate. Therefore, a high viscosity such as polyvinyl pyrrolidone, polyvinyl alcohol, carboxymethyl cellulose (CMC) having a thickening action may be used.
- a small amount of molecular aqueous solution may be added.
- the metal fiber material can also be obtained by pressing a metal fiber aggregate under heating.
- a metal fiber aggregate obtained by pressing a metal fiber aggregate under heating.
- a binder is impregnated between the fibers and then preliminarily compressed. Thereafter, the metal fiber aggregate is pressed under heating to obtain a metal fiber sheet.
- the binder is not particularly limited.
- organic binders such as acrylic adhesives, epoxy adhesives, and urethane adhesives
- inorganic adhesives such as colloidal silica, water glass, and sodium silicate are used. It can also be used.
- the amount of the binder impregnated is preferably 5 to 130 g and more preferably 20 to 70 g with respect to the sheet surface weight of 1,000 g / m 2 .
- the surface of the fiber may be preliminarily coated with a heat-adhesive resin, and a metal fiber aggregate may be laminated and heated to be bonded.
- the aggregate of metal fibers is pressed under heating to form a sheet.
- the heating conditions are set in consideration of the drying temperature and curing temperature of the binder and thermal adhesive resin used, and the heating temperature is usually about 50 to 1,000 ° C.
- the pressurizing pressure is adjusted in consideration of the elasticity of the fiber, the thickness of the sound transmission member, and the light transmittance of the sound transmission member.
- the method for producing a metal fiber material may include a sintering step in which the obtained metal fiber material is sintered at a temperature below the melting point of the metal fiber in a vacuum or in a non-oxidizing atmosphere after the wet papermaking step described above.
- a sintering step in which the obtained metal fiber material is sintered at a temperature below the melting point of the metal fiber in a vacuum or in a non-oxidizing atmosphere after the wet papermaking step described above.
- Preferred replace this sintering step. That is, if the sintering process is performed after the wet papermaking process described above, the fiber entanglement fixing process is performed, so there is no need to add an organic binder or the like to the metal fiber material.
- the metal fiber material which has a gloss surface peculiar to a metal, without the decomposition gas, such as an organic binder, becoming an obstacle in a sintering process.
- the metal fibers are entangled, the strength of the sintered metal fiber material can be further improved.
- the metal fiber material by sintering the metal fiber material, it becomes a material that exhibits high sound permeability and low pop noise and is excellent in waterproofness.
- the remaining polymer having a thickening action absorbs water and may have poor waterproofness.
- Fluorine fibers are manufactured from thermoplastic fluororesin, and the main components thereof are polytetrafluoroethylene (PTFE), tetrafluoroethylene (TFE), perfluoroether (PFE), tetrafluoroethylene and hexafluoropropylene.
- PTFE polytetrafluoroethylene
- TFE tetrafluoroethylene
- PFE perfluoroether
- FEP tetrafluoroethylene and hexafluoropropylene.
- PVDF vinylidene fluoride resin
- PCTFE polychlorotrifluoroethylene resin
- PVF vinyl fluoride resin
- Fluorine fiber is preferably a single fiber having a fiber length of 1 to 20 mm and a fiber diameter of 2 to 30 ⁇ m in order to obtain a paper-like material by a wet papermaking method.
- Fluorine fiber material is a mixture of fluorine fiber and a substance having a self-adhesive function by wet papermaking and dried. Can be manufactured by dissolving and removing a substance having a self-adhesive function with a solvent and re-drying if necessary.
- natural pulp made of plant fibers such as wood, cotton, hemp, straw, etc.
- PVA polyvinyl alcohol
- polyester aromatic polyamide
- acrylic thermoplastic Synthetic pulp and synthetic fiber made of synthetic polymer synthetic pulp and synthetic fiber made of polyolefin-based thermoplastic synthetic polymer
- paper-making paper strength enhancer made of natural polymer and synthetic polymer can be used. It is not limited to these as long as it has an adhesive function and can be mixed with fluorine fibers and dispersed in water.
- the sound transmitting material can reduce pop noise, for example, a through hole can be appropriately formed in the peripheral portion of the circular sound transmitting material.
- the pop noise reducing device of the present invention is not limited to the effect of the present invention, and may be provided with a sound transmitting material having the above characteristics. Therefore, as shown in FIG.
- FIG. 5 (B) when only one is provided, as shown in FIG. 5 (B), when two acoustic transmission materials 1 and 1 are provided, two acoustic transmission materials 1 and 1 are provided as shown in FIG. 5 (C).
- FIG. 5 (D) When attached with the vibration isolator 10, when two acoustic transmission materials 1 and 1 are attached with the frame 20 as shown in FIG. 5 (D), one acoustic as shown in FIG. 5 (E).
- the frame 20 is attached to the transmissive material 1, it also includes a case where a fixing member is attached so as to be fixed to a microphone stand or the like.
- 5 (B), (C), and (D) show an example in which two sound transmitting materials are provided.
- the distance between the centers of the two may be in the range of 2 mm to 50 mm. preferable. If the center-to-center distance is 2 mm or more, both sound transmission materials can exhibit sufficient effects.
- the center-to-center distance is preferably 50 mm or less. Specifically, for attachment to a microphone or the like, it is preferable that the center-to-center distance is 50 mm or less.
- the distance between the centers of the sound transmitting materials is flat when one sound transmitting material is flat and the other sound transmitting material has a curved surface. It means the distance Z between the center part of the sound transmission material and the center part of the sound transmission material having a phase. As shown in FIG. 5D, when the two sound transmission materials are flat, it means the distance Z between the center portions of the flat sound transmission materials.
- the end portion of the sound transmission material is rounded, or as shown in FIG. 6 (B), a flange is provided.
- the flange has a triangular cross section, but the present invention is not limited to this, and the cross section may be circular, quadrangular, or polygonal.
- the shock wind can be efficiently rectified and flowed from the end of the pop noise reduction tool to the area where the microphone does not exist, Since the generation of noise is suppressed even at the end of the pop noise reduction tool, the pop noise can be further reduced.
- the surface of the sound transmitting material is a curved surface, it is preferable because the impact wind can be rectified more efficiently.
- FIG. 12 is a sectional view showing a conventional microphone, that is, a microphone to which the pop noise reduction tool of the present invention is not attached.
- This conventional microphone is formed by a diaphragm 30 which is a diaphragm for receiving sound, a coil 31 for transmitting vibrations obtained by the diaphragm, a head case 32 for storing them, and cotton provided inside the head case. And a pop guard 101.
- FIGS. 8 to 11 are sectional views showing a microphone to which the pop noise reduction tool of the present invention is attached.
- the pop noise reduction tool (sound transmitting material) 1 of the present invention is attached to the attachment tool 33 so as not to contact the diaphragm 30 and to cover the diaphragm 30.
- the attachment 33 is formed of a material that does not transmit the vibration of the pop noise reduction tool (sound transmitting material 1) to the diaphragm 30.
- the microphone windshield 101 which is conventionally formed of sponge or the like and is attached so as to cover the inside of the head case 32, is replaced with the pop noise reducing device (sound transmitting material 1) of the present invention. is there.
- the pop noise reducing device (acoustic transmission material 1) of the present invention is provided on a part of the inner surface of the head case 32 via the vibration isolator 10 so as not to contact the diaphragm 30 and to cover the diaphragm 30. ) Is attached. That is, the microphone shown in FIG. 10 does not include the attachment 33 for the pop noise reduction tool 1.
- the microphone shown in FIG. 11 is a combination of the pop noise reduction tool of the present invention shown in FIGS. That is, the microphone shown in FIG.
- the distance between the centers of the two is preferably in the range of 2 mm to 50 mm, as described above.
- the “microphone” refers to a so-called product type including a member that controls a sound collecting function of the microphone, a casing thereof, and a protective member. Further, the “microphone unit” means an assembly of members that control sound collection functions.
- the pop noise reduction tool of the present invention when used as a windshield for a microphone, it is important to take a processing method that does not crush the micropores in order to maintain sound permeability. As long as the above requirements are achieved, any known method can be used as the processing method, but deep drawing is preferable.
- the pop noise reduction tool be vibration proof. This is because by vibrating the vibration, incidental sounds (friction noise and resonance sound) generated when the impact wind collides with the sound transmitting material or the microphone stand supporting the sound transmitting material may be reduced.
- a rubber-like elastic member is suitable for the vibration isolator, but is not limited to this as long as it can reduce incidental sound.
- a weight (additional mass / Blocking / Mass) can be attached to the sound transmission material.
- the distance between the sound transmitting members is 2 to 50 mm. If the distance between the pop noise reduction tools is too close, the risk of incidental sound increases. On the other hand, if the distance is too far, the distance between the sound source and the microphone is inevitably increased, which may cause a restriction such as a decrease in S / N or recording using the proximity effect.
- a pop noise measuring method and a noise measuring apparatus will be described with reference to the drawings.
- a case where a speaker is used as a silent shock wind generation source will be described as an example.
- any device can be selected as long as it is a device or a device that can realize a piston motion substantially the same as that of a speaker in silence when it is realized and commercialized.
- the right side in FIGS. 1 and 2 may be referred to as the X side
- the left side may be referred to as the ⁇ X side.
- Pop noise is generated when the microphone unit senses impact wind (air movement) from the latest wind source separately from voiced sound.
- This impact wind is different from a natural wind, indoor air conditioning, or a fan wind such as a fan in that it is a wind from a recent wind source.
- the shock wind generator has sufficient responsiveness and controllability to the drive source, and there is no noise generation such as drive sound of the device that becomes an obstacle to noise measurement or abnormal noise due to the shock wind. Desired.
- pop noise in the microphone is mainly the former, that is, the external damage corresponding to unvoiced plosives such as p, t, and k, and is particularly noticeable in directional singing microphones and condenser microphones.
- FIG. 3 shows the frequency spectrum (FFT maximum value every 10 ms) of the initial part (popping sound "p" with impact wind) when the voiced sound "pu” is emitted 50 mm in front of the condenser microphone and the subsequent vowel part "u”. ).
- the spectrum with the symbol (u) corresponds to a vowel formant having a plurality of peaks.
- the spectrum to which (p) is attached corresponds to the maximum slope of the consonant “p”, and is noise that decays at a constant rate around 10 to 15 dB / Oct, that is, pop noise.
- the silent impact wind generator must generate the spectrum of this portion accurately and with good reproducibility.
- FIG. 1 is a block diagram showing a noise measuring apparatus.
- the noise measuring device 2 includes a control device 3 for controlling the silent shock wind generating device, a DC coupled sound card 4, a DC power amplifier 5, a silent shock wind generating device 6, and a sound collecting device 7.
- the control device 3 transmits an electrical signal for driving the silent impact wind generator 6 and processes a signal for each frequency sent from the sound collection device 7 via the DC coupling sound card 4.
- Device Usually, a general PC can be substituted.
- the DC coupled sound card 4 is a device for converting an electrical signal sent from the control device 3 into an analog signal (such as a sine wave) for driving the silent shock wind generator 6 and sending it to the DC power amplifier 5. It is.
- the DC power amplifier 5 is a device for amplifying the analog signal sent from the DC coupled sound card 4. Thereby, it is possible to generate a sufficient shock wind sufficient for reproducing pop noise from the silent shock wind generating device 6.
- FIG. 2 is a diagram for explaining the details of the silent impact wind generator 6.
- the left side is a side view, and the right side is a view seen from the opening end side of the silent impact wind generator 6.
- the silent shock wind generator 6 has sufficient responsiveness and controllability with respect to the drive source, and there is no noise generation due to the drive sound or shock wind of the device that becomes an obstacle when measuring noise.
- the configuration is as shown in FIG. 2, but any configuration is possible as long as the above requirements are satisfied.
- a substantially cone formed so that the tube diameter continuously decreases on the opening surface of the high compliance roll edge speaker 61 that can be driven with sufficient amplitude so that no abnormal noise is generated.
- a trapezoidal first speed-up adapter 621 (first speed increasing portion) and a second speed-up adapter 622 (second speed increasing portion) are provided. Thereby, the silent impact wind generated from the high compliance roll edge speaker 61 is accelerated by the first speed-up adapter 621 and the second speed-up adapter 622 and is released to the X side.
- the high compliance roll edge speaker 61 is not limited to this as long as it can ensure sufficient driving to generate a silent shock wind.
- the material of the first and second speed-up adapters may be any material as long as no abnormal noise is generated, and examples thereof include a hard material such as metal or plastic.
- a pipe 623 which is a straight pipe portion for rectification can be provided.
- a mechanical impedance adjusting member 624 can be provided on the opening end side of the pipe 623 in order to reduce the occurrence of abnormal noise.
- the total length of the pipe 623 and the mechanical impedance adjusting member 624 depends on the speaker diameter and the measurement lower limit frequency, but is preferably 10 mm to 50 mm.
- the speaker box 8 and the glass wool 9 of the sound absorbing material are installed for the purpose of reducing the backflow of the air flow generated in the back to the sound collecting device 7 side, and it is necessary to provide if the existence of the phenomenon is not recognized. Absent. With such a configuration, a silent shock wind is generated by removing a voice part from a burst sound having a bundle diameter of about 50 mm and a wind speed of several m to several tens m / sec at a location 100 mm away from the opening end of the silent shock wind generator 6. be able to.
- the sound collecting device 7 is not particularly limited as long as the target sound collecting device that is desired to be investigated and measured is taken in taking the influence of noise caused by the shock wind and the countermeasures for reducing it.
- the drive signal of the silent impact wind generator 6 was determined from the following viewpoint.
- a sine wave signal to a cosine wave signal (1), (2) and (3) as shown in FIG. 4 are applied to the silent impact wind generator 6 via the DC power amplifier 5.
- the waveform of (2) is considered to be closest to the sound generation process.
- both the signal (2) and the signal (3) can be used.
- the duration of the signal is too short, noise is generated as an impact sound, and if it is too long, the impact wind itself associated with the plosive sound cannot be reproduced. Therefore, in both (2) and (3), the signal duration is 20 msec to 100 msec.
- a signal for driving the silent shock wind generator 6 is applied from the control device 3 to the DC power amplifier 5 via the DC coupling sound card 4. Due to this drive signal, the speaker cone of the high compliance roll edge speaker 61 of the silent shock wind generator 6 gradually moves to the -X side in the left side view of FIG. Radiate.
- the radiated silent impact wind is increased by the first speed-up adapter 621 and the second speed-up adapter 622 and is emitted to the X side.
- the silent impact wind released to the X side reaches the sound collection device 7.
- the pop noise detected by the sound collection device 7 is converted into an electric signal, returned to the silent impact wind generator control device 3, and recorded as pop noise for each frequency.
- a pop noise reduction tool is installed between the silent impact wind generator 6 and the sound collection device 7, or a pop noise reduction tool is installed as a windshield for the sound collection device to measure the degree of reduction of the pop noise.
- a stationary wind generator such as an electric fan may be installed to measure wind noise with respect to a steady wind such as an air conditioning draft or outdoor natural wind.
- the pop noise reduction characteristics of the pop noise reduction tool of the present invention will be described based on examples and comparative examples.
- this invention is not limited only to these Examples.
- the pop noise reduction tool is basically installed between the silent impact wind generating device 6 as a wind source and the microphone unit of the sound collecting device 7.
- Example 1 Manufacture of metal fiber acoustic transmission material A fiber-like web was prepared by superimposing fibers of stainless steel AISI 316L having a wire diameter of 30 ⁇ m uniformly. The web was weighed so that the basis weight was 950 g / m 2 and compressed between flat plates so that the thickness was 800 ⁇ m. This compressed plate-like material was put in a sintering furnace, heated to 1100 ° C. in a vacuum atmosphere, and sintered to obtain an acoustic transmission material.
- FIG. 5A shows a front view and a cross-sectional view of the sound transmission material.
- Example 2 As a pop noise reduction tool, the same sound transmission material produced in Example 1 as Example 1 except having arrange
- Example 3 A sound transmitting material similar to that of the first embodiment is formed into a windshield mold of the sound collecting device 7 by deep drawing and attached as a windshield of the sound collecting device 7, and this is the same as the first embodiment except that this is used as a pop noise reducing tool.
- the pop noise attenuation was measured. That is, in this example, the pop noise reduction tool shown in FIG. 9 was obtained.
- Example 4 As shown in FIG. 5C, in the pop noise reduction tool, the amount of pop noise attenuation is measured in the same manner as in Example 1 except that the vibration isolator 10 is attached to the portion where the two sound transmission materials are in contact. Carried out.
- Example 5 Production of fluororesin fiber sound transmission material 80 parts by weight of thermoplastic fluorofiber (Aflon COP manufactured by Asahi Glass Co., Ltd., 10 ⁇ m ⁇ ⁇ 11 mm product) made of a copolymer of tetrafluoroethylene and ethylene, and 20 parts of NBKP with a beating degree of 40 ° SR Were dispersed and mixed in water to obtain a raw material for the fluororesin fiber acoustic transmission material.
- thermoplastic fluorofiber Alon COP manufactured by Asahi Glass Co., Ltd., 10 ⁇ m ⁇ ⁇ 11 mm product
- NBKP with a beating degree of 40 ° SR
- the pop noise attenuation was measured in the same manner as in Example 1 except that the sound transmission material was a pop noise reduction tool.
- Example 6 Manufacture of metal fiber acoustic transmission material 60 parts by weight of stainless steel fiber (product name: Susmic, manufactured by Tokyo Steel Corporation) with a fiber length of 4 mm and a fiber diameter of 8 ⁇ m, copper fiber with a fiber length of 4 mm and a fiber diameter of 30 ⁇ m (product)
- a slurry consisting of 20 parts by weight of Kapron (Esco) and 20 parts by weight of PVA fiber (Fibrid Bond VPB105-1-3 Kuraray) having a solubility in water of 70 ° C. is dehydrated by a wet papermaking method, heated and dried to 100 g. A metal fiber sheet of / m 2 was obtained.
- the obtained sheet was heat-pressed using a heating roll having a surface temperature of 160 ° C. under conditions of a linear pressure of 300 kg / cm and a speed of 5 m / min.
- a continuous sintering furnace (brazing furnace with a mesh belt) in a hydrogen gas atmosphere without pressurizing the pressed metal fiber sheet, sintering is performed at a heat treatment temperature of 1,120 ° C. and a speed of 15 cm / min.
- An acoustic transmission material having a thickness of 45 ⁇ m was obtained, in which copper was fused and coated on the surface of a stainless fiber having an amount of 80 g / m 2 and a density of 1.69 g / cm 3 .
- the pop noise attenuation was measured in the same manner as in Example 1 except that the sound transmission material was a pop noise reduction tool.
- Example 1 The pop noise attenuation is the same as in Example 1 except that the product name ST-POP manufactured by SONTRICS, which is an elastic fiber pop filter of the form shown in FIG. Quantity measurements were made.
- ST-POP manufactured by SONTRICS which is an elastic fiber pop filter of the form shown in FIG. Quantity measurements were made.
- Comparative Example 2 The pop noise attenuation is measured with the same configuration as in Example 1 except that the product name PROSCREEN101 made by STEDMAN, which is an expanded metal of the form shown in FIG. Carried out.
- Comparative Example 3 As a pop noise reduction tool, the product name ST-POP used in Comparative Example 1 manufactured by Sontronics is used as the wind source side, and the product name PROSCREEN101 used as Comparative Example 2 is used as the sound source side. In addition, the amount of pop noise attenuation was measured in the same manner as in Example 1 except that the opening end of the mechanical impedance adjusting member 624 and the intermediate point of the sound collecting device 7 were sandwiched.
- Measurement method (1) Confirmation of total sound transmission
- having the total sound transmission described in the present invention means that almost all sound energy is transmitted in the main sound frequency band (300 Hz to 3.5 kHz) regardless of the incident direction.
- the amplitude characteristic difference (sound pressure difference) with and without the sample is 2 to 2 in the observed frequency band at the incident angle of 0 ° measured by the method described later or the angle after transmission (by reciprocity law). The case where it was within 3 dB was judged as “all sound transmissible”.
- Insertion loss ⁇ (dB)
- the sound transmission was evaluated as follows based on the obtained data.
- insertion loss ⁇ (dB) is within 2 dB, it is determined as “good”. If there is a measured value within 5 dB, say “somewhat inferior” When there was a measured value exceeding 5 dB, it was judged as “poor”.
- the presence / absence of micropores and the maximum pore diameter of the sound transmitting material constituting the pop noise reduction tool of the present invention were determined by the bubble point method shown below. Measured with the bubble point method palm porometer (manufactured by Seika Sangyo Co., Ltd.) When a sample is immersed in isopropyl alcohol and the air pressure is increased from the bottom, bubbles are first generated from the hole with the maximum pore diameter. . The pressure at this time was called bubble point pressure, and the maximum pore diameter was determined using the following formula. The measurement results are shown in Table 1.
- the sound transmission material having the through-holes that can be confirmed by visual observation has a linear light transmittance of 20% or less in the pop noise reduction devices of Examples 1 to 6 using the sound transmission materials in which fibers are entangled with each other.
- the linear light transmittance of the pop noise reduction tools of Comparative Examples 1 to 3 using the above exceeded 40%.
- Examples 1 to 6 showed a reduction effect of 25 to 45 dB in a frequency band of 30 to 100 Hz.
- Comparative Example 2 had the same insertion loss as Examples 1 to 6, but showed only a reduction effect of 22 dB at the maximum. Furthermore, even Comparative Examples 1 and 3 with inferior insertion loss showed only a reduction effect of about 35 dB at maximum.
- the pop noise reduction tool of the present invention effectively suppresses the pop noise particularly in the low frequency range as compared with the prior art. It was shown that it can be reduced.
- Example 7 The pop noise attenuation was measured in the same manner as in Example 2 except that 3 mm, which is the distance between the centers of the sound transmitting materials in Example 2, was changed to 1.5 mm. The results are shown in Table 3.
- Example 8 The pop noise attenuation amount was measured in the same manner as in Example 1 except that the end portion of the sound transmitting material used in Example 1 was rounded as shown in FIG. 6A. The results are shown in Table 3.
- Example 9 The pop noise attenuation was measured in the same manner as in Example 1 except that a flange was provided at the end of the sound transmitting material used in Example 1 as shown in FIG. 6B. . The results are shown in Table 3.
- Example 7 As shown in Table 3, the amount of pop noise attenuation in Example 7 in which two sound transmitting materials are used but the center-to-center distance is 1.5 mm is the same as in Example 1 in which there is one sound transmitting material. It was about.
- the amount of pop noise attenuation in Examples 8 and 9 was inferior to Example 3 in which a microphone was attached as a windshield and Example 4 in which a vibration isolator was attached between two sound transmission materials.
- the pop noise attenuation amount in Examples 8 and 9 is superior to the pop noise attenuation amount in the flat Example 1 in which the periphery of the sound transmission material is not rounded or the flange is not attached. It is clear that it has.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Otolaryngology (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
- Details Of Audible-Bandwidth Transducers (AREA)
Abstract
Description
本願は、2014年2月28日に、日本に出願された特願2014-037727号に基づき優先権を主張し、その内容をここに援用する。
(1)一方の面から他方の面へ通じる微細孔を有し、かつ繊維が互いに交絡してなり、直線光線透過率が20%以下である音響透過材を有することを特徴とするポップノイズ低減具。
(7)前記音響透過材が弾性部材等により防振されていることを特徴とする(1)に記載のポップノイズ低減具。
(8)前記ポップノイズ低減具を所定位置に固定するための固定部材を有することを特徴とする(1)に記載のポップノイズ低減具。
(9)無音衝撃風を発生させるポップノイズ再現工程と、前記無音衝撃風発生工程によって発生した衝撃風により生じるポップノイズを収音する工程とを有するポップノイズ測定方法により測定したポップノイズ減衰量が25db以上であることを特徴とする(1)に記載のポップノイズ低減具。
(10) 無音衝撃風を発生させるポップノイズ再現工程と、前記無音衝撃風発生工程によって発生した衝撃風により生じるポップノイズを収音する工程とを有することを特徴とするポップノイズ測定方法。
(11) 前記ポップノイズを収音する工程では破裂音を、有音部と、衝撃風により生じるポップノイズとに分けてポップノイズのみを収音することを特徴とする(10)記載のポップノイズ測定方法。
(12)少なくとも無音衝撃風を発生させる手段を駆動させる装置と、無音衝撃風を発生させる発生装置とを有するノイズ再現装置と、上記無音衝撃風発生装置によって発生した衝撃風により生じるノイズを収音する装置とを有することを特徴とするノイズ測定装置。
(13) 前記収音装置では破裂音を、有音部と、衝撃風により生じるポップノイズとに分けてポップノイズのみを収音することを特徴とする(12)記載のポップノイズ測定装置。
(14) 前記無音衝撃風発生装置が、スピーカと、スピーカから発生した無音衝撃風を増速させる少なくとも1つのスピードアップアダプタと、無音衝撃風を整流するための整流部と、異音発生を低減するためのインピーダンス調整部とを具備することを特徴とする(13)記載のポップノイズ測定装置。
(15)(1)記載のポップノイズ低減具を具備するマイクロホン。
(16)上記ポップノイズ低減具が、ヘッドケースの内側を覆うように設けられたことを特徴とする(15)記載のマイクロホン。
(17)上記ポップノイズ低減具が、ダイアフラムに接することなく、ダイアフラムを覆うように取り付けられていることを特徴とする(15)記載のマイクロホン。
(18)ヘッドケースの内側を覆うように設けられたポップノイズ低減具と、ダイアフラムに接することなく、ダイアフラムを覆うように取り付けられているポップノイズ低減具とを具備することを特徴とする(15)記載のマイクロホン。
特に、上記ポップノイズ低減具をフィルタ部として用いれば、従来よりもポップノイズ低減力の高いポップノイズ低減具となる。
また、このポップノイズ低減具は、空気の振動である音は微細孔を通じて通過させるため全音響透過性能が維持され、かつポップノイズの原因である衝撃風を効果的に抑制することができるため、特に低音域のポップノイズ低減に効果がある、いわゆる音響ロスレスの風雑音低減具として有用である。
本発明のポップノイズ低減具の構成部材である音響透過材の直線光線透過率は、20%以下であり、好ましくは15%以下、より好ましくは10%以下である。直線光線透過率が20%を越えると、貫通孔の増加に伴って、衝撃風が音響透過材の反対面に抜けやすくなり、ポップノイズの増加に繋がるからである。また、仮に直線光線透過率が0%であったとしても、一方の面から他方の面へ通じる微細孔が確実に確保されることによって全音響透過性が維持できるのであれば問題ない。
なお、透気度とは、一定面積を一定の空気が一定圧力の下で通過するのに必要な時間を意味し、ここでは100mlの空気がシート状の音響透過材を通過するのに要する時間である。透気度は、JIS P8117に規定されているガーレー法により測定することができる。
また、一方の面から他方の面へ通じる貫通部が少ないほうが好ましい。
金属繊維材料の湿式抄造法による製造方法は、上記スラリーを湿式抄造法によりシートに形成する際に、網上の水分を含んだシートを形成している金属繊維を互いに交絡させる繊維交絡処理工程を含む。
すなわち、湿式抄紙により平面方向に不規則に交差した金属繊維で構成されるシートに、例えば、高圧ジェット水流をシートのZ軸方向に噴射することにより、高圧ジェット水流が噴射された部分の金属繊維がZ軸方向に配向する。このZ軸方向に配向した金属繊維が平面方向に不規則に配向した金属繊維間に絡みつき、各繊維が互いに三次元的に絡み合った状態、すなわち交絡することで物理的強度を得ることができるものである。
金属繊維材料の圧縮成形による製造方法は、まずは繊維をまとめ、予備的に圧縮等することでウェブを形成する。または繊維間の結合を付与するために繊維間にバインダを含浸させた後に予備的に圧縮等する。この後、金属繊維の集合体を加熱下で加圧して金属繊維シートを得る。
かかるバインダとしては、特に限定されないが、例えば、アクリル系接着剤、エポキシ系接着剤、ウレタン系接着剤などの有機系バインダの他に、コロイダルシリカ、水ガラス、ケイ酸ソーダなどの無機質接着剤を用いることもできる。バインダの含浸量は、シートの面重量1,000g/m2に対して、5~130gが好適であり、20~70gがより好適である。
なお、スプレー法によりバインダを含浸させる場合には、スプレー処理する前に金属繊維層をプレス加工等により所定厚さに成形するのが好ましい。
また、バインダを含浸する代わりに、繊維の表面に熱接着性樹脂を予め被覆しておき、金属繊維の集合体を積層した後に加熱し接着してもよい。
加圧圧力は繊維の弾力性、音響透過部材の厚さ、音響透過部材の光透過率を考慮して調節される。
上記音響透過材はポップノイズを低減できれば、例えば、円形音響透過材の周辺部に適宜貫通孔を開けることもできる。
なお、図5(B)、(C)、および(D)は、音響透過材が2つ設けられた例を示すが、この場合、両者の中心間距離は2mm~50mmの範囲であることが好ましい。中心間距離が2mm以上であれば、両方の音響透過材が充分な効果を発揮できる。また、通常の使用環境を考慮した場合、中心間距離は50mm以下が好ましい。具体的には、マイクロホンなどに取り付けるには、中心間距離が50mm以下であることが好ましい。
なお、音響透過材の中心間距離とは、図5(B)および(C)に示されるように、一方の音響透過材が平坦であり、他方の音響透過材が曲面を有する場合、平坦な音響透過材の中心部と、局面を有する音響透過材の中心部との距離Zを意味する。図5(D)に示されるように、2つの音響透過材が平坦ある場合には、平坦な音響透過材の中心部間の距離Zを意味する。
このように、音響透過材の端部が丸められていたり、フランジが設けられていると、衝撃風を効率的に整流し、ポップノイズ低減具端からマイクロホンの存在しない領域に流すことが出来、ポップノイズ低減具端部においても雑音の発生が抑えられるため、よりポップノイズを低減できる。
特に、音響透過材の表面が曲面である場合、衝撃風をより効率的に整流できるため、好ましい。
この従来のマイクロホンは、音を受ける振動板であるダイアフラム30と、ダイアフラムによって得られる振動を伝えるコイル31と、それらを収納するヘッドケース32と、ヘッドケースの内側に設けられた綿等で形成されたポップガード101とで概略構成されている。
図8に示すマイクロホンでは、ダイアフラム30に接しないように、かつダイアフラム30を覆うように本発明のポップノイズ低減具(音響透過材)1が取り付け具33に取り付けられている。この取り付け具33は、ポップノイズ低減具(音響透過材1)の振動をダイアフラム30に伝えない材料にて形成されている。また、振動をダイアフラム30に伝えない構造を具備してもよい。
図9に示すマイクロホンでは、従来スポンジなどで形成され、ヘッドケース32の内側を覆うように取り付けられていたマイク風防101を、本発明のポップノイズ低減具(音響透過材1)で置き換えたものである。
図10に示すマイクロホンでは、ダイアフラム30に接しないように、かつダイアフラム30を覆うように、ヘッドケース32の一部内面に防振材10を介して本発明のポップノイズ低減具(音響透過材1)が取り付けられている。つまり、図10に示すマイクロホンは、ポップノイズ低減具1のための取り付け具33を具備しない。
そして図11に示すマイクロホンは、図8と図9とにおける本発明のポップノイズ低減具を組み合わせたものである。つまり、図11に示すマイクロホンは、ダイアフラム30に接しないように、かつダイアフラム30を覆うように取り付けられたポップノイズ低減具(音響透過材1)と、ヘッドケースの内側を覆うように取り付けられたポップノイズ低減具(音響透過材1)とを具備する。
図11に示すように、ポップノイズ低減具を2つ用いたマイクロホンの場合には、先に説明したように、その両者の中心間距離は、2mm~50mmの範囲であることが好ましい。
以下、図面を参照して本発明のポップノイズ測定方法及びノイズ測定装置の一実施形態を説明する。本実施形態では、無音衝撃風発生源としてスピーカを用いた場合を例にあげて説明する。しかしながら、具現化及び製品化などに際しては、スピーカと略同等のピストン運動を無音で実現できるデバイス、または装置であれば、どのような装置も選択可能である。
また、以下説明では、図1及び図2における右側をX側と称し、左側を-X側と称することがある。
また、必要であれば整流用の直管部であるパイプ623を設けることもできる。
さらには、異音発生を低減するために、パイプ623の開口端側に機械インピーダンス調整部材624を設けることもできる。
パイプ623と機械インピーダンス調整部材624とを合わせた長さは、スピーカ口径や測定下限周波数に依存するが、10mm~50mmが好適である。
スピーカボックス8及び吸音材のグラスウール9は、背後に発生した空気流が収音装置7側に逆流することを低減するための目的によって設置され、当該現象の存在が認められなければ、設ける必要はない。
このような構成により、無音衝撃風発生装置6の開口端から100mm離れた場所で束径約50mm、風速数m~数十m/secの破裂音から音声部分を除いた無音衝撃風を発生させることができる。
無音衝撃風発生装置6に、図4のような正弦波信号~余弦波信号(1)、(2)及び(3)を直流パワーアンプ5経由で印加する。
実際の音声の発生過程である、閉鎖の形成→持続→開放を考慮すると、(2)の波形が音声の発生過程に最も近いと考えられる。しかしながら、(2)の信号と、(3)の信号とのどちらも用いることが可能である。
ここで信号の継続時間が短すぎると衝撃音としてノイズが発生し、長すぎると破裂音に伴う衝撃風自体を再現できないため、(2)または(3)とも信号の継続時間は20msec~100msecの範囲から、測定及び評価の主旨・目的に適合した最適値を選定することが重要となる。
また、正弦波上昇部の信号継続時間が25msec以下では無音衝撃風発生装置6の開口端で異音が発生し、100msec以上では風速不足となる。
このことから、図4中、参照番号(2)が付された、発音状況に近い正弦波上昇部から信号継続時間が25msecである範囲(図4中、二点破線で囲まれた範囲の正弦波)にてノイズを測定した(以下、基準測定条件ともいう)。
無音衝撃風発生装置6を駆動するための信号を、コントロール装置3から直流結合サウンドカード4を経由して、直流パワーアンプ5に印加する。この駆動信号により、無音衝撃風発生装置6のハイコンプライアンスロールエッジスピーカ61のスピーカコーンは図2の左側図において、-X側に除々に移動し、次いで一気にX側に戻ることで無音衝撃風を放射する。
放射された無音衝撃風は、第一スピードアップアダプタ621と第二スピードアップアダプタ622とで増速されて、X側に放出される。X側に放出された無音衝撃風は収音装置7に到達する。収音装置7によって検知されたポップノイズは電気信号に変換され、無音衝撃風発生装置コントロール装置3に戻り、周波数毎のポップノイズとして記録される。
このようにして測定対象の収音装置のポップノイズによる影響を調査することが可能である。
さらには、無音衝撃風発生装置6と収音装置7との間にポップノイズ低減具を設置したり、収音装置の風防としてポップノイズ低減具を取り付けたりして、ポップノイズの低減度合いを測定することもできる。また、無音衝撃風発生装置6の変わりに、電動ファン等の定常風発生装置を設置して、空調ドラフトや屋外自然風などの定常風に対する風雑音の測定を実施することも可能である。
また、ポップノイズ低減具は、基本的に、風源である前記無音衝撃風発生装置6と収音装置7のマイクロホンユニットとの間に設置するものとする。
金属繊維音響透過材の製造
ステンレスAISI316Lからなる線径30μmの繊維を均一になるように重ね合わせて綿状のウェブを作成した。このウェブを目付けが950g/m2になるように量り取り、厚みが800μmになるように平板間で圧縮した。この圧縮して板状になったものを焼結炉に入れ、真空雰囲気中で1100℃に加熱し、焼結させ音響透過材を得た。
ポップノイズ低減具として、実施例1で作製した音響透過材を、図5(B)に示すように中心間距離が3mmとなるように2枚配置したこと以外は、実施例1と同様にしてポップノイズ減衰量の測定を実施した。
実施例1と同様の音響透過材を深絞り加工により収音装置7の風防型に成形し、収音装置7の風防として取り付け、これをポップノイズ低減具とした以外は実施例1と同様にしてポップノイズ減衰量の測定を実施した。つまり、本実施例では図9に示されるポップノイズ低減具を得た。
図5(C)に示すように、ポップノイズ低減具において、2枚の音響透過材が接する部分に防振材10を取り付けたこと以外は実施例1と同様にしてポップノイズ減衰量の測定を実施した。
フッ素樹脂繊維音響透過材の製造
テトラフルオロエチレンとエチレンとの共重合体からなる熱可塑性フッ素繊維(旭硝子社製アフロンCOP、10μmΦ×11mm品使用)80重量部と、叩解度40°SRのNBKP20部とを水に分散混合してフッ素樹脂繊維音響透過材の原料を得た。次いで、ベタイン型両性界面活性剤(大和化学工業社製、デスグランB使用)を得られた原料(フッ素繊維とパルプに対して。以下も同様)に対して0.5重量%加え、攪拌機により離解した。その後アクリルアミド系分散剤(ダイヤフロック社製アクリパースPMP使用)を上記原料に対して1重量%加えて、TAPPIスタンダードシートマシンでシート化し、乾燥して秤量115g/dのフッ素繊維混抄紙を得た。その後このフッ素繊維抄紙を220℃にて10kg/cm2で20分間加熱加圧処理し、さらに常温で98%H2SO4液に浸してフッ素繊維混抄紙中のパルプ分を溶解し、これを水洗して再び乾燥して厚さ250μmの音響透過材を得た。
金属繊維音響透過材の製造
繊維長4mm、繊維径8μmのステンレス繊維(商品名サスミック、東京製綱社製)60重量部、微細状導電性金属として繊維長4mm、繊維径30μmの銅繊維(商品名カプロン、エスコ社製)20重量部、および水中溶解度70℃であるPVA繊維(フィブリボンドVPB105-1-3クラレ社製)20重量部からなるスラリーを湿式抄紙法によって脱水プレス、加熱乾燥し100g/m2の金属繊維シートを得た。得られた該シートを表面温度が160℃の加熱ロールを用い線圧300kg/cm、速度5m/minの条件で加熱圧着した。次に圧着した金属繊維シートを加圧することなく水素ガス雰囲気の連続焼結炉(メッシュベルト付ろう付炉)を用い、熱処理温度1,120℃、速度15cm/minで焼結処理を行い、坪量80g/m2、密度1.69g/cm3のステンレス繊維表面に銅が融着して被覆された厚さ45μmの音響透過材を得た。
ポップノイズ低減具として、図5(D)に示す形態の弾力繊維ポップフィルタであるSONTRONICS(ソントロニクス)製、製品名ST-POPを使用したこと以外は、実施例1と同様にしてポップノイズ減衰量の測定を実施した。
ポップノイズ低減具として、図5(E)に示す形態のエキスパンドメタルであるSTEDMAN(ステッドマン)製、製品名PROSCREEN101を使用したこと以外は、実施例1と同様の構成でポップノイズ減衰量の測定を実施した。
ポップノイズ低減具として、比較例1で使用したSONTRONICS(ソントロニクス)製、製品名ST-POPを風源側に、比較例2で使用したSTEDMAN(ステッドマン)製、製品名PROSCREEN101を収音装置側に、機械インピーダンス調整部材624の開口端と収音装置7の中間点を挟むように配置したこと以外は、実施例1と同様にしてポップノイズ減衰量の測定を実施した。
(1)全音響透過性の確認
一方、本発明で述べる全音響透過性を有するとは、入射方向によらず主要音声周波数帯域(300Hz~3.5kHz)においてほぼ全音響エネルギーが透過するような材料の性質と定義した。
具体的には、後述する方法で測定された、0°の入射角または(相反則により)透過後の角度において、試料あり・無しの振幅特性差(音圧差)が観測周波数帯域内で2~3dB以内である場合を、「全音透過性有り」と判断した。
図7に示すように、有効径10数cmのスピーカaを取り付けた約2,250cm3の発音装置から連続正弦波スイープ音を放出し、その前面に、各実施例及び各比較例のポップノイズ低減具bを設置して、スピーカa前面より約1,500mmの位置に設置したマイクロホンcで測定される周波数ごとの音圧をレベルレコーダ等に記録した。
その状態でポップノイズ低減具bの有り、無しの音圧の変化を、挿入損失△(dB)として測定・確認した。スピーカaから放出した音源としては、20Hzから20kHzまで、周波数変調を掛けない連続正弦波スイープ信号を用いた。ここで使用する音は、バックグラウンドノイズに対してS/N比で20dB以上とした。挿入損失は下記の式により絶対値として求めた。
挿入損失△(dB)=| 試料の無い時のマイクロホンの周波数応答(dB)-試料を置いた時の周波数応答(dB)|
中心周波数63Hz~8kHzの各1/1オクターブ帯域を通して、
挿入損失△(dB)が2dB以内の場合は「良」とし、
5dB以内の計測値がある場合は「やや劣る」とし、
5dBを越える計測値がある場合には「劣る」とした。
以下に示すバブルポイント法により本発明のポップノイズ低減具をなす音響透過材の微細孔有無及びその最大孔径を求めた。
バブルポイント法
パームポロメーター(西華産業製)で測定
サンプルをイソプロピルアルコールに浸漬し、下側から空気の圧力を上げていくとある値に達した時に最初に最大孔径の孔から気泡が発生する。この時の圧力をバブルポイント圧と呼び、下記に示す式を用いて最大孔径を求めた。測定結果を表1に示す。
ポップノイズ低減具のフィルタ面が、出射光に対して垂直になるようにジェネシア製ゴニオフォトメーター(Gonio/Far Field Profiler)にセットし、出射光に対して0°で直線透過光を測定した。測定においては、まず、サンプル無しで測定を実施した値を100%とし、測定サンプルを置いた状態での測定値をサンプル無しの値で割ることで、直線光線透過率%を算出した。測定結果を表2に示す。
また、比較例1及び3以外は挿入損失がほとんど見られず、全音響透過していることが分かる。比較例1及び3は、挿入損失が2dB以上、5dB以内の周波数が存在し、全音響透過とは言えない状況であった。
さらに、繊維が互いに交絡してなる音響透過材を使用した実施例1~6のポップノイズ低減具の直線光線透過率は20%以下であり、目視でも確認できる貫通孔を全面に有する音響透過材を使用した比較例1~3のポップノイズ低減具の直線光線透過率は40%を越えるものであった。
ポップノイズ低減特性に関しては、30~100Hzの周波数帯に於いて実施例1~6は、25~45dBの低減効果を示した。これに対して、比較例2は実施例1~6と同程度の挿入損失を有するものの、最大で22dBの低減効果しか示していなかった。さらに、挿入損失が劣る比較例1及び3であっても最大35dB程度の低減効果を示すのみであった。
また、本発明のポップノイズ測定方法及びノイズ測定装置を使用したポップノイズ低減効果の確認により、本発明のポップノイズ低減具は、従来技術と比較して特に低周波域でポップノイズを効果的に低減できることができることが示された。
実施例2での音響透過材の中心間距離である3mmを、1.5mmに変更した以外は、実施例2と同様にしてポップノイズ減衰量の測定を実施した。その結果を表3に示す。
実施例1で使用した音響透過材の端部を、その断面形状が図6(A)に示すように、丸めた以外は実施例1と同様にしてポップノイズ減衰量の測定を実施した。その結果を表3に示す。
実施例1で使用した音響透過材の端部に、その断面形状が図6(B)に示すように、フランジを設けた以外は実施例1と同様にしてポップノイズ減衰量の測定を実施した。その結果を表3に示す。
実施例8および9におけるポップノイズ減衰量は、マイクに風防として取り付けた実施例3および2枚の音響透過材の間に防振材を取り付けた実施例4には劣った。しかしながら、実施例8および9におけるポップノイズ減衰量は、音響透過材の周囲を丸めたり、フランジを付けたりしない、平坦な実施例1におけるポップノイズ減衰量と比較すると、優れたポップノイズ減衰性を具備することが明らかである。
2・・・・・ノイズ測定装置
3・・・・・無音衝撃風発生装置コントロール装置
4・・・・・直流結合サウンドカード
5・・・・・直流パワーアンプ
6・・・・・無音衝撃風発生装置
10・・・・弾性部材
20・・・・フレーム
30・・・・ダイアフラム
31・・・・コイル
32・・・・ヘッドケース
33・・・・ダイアフラム取り付け具
61・・・・ハイコンプライアンスロールエッジスピーカ
62・・・・衝撃風スピードアップアダプタ
101・・・・風防
621・・・第一スピードアップアダプタ
622・・・第二スピードアップアダプタ
623・・・パイプ
624・・・機械インピーダンス調整部材
7・・・・・収音装置
8・・・・・スピーカボックス
9・・・・・グラスウール
10・・・・防振材
a・・・・・スピーカ
b・・・・・音響透過材または、ポップノイズ低減具
c・・・・・マイクロホン
z・・・・・音響透過材同士の中心間距離
Claims (18)
- 少なくとも一方の面から他方の面へ通じる微細孔を有し、かつ繊維が互いに交絡してなり、直線光線透過率が20%以下である音響透過材をその構成部材として有することを特徴とするポップノイズ低減具。
- 前記音響透過材が前記マイクロホンに装着され、前記マイクロホンユニットを保護する風防を兼ねることを特徴とする請求項1に記載のポップノイズ低減具。
- 音響透過材を少なくとも2つ具備することを特徴とする請求項1に記載のポップノイズ低減具。
- 前記音響透過材の少なくとも1つが薄板状の形状であり、もう1つが前記マイクロホンユニットを保護する風防を兼ねて、前記マイクロホンに装着されていることを特徴とする請求項3に記載のポップノイズ低減具。
- 音響透過材同士の距離が2mm~50mmとなるように配置されたことを特徴とする請求項3に記載のポップノイズ低減具。
- マイクロホンユニットのダイアフラムから前記ポップノイズ低減具のうちの少なくとも一つまでの直線距離が25mm以上であることを特徴とする請求項1に記載のポップノイズ低減具。
- 前記音響透過材が弾性部材等により防振されていることを特徴とする請求項1記載のポップノイズ低減具。
- 前記ポップノイズ低減具を所定位置に固定するための固定部材を有することを特徴とする請求項1記載のポップノイズ低減具。
- 無音衝撃風を発生させるポップノイズ再現工程と、前記無音衝撃風発生工程によって発生した衝撃風により生じるポップノイズを収音する工程とを有するポップノイズ測定方法により測定したポップノイズ減衰量が25db以上であることを特徴とする請求項1に記載のポップノイズ低減具。
- 無音衝撃風を発生させるポップノイズ再現工程と、前記無音衝撃風発生工程によって発生した衝撃風により生じるポップノイズを収音する工程とを有することを特徴とするポップノイズ測定方法。
- 前記ポップノイズを収音する工程では破裂音を、有音部と、衝撃風により生じるポップノイズとに分けてポップノイズのみを収音することを特徴とする請求項10記載のポップノイズ測定方法。
- 少なくとも無音衝撃風を発生させる手段を駆動させる装置と、無音衝撃風を発生させる発生装置とを有するポップノイズ再現装置と、上記無音衝撃風発生装置によって発生した衝撃風により生じるポップノイズを収音する装置とを有することを特徴とするポップノイズ測定装置。
- 前記収音装置では破裂音を、有音部と、衝撃風により生じるポップノイズとに分けてポップノイズのみを収音することを特徴とする請求項12記載のポップノイズ測定装置。
- 前記無音衝撃風発生装置が、スピーカと、スピーカから発生した無音衝撃風を増速させる少なくとも1つのスピードアップアダプタと、無音衝撃風を整流するための整流部と、異音発生を低減するためのインピーダンス調整部とを具備することを特徴とする請求項13記載のポップノイズ測定装置。
- 請求項1記載のポップノイズ低減具を具備するマイクロホン。
- 前記ポップノイズ低減具が、ヘッドケースの内側を覆うように設けられたことを特徴とする請求項15記載のマイクロホン。
- 前記ポップノイズ低減具が、ダイアフラムに接することなく、ダイアフラムを覆うように取り付けられていることを特徴とする請求項15記載のマイクロホン。
- ヘッドケースの内側を覆うように設けられたポップノイズ低減具と、ダイアフラムに接することなく、ダイアフラムを覆うように取り付けられているポップノイズ低減具とを具備することを特徴とする請求項15記載のマイクロホン。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580010320.8A CN106031193A (zh) | 2014-02-28 | 2015-02-27 | 气爆杂音降低器、具备其的麦克风、气爆杂音测量方法及气爆杂音测量装置 |
EP15754884.3A EP3094104A4 (en) | 2014-02-28 | 2015-02-27 | Pop noise reduction tool, microphone equipped therewith, pop noise measurement method, and pop noise measurement device |
JP2016505325A JPWO2015129862A1 (ja) | 2014-02-28 | 2015-02-27 | ポップノイズ低減具、それを具備するマイクロホン、ポップノイズ測定方法、及びポップノイズ測定装置 |
US15/120,686 US20170026731A1 (en) | 2014-02-28 | 2015-02-27 | Pop noise reduction tool, microphone equipped therewith, pop noise measurement method, and pop noise measurement device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014037727 | 2014-02-28 | ||
JP2014-037727 | 2014-02-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015129862A1 true WO2015129862A1 (ja) | 2015-09-03 |
Family
ID=54009175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/055882 WO2015129862A1 (ja) | 2014-02-28 | 2015-02-27 | ポップノイズ低減具、それを具備するマイクロホン、ポップノイズ測定方法、及びポップノイズ測定装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20170026731A1 (ja) |
EP (1) | EP3094104A4 (ja) |
JP (1) | JPWO2015129862A1 (ja) |
CN (1) | CN106031193A (ja) |
WO (1) | WO2015129862A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3439319A4 (en) * | 2016-03-29 | 2019-11-13 | Tomoegawa Co., Ltd. | MICROPHONE-CANON ANTI-WIND PROTECTION |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110244028A (zh) * | 2019-05-23 | 2019-09-17 | 岳阳林纸股份有限公司 | 一种快速检测叩解度的方法 |
CN112839291B (zh) * | 2020-12-24 | 2022-08-05 | 佳禾智能科技股份有限公司 | 一种测试麦克风负压产生pop音的装置及测试方法 |
US20220210585A1 (en) * | 2020-12-29 | 2022-06-30 | Starkey Laboratories, Inc. | Acoustic element |
DE102022205148B3 (de) * | 2022-05-24 | 2023-09-14 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein | Geschlossener Schallaufnehmer mit schalldurchlässiger Grenzfläche |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5668094A (en) * | 1979-11-08 | 1981-06-08 | Sony Corp | Microphone |
JPS59146294A (ja) * | 1983-02-09 | 1984-08-22 | Matsushita Electric Ind Co Ltd | マイクロホン |
JP2012060544A (ja) * | 2010-09-10 | 2012-03-22 | Tomoegawa Paper Co Ltd | マイクロホン用風防及びマイクロホン装置 |
WO2013141158A1 (ja) * | 2012-03-21 | 2013-09-26 | 株式会社巴川製紙所 | マイクロホン装置、マイクロホンユニット、マイクロホン構造及びそれらを用いた電子機器 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5919821A (ja) * | 1982-07-26 | 1984-02-01 | Matsushita Electric Ind Co Ltd | 音響評価方法 |
JP4206599B2 (ja) * | 2000-02-29 | 2009-01-14 | 康浩 蜂須賀 | マイクロホン |
JP3866726B2 (ja) * | 2004-03-03 | 2007-01-10 | 財団法人鉄道総合技術研究所 | マイクロホンの被覆構造及び風洞試験装置 |
JP2006116724A (ja) * | 2004-10-19 | 2006-05-11 | Canon Inc | 多層構造をもつ樹脂成形体の成形方法及び樹脂成形体 |
KR100673843B1 (ko) * | 2005-10-31 | 2007-01-24 | 주식회사 비에스이 | 윈드 스크린 필터를 구비하는 콘덴서 마이크로폰과 이콘덴서 마이크로폰이 실장되는 외부프레임 |
US8855795B2 (en) * | 2007-01-09 | 2014-10-07 | Mediatek Inc. | Multiple output audio system |
JP5816482B2 (ja) * | 2011-08-01 | 2015-11-18 | オリンパス株式会社 | 音声記録再生装置 |
-
2015
- 2015-02-27 CN CN201580010320.8A patent/CN106031193A/zh active Pending
- 2015-02-27 US US15/120,686 patent/US20170026731A1/en not_active Abandoned
- 2015-02-27 EP EP15754884.3A patent/EP3094104A4/en not_active Withdrawn
- 2015-02-27 WO PCT/JP2015/055882 patent/WO2015129862A1/ja active Application Filing
- 2015-02-27 JP JP2016505325A patent/JPWO2015129862A1/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5668094A (en) * | 1979-11-08 | 1981-06-08 | Sony Corp | Microphone |
JPS59146294A (ja) * | 1983-02-09 | 1984-08-22 | Matsushita Electric Ind Co Ltd | マイクロホン |
JP2012060544A (ja) * | 2010-09-10 | 2012-03-22 | Tomoegawa Paper Co Ltd | マイクロホン用風防及びマイクロホン装置 |
WO2013141158A1 (ja) * | 2012-03-21 | 2013-09-26 | 株式会社巴川製紙所 | マイクロホン装置、マイクロホンユニット、マイクロホン構造及びそれらを用いた電子機器 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3094104A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3439319A4 (en) * | 2016-03-29 | 2019-11-13 | Tomoegawa Co., Ltd. | MICROPHONE-CANON ANTI-WIND PROTECTION |
Also Published As
Publication number | Publication date |
---|---|
EP3094104A1 (en) | 2016-11-16 |
EP3094104A4 (en) | 2018-04-11 |
US20170026731A1 (en) | 2017-01-26 |
JPWO2015129862A1 (ja) | 2017-03-30 |
CN106031193A (zh) | 2016-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5927291B2 (ja) | マイクロホン装置、マイクロホンユニット、マイクロホン構造及びそれらを用いた電子機器 | |
WO2015129862A1 (ja) | ポップノイズ低減具、それを具備するマイクロホン、ポップノイズ測定方法、及びポップノイズ測定装置 | |
JP5683044B2 (ja) | 音響透過性材料の製造方法 | |
US11478760B2 (en) | Waterproof gas-permeable membrane, waterproof gas-permeable member and waterproof gas-permeable structure including same, and waterproof sound-permeable membrane | |
WO2016174871A1 (ja) | 高分子樹脂フィルムとこれを備える通気膜、通音膜、音響抵抗体、通気膜部材、通音膜部材、音響抵抗体部材および音響機器ならびに高分子樹脂フィルムの製造方法 | |
JP2009057663A (ja) | 通気抵抗膜とその製造方法、および通気抵抗膜を用いた吸音性積層部材 | |
US5192624A (en) | Sound absorbing materials | |
JP5517256B2 (ja) | マイクロホン用風防及びマイクロホン装置 | |
WO2016136973A1 (ja) | 防音構造、及び防音構造の製造方法 | |
WO2017169213A1 (ja) | ガンマイク用風防 | |
JP2010059658A (ja) | 吸音構造体用部材及び吸音構造体 | |
JP6421304B2 (ja) | 撥水性を有する多孔質材及びこれを用いた音響透過材。 | |
JP2007030268A (ja) | 吸遮音材 | |
JP5940634B2 (ja) | 音響透過性材料、並びに、当該材料を用いた建築用途を含む音響調整面構造、マイクロホン用風防、保護用グリル、音響透過性映写スクリーン及びスピーカ | |
CN205272752U (zh) | 铝箔隔音棉 | |
WO2017169212A1 (ja) | ガンマイク用風防 | |
JP6491926B2 (ja) | 音響透過性材料の製造方法 | |
CN205310994U (zh) | 隔音棉 | |
JP2019139234A (ja) | 音響透過性材料 | |
CN205364735U (zh) | 吸音棉 | |
JP2013139709A5 (ja) | ||
JP2013139709A (ja) | 吸音構造体用部材及び吸音構造体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15754884 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016505325 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015754884 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015754884 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15120686 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |