WO2015129843A1 - センサ,センサ装置およびセンサ装置の駆動方法 - Google Patents

センサ,センサ装置およびセンサ装置の駆動方法 Download PDF

Info

Publication number
WO2015129843A1
WO2015129843A1 PCT/JP2015/055754 JP2015055754W WO2015129843A1 WO 2015129843 A1 WO2015129843 A1 WO 2015129843A1 JP 2015055754 W JP2015055754 W JP 2015055754W WO 2015129843 A1 WO2015129843 A1 WO 2015129843A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
sensor
light
light receiving
emitting element
Prior art date
Application number
PCT/JP2015/055754
Other languages
English (en)
French (fr)
Inventor
雄治 増田
森 博之
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2015532630A priority Critical patent/JP5894344B2/ja
Publication of WO2015129843A1 publication Critical patent/WO2015129843A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • A61B5/02427Details of sensor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • A61B2562/043Arrangements of multiple sensors of the same type in a linear array

Definitions

  • the present invention relates to a sensor for measuring a pulse wave for the purpose of health management, a sensor device using the sensor, and a driving method of the sensor device.
  • the heart rate representing various states of living organisms including humans is used as a useful index in various fields such as health management, health promotion, sleep state grasping, and medical purposes.
  • a reflection type and a transmission type are measurement methods that utilize the difference between the light absorption characteristics of substances in blood and the light absorption characteristics of other parts of the body.
  • a reflection type pulse wave measurement method a light emitting element and a light receiving element are arranged in parallel on the surface of a living body, light is emitted from the light emitting element into the living body, and passes through a blood vessel.
  • a method for detecting incoming reflected light with a light receiving element has been proposed.
  • the above-described heartbeat measurement method by pulse wave measurement has an advantage that it can be easily measured as compared with the measurement method by electrocardiogram. For this reason, it is desired to measure with high accuracy in the pulse wave measuring method.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a sensor capable of measuring pulse waves with high accuracy, a sensor device using the sensor, and a driving method of the sensor device.
  • the surface of a living body is irradiated with light by a light emitting element, the light reaching through the living body is received by a light receiving element, and the diameter of a blood vessel inside the living body is changed.
  • It is a sensor which detects as a pulse wave signal which shows.
  • the sensor has a light emitting element array and a light receiving element array.
  • the light emitting element array includes a plurality of the light emitting elements, and the light emitting elements are arranged in a first direction on a predetermined surface.
  • the light receiving element array includes a plurality of light receiving elements, and these light receiving elements are arranged in the first direction on the predetermined surface.
  • the light emitting element array in the light emitting element array and the light receiving element are formed.
  • the element array is arranged so as not to be aligned with the region where the light receiving element is formed.
  • the first sensor and the second sensor which are the sensors according to the present invention, are arranged with an interval in the second direction.
  • the plurality of light emitting elements in the first sensor and the second sensor are caused to emit light periodically. And it is made to light-emit so that the light emission time of the said several light emitting element in a said 1st sensor and the light emission time of the said several light emitting element in a said 2nd sensor may not overlap.
  • the present invention it is possible to provide a sensor capable of measuring pulse waves with high accuracy and a sensor device using the sensor.
  • FIG. 1 is a schematic top view of a sensor 100.
  • FIG. It is the schematic which shows an example with which the sensor 100 is mounted
  • (A) And (b) is explanatory drawing for demonstrating the measurement mechanism by providing multiple light emitting elements L and light receiving elements P, respectively.
  • (A) And (b) is explanatory drawing for demonstrating the measurement mechanism by providing multiple light receiving elements P, respectively. It is a figure which shows the processing flow of the calculating part. It is a figure which shows the processing flow of the calculating part 50B.
  • FIG. 1 is a diagram illustrating an example of driving a light emitting element in the sensor device 200.
  • FIG. 2 is a top view showing an embodiment of a sensor device 200.
  • FIG. 6 is a diagram illustrating an example of driving a light emitting element in the sensor device 200.
  • FIG. It is a principal part enlarged view of FIG. (A) And (b) is a principal part expanded sectional view which shows the specific structure of the light emitting element array 10, and the specific structure of the light receiving element array 20, respectively.
  • (A) is a top view which shows schematic structure of the sensor model for verifying a mechanism
  • (b) is a figure which shows the relationship between the distance of the light emitting element L and the light receiving element P, and the amplitude intensity of a detection signal.
  • (A) And (b) is the figure which measured the detection strength of the sensor which concerns on the Example of this invention, respectively.
  • the sensor 100 includes a light emitting element array 10 and a light receiving element array 20.
  • FIG. 1 is a top view showing a schematic configuration of the element unit 40 of the sensor 100.
  • the left-right direction is the first direction D1
  • the up-down direction is the second direction D2.
  • the sensor 100 irradiates light on the surface of a living body of a subject, receives light that has passed through the body and reached a light receiving element, and obtains a pulse wave signal indicating a change in the diameter of a blood vessel inside the living body.
  • the element unit 40 is arranged on the inner side of a person's wrist and the ulnar artery or radial artery is a measurement target is described as an example.
  • the blood vessel to be measured is not limited to the ulnar artery or radial artery as long as it is one artery extending in one direction.
  • an artery close to the end may be selected instead of a thick blood vessel such as the carotid artery.
  • the element unit 40 of the sensor 100 includes a light emitting element array 10 and a light receiving element array 20.
  • the light emitting element array 10 includes a plurality of light emitting elements L, and they are arranged in a first direction D1 on a predetermined surface.
  • the light emitting element array 10 has four light emitting elements L arranged on the surface of the substrate 11, and the light emitting elements L1 to L4 are arranged at equal intervals in the first direction D1.
  • the light receiving element array 20 includes a plurality of light receiving elements P, which are arranged in a first direction D1 on a predetermined surface.
  • the light receiving element array 20 has four light receiving elements P arranged on the surface of the substrate 21, and the light receiving elements P1 to P4 are arranged at equal intervals in the first direction D1.
  • the light emitting element array 10 and the light receiving element array 20 are formed on the wiring substrate 30 in a region where the light emitting elements L1 to L4 are formed in the light emitting element array 10 and the light receiving elements P1 to P4 in the light receiving element array 20.
  • the region where P4 is formed is arranged so as not to be aligned when viewed from a second direction D2 orthogonal to the first direction D1 on a predetermined surface. That is, it arrange
  • the direction from the light emitting element array 10 to the light receiving element array 20 in the first direction D1 is the forward direction and the opposite direction is the reverse direction, the light emission located closest to the light receiving element array 20 in the light emitting element array 10.
  • the element L4 is positioned on the opposite side of the light receiving element array 20 in the light receiving element array 20 closest to the light emitting element array 10 side.
  • the region where the light emitting elements L1 to L4 are formed in the light emitting element array 10 and the region where the light receiving elements P1 to P4 are formed in the light receiving element array 20 are in the first direction D1. They are arranged side by side.
  • “arranged side by side” includes being arranged in a shifted manner in the second direction.
  • the light emitting element array 10 and the light receiving element array 20 are arranged in one row in the first direction D1 so that the two arrays do not overlap in the first direction D1.
  • “on a predetermined surface” is not limited to being on a flat surface.
  • it may be on a surface including a surface with a different position in the thickness direction, on a curved surface, or on a surface having a step in part.
  • it is not always necessary to have a single continuous surface, and a plurality of surfaces are defined as predetermined surfaces, which includes being on the surface.
  • the upper surface of the substrate 11, the upper surface of the substrate 21, and the upper surface of the wiring substrate 30 are respectively on predetermined surfaces.
  • the center intervals of the plurality of light emitting elements L and the center intervals of the plurality of light receiving elements P are the same.
  • the center interval (referred to as pitch) of the light receiving elements P1 to P4 and the center interval of the light emitting elements L1 to L4 are 0.5 mm or more and 1 mm or less, respectively.
  • the interval (gap) between the light emitting element array 10 and the light receiving element array 20 is set to 2 mm or more and 3 mm or less.
  • the size of each of the light receiving elements P1 to P4 is smaller than the element pitch in the first direction D1, and is 0.2 mm or more and 0.5 mm or less in the second direction D2. Each size is 0.3 mm square.
  • the element portion 40 of the sensor 100 having such a configuration is attached to the wrist on the palm side so that the light emitted from the light emitting elements L1 to L4 is irradiated to the human body.
  • the ulnar artery on the little finger side is mounted so that the array of the light emitting elements L1 to L4 and the light receiving elements P1 to P4 of the element unit 40 crosses.
  • the sensor 100 is attached to the wrist such that the direction in which the ulnar artery extends extends across the first direction D1.
  • the extending direction of the ulnar artery is made substantially parallel to the second direction D2.
  • the senor 100 may be mounted so as to have the same positional relationship with respect to the radial artery on the thumb side instead of the ulnar artery.
  • the ulnar artery and radial artery in the vicinity of the wrist both extend from the elbow toward the palm through the wrist. For this reason, what is necessary is just to make it a 1st direction cross this direction.
  • the first direction may be aligned with the direction along the circumferential direction of the wrist.
  • FIG. 3 shows the positional relationship between the element unit 40 and the blood vessel B when the sensor 100 is mounted on the human body.
  • 3A and 3B show a positional relationship between the element unit 40 and the blood vessel B.
  • FIG. 3A is a schematic top view
  • FIG. 3B is a cross-sectional view.
  • 3A shows that the surface (front surface) on which the light emitting element array 10 and the light receiving element array 20 are arranged in the element portion 40 is mounted toward the blood vessel B side (skin S side), and therefore the sensor 100
  • the figure is confirmed from the back side, and the constituent elements arranged on the front side (the side in contact with the skin S) are indicated by broken lines.
  • the components excluding the surface of the skin S and the blood vessel B in the body are not shown.
  • the element unit 40 is arranged so that the first direction crosses the direction in which the blood vessel B extends. Preferably, they are arranged so that the angle formed by both directions is 60 ° to 120 °, more preferably approximately 90 °.
  • the light emitting elements L1 to L4 when the light emitting elements L1 to L4 emit light, the light emitted from the light emitting elements L1 to L4 is irradiated into the human body, and the light that has passed through the human body is reflected.
  • Light is received by the light receiving elements P1 to P4.
  • Each of the light receiving elements P1 to P4 receives light that has passed through the inside of the human body as light having an intensity that reflects the components of the passage path.
  • a pulse wave signal corresponding to a change in diameter according to the expansion / contraction of the blood vessel can be obtained.
  • a broken line indicates that the light from the light emitting element L1 passes through the human body and reaches the light receiving element P1.
  • broken lines indicate that light from the light emitting element L2 reaches the light receiving element P2, light from the light emitting element L3 reaches the light receiving element P3, and light from the light emitting element L4 reaches the light receiving element P4.
  • the light from the light emitting element L reaches the light receiving elements P other than the individual light receiving elements P described above.
  • the light diffusion depth inside the human body varies depending on the distance between the light emitting element L that emits light and the light receiving element P that receives the light.
  • FIGS. 4A and 4B are explanatory views for explaining the effects of using the light emitting element array 10 and using the light emitting element array 10 and the light receiving element array 20, respectively.
  • a plurality of light emitting elements L1 to L4 and light receiving elements P1 to P4 are arranged in a first direction D1 across the blood vessel B.
  • first direction D1 of the plurality of light emitting elements L1 to L4 is a direction across the blood vessel B, as shown in FIG. 4A, the blood vessel B and the sensor 100 in the first direction D1.
  • a pulse wave signal can be obtained even if the relative position is shifted.
  • the case where the blood vessel B is shifted from the position B-1 to the position B-4 is shown as an example.
  • the measurable range R1 is increased by R2 by arraying compared to the case where the light emitting element L is only the light emitting element L1.
  • the blood vessel B is at the positions B-1 and B-4, there is no blood vessel B in the light path from the light emitting elements L1 to L4 to the light receiving element P, so that a pulse wave signal is obtained. I can't.
  • the measurable range R1 has a width.
  • a measurable range R1 equivalent to that when arrayed it is possible to obtain a measurable range R1 equivalent to that when arrayed. That is, if the light emitting element L is arranged far away from the light receiving element and the light emission intensity of the light emitting element L is increased, a pulse wave signal can be obtained even if the relative position between the blood vessel B and the sensor 100 is shifted. In the example of this figure, even if only the light emitting element L4 is provided and the light emission intensity is increased, the measurable range R1 equivalent to that in the case of arraying can be realized.
  • the light from the plurality of light emitting elements L1 to L4 is arranged in the first direction D1, which is the arrangement direction of the plurality of light emitting elements L1 to L4.
  • the light receiving elements P1 to P4 receive light.
  • combinations of light receiving elements P that receive light with respect to individual light emitting elements L are determined in advance, a plurality of combinations in which the distances between the light emitting elements L and the light receiving elements P are substantially the same can be obtained. .
  • the pulse A wave signal can be obtained.
  • the light emitting element L can be driven at a low voltage, and the sensor 100 can be easily controlled in the measurement operation.
  • the light emitting element array 10 and the light receiving element array 20 are arranged in a line in the first direction D1.
  • the distance in which the light emitting element L and the light receiving element P are arranged in the first direction D1 can be increased, and thus the displacement of the relative position with respect to the blood vessel B in the first direction D1 is allowed.
  • the range can be expanded effectively.
  • the distance between the light emitting element L and the light receiving element P can be shortened. Thereby, blood vessel information can be quickly collected with respect to driving of the light emitting element L. Thereby, it can be set as the sensor 100 with good response performance.
  • the pulse wave can be detected by the sensor 100 by using the detection signal detected by the light receiving element array 20 as a pulse wave signal by the calculation means.
  • This calculation means may be built in the same member as the element section 40, or is taken out by the calculation means located at a position away from the element section 40 via an electrode pad (not shown) disposed on the wiring board 30. May be.
  • the detection signal may be transmitted to a separate signal processing unit via the antenna terminal, and converted into a pulse wave signal by the calculation means in the signal processing unit.
  • the light-emitting element array 10 and the light-receiving element 10 receive light so that each of the plurality of light-emitting elements L (L1 to L4) and the plurality of light-receiving elements P (P1 to P4) has a center distance of 2 mm or more.
  • An element array 20 is arranged. This is because, among the plurality of light-receiving elements P, when the plurality of light-emitting elements L emit light, the light-receiving element Px that receives light that has passed through the ulnar artery or radial artery and the light-receiving element Py that enters without passing through the light-emitting element L Is necessary to have both.
  • the conditions of the center distance between the plurality of light emitting elements L (L1 to L4) and the plurality of light receiving elements P (P1 to P4) required for obtaining the light receiving element Px and the light receiving element Py depend on the artery to be measured. Different. In this example, since the ulnar artery or radial artery located on the wrist is the measurement object, the thickness is set to 2 mm. The center distance between the light emitting element L1 and the light receiving elements P3 and P4 is 2 mm or more.
  • a plurality of light emitting elements L (L1 to L4) and a plurality of light receiving elements P (P1 to P1) are obtained.
  • the distance between the centers is preferably 4 mm or less.
  • the effect of arraying the light receiving elements P in the sensor 100A will be described with reference to FIG.
  • FIG. 5A when light is received by one light-receiving element P having a large area (Reference Model), the average of the paths through which light from the light-emitting element L passes until it reaches the light-receiving element P Information.
  • FIG. 5B by dividing the light receiving element P and providing a plurality of light receiving elements P, the light Ray1 that has passed through the blood vessel B and the light Ray2 that has not passed through the blood vessel B can be separated. it can. In the example shown in FIG. 5A, the light Ray1 and the light Ray2 cannot be distinguished by one light receiving element P.
  • the light receiving elements P1 and P2 receive the light Ray1 that has passed through the blood vessel, and the light receiving elements P3 and P4 receive the light Ray2 that has not passed through the blood vessel. It becomes. Accordingly, the detection sensitivity of the sensor 100A can be increased by selecting the light receiving element P that receives light including the most information on the blood vessel B. In the example of FIG. 5B, among the light receiving elements P1 and P2, the light receiving element P1 is selected in consideration of the point that the light receiving element P1 has more blood vessel information, or the detection signals of the light receiving elements P1 and P2 are used. It can be selected as appropriate, for example, to be added up.
  • the sensor 100A in addition to the information on the light receiving element Px that has passed through the blood vessel B, information on the light receiving element Py that receives light that has not passed through the blood vessel B can be used.
  • an optimum distance between the light emitting element L and the light receiving element P that contains a lot of information on the blood vessel B is obtained from the light emission intensity of the light emitting element L and the depth position of the blood vessel B, and the light emitting element L that becomes this optimum distance. Focusing on the fact that a plurality of combinations of light receiving elements P can be made. That is, the distance identity between the light emitting element L and the light receiving element P is focused.
  • the calculation unit 50 performs detection signal processing along the flow shown in FIG.
  • the calculation unit 50 includes a data acquisition unit 51, a data determination unit 52, and a data correction unit 53.
  • the data acquisition unit 51 obtains detection signals S0 from the plurality of light receiving elements P when the plurality of light emitting elements L emit light.
  • the data discriminating unit 52 the plurality of detection signals S0 obtained by the data acquisition unit 51 are converted into a first detection signal S1 having a periodic variation and a second detection signal S2 having no periodic variation. Classify.
  • the data correction unit 53 corrects the first detection signal S1 by using the signal classified as the second detection signal S2 by the data discrimination unit 52 as the baseline of the signal classified as the first detection signal S1, and the pulse signal And
  • the light emitting element L is caused to emit light to obtain a detection signal S0 corresponding to the amount of light received by each of the plurality of light receiving elements P1 to P4.
  • the light emission of the light emitting element L may cause the plurality of light emitting elements L1 to L4 to emit light at the same time, or may be turned on in order by time division among the plurality of light emitting elements L1 to L4. Only the light emitting element L may emit light.
  • the position of the blood vessel B is determined by causing each light emitting element L to emit light individually and detecting by each of the plurality of light receiving elements P1 to P4. It may be determined by estimation.
  • the data discriminating unit 52 distinguishes the plurality of detection signals S0 obtained by the data acquisition unit 51 into the first detection signal S1 and the second detection signal S2.
  • the first detection signal S1 is a signal having a periodic change in the amount of received light according to a change in the diameter of the blood vessel. More specifically, the first detection signal S1 can be used to confirm the increase or decrease in the amount of received light linked to the pulse. The determination may be performed in synchronization with the pulse, or may be confirmed on the basis of a case where the autocorrelation is equal to or greater than a certain value as compared with the model pulse wave waveform.
  • the periodic fluctuations of the first detection signal S1 are not limited to fluctuations that occur continuously at the same interval in time.
  • the shape of the detection signal according to the increase or decrease in the amount of received light that occurs repeatedly may not be the same as the basic shape, or may be a similar shape. Further, the relationship of only medical feature points may be maintained.
  • the second detection signal S2 has no periodic fluctuation in the signal corresponding to the amount of received light. More specifically, the basic shape as seen in the first detection signal S1 does not occur repeatedly. In the determination of the second detection signal S2, whether or not there is a relationship between the fluctuation of the value and the pulse, or the case where the autocorrelation is less than a certain value as compared with the model pulse wave waveform is used as a determination criterion. You can check it.
  • the detection signal by the light receiving element Px may be the first detection signal S1
  • the detection signal by the light receiving element Py may be the second detection signal S2.
  • the signal determined by the data discrimination unit 52 as the first detection signal S1 is corrected by the second detection signal S2 to obtain a pulse signal.
  • correction is performed so that the background of the first detection signal S1 is removed based on the second detection signal S2.
  • the first detection signal S1 repeats a change in intensity linked to the pulse on a large undulation caused by a person's movement or the like.
  • the second detection signal S2 does not have a specific signal intensity change linked to the pulse, but has a signal intensity change such as a large swell caused by a human motion or the like.
  • the background fluctuation of the first detection signal S1 due to the movement of a person or the like is removed and canceled based on the second detection signal S2.
  • a pulse wave signal is obtained by subtracting from the first detection signal S1 a signal obtained by multiplying the second detection signal S2 by a correction coefficient so as to match the background level of the first detection signal S1.
  • the background level of the first detection signal S1 may be acquired between the basic shape and the basic shape.
  • a sensor 100B according to another embodiment will be described.
  • the sensor 100B is different from the sensor 100 and the sensor 100A in the configuration related to the calculation unit 50B.
  • only different parts will be described, and redundant description will be omitted.
  • the calculation unit 50B is a signal processing unit for obtaining a pulse wave signal from the detection signal S0 obtained by the light receiving element array 20.
  • FIG. 7 is a flowchart showing a signal processing method in the calculation unit 50B.
  • the plurality of light emitting elements L emit light simultaneously to obtain a pulse wave signal.
  • all the light emitting elements L may emit light simultaneously.
  • the position of the blood vessel B is estimated, and the intensity of the detection signal by the light receiving element P is confirmed.
  • the element L may be specified and only the minimum necessary light emitting element L may be turned on.
  • the senor 100C is arranged so that the blood vessel B crosses the first direction D1. More preferably, the sensor 100C is arranged so that the blood vessel B and the second direction D2 are substantially parallel. For this reason, in the direction in which blood flows in the blood vessel B, it is important to increase the temporal sensitivity of the sensor 100C.
  • the light emitting element array 10 and the light receiving element array 20 are arranged in one row when viewed from the first direction D1, but the present invention is not limited to this example. These arrays may be displaced in the second direction D2.
  • the light receiving element array 20 positioned between the light emitting element array 10 and the second light emitting element array 12 may be arranged so as to be shifted in the second direction D2 (vertical direction in the drawing).
  • the light emitting element array 10 and the second light emitting element array 12 are unlikely to be displaced in the D2 direction with respect to the blood vessel B, it is possible to see the contraction / expansion of the blood vessel B at the same position at the same timing. (Simultaneousness can be ensured) and the reliability of the detection signal can be improved.
  • the equation y ax + b is established.
  • the center distance d (unit: mm) between the light receiving element P of the first sensor 150 and the light receiving element P of the second sensor 160 in the second direction D2
  • the length of the light receiving element P in the second direction D2 is 2c.
  • a is 6.4164 and the blood pressure is measured with an accuracy of ⁇ 3 mmHg from the relational expression between the pulse wave propagation speed PWV between the general brachial ankle and the systolic blood pressure.
  • the interval d is 1.5 mm
  • the length 2d of the light receiving element P in the second direction D2 is 0.7 mm when the pulse wave velocity is 10 [m / sec], and is 35 [m / sec]. In this case, it can be seen that 0.2 mm is sufficient.
  • the pulse wave velocity can be measured with high accuracy even if the first sensor 150 and the second sensor 160 are arranged close to each other. It becomes.
  • the first sensor 150 and the second sensor 160 may be driven so as to shift the cycle of the light emission timing of the light emitting element L.
  • the light emitting elements L of the first sensor 150 and the second sensor 160 By periodically causing the light emitting elements L of the first sensor 150 and the second sensor 160 to emit light, it is possible to detect a change in the diameter of the blood vessel with respect to a change with time.
  • the timing between the detection of the signal derived from the light of the light emitting element L of the second sensor 160 and the detection of the signal derived from the light of the light emitting element L of the first sensor 150 are the same. It is off. Then, by detecting only the signal having the same timing as that of the light emitting element L on the same side as the sensor of interest, the influence of the other sensor can be excluded.
  • Such a drive control unit that drives the light emitting element L of the first sensor 150 and the light emitting element L of the second sensor 160 may be formed inside the sensor device 200, or the first sensor 150 and the first sensor 150. It may be provided individually for each of the two sensors 160 or may be provided outside the sensor device 200.
  • the light emitting element L of the light emitting element array 10 may be a light emitting diode configured by stacking a plurality of semiconductor layers with adjusted band gaps on a substrate 11 made of a semiconductor material so as to obtain a desired light emission wavelength. Good.
  • the semiconductor layer is formed using a MOCVD (Metal-Organic-Chemical-Vapor-Deposition) apparatus.
  • the active layer L14 emits light and functions as a light source by applying a bias voltage between the pair of electrodes E1 and E2 for driving.
  • the light receiving element P of the light receiving element array 20 is a photodiode, and is configured by forming another conductive type semiconductor region 22 on the surface of a substrate 21 made of one conductive type semiconductor material. May be.
  • a substrate 21 made of one conductive type semiconductor material.
  • a one conductivity type Si substrate or the like can be used as the substrate 21, a one conductivity type Si substrate or the like.
  • an impurity having another conductivity type is doped into the desired region by a technique such as thermal diffusion or ion implantation.
  • the other conductive type semiconductor layer may be epitaxially grown and then patterned into the other conductive type semiconductor region 22 in a desired shape.
  • the light emitting element array 10 and the light receiving element array 20 into a chip shape in which each element is formed on the same substrate, it is possible to realize miniaturization and high positional accuracy.
  • the plurality of light receiving elements P are arranged at intervals of 2 mm or less.
  • the region where the light receiving element P is arranged is a range within 4 mm (first range A1) from the first light emitting element La to the second light emitting element Lb, or from the second light emitting element Lb to the first light emitting element La.
  • the range is within 4 mm (second range A2).
  • the light receiving element P is not disposed in a region outside the first range A1 and in a region outside the second range A2. Even if all of the plurality of light receiving elements P are arranged in the first range A1 or all of the light receiving elements P are arranged in the second range A2, a part is arranged in the first range A1 and the rest is arranged in the second range A2. May be. Further, when there is an overlapping range between the first range A1 and the second range A2, a part of the plurality of light receiving elements P may be arranged there, or all of them may be arranged there.
  • the light receiving elements P1 to P4 are all arranged in both the first range A1 and the second range A2, that is, in a region where the two ranges (first range A1, second range A2) overlap.
  • the light receiving element P (P4) located closest to the second light emitting element Lb in the first range A1 is located next to the second light emitting element Lb, and is the first light emitting in the second range A2.
  • the light receiving element P (P1) located on the element La side is located next to the first light emitting element La.
  • the vertical axis indicates the magnitude of the amplitude of the detection signal (pulse wave signal) caused by the photocurrent detected by the light receiving element, and the vertical axis indicates the distance between the light emitting element and the light receiving element.
  • a bold line in the figure indicates a reference value of amplitude necessary for stably analyzing a signal as a pulse wave.
  • the sensor is intentionally shifted from the position estimated to be optimal with respect to the blood vessel position. Specifically, the sensor was placed 2 mm away from the optimum placement. This is to confirm the influence when the relative position between the blood vessel and the sensor is shifted.
  • the detection signal of each light receiving element was measured.
  • the measured detection signal was plotted according to the distance between the light emitting element and the light receiving element. In other words, the distance between each light emitting element and each light receiving element in the sensor model is plotted as the distance between the light emitting element and the light receiving element in the figure.
  • the measurement result shown in FIG. 16B includes data in which the distance between the light emitting element and the light receiving element is changed and the distance between the light emitting element and the blood vessel is also changed. For example, if the sensor and the blood vessel are in the positional relationship illustrated in the model diagram, the light emitting element Lt1 is far from the blood vessel and the light emitting element Lt5 is close to the blood vessel.
  • a pulse wave signal can be detected stably by disposing a plurality of light receiving elements at different distances from the light emitting elements in a region within a range of 4 mm from the light emitting elements. That is, even when the sensor 100E is displaced from the position where the sensor 100E is originally placed due to human activity, or even when the position of the blood vessel B in the body is changed, a pulse wave signal can be stably obtained. Will be able to.
  • all of the plurality of light receiving elements P are arranged in one direction within a range of 4 mm from both the light emitting elements La and Lb.
  • Light emitting elements are arranged on both sides in the arrangement direction of the light receiving elements.
  • the pulse wave can be stably measured.
  • each light receiving element P is downsized compared to the case where one light receiving element is arranged in the same area.
  • the operation of the light receiving element can be performed at high speed, and changes in blood vessel contraction and expansion in accordance with the flowing blood can be captured in a timely manner without delay. That is, the temporal resolution of the sensor 100E can be improved.
  • average information of a path through which light from the light emitting element L passes until it reaches the light receiving element is obtained.
  • signals corresponding to the respective paths can be detected with high accuracy. Thereby, for example, a signal from light that has passed through the blood vessel B at an optimal position can be separated from other signals.
  • two or more light receiving elements P are disposed between the first light emitting element La and the second light emitting element Lb.
  • the detection signal includes an amplitude based on the contraction / expansion of the blood vessel depends on the positional relationship with the blood vessel, but the level of the detection signal depends on the distance between the light emitting element and the light receiving element. That is, the level of the detection signal is large when the distance between the light emitting element and the light receiving element is short, and is small when the distance is long.
  • the level of the detection signal varies greatly between the plurality of light receiving elements.
  • the detection signal from one light emitting element is small, the detection signal from the other light emitting element becomes large.
  • the level can be adjusted among the plurality of light receiving elements P.
  • the amplitude information is analyzed in more detail by adding detection signals including periodic amplitudes in the plurality of light receiving elements P, it is not necessary to perform level adjustment between the light receiving elements P.
  • the level can be adjusted more precisely.
  • each of the plurality of light receiving elements P is arranged separately in at least one of the first range A1 and the second range A2, that is, only one of the ranges, and the first range A1 and the second range A2 are There are no overlapping parts.
  • the plurality of light receiving elements P are arranged at the same pitch, and the light receiving element (Pa) located closest to the second range A2 in the first range A1 and the first in the second range A2.
  • the light receiving elements (Pb) located on the range A1 side are arranged adjacent to each other. In other words, the light receiving element P does not exist in a region between the first range A1 and the second range A2, that is, a region outside the first range A1 and outside the second range A2.
  • the senor 100F can widen a measurable range without degrading accuracy, and as a result, even when a positional deviation occurs, the pulse wave signal can be stably detected. It will be possible. Specifically, the pulse wave signal can be detected in a range twice as long as the sensor 100E.
  • the detection signal It has been confirmed that sufficient amplitude intensity can be obtained.
  • the first range A1 and the second range A2 do not overlap. Therefore, it is shown that stable measurement can be performed in a range of a distance of about 8 mm in length, which is a combined region of the first range A1 and the second range A2, and the detection range can be expanded.
  • the distance between the light emitting element La and the light emitting element Lb is increased, stable measurement is possible by arranging a plurality of light receiving elements P so as to be located in either the first range A1 or the second range A2. It becomes. Further, it is preferable because the measurable range can be expanded by reducing the number of parts to be individually controlled as compared with the case where light emitting elements and light receiving elements are alternately arranged. Furthermore, according to the sensors 100E and 100F, the light emitting elements L are arranged with a sufficient space therebetween. Thereby, there is no possibility that the light receiving element P is unintentionally affected by the light emission of the other light emitting element L, and measurement can be performed with high accuracy.
  • the first range A1 and the second range A2 do not overlap at all has been described as an example, but the first range A1 and the second range A2 may partially overlap. Even in this case, the detectable range can be expanded.
  • the plurality of light receiving elements P, the first light emitting elements La, and the second light emitting elements Lb are all arranged in one row in the first direction D1, but the plurality of light receiving elements P
  • the first light emitting element La and the second light emitting element Lb may be displaced in the second direction D2.
  • the substrates 11 and 21 may partially overlap when viewed from the second direction, the lower limits of the first range A1 and the second range A2 are each 0 mm.
  • the light from the light emitting element L passes through the body and is detected by the light receiving element P to explain the change in the diameter of the blood vessel that is the flow path in the body. It can be diverted to applications.
  • the sensors 100 and 100A to 100F can immediately measure the state of the flow channel disposed inside the tissue through which light passes and the state of the liquid flowing through the flow channel in a minute region.
  • a change in the diameter of the flow path through which the uniform liquid flows may be confirmed, or the movement of the liquid flowing in the uniform flow path may be confirmed.
  • the liquid can be identified and the flow rate can be measured based on the difference in the degree of absorption of the irradiated light by the liquid.
  • the human body is taken up as an example of detecting the state of a blood vessel of a living organism, it can be applied to other living organisms.
  • they may be attached to livestock and used for health management of livestock and production management of livestock products, or attached to wild animals and used for ecological surveys.
  • the plurality of light emitting elements include a first light emitting element and a second light emitting element that is spaced from the first light emitting element in a first direction
  • the light receiving element includes the first light emitting element and the first light emitting element.
  • a plurality of the light emitting elements are arranged along the first direction in at least one of a range within 4 mm from the first light emitting element and a range within 4 mm from the second light emitting element. Is. According to such a configuration, a sensor as shown in the explanatory diagrams of FIGS. 15 and 17 is obtained.
  • the array of the light receiving elements P is present in the first range A1 and the second range A2 with respect to the light emitting element L.
  • the detection signal can obtain a sufficient amplitude intensity.
  • a sensor with high detection accuracy can be provided.
  • the range in which the pulse wave can be detected can be expanded, and even if a positional deviation between the blood vessel and the sensor occurs, the pulse group can be stably generated. It can be measured.
  • the detection signal was sampled using the sensor 100E shown in FIG. 15 and the sensor 100F shown in FIG.
  • the pitch of the plurality of light receiving elements P was set to 0.5 mm.
  • the distance from the light emitting elements La and Lb to the closest light receiving element P was 2 mm and 3 mm. Further, the distance between the two light emitting elements La and Lb was 5.5 mm for the sensor 100E and 7.5 mm for the sensor 100F.
  • ⁇ Driving conditions of sensors 100E and 100F> The sensors 100E and 100F were driven under the following conditions 1 to 4, and a detection signal based on the photocurrent from each light receiving element P was sampled.
  • Condition 1 Sensor 100F (light emitting element La and light receiving element P1 has a distance of 3 mm) is used to turn on only first light emitting element La
  • Condition 2 Sensor 100F (light emitting element La and light receiving element P1 has a distance of 2mm), only the first light emitting element La is turned on.
  • Condition 3 The first light emitting element La and the second light emitting are used by using the sensor 100F (the distance between the light emitting element La and the light receiving element P1 is 2 mm).
  • Both elements Lb are lit at 60% emission intensity of conditions 1 and 2
  • Condition 4 Using the sensor 100E (the distance between the light emitting element La and the light receiving element P1 is 2 mm), the first light emitting element La and the second light emitting element La Both of the light emitting elements Lb are lit with the light emission intensity of 60% of the conditions 1 and 2.
  • FIGS. 18A to 18D show detection signals measured under the above conditions 1 to 4.
  • FIG. 18 the horizontal axis represents time (s), and the vertical axis represents output (V).
  • the amplitude was not confirmed in the detection signal.
  • the light receiving elements P1 to P3 whose distance from the light emitting element La is within 4 mm included an amplitude exceeding the reference value in the detection signal, but the light receiving element disposed at a position exceeding 4 mm.
  • the elements P4 to P8 a clear amplitude exceeding the reference value was not confirmed in the detection signal.
  • detection signals include amplitudes exceeding the reference value up to the light receiving elements P1 to P5 whose distance from the light emitting element La is within 4 mm, but the light receiving elements P6 to P5 arranged at positions exceeding 4 mm are included. In P8, a clear amplitude exceeding the detection signal was not confirmed. Further, in FIG. 18B, the detection signal of the light receiving element P1 has a high level but a large noise and a large variation. Here, the detection signal is detected by inverting it with a fixed value as a reference. The level of the detection signal increases as the output decreases.
  • the distance between the light emitting element La and the light receiving element P1 may be set to be greater than 1 mm and less than 3 mm. Specifically, as in this example, the distance between the light emitting element La and the light receiving element P1 may be about 2 mm.
  • the amplitude is confirmed in the detection signal even when the distance between the light emitting element L and the light receiving element P exceeds 4 mm. I found out. Further, it was confirmed that the difference in the level of the detection signal between the light receiving elements P was reduced. In particular, in FIG. 18D, it was confirmed that the level of the detection signal was uniform between the light receiving elements P.
  • the distance between the light-emitting element L and the light-receiving element P is preferably 4 mm or less, and the range that can be detected by simultaneously lighting the light-emitting elements La and Lb sandwiching the plurality of light-receiving elements P. As a result, it was confirmed that the detection signal level could be made uniform.
  • the detection signal was sampled by changing the relative position to the wrist using the sensor 100F and the sensor of the comparative example.
  • the sensor of the comparative example sampled the detection signal as a configuration in which one large light receiving element extending in a region where the light receiving element is formed in the embodiment is provided without dividing the light receiving element.
  • the sampling method is shifted by 2 mm, 4 mm, 6 mm on the right side, 2 mm, 4 mm on the left side along the circumferential direction of the wrist with reference to the position estimated to be optimal in the positional relationship with the blood vessel. It was measured. About the comparative example, it measured also at the position of 4 mm on the right side for reference.
  • 19A and 19B show measurement results of the sensor 100F and the sensor of the comparative example.
  • 19A and 19B the horizontal axis represents time (s), and the vertical axis represents output (V).
  • the sum of the detection signals from the light receiving elements P1 to P8 of the sensor 100F is used.
  • the sensor of the comparative example can obtain the amplitude of the pulse wave only at the right 2 mm and 4 mm, but the amplitude based on the pulse wave could not be confirmed in the detection signal at positions other than that. That is, the detectable range of the sensor of the comparative example was 2 mm.
  • the amplitude based on the pulse wave can be confirmed in the detection signal in the entire range of 6 mm on the left and 4 mm on the right, and it is left that has an amplitude value exceeding the reference value. 6 mm and 2 mm to the right. That is, the detectable range of the sensor 100F of the example was 8 mm. Thereby, it was confirmed that the sensor 100F is a sensor that can stably detect the positional deviation.
  • the senor 100F can obtain sufficient amplitude intensity by adding the signals of the divided light receiving elements P together.
  • the pulse wave has not only a simple amplitude but also a sub peak due to the influence of the reflected wave corresponding to the hardness of the blood vessel. It can be confirmed that the sensor 100F can accurately measure the original pulse wave shape. This is considered to be due to the division of the light receiving element P to improve the temporal resolution.
  • the senor 100F has a wide detectable range and can measure a precise and clear pulse wave.
  • FIG. 20 shows the result of measuring the pulse wave in the ulnar artery by forming the sensor 100C.
  • FIG. 20A shows the voltage amplitude corresponding to the amount of light received by each of the light receiving elements P1 to P4.
  • all of the light receiving elements P1 to P4 have obtained a first detection signal for detecting a periodic signal change accompanying expansion / reduction of the blood vessel diameter.
  • the background of the detection signal detected by each of the light receiving elements P1 to P4 was removed. Specifically, the minimum value of each detection signal was used as a reference value, and the difference obtained by subtracting this minimum value was used as a corrected detection signal.
  • P1 'shown in FIG. 20B indicates a trajectory with respect to time when the detection signal received by the light receiving element P1 is corrected by the above-described method. The same correction is performed in the light receiving elements P2 to P4, and the result of adding them is the trajectories P1 to P4 shown in FIG. As can be seen from the results shown in FIG. 20B, the sensor 100C can provide the sensor 100C with high detection sensitivity.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physiology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

 発光素子により生体表面に光を照射し、生体内を通過して到達した光を受光素子で受光して、前記生体内にある動脈の血管の径の変化を示す脈波信号として検出するセンサである。センサは、複数個の前記発光素子が第1方向に配列された発光素子アレイと、複数個の前記受光素子が前記第1方向に配列された受光素子アレイとを有し、前記発光素子アレイと前記受光素子アレイとは、前記第1方向に直交する第2方向に見たときに、前記発光素子アレイにおける前記発光素子が形成された領域と前記受光素子アレイにおける前記受光素子が形成された領域とが並んでいないように配置されている。

Description

センサ,センサ装置およびセンサ装置の駆動方法
 本発明は、健康管理などを目的とした脈波を計測するセンサ、センサを用いたセンサ装置およびセンサ装置の駆動方法に関する。
 人間を始めとする生物の様々な状態を表す心拍は、健康管理、健康増進、睡眠状態把握、医療目的等の様々な分野で有用な指標として使われている。心拍の計測の手法としては、主に、心臓を挟む2点間の電極および基準電極から得られる心電図と、心拍に同期している動脈血管の拍動に起因する脈波測定との2通りが提案されている。
 このうち、心電図による心拍の計測は、日常生活での利用が困難である。
 一方で、脈波測定による心拍の計測には、主に反射型と透過型との2種類の手法がある。これらは、いずれも血液内物質の光の吸収特性と体内のその他の部分の光の吸収特性との違いを利用した測定方法である。例えば、特開2002-360530号公報には、反射型の脈波測定方法として、生体表面に発光素子と受光素子とを並列配置し、発光素子から生体内部に光を照射して、血管を通過してくる反射光を受光素子で検出する方法が提案されている。
 上述のような脈波測定による心拍の計測方法は、心電図による計測方法と比較して簡便に計測可能であるという利点を有する。このため、脈波測定方法において、精度よく測定することが望まれている。
 本発明は、上記事情に鑑みてなされたものであり、精度よく脈波の測定が可能なセンサおよびそれを用いたセンサ装置、センサ装置の駆動方法を提供することを目的とする。
 本発明に係るセンサの一実施形態は、発光素子により生体の表面に光を照射し、前記生体内を通り到達する光を受光素子で受光して、前記生体の内部にある血管の径の変化を示す脈波信号として検出するセンサである。前記センサは、発光素子アレイと受光素子アレイとを有している。前記発光素子アレイは、複数個の前記発光素子を含み、これら発光素子が所定の面上で第1方向に配列されている。前記受光素子アレイは、複数個の前記受光素子を含み、これら受光素子は前記所定の面上で前記第1方向に配列されている。前記発光素子アレイと前記受光素子アレイとは、前記所定の面上で前記第1方向と直交する第2方向に見たときに、前記発光素子アレイにおける前記発光素子が形成された領域と前記受光素子アレイにおける前記受光素子が形成された領域とが並んでいないように配置されているものである。
 本発明に係るセンサ装置の一実施形態によれば、本発明に係るセンサである第1センサおよび第2センサが、前記第2方向に間隔を空けて配置されてなるものである。
 本発明に係るセンサ装置の駆動方法によれば、前記第1センサおよび前記第2センサにおける複数の前記発光素子をそれぞれ周期的に発光させる。そして、前記第1センサにおける複数の前記発光素子の発光時間と前記第2センサにおける複数の前記発光素子の発光時間とが重ならないように発光させるものである。
 本発明によれば、精度よく脈波の測定が可能なセンサおよびそれを用いたセンサ装置を提供することができる。
センサ100の概略上面図である。 センサ100を脈波センサとして人体に装着する一例を示す概略図である。 センサ100と血管との位置関係を示す、(a)は上面図であり、(b)は断面図である。 (a)および(b)は、それぞれ発光素子Lおよび受光素子Pを複数個設けることによる測定メカニズムを説明するための説明図である。 (a)および(b)は、それぞれ受光素子Pを複数個設けることによる測定メカニズムを説明するための説明図である。 演算部50の処理フローを示す図である。 演算部50Bの処理フローを示す図である。 (a)および(b)は、それぞれ演算部50Bの信号処理のメカニズムを説明するための図である。 センサ100,100Aおよび100Bの変形例に係るセンサ100Cの構成を示す模式的な上面図である。 センサDの構成を示す模式的な上面図である。 センサ装置200の一実施形態を示す上面図である。 センサ装置200における発光素子の駆動例を示す図である。 図12の要部拡大図である。 (a)および(b)はそれぞれ、発光素子アレイ10の具体的構成および受光素子アレイ20の具体的構成を示す要部拡大断面図である。 センサ100Eの構成を示す模式的な図である。 (a)はメカニズムを検証するためのセンサモデルの概略構成を示す上面図であり、(b)は発光素子Lと受光素子Pとの距離と検出信号の振幅強度との関係を示す図である。 センサ100Fの構成を示す模式的な図である。 実施例に係るセンサの検出強度を測定した図である。 実施例に係るセンサの検出強度を測定した図である。 実施例に係るセンサの検出強度を測定した図である。 実施例に係るセンサの検出強度を測定した図である。 実施例に係るセンサの検出強度を測定した図である。 比較例に係るセンサの検出強度を測定した図である。 (a)および(b)は、それぞれ本発明の実施例に係るセンサの検出強度を測定した図である。
 以下、本発明のセンサの実施の形態の例について、図面を参照しつつ説明する。なお、以下の例は本発明の実施の形態を例示するものであって、本発明はこれらの実施の形態に限定されるものではない。
 <センサ100>
 センサ100は、発光素子アレイ10と受光素子アレイ20とを備える。
 このようなセンサ100について、発光素子アレイ10と受光素子アレイ20とで構成される素子部40の概略構成について図1~図3を用いて説明する。
 図1にセンサ100の素子部40の概略構成を示す上面図を示す。図1において左右方向が第1方向D1であり、上下方向が第2方向D2である。センサ100は、被験者の生体表面に光を照射し、体内を通過して受光素子に到達した光を受光して、生体内部にある血管の径の変化を示す脈波信号を得るものである。この例では、素子部40を人の手首の内側に配置して、尺骨動脈もしくは橈骨動脈を測定対象とした場合を例に説明している。ここで、測定対象の血管は、一方向に延びる1本の動脈であれば尺骨動脈や橈骨動脈には限定されない。例えば、本実施例の素子部40の大きさと血管の太さ等とを配慮して、頸動脈等の太い血管ではなく末端に近い動脈を選択してもよい。
 センサ100の素子部40は、発光素子アレイ10と受光素子アレイ20とを有している。
 発光素子アレイ10は、発光素子Lを複数個含んでおり、それらが所定の面上で第1方向D1に配列されている。この例では、発光素子アレイ10は、基板11の面上に配置された発光素子Lを4個有し、発光素子L1~L4までが第1方向D1に等間隔で配列されている。
 受光素子アレイ20は、受光素子Pを複数個含み、それらが所定の面上で第1方向D1に配列されている。この例では、受光素子アレイ20は、基板21の面上に配置された受光素子Pを4個有し、受光素子P1~P4までが第1方向D1に等間隔で配列されている。
 そして、発光素子アレイ10と受光素子アレイ20とは、配線基板30上に、発光素子アレイ10における複数の発光素子L1~L4が形成された領域と、受光素子アレイ20における複数の受光素子P1~P4が形成された領域とが、所定の面上で第1方向D1に直交する第2方向D2から見たときに並んでいないように配置されている。すなわち、第1方向D1に直交する第2方向において両領域が重複することがないように配置されている。言い換えると、第1方向D1において発光素子アレイ10から受光素子アレイ20に向かう方向を正方向とし、反対方向を逆方向とすると、発光素子アレイ10のうち、最も受光素子アレイ20側に位置する発光素子L4が、受光素子アレイ20のうち、最も発光素子アレイ10側に位置する受光素子P1よりも逆方向側に位置している。さらに言い換えると、発光素子アレイ10のうち複数の発光素子L1~L4が形成された領域と、受光素子アレイ20のうち複数の受光素子P1~P4が形成された領域とは、第1方向D1において並んで配置されている。ここで「並んで配置されている」とは、第2方向においてずらして配置していることも含むものである。この例では、発光素子アレイ10と受光素子アレイ20とは、第1方向D1で両アレイが重複することがないように、第1方向D1に1列に配置されている。
 ここで、「所定の面上」とは、平坦な面上にあることに限定されない。たとえば、厚み方向に対する位置が異なる面を含む面上であってもよく、曲面状の面上であっても、一部に段差がある面上であってもよい。また、必ずしも連続した1つの面になっている必要もなく、複数の面を所定の面として、その面上にあることも含んでいる。この例では、基板11の上面上と基板21の上面上と配線基板30の上面上とがそれぞれ所定の面上となっている。
 また、この例では、複数の発光素子Lのそれぞれの中心間隔と複数の受光素子Pのそれぞれの中心間隔とは、同一となっている。
 本例では、受光素子P1~P4の中心間隔(ピッチという)および発光素子L1~L4の中心間隔はそれぞれ0.5mm以上1mm以下としている。また、発光素子アレイ10と受光素子アレイ20との間隔(隙間)は2mm以上3mm以下としている。さらに、受光素子P1~P4のそれぞれの大きさは、第1方向D1においては素子ピッチよりも小さくし、第2方向D2においては0.2mm以上0.5mm以下としており、発光素子L1~L4のそれぞれの大きさは0.3mm角としている。
 このような構成のセンサ100の素子部40を、発光素子L1~L4からの出射光が人体に照射されるように、図2に示すように、手のひら側の手首に装着する。この例では、小指側の尺骨動脈を素子部40の発光素子L1~L4および受光素子P1~P4の配列が横切るように装着している。言い換えると、尺骨動脈が伸びる方向が第1方向D1を横切るようにセンサ100を手首に装着している。この例では、尺骨動脈の伸びる方向が第2方向D2と略平行になるようにしている。また、尺骨動脈に代えて親指側の橈骨動脈に対して同様の位置関係となるようにセンサ100を装着してもよい。なお、手首付近における尺骨動脈および橈骨動脈は、ともに肘の方から手首を通って手のひらに向かう方向に伸びている。このため、第1方向がこの方向を横切るようにすればよい。言い換えると、第1方向を手首の周方向に沿うような方向に合わせればよい。
 このようにセンサ100を人体に装着したときの素子部40と血管Bとの位置関係を、図3に示す。図3は、素子部40と血管Bとの位置関係を示す、(a)は模式的な上面図であり、(b)は断面図である。なお、図3(a)は、素子部40のうち発光素子アレイ10および受光素子アレイ20が配置された面(表面)は血管B側(皮膚S側)に向けて装着されるため、センサ100を裏面側から確認した図となっており、表面側(皮膚Sと接触する側)に配置された構成要素を破線で示している。皮膚S表面および体内の血管Bを除く構成物は図示を省略している。
 図3(a)に示す通り、素子部40は第1方向が血管Bの延びる方向を横切るように配置されている。好ましくは、両方向のなす角度が60°~120°となるように、さらに好ましくは、略90°となるように配置する。
 このように配置することにより、図3(b)に示すように、発光素子L1~L4を発光させると、発光素子L1~L4の出射光が人体内部に照射され、人体内部を通過した光が受光素子P1~P4で受光される。受光素子P1~P4のそれぞれには、人体内部を通過した光が、その通過経路の構成物を反映した強度の光となって受光される。この受光素子P1~P4で受光した光の強度に起因する検出信号を解析することにより、血管の拡張・収縮に応じた径の変化に応じた脈波信号を得ることができる。
 図3(b)においては、発光素子L1からの光が人体内部を通過して受光素子P1に到達する様子を破線で示している。同様に、発光素子L2からの光が受光素子P2へ、発光素子L3からの光が受光素子P3へ、発光素子L4からの光が受光素子P4へ、それぞれ到達する様子を破線で示している。
 なお、図には記載していないが、発光素子Lからの光は上述の個別の受光素子P以外の受光素子Pにも到達する。そして、発光する発光素子Lとその光を受光する受光素子Pとの距離に応じて、人体内部における光の拡散深さが異なる。
 このようなセンサ100を用いることにより、血管Bと素子部40との相対位置がずれても正確に安定して脈波信号を得ることができる。以下、そのメカニズムについて図4を用いて説明する。図4(a)および(b)はそれぞれ、発光素子アレイ10を用いること、および発光素子アレイ10と受光素子アレイ20とを用いることの効果を説明する説明図である。
 センサ100は、血管Bを横切る第1方向D1に複数の発光素子L1~L4および受光素子P1~P4が配列されている。
 まず、複数の発光素子L1~L4の配列方向(第1方向D1)が血管Bを横切る方向であることから、図4(a)に示すように、第1方向D1において、血管Bとセンサ100との相対位置がずれても、脈波信号を得ることができる。この例では、血管BがB-1の位置からB-4の位置までずれた場合を例に示している。
 測定可能範囲R1は、発光素子Lが発光素子L1のみ場合に比べて、アレイ化することによってR2だけ広がることが分かる。具体的には、血管BがB-1の位置とB-4の位置とでは、発光素子L1~L4から受光素子Pまでの光の経路に血管Bがないことから、脈波信号を得ることはできない。しかしながら、それらの間の位置に血管Bがある場合には脈波信号を得ることができる。このように、測定可能範囲R1が幅を持つものとなる。これにより、人の活動に起因してセンサ100が当初配置した位置からずれた場合であっても、発光素子Lをアレイ化することで、血管Bの体内における位置の変化に対応して安定して脈波信号を得ることができるものとなる。
 また、大きな受光面積の1個の受光素子と1個の発光素子Lとを用いた場合であっても、アレイ化したときと同等の測定可能範囲R1を得ることもできる。すなわち、発光素子Lを受光素子から遠く離して配置し、かつ、発光素子Lの発光強度を高めれば、血管Bとセンサ100との相対位置がずれても脈波信号を得ることができる。この図の例では、発光素子L4のみを設けてその発光強度を高めることでも、アレイ化したときと同等の測定可能範囲R1を実現することができる。
 これに対して、センサ100では、図4(b)に示すように、複数の発光素子L1~L4からの光を、複数の発光素子L1~L4の配列方向である第1方向D1に配列された受光素子P1~P4のそれぞれで受光する。ここで、予め個々の発光素子Lに対して受光する受光素子Pの組合せを決定しておいた場合には、発光素子Lと受光素子Pとの距離が略同一の組合せを複数得ることができる。これにより、発光素子Lの発光強度を一定としても、複数の発光素子Lと複数の受光素子Pとの組合せを適切に選択することにより、血管Bとセンサ100との相対位置がずれても脈波信号を得ることができる。このため、発光素子Lの低電圧駆動が可能となるとともに、測定操作の制御が容易なセンサ100とすることができる。
 また、センサ100によれば、発光素子アレイ10と受光素子アレイ20とが第1方向D1に1列に並んでいる。このような構成とすることにより、第1方向D1において、発光素子Lおよび受光素子Pが並んでいる距離を長くとることができるので、第1方向D1における血管Bとの相対位置の位置ずれ許容範囲を効果的に広げることができる。また、このような構成とすることにより、発光素子Lと受光素子Pとの距離を短くすることができる。これにより、発光素子Lの駆動に対して血管情報を迅速に収集可能となる。これにより、応答性能のよいセンサ100とすることができる。
 なお、受光素子アレイ20で検出した検出信号を演算手段により脈波信号とすることで、センサ100で脈波を検出することができる。この演算手段は、素子部40と同じ部材に作り込まれていてもよいし、配線基板30に配置された不図示の電極パッド等を介して素子部40と離れた位置にある演算手段に取り出してもよい。アンテナ端子を介して別体の信号処理部に検出信号を送信し、信号処理部において演算手段で脈波信号へと変換してもよい。
 <センサ100A>
 次に、本発明の他の実施形態であるセンサ100Aについて説明する。センサ100Aは、センサ100と比べて、複数の発光素子L(L1~L4)と複数の受光素子P(P1~P4)との配置と、演算部50を有する点とが異なる。以下、相違点のみ説明し、重複する説明を省略する。
 センサ100Aにおいて、複数の発光素子L(L1~L4)と複数の受光素子P(P1~P4)とのうち、それぞれの中心間隔が2mm以上となる組合せを有するように、発光素子アレイ10と受光素子アレイ20とが配置されている。これは、複数の発光素子Lを発光させたときに、複数の受光素子Pのうち、尺骨動脈もしく橈骨動脈を通過した光が入射する受光素子Pxと通過せずに入射する受光素子Pyとの双方を有するために必要である。なお、受光素子Pxおよび受光素子Pyを得るために要する、複数の発光素子L(L1~L4)と複数の受光素子P(P1~P4)とのそれぞれの中心間隔の条件は、測定する動脈によって異なる。本例では、手首に位置する尺骨動脈もしく橈骨動脈を測定対象としているために2mmとした。そして、発光素子L1と受光素子P3,P4との中心間隔が2mm以上となっている。なお、詳しくは後述するが、検出される信号の脈波に依存した振幅強度を一定以上の強度で得るためには、複数の発光素子L(L1~L4)と複数の受光素子P(P1~P4)とにおいて、それぞれの中心間隔が4mm以下であることが好ましい。
 ここで、図5を用いて、センサ100Aにおいて受光素子Pをアレイ化する効果について説明する。図5(a)に示すように、1個の大きな面積の受光素子Pで受光する場合(Reference Model)には、発光素子Lからの光が受光素子Pに到達するまでに通過した経路の平均的な情報を得るものとなる。これに対して、図5(b)に示すように受光素子Pを分割し、複数個設けることにより、血管Bを通過した光Ray1と血管Bを通過していない光Ray2とを分離することができる。図5(a)に示す例では、1個の受光素子Pによっては光Ray1と光Ray2とを区別することができない。これに対して、図5(b)に示す例においては、受光素子P1,P2は血管を通過した光Ray1を受光し、受光素子P3,P4は血管を通過していない光Ray2を受光するものとなる。これにより、血管Bの情報を最も多く含む光を受ける受光素子Pを選択することにより、センサ100Aの検出感度を高めることができる。図5(b)の例では、受光素子P1,P2のうち、受光素子P1がより多くの血管情報を有する点を考慮して受光素子P1を選択したり、受光素子P1,P2の検出信号を合算するように選択したりと、適宜選択することができる。
 また、センサ100Aでは、血管Bを通過して到達した受光素子Pxの情報に加え、血管Bを通過せずに到達した光を受光する受光素子Pyの情報を用いることもできる。センサ100では、発光素子Lの発光強度と血管Bの深さ位置とから血管Bの情報を多く含む発光素子Lと受光素子Pとの最適な距離を求め、この最適な距離となる発光素子Lと受光素子Pとの組合せを複数作れることに着眼している。すなわち、発光素子Lと受光素子Pとの距離同一性に着眼している。これに対して、センサ100Aでは、発光素子Lと受光素子Pとの距離を異ならせた組合せを複数作れることにも着目している。
 具体的には、演算部50により、図6に示すフローに沿った検出信号処理を行なう。演算部50は、データ取得部51,データ判別部52,データ補正部53を有する。まず、データ取得部51において、複数の発光素子Lを発光させたときの、複数の受光素子Pそれぞれによる検出信号S0を得る。次に、データ判別部52において、データ取得手段51によって得た複数の検出信号S0を、周期的な変動を有する第1検出信号S1と周期的な変動を有さない第2検出信号S2とに分類する。そしてデータ補正部53において、データ判別部52によって第2検出信号S2に分類された信号を第1検出信号S1に分類された信号のベースラインとして、第1検出信号S1を補正して脈派信号とする。
 データ取得部51では、発光素子Lを発光させて複数の受光素子P1~P4のそれぞれの受光量に応じた検出信号S0を得る。ここで、発光素子Lの発光は、複数の発光素子L1~L4を同時に発光させてもよいし、複数の発光素子L1~L4間で時分割して順番に点灯させてもよいし、最適な発光素子Lのみを発光させてもよい。最適な発光素子Lを判別するには、データ取得部51によるデータ取得に先立ち、個々の発光素子Lを個別に発光させて複数の受光素子P1~P4それぞれで検出することで血管Bの位置を推定して判別してもよい。
 データ判別部52では、データ取得手段51で得た複数の検出信号S0を第1検出信号S1と第2検出信号S2とに区別する。第1検出信号S1は、血管の径の変化に応じた周期的な受光量変化を有する信号である。より具体的には、第1検出信号S1は、脈拍に連動した受光量の増減が確認できるものである。その判別には、脈拍との同期をとって確認してもよいし、モデルとなる脈波波形と比較して自己相関が一定値以上となる場合を基準として確認してもよい。ここで、第1検出信号S1の周期的な変動とは、時間的に連続して同じ間隔で生じる変動には限らない。というのは、不整脈等の影響もあるからである。その場合には、1回の脈動によって生じる受光量の増減に応じた検出信号の波形(軌跡)の基本形状が繰り返し発生するかどうかで確認してもよい。なお、繰り返し発生する受光量の増減に応じた検出信号の形状は、基本形状と同一でなくてもよく、相似形でもよい。また、医学的な特徴点のみの関係性を保ったものであってもよい。
 このようにして判別された第1検出信号S0が複数ある場合には、それぞれにおける周期的な変動の軌跡は互いに相似形となっている。また、周期的な変動が生じるタイミングは同一となっている。
 これに対して、第2検出信号S2は、受光量に応じた信号に周期的な変動を有さない。より具体的には、第1検出信号S1に見られるような基本形状が繰り返し生じることがない。第2検出信号S2の判別には、その値の変動と脈拍との関連性があるか確認したり、モデルとなる脈波波形と比較して自己相関が一定値未満である場合を判定基準として確認したりすればよい。
 仮に、予め血管Bの位置を推定してから検出信号を採取するときには、受光素子Pxによる検出信号を第1検出信号S1とし、受光素子Pyによる検出信号を第2検出信号S2としてもよい。
 データ補正部53では、データ判別部52において第1検出信号S1とした信号を第2検出信号S2によって補正して脈派信号とする。言い換えると、第1検出信号S1のバックグランドを、第2検出信号S2を元に除去するような補正を行なう。第1検出信号S1は、人の動き等に起因する大きなうねりの上に脈拍と連動した強度変化を繰り返すものとなっている。これに対して、第2検出信号S2は、脈拍に連動した特異的な信号強度の変化はないが、人の動き等に起因する大きなうねりのような信号強度の変化は有する。
 このため、人の動き等に起因する第1検出信号S1のバックグラウンドの変動を、第2検出信号S2に基づき除去してキャンセルする。
 具体的には、第1検出信号S1のバックグラウンドレベルに合うように第2検出信号S2に補正係数を乗じた信号を、第1検出信号S1から差し引いて脈波信号を得る。第1検出信号S1のバックグラウンドレベルは、基本形状と基本形状との間において取得すればよい。
 このような補正を行なうことにより、脈波信号を人体の動きなどの外乱要素の少ない、高い信頼性を有する信号とすることができる。そして、このような脈波信号を用いることにより、信頼性の高いセンサとすることができる。
 <センサ100B>
 次に、他の実施形態に係るセンサ100Bについて説明する。センサ100Bは、センサ100およびセンサ100Aとは演算部50Bに係る構成が異なる。以下、異なる部分についてのみ説明し、重複する説明は省略する。
 演算部50Bは、受光素子アレイ20で得た検出信号S0から脈波信号を得るための信号処理部である。
 図7を用いて、演算部50Bにおける受光素子P1~P4で得た検出信号S0の処理方法について説明する。図7は、演算部50Bにおける信号処理方法を示すフロー図である。
 演算部50Bは、図7に示すフローに沿った検出信号処理を行なう。演算部50Bは、データ取得部51Bとデータ判別部52Bとデータ補正部53Bを備える。まず、データ取得部51Bにおいて、複数の発光素子Lを発光させたときの、複数の受光素子Pそれぞれによる検出信号S0を得る。次に、データ判別部52Bにおいて、データ取得部51Bにより得た複数の検出信号を、周期的な変動を有する第1検出信号S1と周期的な変動を有さない第2検出信号S2とに分類する。続いて、データ補正部53Bにおいて、データ判別部52Bによって第1検出信号S1に分類された信号を足し合わせて脈波信号とする。
 データ取得部51Bでは、発光素子Lを発光させて複数の受光素子P1~P4のそれぞれの受光量に応じた検出信号S0を得る。ここで、発光素子Lの発光は、少なくとも2個以上の複数の発光素子Lを同時に発光させる。
 データ判別部52Bでは、データ取得部51Bで得た複数の検出信号S0を第1検出信号S1と第2検出信号S2とに区別する。判別方法は、データ判別部52と同様のため説明を省略する。
 データ補正部53Bでは、データ判別部52Bにおいて第1検出信号S1とした複数の信号を少なくとも2つ以上足し合わせる。具体的には、第1検出信号S1と判別されたもの全てを加算してもよいし、第1検出信号S1と判別されたものの中から強度の大きいもの順に順位付けを行ない、大きい方から順に足し合わせた信号強度の基準値が一定強度となるまで足し合わせてもよい。なお、複数の第1検出信号S1を足し合わせるときに、互いのベースラインを補正して合わせてもよい。
 センサ100Bによれば、このような補正を行なうことにより、血管Bとセンサ100Bとの相対位置がずれても正確に安定して脈波信号を得ることができる。以下、そのメカニズムについて説明する。
 複数の発光素子Lと複数の受光素子Pとを組み合わせることにより、血管Bとセンサ100Bとの相対位置を考慮して最適な組み合わせを選択することができる。一方で、測定中に、または測定回毎に、血管Bとセンサ100Bとの相対位置が変化して選択した発光素子Lと受光素子Pとの組合せが変わると、検出信号の強度(ベースライン)も変化してしまい、安定した測定ができなくなったり、信号強度をモニタリングしながら強度変化を補正する新たな補正手段を追加する必要が生じたりする。なお、ベースラインのレベルは、複数の第1検出信号S0のそれぞれで互いに異なるものである。
 これに対して、センサ100Bによれば、複数の受光素子Pからの検出信号S0のうち、血管Bの径の変化に応じた強度変化を有する第1検出信号S1を選別して足し合わせることで、測定中に血管Bとセンサ100との相対位置が変化しても、常に平均的な脈波信号を得ることができる。このメカニズムを図8を用いて説明する。図8(a)に示すように、1個の発光素子Lxからも複数の受光素子P1~P4に血管情報を含む光が入射する。このうち、最も強度の高いものを選択するのではなく、血管情報を含む複数の検出信号を足し合わせることで、血管情報を多く含むものとなり、血管情報の平均的な値を得ることができる。
 これに加え、本例では、少なくとも2個以上の発光素子Lが同時に点灯している。すなわち、図8(b)に示すように、さらに別の発光素子Lyからも複数の受光素子Pに血管情報を含む光が入射しており、これらの情報が重畳されて、個々の受光素子Pの検出信号となっている。このため、たとえ発光素子Lxと血管Bとの相対位置がずれることによって血管情報を含む信号量が減少したとしても、違う発光素子Lyと血管Bとの相対位置もずれるので、発光素子Lxによる信号量の減少を補うように発光素子Lyによる血管情報を含む信号量が増加する。例えば、センサ100Bに対する血管位置がB5からB6に移動しても、発光素子Lx,Lyの双方を用いることにより、位置ずれの影響を抑制することができる。
 これにより、センサ100Bによれば、上述の補正を行なうことにより、血管Bとセンサ100Bとの相対位置がずれても正確に安定して脈波信号を得ることができる。
 さらに、脈波信号を1個の発光素子Lからの情報によらずに、複数の発光素子Lからの情報によって得るメカニズムであるため、複数の発光素子Lのうち特定の一素子のみに負荷がかかることを抑制し、発光素子アレイ10を長寿命化することができる。また、1つ1個の発光素子Lに印加する駆動電圧も低く設定することができるので、発光素子アレイ10を長寿命化することができる。
 なお、上述の例では、複数の発光素子Lのうち少なくとも2つを同時に発光させて脈波信号を得ることを説明したが、全ての発光素子Lを同時に発光させてもよい。また、測定に先立ち、全ての発光素子Lを同時に発光させて、血管Bの位置を推定し、かつ受光素子Pによる検出信号強度を確認することで、点灯が必要な発光素子Lの数および発光素子Lの特定を行ない、必要最小限の発光素子Lのみを点灯するようにしてもよい。
 <センサ100C>
 次に、図9を用いて、本発明の他の実施形態であるセンサ100Cについて説明する。センサ100Cは、センサ100と比べて、複数の受光素子P(P1~P4)の形状が異なる。以下、相違点のみ説明し、重複する説明を省略する。
 図9において、センサ100Cの素子40Cは、受光素子アレイ20Cの各受光素子Pが細長い矩形状となっている。具体的には、受光素子Pは、第1方向D1に平行な方向を長辺とし、第2方向に平行な方向を短辺としている。
 ここで、センサ100Cは、血管Bが第1方向D1を横切るように配置されている。より好ましくは、血管Bと第2方向D2とが略平行になるようにセンサ100Cを配置する。このため、血管Bにおいて血液が流れる方向において、センサ100Cの時間的な感度を上げることが重要となってくる。
 これに対して、センサ100Cの受光素子Pは、血管Bにおいて血液が流れる方向、すなわち第2方向D2に延びる長さを短くしている。このため、第2方向における検出時間を短くして応答性を高めることができるので、血管Bの径の変化との同時性を確保することができる。受光素子Pの第2方向D2における幅は、測定する血管における脈波伝搬速度と希望する測定精度とを考慮して決定すればよいが、例えば0.2mm程度とすればよい。
 以上により、センサ100Cによれば、血管Bの径の変化に起因する情報を時間的な感度を高めて検出することができるので、高精度なセンサとすることができる。
 なお、この例では、受光素子Pは矩形状としたが、第1方向に見たときの長さが第2方向に見たときの長さに比べて長ければ、矩形状に限定されない。例えば、矩形の角が丸まった形状や楕円形状でもよい。
 <センサ100D>
 センサ100,100A,100B,100Cでは、発光素子アレイ10および受光素子アレイ20をそれぞれ1個ずつ有する場合を例に説明したが、両アレイのいずれか一方または両方を複数個有していてもよい。例えば、図10に示すように、センサ100Dは、発光素子アレイ10、第2発光素子アレイ12、および受光素子アレイ20を有し、第1方向D1において受光素子アレイ20を挟むように発光素子アレイ10および第2発光素子アレイ12を1列に配列させてもよい。この場合には、血管Bに対する位置ずれ許容度をさらに大きくすることができ、ロバスト性の高いものとすることができる。
 ここで、第2発光素子アレイ12の各発光素子Lは、発光素子アレイ10および受光素子アレイ20の各発光素子Lおよび受光素子Pと同様に、所定の面上に配列されている。
 なお、発光素子アレイ10、第2発光素子アレイ12および受光素子アレイ20は、第1方向D1から見て1列に配列される必要はなく、第1方向D1から見たときに、発光素子アレイ10と第2発光素子アレイ12との間に受光素子アレイ20があればよい。また、1つの発光素子アレイ10に対して2つの受光素子アレイ20を設けて、これらを第1方向D1において互い違いに配列させてもよい。この場合も血管Bに対する位置ずれ許容度を高めることができる。
 <変形例>
 上述の例では、発光素子アレイ10と受光素子アレイ20との素子数を同一としたが、この例に限らない。例えば、受光素子アレイ20の受光素子数を発光素子アレイ10の発光素子数に比べて多くすることで、血管情報を有する最適な受光素子Pを選択しやすくすることができる。また、受光素子Pを細分化することにより、受光素子Pを高速駆動することができるので、検出信号の分解能を上げることができる。
 また、上述の例では、発光素子アレイ10と受光素子アレイ20とを第1方向D1から見て1列となるように配列したが、この例に限らない。これらアレイが第2方向D2にずれていてもよい。例えば、センサ100Dにおいて、発光素子アレイ10および第2発光素子アレイ12の間に位置する受光素子アレイ20のみについて第2方向D2(図面の上下方向)における位置をずらして配置してもよい。その場合には、基板11,基板21の端部を考慮せずに発光素子アレイ10の発光素子L4と受光素子P1との間隔および受光素子P4と第2発光素子アレイ12の発光素子L1との間隔を調整することができる。すなわち、発光素子アレイ10の発光素子L4と受光素子P1とを複数の素子ピッチと同程度まで近接配置したり、受光素子P4と第2発光素子アレイ12の発光素子L1とを複数の素子ピッチと同程度まで近接配置したりすることができる。このようにすることによって、センサにおける各素子の配置位置に関する設計自由度を広げることができる。
 なお、アレイの並びの両サイドに位置するものは、第2方向D2において同じ位置に配置するとよい。すなわち、上述の例では、発光素子アレイ10と第2発光素子アレイ12とは、第2方向D2における座標が同じになるように配置するとよい。言い換えると、発光素子アレイ10および第2発光素子アレイ12は、受光素子アレイ20に対して同じ方向に同じ距離だけずらすとよい。
 この場合には、発光素子アレイ10と第2発光素子アレイ12とで血管Bに対するD2方向における位置ずれが生じにくいため、同じタイミングで同じ位置における血管Bの収縮・拡張の様子を見ることができ(同時性を確保でき)、検出信号の信頼性を高めることができる。
 <センサ装置>
 次に、図11を用いて、本発明の一実施形態に係るセンサ装置200を説明する。センサ装置200は、上述のセンサ(100,100A~100D)を2つ、第2方向D2に間隔を空けて配置して構成されている。具体的に、は配線基板210に第1センサ150および第2センサ160を第2方向D2に間隔を空けて配置しており、互いの発光素子アレイ10および受光素子アレイ20の配列方向(第1方向D1)には略平行にしている。この例では、センサ100の構成を第1センサ150および第2センサ160に用いた場合を例に説明する。なお、この図において、演算部50の図示は省略している。
 センサ装置200は、図2に示す例と同様に、第1方向D1が手首の尺骨動脈または橈骨動脈を横切るように配置する。
 このように構成することで、第1センサ150と第2センサ160とで同一の動脈中の位置の異なる2か所で脈波を測定することとなる。このため、第1センサ150で得た脈波信号と第2センサ160で得た脈波信号との位相のずれを確認し、脈波伝搬速度を算出することにより、血圧を測定することが可能となる。
 脈波伝搬速度の測定に必要な血管の長さは、第2方向D2における第1センサ150と第2センサ160との間隔と推定することができる。測定対象の動脈は、毛細血管等と違って一方向に延びており、かつ第1センサ150と第2センサ160との距離が近いことから、血管の長さを精密に推定可能となり、その結果、精密な脈波伝搬速度の算出が可能となる。
 なお、血管の長さは、以下の手法で推定してもよい。まず、第1センサ150と第2センサ160とでそれぞれ事前に複数の発光素子Lを個別に点灯させ、複数の受光素子Pのそれぞれで受光した光量に応じた検出信号をサンプリングする。この検出信号の強度およびスペクトルを比較し、第1センサ150および第2センサ160それぞれのどの素子の直下に血管が位置するかを推定する。そして、第1センサ150において直下に血管があると推定された素子と、第2センサ160において直下に血管があると推定された素子との間隔を求めることで、より正確に血管の長さを求めることができる。
 具体的には、脈波伝搬速度をx(単位:m/sec),血圧をy(単位:mmHg)とすると、y=ax+bの式が成立する。ここで血圧を±b1mmHgの精度で測定したい場合には、脈波伝搬速度を±b1/aの精度で求める必要が生じる。ここで第2方向D2における、第1センサ150の受光素子Pと第2センサ160の受光素子Pとの中心間隔d(単位:mm)とし、受光素子Pの第2方向D2における長さを2c(単位:mm)とすると、2個の受光素子Pの最小距離はd-2cとなり、最大距離はd+2cとなる。この2つの同時性を確保するためには、(d-2c)×10-3/(x-b1/a)=(d+2c)×10-3/(x+b1/a)を満たす必要がある。この関係を整理すると、2d=b1×d/axを満たす必要がある。すなわち、受光素子Pの第2方向D2における長さ2dは、傾きaと測定する脈波伝搬速度の大きさとによって変わるものとなる。ここで、一般的な上腕足首間の脈波伝搬速度PWVと収縮期血圧との関係式より、aを6.4164とし、血圧を±3mmHgの精度で測定するものとし、受光素子Pとの中心間隔dを1.5mmとすると、受光素子Pの第2方向D2における長さ2dは、脈波伝搬速度が10[m/sec]の場合には0.7mmとし、35[m/sec]の場合には0.2mmとすればよいことが分かる。このように、上腕足首間の脈波伝搬速度baPWVと血圧の関係式の傾きaと測定したい脈波伝搬速度PWVの最大値とを求めれば、必要な受光素子Pの第2方向D2における長さ2dは決まる。
 なお、第1センサ150および第2センサ160において、センサ100Cの構成を適用すると、第1センサ150と第2センサ160とを近接配置しても脈波伝搬速度を高精度に測定することが可能となる。
 <センサ装置の駆動方法>
 また、第1センサ150と第2センサ160とでは、発光素子Lの発光タイミングの周期をずらすように駆動してもよい。第1センサ150と第2センサ160との発光素子Lを周期的に発光させることで、時間変化に対する血管の径の変化を検出することができる。
 ここで、第1センサ150と第2センサ160とは近接配置されているため、一方のセンサの発光素子Lからの光が、他方のセンサの受光素子Pに到達することが考えられる。この場合には、第1センサ150と第2センサ160とで発光素子Lの発光タイミングすなわち発光時間が重ならないように、それぞれの発光素子Lを駆動する。具体的には、第1センサ150と第2センサ160とで発光素子Lの発光時間が互いに重ならないように発光の周期をずらせばよい。
 そして、第1センサ150においては、第1センサ150の発光素子Lが発光している間のみ受光素子Pで光電流を検出し、第1センサ150の発光素子Lが消灯している間には受光素子Pでの光電流の検出を行なわない。同様に、第2センサ160においては、第2センサ160の発光素子Lが発光している間のみ受光素子Pで光電流を検出する。このようにセンサ装置200を駆動することで、第1センサ150の発光素子Lに由来する光による信号と、第2センサ160の発光素子Lに由来する光による信号とを区別することができる。
 このように、第1センサ150と第2センサ160とで発光素子Lの発光タイミングの周期をずらす場合の、発光素子Lと受光素子Pとの出力例を図12に示す。具体的には、第1センサ150と第2センサ160とで発光素子Lの発光タイミングの周期を半周期ずらした例を示す。
 第1センサ150と、第2センサ160とで発光素子Lの駆動の周期を半周期ずらすと、それぞれのセンサの受光素子Pにおいて、他方のセンサの発光素子Lによる光電流が半周期ずれたタイミングで受光される。そこで、第1センサ150の受光素子Pにおいては、第1センサ150の発光素子Lの発光タイミングと半周期ずれて出力される信号は取得せずに、第1センサ150の発光素子Lの発光タイミングと同期して信号を取得する。このようにすることで、他方のセンサによる影響を除去することができる。第2センサ160においても、同様の処理を行なうことで、第1センサ150の影響を除去することができる。なお、それぞれの発光素子Lの1回の駆動における発光時間は、例えば1/4周期程度かそれ以下とすればよい。そして、信号処理時には、1周期の間における受光素子Pの出力は同じタイミングとして処理する。すなわち、図中の信号Sx,Syは、それぞれの受光素子Pで同時に出力されたものとみなされる。
 さらに、他方のセンサの発光素子Lが発光するタイミングにおける受光素子Pの光電流の強度を閾値THとし、その閾値THを超える信号強度を検出信号として取得してもよい。この場合には、より精密に他方のセンサによる影響を除去することができる。
 説明のために、図12の要部拡大図を図13に示す。図13において、第1センサ150の発光素子Lの駆動の様子を太線で、第1センサ150の発光素子Lに基づく第1センサ150の受光素子Pの出力OUT1を細い実線で、第2センサ160の発光素子Lの駆動の様子を太い破線で、第2センサ160の発光素子Lに基づく、第1センサ150の受光素子Pの出力OUT2を細い破線で示している。
 図13に示す例からも明らかなように、第2センサ160の発光素子Lの光に由来する信号の検出と第1センサ150の発光素子Lの光に由来する信号の検出とでは、タイミングがずれている。そして、着目するセンサと同じ側の発光素子Lと同じタイミングの信号のみ検出することで、他方のセンサの影響を除外することができる。
 なお、このような、第1センサ150の発光素子Lおよび第2センサ160の発光素子Lを駆動させる駆動制御部は、センサ装置200の内部に形成してもよいし、第1センサ150と第2センサ160とのそれぞれに個別に設けてもよいし、センサ装置200の外部に設けてもよい。
 <発光素子アレイ10および受光素子アレイ20>
 上述のセンサ100,100A~100Dおよびセンサ装置200を構成する発光素子アレイ10および受光素子アレイ20は、個々の発光素子Lおよび受光素子Pを基板上に実装して形成してもよいが、より好ましくは、同一基板に薄膜プロセスによって作り込んで形成すればよい。
 例えば、発光素子アレイ10の発光素子Lは、半導体材料からなる基板11上に、所望の発光波長を得られるように、バンドギャップを調整した複数の半導体層を積層して構成する発光ダイオードとしてもよい。半導体層は、MOCVD(有機金属化学気相成長:Metal-Organic Chemical Vapor Deposition)装置を用いて形成する。
 このような発光素子Lの一例を図14(a)に示す。図14(a)は発光素子Lの断面図である。この例では、発光素子Lは、GaAs基板やSi基板からなる基板11上に、バッファ層L11、一導電型コンタクト層L12、一導電型クラッド層L13、活性層L14、他導電型クラッド層L15および他導電型コンタクト層L16が順次積層されてなる。この複数層の半導体層は、例えばAlGaAs系の半導体層として、ドープする不純物の種類および濃度をコントロールすることにより、所望の半導体層を積層することができる。
 このようにして構成された発光素子Lは、駆動するための対の電極E1,E2間にバイアス電圧を印加することによって、活性層L14が発光して光源として機能する。
 また、発光素子Lを駆動するための電極E1,E2は、一導電型コンタクト層L12および他導電型コンタクト層L16にそれぞれ接続されるように、薄膜形成方法によって電極層を形成した後にフォトリソグラフィ法によって所望の形状に加工して形成すればよい。このような電極は、必要に応じて絶縁層Iを介して形成することで、所望の位置で所望の半導体層のみに電気的に接続されるものとなる。
 このように基板11上に発光素子Lを形成することにより、パターニングのためのマスクを変更するのみで、基板11の所望の位置に所望の形状で精度よく複数の発光素子Lを配列させることができるので、高精度な発光素子アレイ10を得ることができる。
 さらに、発光素子アレイ10を全て薄膜プロセスによって形成することができるので、発光素子Lの大きさを小さくすることができるとともに、個々の発光素子Lの間隔を小さくすることができるので、小型で高精度な発光素子アレイ10を提供することができる。
 また、図14(b)に示すように、受光素子アレイ20の受光素子Pはフォトダイオードであり、一導電型の半導体材料からなる基板21の表面に他導電型半導体領域22を形成して構成してもよい。基板21としては、一導電型のSi基板等を用いることができる。そして、他導電型半導体領域22を形成する領域に相当する開口部を設けたマスクを用い、所望の領域に熱拡散あるいはイオン打込み等の手法によって他導電型を呈する不純物をドープする。また、他導電型の半導体層をエピタキシャル成長させた後に、所望の形状の他導電型半導体領域22にパターニングして形成してもよい。
 なお、本例では一導電型はn型であり、逆導電型はp型である。この例では、一導電型の不純物としてリン(P)を1×1017~2×1018atoms/cmの濃度で含んでいる。n型の不純物としては、リン(P)の他に、例えば窒素(N)、砒素(As)、アンチモン(Sb)およびビスマス(Bi)などが挙げられ、ドーピング濃度は1×1016~1×1020atoms/cmとされる。
 他導電型不純物としては、例えば亜鉛(Zn)、マグネシウム(Mg)、炭素(C)、ホウ素(B)、インジウム(In)またはセレン(Se)などが挙げられ、ドーピング濃度は1×1016~1×1020atoms/cmとされる。このような基板21と他導電型半導体領域22とでpn接合を形成し、受光素子Pが形成される。
 受光素子Pから光電流を取り出すための電極E3,E4も、発光素子Lと同様に、導電膜を形成した後に所望の形状にパターニングすることで形成することができる。なお、電極E4は、図示していないが、他導電型半導体領域22と離れて基板21に直接接続するように形成されている。
 このようにして、基板21の所望の位置に所望の形状の受光素子Pを形成できるので、受光素子Pを小型化でき、かつ高い位置精度で複数の受光素子Pを配列した受光素子アレイ20を得ることができるものとなる。
 そして、発光素子アレイ10および受光素子アレイ20をそれぞれ同一基板に各素子を作り込んだチップ状とすることにより、小型化および高い位置精度を実現できる。
 なお、上述の例では、発光素子アレイ10および受光素子アレイ20は、それぞれ別基板に形成して別チップとした場合を例に説明したが、半導体の基板11および半導体の基板21を同一基板として、1つの基板の所望の位置に発光素子Lおよび受光素子Pを形成することで、発光素子アレイ10および受光素子アレイ20を一体化することもできる。その場合には、複数の発光素子Lおよび複数の受光素子Pの位置精度をさらに高めることができる。なお、その場合、「所定の面上」とは、1つの基板の上面をさすものとなる。
 <発光素子Lと受光素子Pとの配置位置>
 上述のような発光素子Lと受光素子Pとの配置位置に関して、詳細に検討する。
 位置関係の議論を簡略にするために、図15に示すセンサ100Eをモデルとして説明する。
 センサ100Eは、第1発光素子Laと第2発光素子Lbと複数個の受光素子Pとを有している。第1発光素子Laは、例えば、センサ100Dにおける発光素子アレイ10のうち最も受光素子アレイ20に近い発光素子L4とみることができる。同様に、第2発光素子Lbは、センサ100Dにおける第2発光素子アレイ12のうち最も受光素子アレイ20に近い発光素子L1とみることができる。
 複数の受光素子Pは、2mm以下の間隔で配列している。そして、受光素子Pが配置される領域は、第1発光素子Laから第2発光素子Lbに向けて4mm以内の範囲(第1範囲A1)または第2発光素子Lbから第1発光素子Laに向けて4mm以内の範囲(第2範囲A2)とする。言い換えると、第1範囲A1の外側の領域であり、かつ第2範囲A2の外側の領域には、受光素子Pが配置されていない。複数の受光素子Pは、全てが第1範囲A1に配置されても、全てが第2範囲A2に配置されても、一部が第1範囲A1に、残りが第2範囲A2に配置されていてもよい。また、第1範囲A1と第2範囲A2とに重複する範囲がある場合には、そこに複数の受光素子Pの一部が配置されたり、全てが配置されたりしてもよい。
 なお、図15において、複数の受光素子P、第1発光素子La、第2発光素子Lbは全て第1方向D1において1列に並んでいる。このため、第1範囲A1および第2範囲A2は第1方向D1から見て4mmの範囲となっている。
 この例では、受光素子P1~P4は全て、第1範囲A1および第2範囲A2の両方に、すなわち2つの範囲(第1範囲A1,第2範囲A2)が重複する領域に配置されている。言い換えると、第1範囲A1のうち、最も第2発光素子Lb側に位置する受光素子P(P4)は、第2発光素子Lbの隣に位置し、第2範囲A2のうち、最も第1発光素子La側に位置する受光素子P(P1)は、第1発光素子Laの隣に位置している。
 本例では、受光素子P1~P4の中心間隔(ピッチ)は0.5mm以上1mm以下としている。また、第1発光素子Laと受光素子アレイ20との間隔(隙間)および第2発光素子Lbと受光素子アレイ20との間隔(隙間)は3mm以下としている。さらに、受光素子P1~P4のそれぞれの大きさは、第1方向D1においては素子ピッチよりも小さく、第2方向D2においては0.2mm以上0.5mm以下としており、発光素子Lのそれぞれの大きさは0.3mm角としている。
 このようなセンサ100Eを用いることにより、血管Bとセンサ100との相対位置がずれても正確に安定して脈波信号を得ることができる。以下、そのメカニズムについて図16を用いて説明する。図16(a)は、メカニズムを検証するためのセンサモデルの概略構成を示す上面図である。図16(b)は、発光素子と受光素子と血管位置との相対距離を変えて受光素子で検出した検出信号の振幅強度を示す図である。
 図16(b)において、縦軸は受光素子で検出する光電流に起因する検出信号(脈波信号)の振幅の大きさを示し、縦軸は発光素子と受光素子との距離を示す。また、図中に太線で示すのは、脈波として信号を安定して解析するために必要な振幅の基準値である。なお、この例においては、敢えてセンサを血管位置に対して最適と推測される位置からずらして配置している。具体的には、最適と思われる配置から2mmずらしてセンサを配置した。これは、血管とセンサとの相対位置がずれたときの影響を確認するためである。
 センサモデルは、図16(a)に示す通り、複数の発光素子Lt1~Lt8が1列に並んだ発光素子アレイと、複数の受光素子Pt1~Pt8が1列に並んだ受光素子アレイとを並列配置させたものを用いている。センサモデルは、血管が受光素子および発光素子の配列方向を横切るように配置している。ここで、発光素子Lt1を発光させたときの受光素子Pt1~Pt8における検出信号、および発光素子Lt2を発光させたときの受光素子Pt1~Pt8における検出信号というように、個々の発光素子の発光に対する個々の受光素子の検出信号を測定した。そして、測定した検出信号を発光素子と受光素子との距離に応じてプロットした。言い換えると、センサモデル中の個々の発光素子と個々の受光素子との距離を、図中の発光素子と受光素子との距離としてプロットしている。
 ここで着目する点は、図16(b)に示す測定結果は、発光素子と受光素子との距離を変化させると同時に、発光素子と血管との距離も変化させたデータを含むことである。例えば、センサと血管とがモデル図に図示した位置関係にあるとすると、発光素子Lt1は血管から遠く、発光素子Lt5は血管に近いこととなる。
 図16(b)において、発光素子と受光素子との距離が離れるに従い、振幅値の最大値は低下していき(ラインA)、最小値は上昇していく(ラインB)ことが分かる。これは、血管に近い発光素子(この例では発光素子Lt5)からの光による光電流は、受光素子との距離が短いときは大きな振幅を得ることができるが、距離が長くなるに従って振幅が小さくなることを示し(ラインA)、血管に遠い発光素子(この例では発光素子Lt1)からの光による光電流は、受光素子との距離が短いときには小さな振幅であるが、離れるに従って体内の移動距離が大きくなり、血管を通過する信号が増えて振幅が増加していくことを示す(ラインB)ものである。
 そして、ラインAとラインBとは発光素子と受光素子との距離が4mmのところで収束し、その先では基準振幅値を超えることが難しくなる。すなわち、ラインAは、4mmを超えると血管からの距離がさらに長くなり、その結果、振幅強度はさらに低下していく。ラインBは、4mmを超えると発光素子との距離が長くなり、人体内部における光の吸収・減衰に伴い、振幅強度は4mmを最高値として低下していく。以上より、発光素子から4mmの範囲内の領域に発光素子との距離を異ならせて複数個の受光素子を配置することで、安定して脈波信号を検出することができることが確認された。すなわち、人の活動に起因して、センサ100Eが当初配置した位置からずれた場合であっても、血管Bの体内における位置が変化した場合であっても、安定して脈波信号を得ることができるものとなる。
 さらに、センサ100Eによれば、両発光素子La,Lbから4mm以内の範囲内において、複数の受光素子Pの全てが一方向に配列されている。そして、受光素子の配列方向の両側に発光素子が配列されている。このような構成とすることで、受光素子Pの全てが、第1発光素子Laおよび第2発光素子Lbの双方にとって高い感度で検出できるように配置されているものとなる。言い換えると、血管に対して一方の発光素子が近い場合でも遠い場合でも、他方の発光素子によって補完することができ、測定中のセンサ100の位置ずれがある場合であっても、センサ100の初期設置位置が最適位置からずれている場合であっても、安定して脈波を測定することができる。
 さらにこの例では、受光素子Pを複数個設けている。すなわち、同じ面積に1個の受光素子を配置する場合に比べて、個々の受光素子Pを小型化しているものとなる。これにより、受光素子の動作を高速にすることができ、流動する血液の流れに即した血管の収縮・拡張の変化を遅延なくタイムリーに捉えることができるものとなる。すなわち、センサ100Eの時間的分解能を向上させることができる。さらに、1個の大きな面積の受光素子で受光する場合には、発光素子Lからの光が受光素子に到達するまでに通過した経路の平均的な情報を得るものとなる。これに対して、本実施形態のように、受光素子Pを分割して複数個設けることにより、それぞれの経路に即した信号を精度よく検出することができる。これにより、例えば、血管Bを最適な位置で通過した光からの信号とその他の信号とを分離することができる。
 また、センサ100Eによれば、2個以上の受光素子Pが第1発光素子Laと第2発光素子Lbとの間に配置されている。ここで、各受光素子Pで検出する光電流に基づく検出信号の振幅の中心値(以下、単にレベルということもある)に着目する。検出信号に血管の収縮・拡張に基づく振幅を含むか否かは血管との位置関係によるが、検出信号のレベルは発光素子と受光素子との距離に依存する。すなわち、検出信号のレベルは、発光素子と受光素子との距離が短ければ大きく、長ければ小さいものとなる。このため、複数の受光素子間で検出信号のレベルが大きくばらつくものとなる。これに対して、本実施形態のような構成とし、2個の発光素子Lを同時に点灯する場合には、一方の発光素子による検出信号が小さい場合には他方の発光素子による検出信号が大きくなり、複数の受光素子P間でレベルを合わせることができる。これにより、例えば複数の受光素子Pにおいて周期的な振幅を含む検出信号を足し合わせて振幅情報をより詳しく解析する場合に、各受光素子P間でレベル合わせをする必要がなくなる。特にセンサ100Eは、全ての受光素子Pが、両発光素子La,Lbからいずれも4mm以内の範囲に位置するため、より精密にレベル合わせをすることができる。
 (変形例:センサ100F)
 上述の例では、複数個の受光素子Pの全てが第1範囲A1および第2範囲A2が重複する領域内に存在する例を用いて説明したが、図17に示すセンサ100Fのように、第1範囲A1および第2範囲A2は重複しなくてもよい。
 センサ100Fにおいて、複数個の受光素子Pのそれぞれは第1範囲A1および第2範囲A2の少なくとも一方、すなわちいずれかの範囲のみに分かれて配置されており、第1範囲A1および第2範囲A2は互いに重複部を有していない。そして、複数個の受光素子Pは同一ピッチで配列されており、第1範囲A1の中で最も第2範囲A2側に位置する受光素子(Pa)と、第2範囲A2の中で最も第1範囲A1側に位置する受光素子(Pb)とは、互いに隣接するように配置されている。言い換えると、第1範囲A1と第2範囲A2との間の領域、すなわち第1範囲A1の外側であり、かつ第2範囲A2の外側である領域には、受光素子Pが存在していない。
 センサ100Fは、このような構成とすることで、精度を低下させずに測定可能な範囲を広げることができ、その結果、位置ずれが生じた場合であっても安定して脈波信号を検出できるものとなる。具体的には、センサ100Eに比べて2倍の長さの範囲において脈波信号を検出することができる。
 この効果について詳述する。図16(b)に示すセンサ100Eの結果からも明らかなように、受光素子Pの配列が発光素子Lに対して第1範囲A1、第2範囲A2の領域に存在するときに、その検出信号は十分な振幅強度を得られることが確認されている。センサ100Aでは、この第1範囲A1および第2範囲A2が重複していない。従って、第1範囲A1および第2範囲A2の領域を合わせた領域である、長さが略8mmの距離の範囲において安定測定が可能であり、検出範囲を広げることができることを示している。言い換えると、発光素子Laと発光素子Lbとの間隔を離しても、第1範囲A1および第2範囲A2のいずれかに位置するように複数個の受光素子Pを配置すれば、安定測定が可能となる。また、発光素子と受光素子とを交互に配列する場合に比べて、個別制御する部品数を少なくして測定可能範囲を広げることができるので好ましい。さらに、センサ100E,100Fによれば、発光素子L同士が十分に間隔を空けて配置されている。これにより、受光素子Pが意図せぬ他の発光素子Lの発光による影響を徒に受けるおそれがなくなり、精度よく測定することができる。
 なお、図17においては、第1範囲A1と第2範囲A2とが全く重複しない場合を例に説明したが、第1範囲A1と第2範囲A2とは一部が重複してもよい。この場合であっても、検出可能範囲を広げることができる。
 なお、図15および図17に示す例においては、複数の受光素子P、第1発光素子La、第2発光素子Lbは全て第1方向D1において1列に並んでいるが、複数の受光素子Pの列と第1発光素子Laおよび第2発光素子Lbとが第2方向D2においてずれていてもよい。この場合には、第2方向から見たときに基板11、21の一部が重複してもよいため、第1範囲A1および第2範囲A2の下限値はそれぞれ0mmとなる。
 なお、上述においては、発光素子Lからの光を体内を通過して受光素子Pで検出することで体内の流路である血管の径の変化を測定する例を用いて説明したが、他の用途にも転用可能である。例えば、センサ100および100A~100Fは、光を通過させる組織の内部に配置された流路の状態や流路を流れる液体の状態を、微小領域で即時測定することができる。具体的には、上述の例と同様に、一様な液体が流れる流路の径の変化を確認してもよいし、一様な流路内に流れる液体の移動を確認してもよい。後者の場合には、照射する光の液体による吸収度合いの差により、液体の判別を行なったり、流量を測定したりすることができる。
 また、生物の血管の状態を検出する一例として人体を取り上げたが、他の生物にも適応可能である。例えば、家畜に装着して、家畜の健康管理および畜産物の生産管理に用いたり、野生動物に装着して、その生態調査に用いたりしてもよい。
 また、本発明では、複数の発光素子が発光素子アレイを構成している場合について説明したが、別概念として、以下の構成を抽出することができる。すなわち、複数の発光素子は、第1発光素子と、前記第1発光素子とは第1方向に間隔を空けて配置された第2発光素子とを含み、受光素子は、前記第1発光素子と前記第2発光素子との間の前記第1発光素子から4mm以内の範囲または前記第2発光素子から4mm以内の範囲の少なくともいずれか一方に、前記第1方向に沿って複数個配列されているものである。このような構成によれば、図15,図17に示す説明図のようなセンサとなる。このため、図16(b)に示すセンサ100Eの結果からも明らかなように、受光素子Pの配列が発光素子Lに対して第1範囲A1、第2範囲A2の領域に存在するものとなり、その検出信号は十分な振幅強度を得られる。これにより、検出精度が高いセンサを提供することができる。さらに、第1範囲A1と第2範囲A2との重複領域を減らすことで、脈波を検出可能な範囲を広げることができ、血管とセンサとの位置ずれが生じても安定して脈派を測定することができるものとなる。
 図15に示すセンサ100Eおよび図17に示すセンサ100Fを用いて、検出信号のサンプリングを行なった。
 <センサ100E,100Fの準備>
 センサ100E,100Fについて、複数の受光素子Pのピッチは0.5mmとした。また、発光素子La,Lbから最も近い受光素子Pまでの距離が2mmのものと3mmのものとを用意した。さらに2個の発光素子La,Lbの間の距離は、センサ100Eは5.5mmとし、センサ100Fは7.5mmとした。
 <センサ100E,100Fの駆動条件>
 以下の条件1~4にてセンサ100E,100Fを駆動させ、各受光素子Pからの光電流に基づく検出信号をサンプリングした。
 条件1:センサ100F(発光素子Laと受光素子P1との距離が3mm)のものを用いて、第1発光素子Laのみを点灯
 条件2:センサ100F(発光素子Laと受光素子P1との距離が2mm)のものを用いて、第1発光素子Laのみを点灯
 条件3:センサ100F(発光素子Laと受光素子P1との距離が2mm)のものを用いて、第1発光素子La,第2発光素子Lbの双方を条件1,2の60%の発光強度で点灯
 条件4:センサ100E(発光素子Laと受光素子P1との距離が2mm)のものを用いて、第1発光素子La,第2発光素子Lbの双方を条件1,2の60%の発光強度で点灯。
 図18A~図18Dに、上記の条件1~4で測定した検出信号を示した。図18において、横軸は時間(s)であり、縦軸は出力(V)を示す。その結果、図18A,Bに示す通り、発光素子Lと受光素子Pとの距離が4mmを超える場合には、検出信号に振幅が確認されなかった。具体的には、図18Aにおいて、発光素子Laと距離が4mm以内である受光素子P1~P3までは検出信号に基準値を超える振幅が含まれていたが、4mmを超える位置に配置された受光素子P4~P8では検出信号に基準値を超える明瞭な振幅は確認されなかった。また、図18Bにおいて、発光素子Laと距離が4mm以内である受光素子P1~P5までは検出信号に基準値を超える振幅が含まれていたが、4mmを超える位置に配置された受光素子P6~P8では検出信号に超えるような明瞭な振幅は確認されなかった。さらに、図18Bにおいて、受光素子P1の検出信号はレベルは高いもののノイズも大きく、ばらつきの大きいものとなっていた。ここで、検出信号は一定値を基準に反転させて検出しているため。検出信号のレベルは出力が小さい程大きいことになる。
 動脈は皮膚のごく表層ではなく内部に位置するため、発光素子と受光素子との距離が短過ぎても血管情報を得ることができない可能性がある。この場合には、発光素子Laと受光素子P1との間隔を1mmを超えて3mm未満となるようにすればよい。具体的には、この例のように発光素子Laと受光素子P1との間隔は2mm程度にすればよい。
 また、図18C,18Dに示す通り、両側の発光素子La,Lbを点灯させることにより、発光素子Lと受光素子Pとの距離が4mmを超える場合であっても、検出信号に振幅が確認されることが分かった。さらに、各受光素子P間において検出信号のレベルの差が縮まっていることを確認した。特に、図18Dにおいては、各受光素子P間において検出信号のレベルが揃ったことを確認できた。
 図18A~18Dに示す結果より、発光素子Lと受光素子Pとの距離は4mm以下が好ましく、かつ、複数の受光素子Pを挟む発光素子La,Lbを同時に点灯することで、検出可能な範囲を広げるととともに、検出信号のレベルを揃えることができることを確認した。
 次に、センサ100Fと比較例のセンサとを用いて、手首との相対位置を変えて検出信号をサンプリングした。比較例のセンサは、受光素子を分割せずに実施例において受光素子が形成される領域に広がる大きな受光素子1個を設けた構成として、検出信号のサンプリングを行なった。
 サンプリング方法としては、具体的には、血管との位置関係において最適と推定される位置を基準として、手首の円周方向に沿って、右側に2mm、4mm、6mm、左側に2mm、4mmずらして測定した。比較例については、参考までに右側4mmの位置でも測定を行なった。
 センサ100F,比較例のセンサの測定結果を図19A,19Bに示す。図19A,19Bにおいて、横軸は時間(s)であり、縦軸は出力(V)を示す。なお、図19Aにおいては、センサ100Fの受光素子P1~P8までの検出信号を足し合わせたものを用いている。
 図19A,19Bに示すように、比較例のセンサでは右2mm,4mmのときにのみ脈波の振幅を得られるが、それを除く位置では検出信号に脈波に基づく振幅を確認できなかった。すなわち、比較例のセンサの検出可能範囲は2mmであった。これに対して、実施例のセンサ100Fでは、左に6mm、右に4mmの全ての範囲で検出信号に脈波に基づく振幅を確認することができ、基準値を超える振幅値を有するのは左に6mm、右に2mmの範囲であった。すなわち、実施例のセンサ100Fの検出可能範囲は8mmであった。これにより、センサ100Fは位置ずれに対して安定した検出が可能なセンサであることが確認された。
 また、センサ100Fは、分割した受光素子Pの信号を足し合わせることにより、振幅強度も十分得ることができることも確認できた。
 さらに、脈波は、単純な振幅のみではなく、血管の硬さに応じた反射波の影響からサブピークを有する。センサ100Fは、このような本来の脈波の形を正確に測定できていることが確認できる。これは、受光素子Pを分割して時間的分解能を向上させたことによるものと考えられる。
 以上より、センサ100Fは検出可能範囲が広く、かつ、精密かつ明瞭な脈波を測定できることを確認した。
 センサ100Cを形成して、尺骨動脈において脈波を測定した結果を図20に示す。
 図20(a)は、受光素子P1~P4のそれぞれでの受光量に応じた電圧振幅を示している。この例では、受光素子P1~P4の全てが血管径の拡張・縮小に伴う周期的な信号変化を検出している第1検出信号を得ていることが確認できた。
 次に、受光素子P1~P4のそれぞれで検出する検出信号のバックグラウンドを除去した。具体的には、それぞれの検出信号の最小値を基準値とし、この最小値を差し引いた差分を補正検出信号とした。図20(b)に示すP1’は、受光素子P1で受光した検出信号を上述の手法で補正した場合の時間に対する軌跡を示すものである。同様の補正を受光素子P2~P4においても行ない、それらを加算した結果が図20(b)に示す軌跡P1~P4となる。図20(b)に示す結果からも分かるように、センサ100Cによれば、検出感度の高いセンサ100Cを提供することができる
10 発光素子アレイ
11 基板
L,L1~L4 発光素子
20,20C 受光素子アレイ
21 基板
P,P1~P4,Px,Py 受光素子
30 配線基板
40 素子部
50 演算部
100,100A~100F センサ
150 第1センサ
160 第2センサ
200 センサ装置
B 血管

Claims (12)

  1.  発光素子により生体表面に光を照射し、生体内を通過して到達した光を受光素子で受光して、前記生体内にある動脈の血管の径の変化を示す脈波信号として検出するセンサであって、
    所定の面上で第1方向に配列された複数個の前記発光素子を含む発光素子アレイと、
    前記所定の面上で前記第1方向に配列された複数個の前記受光素子を含む受光素子アレイとを有し、
    前記発光素子アレイと前記受光素子アレイとは、前記所定の面上で前記第1方向に直交する第2方向に見たときに、前記発光素子アレイにおける前記発光素子が配置された領域と前記受光素子アレイにおける前記受光素子が配置された領域とが並んでいないように配置されている、センサ。
  2.  前記発光素子アレイと前記受光素子アレイとは、前記発光素子の1個と前記受光素子の1個とについて前記第1方向の間隔が2mm以上4mm以下となる組合せを有している、請求項1に記載のセンサ。
  3.  前記受光素子アレイと前記発光素子アレイとが前記第1方向に1列に並んでいる、請求項1または2に記載のセンサ。
  4.  前記所定の面上で前記第1方向に配列された複数個の前記発光素子を含む第2発光素子アレイをさらに有し、
    前記第1方向に見たときに、前記受光素子アレイが、前記発光素子アレイと前記第2発光素子アレイとの間に位置するように配置されている、請求項1乃至3のいずれかに記載のセンサ。
  5.  複数個の前記受光素子は、前記発光素子アレイにおける複数個の前記発光素子のうち最も前記受光素子アレイ側に位置する第1発光素子から前記第1方向に見たときの間隔が4mm以内の第1範囲および前記第2発光素子アレイの複数個の前記発光素子のうち最も前記受光素子アレイ側に位置する第2発光素子から前記第1方向に見たときの間隔が4mm以内の第2範囲の少なくとも一方に配置されている、請求項4に記載のセンサ。
  6.  複数個の前記受光素子は、前記第1範囲および前記第2範囲の両方に配置されている、請求項5に記載のセンサ。
  7.  前記発光素子は、一導電型の半導体基板の一主面上に積層された複数層の半導体層からなり、
    前記受光素子は、前記半導体基板の前記一主面に形成された、逆導電型の不純物を含む逆導電型半導体領域?を有する、請求項1乃至6のいずれかに記載のセンサ。
  8.  複数個の前記受光素子のそれぞれは、前記第1方向に見たときの長さが、前記第2方向に見たときの長さよりも長い、請求項1乃至7のいずれかに記載のセンサ。
  9.  複数個の前記発光素子を発光させた時に複数個の前記受光素子のそれぞれで受光する複数の検出信号を得て、前記複数の検出信号について血管の径の変化によって周期的に変動する第1検出信号と周期的な変動を含まない第2検出信号とに判別し、前記第2検出信号によって前記第1検出信号のベースラインを補正し、補正した前記第1検出信号を前記脈波信号とする演算部をさらに有する、請求項1乃至8のいずれかに記載のセンサ。
  10.  複数個の前記発光素子を発光させた時に複数個の前記受光素子のそれぞれで受光する複数の検出信号を得て、前記複数の検出信号について血管の径の変化によって周期的に変動する第1検出信号を判別し、少なくとも2つの前記第1検出信号を足し合わせることで前記脈波信号とする演算部をさらに有する、請求項1乃至8のいずれかに記載のセンサ。
  11.  請求項1乃至10のいずれかに記載のセンサである第1センサおよび第2センサが、前記第2方向に間隔を空けて配置されてなる、センサ装置。
  12.  請求項11に記載のセンサ装置の駆動方法であって、前記第1センサおよび前記第2センサにおける複数の前記発光素子をそれぞれ周期的に発光させるとともに、前記第1センサにおける複数の前記発光素子の発光時間と前記第2センサにおける複数の前記発光素子の発光時間とが重ならないように発光させる、センサ装置の駆動方法。
PCT/JP2015/055754 2014-02-27 2015-02-27 センサ,センサ装置およびセンサ装置の駆動方法 WO2015129843A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015532630A JP5894344B2 (ja) 2014-02-27 2015-02-27 センサ,センサ装置およびセンサ装置の駆動方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014-036971 2014-02-27
JP2014036972 2014-02-27
JP2014036971 2014-02-27
JP2014-036972 2014-02-27
JP2014120707 2014-06-11
JP2014-120707 2014-06-11

Publications (1)

Publication Number Publication Date
WO2015129843A1 true WO2015129843A1 (ja) 2015-09-03

Family

ID=54009156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055754 WO2015129843A1 (ja) 2014-02-27 2015-02-27 センサ,センサ装置およびセンサ装置の駆動方法

Country Status (2)

Country Link
JP (3) JP5894344B2 (ja)
WO (1) WO2015129843A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017063892A (ja) * 2015-09-28 2017-04-06 京セラ株式会社 測定装置及び測定システム
JP2017176346A (ja) * 2016-03-29 2017-10-05 京セラ株式会社 測定装置及び測定方法
JP2017213041A (ja) * 2016-05-30 2017-12-07 セイコーエプソン株式会社 生体情報取得装置及び生体情報取得方法
US10244952B2 (en) 2015-09-28 2019-04-02 Kyocera Corporation Measuring apparatus and measuring system
WO2020213620A1 (ja) * 2019-04-17 2020-10-22 株式会社ジャパンディスプレイ 検出装置
WO2022075036A1 (ja) * 2020-10-05 2022-04-14 ソニーグループ株式会社 生体情報取得装置、生体情報取得システム、及び生体情報取得方法
WO2022254866A1 (ja) * 2021-06-01 2022-12-08 コニカミノルタ株式会社 光電容積脈波センサー及び脈波の検出方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2578853B (en) * 2017-07-07 2022-01-26 Texas A & M Univ Sys System and method for cuff-less blood pressure monitoring
KR102544669B1 (ko) 2018-04-12 2023-06-16 삼성전자주식회사 생체정보 측정 장치 및 방법
KR102655675B1 (ko) 2018-09-21 2024-04-05 삼성전자주식회사 생체정보 추정 장치 및 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10211176A (ja) * 1997-01-31 1998-08-11 Seiko Epson Corp 反射光検出器および脈波検出装置
JP2000300526A (ja) * 1999-04-23 2000-10-31 Matsushita Electric Works Ltd 血圧計
JP2004154231A (ja) * 2002-11-05 2004-06-03 Seiko Instruments Inc 血圧測定装置及び血圧測定方法
JP2006271896A (ja) * 2005-03-30 2006-10-12 Toshiba Corp 脈波検出装置及びその方法
JP2012070828A (ja) * 2010-09-28 2012-04-12 Seiko Epson Corp 生体情報検出器及び生体情報測定装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60220037A (ja) * 1984-04-13 1985-11-02 コーリン電子株式会社 脈波伝播速度自動測定装置
JPS6216582A (ja) * 1985-07-15 1987-01-24 Sharp Corp ホトインタラプタ
JP3393245B2 (ja) * 1995-07-26 2003-04-07 ソニー株式会社 光学装置
JP4219498B2 (ja) * 1999-07-02 2009-02-04 クラリオン株式会社 多重放送受信装置
JP2001161650A (ja) * 1999-12-13 2001-06-19 Nippon Colin Co Ltd 脈波伝播速度情報測定装置
JP4415466B2 (ja) * 1999-12-27 2010-02-17 株式会社デンソー 生体信号検出装置及び非観血血圧計
JP2001275998A (ja) * 2000-03-30 2001-10-09 Mitsuba Corp 血圧測定方法および血圧測定装置
JP3706853B2 (ja) * 2002-10-30 2005-10-19 株式会社ケーアンドエス 生体データ観測装置
JP4452824B2 (ja) * 2003-10-07 2010-04-21 国立大学法人 東京医科歯科大学 動脈血管検出装置、血圧測定装置、および圧脈波検出装置
JP2006325766A (ja) * 2005-05-24 2006-12-07 Sharp Corp 生体信号測定装置
JP2009254522A (ja) * 2008-04-15 2009-11-05 Sharp Corp 光学式生体情報測定装置及び生体情報測定用発受光器
KR101007355B1 (ko) * 2008-08-28 2011-01-13 한국전자통신연구원 맥파 측정 장치 및 방법
KR101307212B1 (ko) * 2009-04-30 2013-09-11 가부시키가이샤 무라타 세이사쿠쇼 생체 센서 장치
JP2011024676A (ja) * 2009-07-22 2011-02-10 Sharp Corp 脈波伝播速度算出装置、血圧測定装置、脈波伝播速度算出装置の制御方法、脈波伝播速度算出装置制御プログラムおよび該プログラムを記録したコンピュータ読み取り可能な記録媒体
JP5948836B2 (ja) * 2011-12-09 2016-07-06 ソニー株式会社 測定装置、測定方法、プログラム及び記録媒体
JP6052005B2 (ja) * 2013-03-27 2016-12-27 富士通株式会社 脈波検出装置、脈波検出方法及び脈波検出プログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10211176A (ja) * 1997-01-31 1998-08-11 Seiko Epson Corp 反射光検出器および脈波検出装置
JP2000300526A (ja) * 1999-04-23 2000-10-31 Matsushita Electric Works Ltd 血圧計
JP2004154231A (ja) * 2002-11-05 2004-06-03 Seiko Instruments Inc 血圧測定装置及び血圧測定方法
JP2006271896A (ja) * 2005-03-30 2006-10-12 Toshiba Corp 脈波検出装置及びその方法
JP2012070828A (ja) * 2010-09-28 2012-04-12 Seiko Epson Corp 生体情報検出器及び生体情報測定装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017063892A (ja) * 2015-09-28 2017-04-06 京セラ株式会社 測定装置及び測定システム
US10244952B2 (en) 2015-09-28 2019-04-02 Kyocera Corporation Measuring apparatus and measuring system
JP2017176346A (ja) * 2016-03-29 2017-10-05 京セラ株式会社 測定装置及び測定方法
JP2017213041A (ja) * 2016-05-30 2017-12-07 セイコーエプソン株式会社 生体情報取得装置及び生体情報取得方法
WO2020213620A1 (ja) * 2019-04-17 2020-10-22 株式会社ジャパンディスプレイ 検出装置
WO2022075036A1 (ja) * 2020-10-05 2022-04-14 ソニーグループ株式会社 生体情報取得装置、生体情報取得システム、及び生体情報取得方法
WO2022254866A1 (ja) * 2021-06-01 2022-12-08 コニカミノルタ株式会社 光電容積脈波センサー及び脈波の検出方法

Also Published As

Publication number Publication date
JP2016152918A (ja) 2016-08-25
JP5894344B2 (ja) 2016-03-30
JP2016135261A (ja) 2016-07-28
JPWO2015129843A1 (ja) 2017-03-30

Similar Documents

Publication Publication Date Title
JP5894344B2 (ja) センサ,センサ装置およびセンサ装置の駆動方法
US10117612B2 (en) Detecting device
US20210275045A1 (en) Multiuse optical sensor
JP4229919B2 (ja) 脈波検出装置及びその方法
KR101915374B1 (ko) 광학 맥박수 센서
KR102411658B1 (ko) 생체 정보 검출 장치
JP4607709B2 (ja) 検出装置
CN105828708B (zh) 用于测量生物信息的设备及用于其误差补偿的方法
US20150374245A1 (en) Monitoring arterial blood flow
US20100056887A1 (en) Emission sensor device and bioinformation detecting method
JP6293927B2 (ja) センサ
US20160249839A1 (en) Device And Method Suitable For Monitoring Arterial Blood In A Body Part
WO2013141021A1 (ja) 光センサ
KR20220008160A (ko) 생체 신호 감지 센서, 센서 어레이 및 센서 시스템
US8760635B2 (en) Displacement measuring apparatus and velocity measuring apparatus which measure displacement amount of moving object
CN107233072A (zh) 活体信息测量装置和光发射元件
US20210177320A1 (en) Biometric sensor
CN113907738A (zh) 用于光学传感器的光学光导
KR102250188B1 (ko) 생체 정보 검출 장치
JPH0231734A (ja) 圧脈波検出装置
US20150157208A1 (en) Apparatus for measuring condition of object
CN113995389A (zh) 一种获得心率的方法及电子设备
JP2007075482A (ja) 脈拍数測定装置
CN115024695A (zh) 超透镜组件、光学系统及可穿戴设备
WO2018180375A1 (ja) 生体情報測定装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015532630

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15754983

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15754983

Country of ref document: EP

Kind code of ref document: A1