WO2015129756A1 - 画像生成装置、導電率取得装置、画像生成方法及びプログラム - Google Patents

画像生成装置、導電率取得装置、画像生成方法及びプログラム Download PDF

Info

Publication number
WO2015129756A1
WO2015129756A1 PCT/JP2015/055433 JP2015055433W WO2015129756A1 WO 2015129756 A1 WO2015129756 A1 WO 2015129756A1 JP 2015055433 W JP2015055433 W JP 2015055433W WO 2015129756 A1 WO2015129756 A1 WO 2015129756A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
alternating current
measurement object
image generation
sensor
Prior art date
Application number
PCT/JP2015/055433
Other languages
English (en)
French (fr)
Inventor
吾 根武谷
熊谷 寛
英行 鈴木
Original Assignee
学校法人北里研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人北里研究所 filed Critical 学校法人北里研究所
Priority to US15/121,116 priority Critical patent/US11534076B2/en
Priority to EP20181100.7A priority patent/EP3785624B1/en
Priority to JP2016505266A priority patent/JP6583829B2/ja
Priority to EP15754467.7A priority patent/EP3111837B1/en
Publication of WO2015129756A1 publication Critical patent/WO2015129756A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0536Impedance imaging, e.g. by tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • A61B5/062Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • A61B5/063Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using impedance measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/065Determining position of the probe employing exclusively positioning means located on or in the probe, e.g. using position sensors arranged on the probe
    • A61B5/068Determining position of the probe employing exclusively positioning means located on or in the probe, e.g. using position sensors arranged on the probe using impedance sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0223Magnetic field sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2576/00Medical imaging apparatus involving image processing or analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/0522Magnetic induction tomography

Definitions

  • the present invention relates to an image generation apparatus, a conductivity acquisition apparatus, an image generation method, and a program for acquiring a tomographic image of an object.
  • This application claims priority based on Japanese Patent Application No. 2014-034335 for which it applied on February 25, 2014, and uses the content here.
  • EIT Electrical impedance tomography
  • X-ray CT Computed tomography
  • EIT measurement In EIT measurement, generally 8 to 64 electrodes are used. These electrodes are affixed to the body surface around the target site, and signal cables individually connected to the electrodes are routed and connected to the measurement circuit. In recent years, a method has been attempted in which the plurality of electrodes and the signal cable are unified as a module to facilitate the attachment / detachment of the electrodes and the setting of the measuring apparatus (for example, see Patent Document 1 and Patent Document 2).
  • An object of an aspect of the present invention is to provide an image generation device, a conductivity acquisition device, an image generation method, and a program that can acquire the state of an object more simply and with high accuracy.
  • One embodiment of the present invention is a controller that provides a tomographic image of a measurement object based on a plurality of electrodes, a plurality of sensor cells, and the intensity of a magnetic field generated by an alternating current supplied through the plurality of electrodes.
  • An image generating apparatus comprising: the controller that acquires the intensity of the magnetic field via the plurality of sensor cells.
  • an alternating current input unit that inputs an alternating current to the measurement object via an electrode disposed at a position away from the measurement object, and a position away from the measurement object.
  • a magnetic field information acquisition unit that acquires the intensity of the magnetic field generated based on the alternating current input by the alternating current input unit via the magnetic sensor, and the magnetic field intensity acquired by the magnetic field information acquisition unit
  • an image generation unit that generates a tomographic image of the measurement object.
  • one aspect of the present invention is characterized in that, in the above-described image generation apparatus, the magnetic field information acquisition unit acquires at least magnetic field strengths at a plurality of positions surrounding a specific tomographic plane of the measurement object. To do.
  • the alternating current input unit inputs the alternating current through electrodes arranged at a plurality of positions surrounding a specific tomographic plane of the measurement object. It is characterized by doing.
  • the magnetic field information acquisition unit is configured to input the alternating current via the magnetic sensor disposed around the same tomographic plane as the specific tomographic plane.
  • the intensity of the magnetic field generated based on the alternating current input by the unit is acquired.
  • the magnetic field information acquisition unit includes the one tomographic plane simultaneously with the strength of the magnetic field at a plurality of positions surrounding one tomographic plane of the measurement object. Is characterized by acquiring magnetic field strengths at a plurality of positions surrounding different different fault planes.
  • the image generation unit in the above-described image generation device, the image generation unit generates a first intermediate image generated based on magnetic field strengths at a plurality of positions surrounding the one tomographic plane, and the other And a second intermediate image generated based on the magnetic field intensity at a plurality of positions surrounding the tomographic plane, tomographic images representing the one tomographic plane are generated.
  • One embodiment of the present invention is characterized in that, in the above-described image generation apparatus, the alternating current input unit uses a nonmagnetic material as the electrode.
  • one embodiment of the present invention is characterized in that, in the above-described image generation apparatus, the magnetic field information acquisition unit uses an optical pumping atomic magnetic sensor as the magnetic sensor.
  • the alternating current input unit includes at least electrodes disposed at a plurality of positions surrounded by a specific tomographic plane of the measurement object. And inputting the alternating current.
  • an alternating current is input to the measurement object via an electrode disposed at a position away from the measurement object, and a magnetic sensor disposed at a position away from the measurement object is provided.
  • An image generation method characterized in that the intensity of a magnetic field generated based on the input alternating current is acquired, and a tomographic image of the measurement object is generated using the acquired intensity of the magnetic field. .
  • One embodiment of the present invention is an AC current input means for inputting an alternating current to an object to be measured via an electrode disposed at a position away from the object to be measured.
  • Magnetic field information acquisition means for acquiring the intensity of a magnetic field generated based on the alternating current input by the alternating current input unit via a magnetic sensor disposed at a position away from the magnetic field, and the magnetic field acquired by the magnetic field information acquisition unit Is a program that functions as image generation means for generating a tomographic image of the measurement object based on the intensity of the measurement object.
  • an alternating current input unit that inputs an alternating current to the measurement object via an electrode disposed at a position away from the measurement object, and a position away from the measurement object.
  • a magnetic field information acquisition unit that acquires the intensity of the magnetic field generated based on the alternating current input by the alternating current input unit via the magnetic sensor, and the magnetic field intensity acquired by the magnetic field information acquisition unit
  • a conductivity acquisition unit that acquires the conductivity of the measurement object in the vicinity where the magnetic sensor is disposed.
  • the state of the object can be acquired more easily and with high accuracy.
  • FIG. 1 is a diagram illustrating an overview of an image generation apparatus according to the first embodiment.
  • An image generation apparatus 1 shown in FIG. 1 includes a detection unit 10, a drive unit 11, and a main body unit (controller) 20, and can acquire a tomographic image of a measurement subject (examinee) X.
  • the detection unit 10 is formed in an annular shape so as to surround the measurement subject X during use.
  • annular means an overall shape surrounding at least a part of the object, and is not limited to a shape surrounding the object completely continuously. Further, the “annular” is not limited to an annular ring and can take various forms.
  • the annular shape may include an annular shape having a partial open section, an annular shape having an overall shape other than an annular shape, and the like.
  • the detection unit 10 includes a plurality of electrodes and sensors (a plurality of magnetic sensors, a plurality of sensors, a plurality of sensor cells, and a plurality of sensor heads).
  • the main body 20 acquires various detection signals for the measurement subject X from the detection unit 10.
  • the main body 20 Based on this detection signal, the main body 20 detects a tomographic image of the surface of the measurement subject X on which the detection unit 10 is disposed (a tomographic image of the subject X with respect to a surface set according to the position of the detection unit 10 in the axial direction). ) Can be obtained.
  • the drive unit 11 is fixed to the detection unit 10 and moves a moving body that moves the detection unit 10 along the surface of the object (for example, the axial direction of the object (test site), the vertical direction (vertical direction)). Have.
  • the detection unit 10 can move linearly as the moving body moves linearly.
  • the movement of the detection part 10 by the drive part 11 is not limited to a linear movement.
  • the drive unit 11 has, for example, a drive mechanism such as a stepping motor (not shown).
  • the drive unit 11 changes the position of the detection unit 10 (for example, the position in the vertical direction) based on the electrical signal (instruction signal) input from the main body unit 20.
  • the operator can arbitrarily change the relative position of the detection unit 10 with respect to the measurement subject X.
  • the image generating apparatus 1 may have a configuration in which the detection unit 10 moves without using power, or a configuration in which the driving unit 11 is substantially omitted.
  • the main body unit (controller) 20 controls the entire image generation processing of the image generation apparatus 1 such as acquisition of detection signals by the detection unit 10, driving of the detection unit 10 using the drive unit 11, and generation of tomographic images. .
  • a detailed functional configuration of the main body 20 will be described later.
  • FIG. 2 is a diagram illustrating a functional configuration of the main body according to the first embodiment.
  • the main unit 20 includes a CPU (Central Processing Unit) 200, a RAM (Random Access Memory) 210, an HDD (Hard Disk Drive) 211, an operation input unit 212, An image display unit 213 and an external interface 214 are provided.
  • a CPU Central Processing Unit
  • RAM Random Access Memory
  • HDD Hard Disk Drive
  • the CPU 200 controls the entire image generation process of the image generation apparatus 1.
  • the CPU 200 functions as an alternating current input unit 201, a magnetic field information acquisition unit 202, and an image generation unit 203 by operating based on a measurement program read into a predetermined storage area (such as the RAM 210).
  • the RAM 210 is a storage area serving as a work area for the CPU 200 that operates based on the measurement program.
  • the HDD 211 is a storage unit that stores various programs or tomographic images generated by the image generation unit 203.
  • the operation input unit 212 includes, for example, a mouse, a keyboard, a touch panel, and the like, and receives input of various operations by an operator.
  • the image display unit 213 is a liquid crystal display or the like, and displays information necessary for an operator's operation, an acquired tomographic image, and the like.
  • the external interface 214 is a communication interface for communicating with an external device.
  • the external interface 214 is connected to the detection unit 10 and the drive unit 11 via a dedicated communication cable.
  • the CPU 200, RAM 210, HDD 211, operation input unit 212, image display unit 213, and external interface 214 are electrically connected to each other via a system bus 215.
  • the alternating current input unit 201 inputs an alternating current to the measurement subject X via a plurality of electrodes 102 (described in FIG. 3) arranged at positions away from the measurement target (measurement subject X).
  • the magnetic field information acquisition unit 202 is received by the alternating current input unit 201 via a plurality of magnetic sensors (a plurality of sensor cells, a plurality of sensor heads) 103 (described in FIG. 3) arranged at positions away from the measurement subject X.
  • a magnetic field generated based on the input alternating current is acquired.
  • the image generation unit 203 generates a tomographic image of the measurement subject X based on the magnetic field acquired by the magnetic field information acquisition unit 202.
  • the drive control unit 204 outputs a predetermined drive instruction signal to the drive unit 11 and controls the operation of the drive unit 11. More specific functions of the AC current input unit 201, the magnetic field information acquisition unit 202, the image generation unit 203, and the drive control unit 204 will be described later.
  • FIG. 3 is a first diagram illustrating the structure of the detection unit according to the first embodiment.
  • FIG. 4 is a second diagram illustrating the structure of the detection unit according to the first embodiment.
  • FIG. 3 shows a side structure of the detection unit 10.
  • FIG. 4 schematically shows a cross-sectional structure of the plane AA ′ in FIG.
  • the detection unit 10 includes a base body (base frame, annular housing) 101, an electrode 102, and a magnetic sensor 103.
  • the base body 101 is formed in an annular shape so as to surround the measurement subject X during use (so as to surround at least a part of the measurement subject).
  • the base body 101 is attached to the drive part 11 (FIG. 1). Based on drive control by the drive unit 11, the relative position of the base body 101 with the measurement subject X changes.
  • the base body 101 is made of, for example, an acrylic resin. Various materials can be applied as the material of the base body 101.
  • the material of the base body is preferably a substantially insulating material and a substantially non-magnetic material.
  • the base body 101 is not limited to a circular ring shape.
  • the overall shape of the base body 101 may be, for example, an ellipse or a partially intermittent structure. Or the base body 101 may have a structure which can change the whole shape, and may have a structure which can be opened and closed.
  • a plurality of electrodes 102 are attached to the base body 101 at regular intervals along the circumferential direction of the base body 101 in the same plane of the plane A-A ′.
  • the arrangement of the electrodes 102 can be variously changed.
  • the electrode 102 has conductivity, such as copper, aluminum, and stainless steel, and is formed of a substantially non-magnetic material.
  • the material of the electrode 102 is not limited to the above example.
  • the magnetic sensor 103 (a plurality of sensor cells, a plurality of sensor heads) has a plurality of magnetic sensors 103 at regular intervals along the circumferential direction of the base body 101 in the same plane of the plane AA ′. It is attached. A plurality of magnetic sensors (a plurality of sensor heads) 103 are arranged in the same plane as the plane on which the plurality of electrodes 102 are arranged (FIG. 3). The arrangement of the magnetic sensor (sensor head) 103 can be variously changed.
  • the magnetic sensor 103 uses an optically-pumped atomic magnetic sensor that is a supersensitive magnetic sensor at room temperature.
  • the optically pumped atomic magnetic sensor can observe a magnetic field (10 ⁇ 15 T (Tesla) order) comparable to that of a SQUID (Superconducting Quantum Interference Device) that requires a cryogenic state.
  • the alternating current input unit 201 controls the alternating current drive circuit 201 ⁇ / b> A to flow an alternating current between two electrodes 102 among the plurality of electrodes 102.
  • the AC drive circuit 201A is a circuit having an AC power source and a constant current circuit (or a constant voltage circuit), and generates an AC current of high frequency (for example, several kHz to several MHz order) according to control by the AC current input unit 201. Enable output. Thereby, since the component radiated from the electrode 102 into the air increases in the alternating current, the alternating current can be passed through the measuring subject X without directly attaching the electrode 102 to the body surface of the measuring subject X. .
  • the alternating current input unit 201 includes a switching unit that can select and connect the alternating current driving circuit 201A and any two of the plurality of electrodes 102.
  • the alternating current input unit 201 performs a process of flowing an alternating current to the measurer X while sequentially switching the connection between the alternating current driving circuit 201A and each of the plurality of electrodes 102.
  • the alternating current input unit 201 inputs an alternating current through the electrodes 102 arranged at a plurality of positions surrounding a specific tomographic plane of the measurement subject X.
  • the magnetic field information acquisition unit 202 is connected to the magnetic sensor 103 and acquires the intensity of the magnetic field detected by the magnetic sensor 103 as data (magnetic field strength information).
  • the magnetic field information acquisition unit 202 is also connected in parallel to all of the magnetic sensors (sensor cells, sensor heads) 103, and the intensity of the magnetic field generated at each location where the magnetic sensor 103 is disposed. Can be acquired at the same time.
  • the magnetic field strength is converted into electrical data (magnetic field strength information) such as a band pass filter, an amplifier, an A / D (Analog / Digital) converter, and the like. A circuit necessary for acquisition is inserted.
  • the magnetic field information acquisition unit 202 surrounds the specific tomographic plane via the magnetic sensor 103 disposed around the same tomographic plane as the specific tomographic plane of the measurement subject X surrounded by the electrode 102. Magnetic field strength information indicating the strength of the magnetic field at the position is acquired.
  • FIG. 5 is a diagram for explaining functions of the electrode and the magnetic sensor according to the first embodiment.
  • the alternating current input unit 201 controls the alternating current drive circuit 201 ⁇ / b> A to flow an alternating current between a pair of adjacent electrodes 102.
  • the frequency of the alternating current is on the order of several MHz
  • an alternating current is generated between the adjacent electrodes 102 so as to spread in an arc shape in the air, as shown in FIG.
  • an alternating current (alternating currents I1, I2, etc.) is also input into the measurement object X.
  • the alternating currents I1, I2 and the like input to the measurement object X have values corresponding to the paths that travel through the measurement object X, respectively.
  • the electrical impedance inside the measurement subject X is lower than that in the atmosphere. Therefore, the alternating current radiated into the atmosphere from both electrodes 102 tends to flow inside the measurement subject X having a low electrical resistance (electrical impedance). Then, for example, the AC currents I2, I3 and the like have a higher current value as a whole when the measurement target person X is present than when the measurement subject X is not present at the site. Further, even within the measurement subject X, for example, an alternating current passing through a lung field or the like filled with air has a lower current value. As described above, the alternating current generated between the electrodes 102 has a current value corresponding to the distribution of the electrical impedance inside the measurement object X.
  • a magnetic field H is generated around each alternating current (alternating currents I1, I2, etc.).
  • the intensity of the magnetic field H is proportional to the generated alternating current value.
  • the magnetic field information acquisition unit 202 detects the intensity of the magnetic field H generated at each position via each magnetic sensor (sensor cell, sensor head) 103 arranged on the circumference of the base body 101.
  • the image generation unit 203 to be described later exists mainly in the same plane as the electrode 102 and the magnetic sensor 103 based on the intensity information of the magnetic field H detected by each magnetic sensor 103 acquired by the magnetic field information acquisition unit 202 here.
  • a tomographic image of the tomographic plane S (the tomographic plane about the plane AA ′ of the measurement subject X (FIG. 3)) is generated.
  • the frequency of the input alternating current is on the order of several kHz to several MHz so that highly accurate measurement is possible when a human body is used as a measurement object (see FIG. 11). Therefore, the magnetic field generated based on this alternating current also oscillates at the same frequency. Therefore, in this embodiment, by using an ultra-sensitive optically pumped atomic magnetic sensor as the magnetic sensor 103, even if the magnetic field oscillates at a relatively high frequency (on the order of several MHz), the magnetic field strength is accurately determined. It is possible to detect.
  • the above numerical value is an example, and the present invention is not limited to this.
  • the mode of the magnetic sensor 103 is not limited to the optical pumping atomic magnetic sensor.
  • a so-called high sensitivity magnetic sensor is preferably used.
  • the magnetic sensor 103 can detect the magnetic field H of at least several kHz order with high accuracy.
  • the above numerical values are examples and are not limited to these.
  • a sensor selected from various types such as an MI sensor (magnetic impedance element sensor) and a superconducting quantum interference element (Superconducting quantum interference device: SQUID) can be used as the magnetic sensor 103.
  • MI sensor magnetic impedance element sensor
  • SQUID superconducting quantum interference device
  • FIG. 6 is a flowchart showing the processing flow of the CPU according to the first embodiment.
  • the processing flow executed by the CPU 200 in the measurement procedure of the image generation apparatus 1 according to the present embodiment will be described step by step with reference to FIG.
  • the AC current input unit 201 selects a pair of adjacent electrodes 102 and connects them to the AC drive circuit 201A (FIG. 4) (step). S10).
  • the alternating current input unit 201 inputs a predetermined control signal to the alternating current drive circuit 201A, and generates an alternating current having a set frequency and output intensity between the selected electrodes 102 (step S11). .
  • alternating current (alternating currents I1, I2, etc. (FIG. 5)) having a predetermined intensity is input into the measurement subject X.
  • the magnetic field information acquisition unit 202 receives each detection signal (output signal from the sensor) input in parallel from all the magnetic sensors (sensor cell, sensor head) 103 during the input of the alternating current, and the magnetic field at each position. Magnetic field strength information indicating the strength is acquired (step S12). Thereby, the magnetic field information acquisition part 202 acquires the intensity
  • the magnetic field information acquisition unit 202 temporarily stores the acquired magnetic field strength information in a storage area (RAM 210, HDD 211, etc.).
  • the alternating current input unit 201 selects another adjacent pair of electrodes 102 and inputs the alternating current.
  • the alternating current input unit 201 repeats the above-described process until all electrode pairs are selected (step S13).
  • the magnetic field information acquisition unit 202 acquires magnetic field strength information about the magnetic field strength generated in the set of all adjacent electrodes 102.
  • the image generation unit 203 refers to each magnetic field strength information acquired and stored by the magnetic field information acquisition unit 202, and the person to be measured An X tomographic image is generated (step S14).
  • a technique for generating a tomographic image of the measurement subject X based on the magnetic field strength information acquired in step S12 a technique similar to the already known EIT measurement can be used.
  • a method for generating a tomographic image in step S14 will be briefly described.
  • a constant current generally an alternating current on the order of several kHz
  • the potential difference generated between the other electrodes is sequentially measured, so that the resistivity distribution on the tomographic plane of the measurement subject can be obtained. get.
  • a tomographic image is generated using, for example, a known back projection method.
  • the boundary of the object to be measured is circular, (2) the electrodes are arranged at equal intervals, (3) the initial conductivity distribution is uniform, and (4) the conductivity change is small (5) Assume that the object is two-dimensional.
  • the relationship between the measured voltage change ⁇ g and the conductivity change ⁇ c is
  • .DELTA.c amount of change part changes into c of uniform conductivity distribution c u
  • Delta] g represents the amount of change when the voltage measured at the boundary with it changes from g u to g .
  • the potential gradient generated in the receive electrode is ⁇ d
  • the same current is applied to the receive electrode and the potential generated in the drive electrode
  • the slope be ⁇ r .
  • ⁇ g n g / g ref
  • ⁇ c c / c ref and the rate of change with respect to a certain reference value. That is, the reconstructed image shows a change rate distribution of conductivity.
  • the symbol “+” in Equation (3) indicates a pseudo inverse matrix of the matrix to which “+” is attached. Since it is very difficult to solve the inverse problem of the electromagnetic field system, in this embodiment, since the change rate of the magnetic field to be measured and the change rate of the conductivity are in a proportional relationship, the image analysis method in the above EIT was used. The voltage V between the electrodes measured in EIT is expressed as shown in Equation (4).
  • l and “s” are the rectangular parallelepiped.
  • the length (unit: m), the cross-sectional area (unit: m 2 ), and “I” when considered are the current (unit: A) flowing through the measurement object. That is, if the impedance of the measurement object does not change during measurement, the potential difference V is proportional to the current I.
  • the magnetic field strength H (unit: A / m) at a point separated by a distance “r” (unit: m) in the direction perpendicular to the direction in which the current I flows is obtained as shown in Equation (5). It can be seen that the intensity H and the current I are in a proportional relationship. Therefore, since the potential difference V and the magnetic field strength H are also in a proportional relationship, even if the input for the “potential difference V” is directly replaced with the “magnetic field strength H” in the known backprojection method, an equivalent tomographic image can be acquired. Can do.
  • the tomographic image generation processing executed by the image generation unit 203 is not limited to the above-described method using the back projection method used for EIT measurement, and other methods may be used. For example, a technique for solving the inverse problem of the electromagnetic field system based on the acquired magnetic field strength information may be used.
  • the image generation unit 203 outputs the generated tomographic image to the image display unit 213. The operator can make a diagnosis while viewing the tomographic image displayed on the image display unit 213.
  • the drive control unit 204 When the generation processing of one tomographic image is completed, the drive control unit 204 next performs drive control of the drive unit 11. Specifically, the drive control unit 204 determines whether or not all tomographic images for the measurement target person X have been acquired (step S15). It is assumed that the position of the tomographic plane S from which the tomographic image is acquired, the number of acquisitions, and the like are determined at the time of the initial setting input by the operator. If all the tomographic images have not been acquired (step S15: NO), the drive control unit 204 outputs a predetermined instruction signal to the drive unit 11 and moves the detection unit 10 in the vertical direction (step S16). ). Thereby, the drive unit 11 changes the relative position of the detection unit 10 with respect to the measurement target person X.
  • step S16 When the relative position of the detection unit 10 with respect to the measurement subject X is changed in step S16, the alternating current input unit 201, the magnetic field information acquisition unit 202, and the image generation unit 203 perform the above-described steps S10 to S14. Repeat the process. Thereby, it is possible to further acquire tomographic images of different tomographic planes of the measuring object X.
  • step S15 step S15: YES
  • the CPU 200 ends the process.
  • the image generating apparatus 1 includes a plurality of electrodes 102 serving as output destinations of an alternating current input to the measurement subject X and the alternating current
  • a plurality of magnetic sensors (a plurality of sensor cells and a plurality of sensor heads) 103 that detect current as a magnetic field strength are all arranged at positions away from the measurement subject X.
  • a plurality of electrodes 102 and a plurality of magnetic sensors (a plurality of sensor cells, a plurality of sensor heads) 103 are arranged in non-direct contact with the surface of the measurement object X.
  • a tomographic image of a desired tomographic plane of the measurement subject X can be acquired while the measurement subject X and the electrode or the like are in a completely non-contact state (non-direct contact state).
  • “Non-direct contact with the surface of the measurement object X” includes a state in which another object is interposed between the electrode 102 / magnetic sensor 103 and the body surface of the measurement object.
  • the detection unit 10 can be a wearable type with respect to the measurement object (measuring person).
  • the detection unit 10 has a configuration in which at least a part of the electrode 102 and the magnetic sensor 103 is provided on a base body 101 that is formed so as to be worn by a measurement subject (for example, a band type, a cap type, a helmet type, etc.). Can have.
  • the image generation apparatus 1 may be configured such that the detection unit 10 moves in the horizontal direction while the measurement target person X is lying on a dedicated bed or the like and the detection unit 10 surrounds the measurement target person X. Good. By doing in this way, a tomographic image can be acquired without forcing a physical burden on the measurement subject X even if it is difficult for the measurement subject X to get up.
  • the electrical impedance at the contact surface may fluctuate, resulting in an error in the measurement result.
  • an error factor corresponding to the state of the contact surface is eliminated. Can do.
  • the electrode 102 is formed of a nonmagnetic material. Therefore, the influence which presence of electrode 102 itself has on the detection of the magnetic field intensity by the magnetic sensor 103 can be suppressed to the minimum. Accordingly, each magnetic sensor 103 can accurately detect the strength of the magnetic field generated at the position without depending on the positional relationship with the electrode 102 in the base body 101.
  • a tomographic image of an object can be acquired more simply and with high accuracy.
  • image generation apparatus 1 can be further modified as follows.
  • FIG. 7 is a diagram illustrating a structure of a detection unit according to a modification of the first embodiment.
  • an optically pumped atomic magnetic sensor is used as the magnetic sensor 103.
  • the magnetic sensor 103 can be arranged within the range of restrictions according to the size of the individual, regardless of the arrangement of the electrodes 102. .
  • the detection location namely, information amount about magnetic field intensity
  • the electrode 102 may be formed of a nonmagnetic material.
  • the processing flow executed by the CPU 200 according to the first embodiment is not limited to the one shown in FIG. That is, the CPU 200 can perform any procedure as long as it acquires magnetic field strength information of an information amount necessary for generating a tomographic image based on an image generation process (for example, back projection method) used for EIT measurement. Magnetic field strength information may be acquired.
  • FIG. 8 is a diagram for explaining functions of an electrode and a magnetic sensor according to a modification of the first embodiment.
  • the CPU 200 AC current input unit 201 according to the first embodiment has been described as inputting AC current while sequentially selecting pairs of adjacent electrodes 102 (steps S10 to S11 (FIG. 6)).
  • the alternating current input unit 201 may further input an alternating current including combinations other than the pair of adjacent electrodes 102.
  • the alternating current input unit 201 may select one electrode 102 and another electrode 102 that exists at a position facing the one electrode 102 and output an alternating current between the electrodes 102. Good.
  • the alternating current generated between the electrodes 102 adjacent to each other has a large current flowing in the vicinity thereof, but the amount of the current decreases as the distance from the electrodes 102 increases. Therefore, when an alternating current is generated only between the adjacent electrodes 102, the current flowing inside the measuring object X is weaker than the amount of current flowing on the side close to the body surface of the measuring object X. Therefore, the tomographic image acquired based only on the alternating current generated between the electrodes 102 adjacent to each other is reproduced with high accuracy in the area close to the body surface in the tomographic plane S, but separated from the body surface. The reproduction accuracy may be reduced for deep regions.
  • an alternating current I1 or the like by passing an alternating current I1 or the like while sequentially selecting a pair of opposing electrodes 102, the amount of current passing through a deep region in the body of the measurement subject X increases.
  • the magnetic field information acquisition unit 202 can accurately reproduce a deep region away from the body surface by acquiring a magnetic field generated based on such a current distribution.
  • an alternating current may be input not only by a pair of electrodes 102 adjacent to each other or a pair of electrodes 102 facing each other but also by a combination of any other two pairs of electrodes 102.
  • the detection unit 10 is configured such that the plurality of electrodes 102 and the plurality of magnetic sensors 103 are arranged on the same plane (plane AA ′ (FIG. 3)). It is said. Thereby, the magnetic field generated based on the alternating current flowing between the electrodes 102 can be acquired with high intensity, and the accuracy of the tomographic image generated based on this can be improved.
  • the image generation apparatus 1 according to another embodiment is not limited to this mode, and may be a mode in which, for example, the plurality of electrodes 102 and the plurality of magnetic sensors 103 are arranged on different surfaces. .
  • the image generating apparatus 1 includes a base body (annular housing) 101 in which a plurality of electrodes 102 are arranged, and a base body (housing) in which the magnetic sensor 103 is arranged. It is good also as an aspect which has.
  • FIG. 9 is a diagram illustrating the structure of the detection unit according to the second embodiment.
  • the image generating apparatus 1 according to the first embodiment surrounds the measurement subject X in which the annular detection unit 10 stands upright, and moves in the vertical direction according to the operation of the drive unit 11. It explained as an aspect which acquires a plurality of tomographic images.
  • the detection unit 10 of the image generation apparatus 1 according to the present embodiment is formed in a cylindrical shape by extending in the vertical direction as a whole. And it has become a mode in which the whole body of measurement subject X is settled inside detection part 10 formed in the shape of a cylinder.
  • a plurality of electrodes 102 and a plurality of magnetic sensors 103 are arranged along the vertical direction.
  • the arrangement of the plurality of electrodes 102 and the plurality of magnetic sensors 103 for each of the surfaces A1-A1 ', A2-A2',... Is the same as in the first embodiment.
  • the image generation device 1 can simultaneously acquire tomographic images at a plurality of locations of the measurement subject X.
  • the alternating current input unit 201 applies an alternating current in parallel to all of the electrode 102 belonging to the plane A1-A1 ′, the electrode 102 belonging to the plane A2-A2 ′,. It can flow.
  • the magnetic field information acquisition unit 202 acquires magnetic field strength information simultaneously from all of the magnetic sensor 103 belonging to the plane A1-A1 ′, the magnetic sensor 103 belonging to the plane A2-A2 ′,. Make it possible. That is, the magnetic field information acquisition unit 202 simultaneously calculates the magnetic field intensity at a plurality of positions surrounding one tomographic plane of the measurement subject X, and the magnetic field information at a plurality of positions surrounding another tomographic plane different from the one tomographic plane.
  • the image generating apparatus 1 is based on each field strength information acquired via the magnetic sensors 103 belonging to each of the surfaces A1-A1 ′, A2-A2 ′,.
  • a tomographic image of the to-be-measured person X belonging to each of A1-A1 ′, A2-A2 ′,... Can be simultaneously acquired.
  • the means (drive unit 11) for moving the detection unit 10 in the image generation apparatus 1 according to the first embodiment it is possible to eliminate the means (drive unit 11) for moving the detection unit 10 in the image generation apparatus 1 according to the first embodiment, and to acquire a plurality of tomographic images.
  • the time required can be shortened. That is, in the first embodiment, if the measurement subject X moves while the detection unit 10 is moving, a shift occurs between the acquired tomographic images.
  • a plurality of tomographic images are generated. By setting it as the aspect which can acquire an image simultaneously, the shift
  • the expression “simultaneously” used in the description of the image generation apparatus 1 described above is not necessarily limited to the meaning of “at exactly the same time”, and deviation between a plurality of acquired tomographic images is allowed. There may be a difference in time within a certain range.
  • FIG. 10 is a diagram illustrating the function of the image generation unit according to a modification of the second embodiment.
  • the image generation apparatus 1 according to the first embodiment and the second embodiment described above is based on the magnetic field strength information acquired by the plurality of electrodes 102 and the plurality of magnetic sensors 103 existing on the same plane. It demonstrated as what acquires the tomographic plane of the measuring object person X which belongs to a surface. However, in this case, as shown in FIG. 10, the AC current generated between the electrodes 102 is actually the AC current component I1 flowing through the plane A1-A1 ′ to which the electrode 102 belongs, as well as the other plane A2-A2. AC current components I2 and I3 flowing through 'and plane A3-A3' are included.
  • the alternating current flowing between the electrodes 102 actually has a component (AC currents I2, I3, etc.) that spreads in the vertical direction.
  • the tomographic image generated based on the magnetic field intensity detected by the magnetic sensor 103 belonging to the plane A1-A1 ′ is not only information about the tomographic plane belonging to the plane A1-A1 ′ but also other tomographic planes (plane A2). -A2 ', A3-A3', etc.). Accordingly, the generated tomographic image becomes blurred including information on other tomographic planes due to the alternating current component spreading in the vertical direction.
  • the magnetic field information acquisition unit 202 generates a magnetic field generated based on an alternating current flowing between the electrodes 102 in addition to the magnetic sensor 103 belonging to the same plane as the electrode 102 and other adjacent ones. Obtained via the magnetic sensor 103 belonging to the surface. For example, as shown in FIG. 10, the magnetic field information acquisition unit 202 generates a magnetic field generated based on an alternating current flowing between the electrodes 102 belonging to the plane A1-A1 ′ together with the magnetic sensor 103 belonging to the plane A1-A1 ′. , Acquired through the magnetic sensors 103 belonging to the planes A2-A2 ′ and A3-A3 ′.
  • the image generation unit 203 first generates a first intermediate image based on the magnetic field strength information acquired via the magnetic sensor 103 belonging to the plane A1-A1 '.
  • the first intermediate image is a tomographic image acquired mainly based on the alternating current component I1, but becomes a blurred image because it includes the alternating current components I2, I3, etc. flowing through other tomographic planes. .
  • the image generation unit 203 generates second and third intermediate images based on the magnetic field strength information acquired through the magnetic sensors 103 belonging to the planes A2-A2 'and A3-A3'.
  • the second and third intermediate images are mainly tomographic images acquired based on the current components I2 and I3 spreading in the vertical direction, respectively.
  • the image generation unit 203 performs a process of acquiring a difference between the second and third intermediate images from the first intermediate image. Specifically, for example, a process of subtracting the “brightness” of each corresponding pixel in the second and third intermediate images from the “brightness” of each pixel in the first intermediate image.
  • the image generation unit 203 acquires the final image calculated in this way as a tomographic image representing the tomographic plane of the measurement subject X belonging to the plane A1-A1 '.
  • the image generation apparatus 1 surrounds the first intermediate image generated based on the magnetic fields at a plurality of positions surrounding one tomographic plane and the other tomographic plane.
  • a tomographic image representing the one tomographic plane may be generated by combining the second, third,... Intermediate images generated based on the magnetic fields at a plurality of positions.
  • information acquired based on alternating current components (alternating current components I2, I3, etc.) flowing through a tomographic plane other than the desired tomographic plane can be excluded, so a more accurate tomographic image. Can be obtained.
  • the image generation apparatus 1 is illustrated based on the second embodiment including the cylindrical detection unit 10 (see FIG. 9), but the first embodiment, that is, the annular detection unit. You may apply to the image generation apparatus 1 which has 10 (refer FIG. 3). In this case, it is assumed that at least a plurality of magnetic sensors 103 are arranged in the vertical direction in the annular detection unit 10.
  • the image generating apparatus 1 has been described as performing the process of subtracting the tomographic image by subtracting the “brightness” for each pixel after generating the first to third intermediate images.
  • the first to third intermediate images described here may not be actually generated and displayed. That is, one tomographic image may be generated after subtracting in advance the magnetic field intensity, which is the basic observation value corresponding to the brightness of each pixel of the first to third intermediate images.
  • the image generation apparatus 1 has been described as acquiring a tomographic image with an alternating current having a predetermined frequency (several kHz to several MHz), but in other embodiments, It is not limited to this aspect.
  • the image generation device 1 may acquire a tomographic image based on alternating currents having a plurality of different frequencies.
  • the alternating current input unit 201 outputs a frequency designation signal that designates the frequency of the alternating current to the alternating current drive circuit 201A.
  • AC drive circuit 201A outputs the alternating current of the frequency according to the received frequency designation signal.
  • the image generation device 1 generates a tomographic image for each frequency of the alternating current output from the AC drive circuit 201A, and generates a tomographic image based on the frequency characteristics of each pixel constituting the obtained tomographic images. Get the conductivity distribution of the surface.
  • the alternating current input unit 201 first selects one frequency at the start of the processing flow shown in FIG.
  • the CPU 200 acquires the tomographic image by performing the processes of steps S10 to S14. Thereafter, the alternating current input unit 201 switches the alternating current to another frequency.
  • the CPU 200 repeatedly performs the processing of steps S10 to S14 while switching the frequency of the alternating current.
  • the image generation unit 203 generates a plurality of tomographic images for different frequencies based on the intensity of the magnetic field generated by each frequency.
  • the CPU 200 further functions as a conductivity calculator that calculates the conductivity distribution of the tomographic plane of the measurement subject X based on a plurality of tomographic images generated for different frequencies.
  • the conductivity calculation unit extracts the conductivity of a location corresponding to the same pixel from the plurality of tomographic images generated for each frequency, and acquires the frequency characteristic of the conductivity for each pixel. To do.
  • the conductivity calculation unit calculates a real number component (resistance, conductance) and an imaginary number component (reactance, susceptance) of the conductivity corresponding to the pixel based on the frequency characteristic of the conductivity. By doing so, the conductivity distribution on the tomographic plane can be grasped by dividing it into a real component and an imaginary component, so that a more detailed tomographic image can be acquired.
  • FIG. 11 is a diagram for explaining the characteristic of impedance change by a living body.
  • a living body (“fist” in this experiment) is inserted between two spaced apart electrodes as shown in FIG.
  • the graph shown in FIG. 11B is a comparison of impedance between two electrodes when a living body exists between two electrodes and when a living body does not exist.
  • the frequency used for measurement is about several kHz to several MHz, the difference in the presence or absence of a living body clearly appears. Therefore, the frequency used for acquiring a tomographic image of a living body is preferably several kHz to several MHz.
  • the frequency used for generating a tomographic image of a living body is more preferably around 1 MHz.
  • the magnetic field strength around 1 MHz can be detected with high accuracy.
  • a measurement target person X that acquires a tomographic image is arranged inside a detection unit 10 formed in an annular shape.
  • the image generation apparatus 1 according to the embodiment is not limited to this aspect.
  • the magnetic field information acquisition unit 202 may acquire the strength of the magnetic field at a plurality of positions surrounded by a specific tomographic plane of the measurement subject X.
  • the detection unit 10 according to the modification is reduced in size as shown in FIG. 4 and attached to the distal end of an endoscope, a catheter, or the like.
  • the detection unit 10 is inserted into the body of the measurement subject X together with the endoscope.
  • the image generation apparatus 1 acquires the tomographic image via the detection unit 10 surrounded by a specific tomographic plane in the inserted body.
  • alternating currents I1 to I3 There is also an alternating current around. Therefore, the alternating current flowing between the electrodes 102 also changes according to the conductivity distribution of the tomographic plane arranged outside the base body 101.
  • a tomographic image of a tomographic plane surrounding the detection unit 10 can be acquired by performing image reconstruction processing using the magnetic field intensity detected from each of the magnetic sensors 103 by the image generation unit 203.
  • the image generating apparatus 1 since an AC current is supplied from the body of the measurement subject X and the magnetic field strength is measured in a non-contact manner, a local fault in the body of the measurement subject X is measured. The surface can be evaluated precisely.
  • FIG. 12 is a diagram for explaining the function of the conductivity acquisition device according to the modification of the first embodiment.
  • the conductivity acquisition device 1A according to this modification includes a detection unit 10 as shown in FIGS. 12 (a) and 12 (b).
  • the detection unit 10 includes a pair of electrodes 102 attached near both ends of a base body (cylindrical housing) 101A, A magnetic sensor 103 disposed between the pair of electrodes 102.
  • Each of the pair of electrodes 102 is formed in an annular shape along the entire circumference in the circumferential direction of the base body 101A.
  • the alternating current I flowing between the pair of electrodes 102 circulates in a circular arc shape in the air in all directions in the centrifugal direction of the base body 101A (FIGS. 12A and 12B). )).
  • the pair of electrodes 102 is connected to an alternating current input unit 201 and an alternating current drive circuit 201A (not shown in FIG. 12).
  • the magnetic sensor 103 is connected to a magnetic field information acquisition unit 202 (not shown in FIG. 12).
  • the alternating current input part 201, the alternating current drive circuit 201A, and the magnetic field information acquisition part 202 since it is the same function as each above-mentioned embodiment, description is abbreviate
  • the alternating current input unit 201 preferably has a function of outputting a frequency designation signal that designates the frequency of the alternating current.
  • the conductivity acquiring apparatus 1A instead of the image generating unit 203, based on the magnetic field intensity acquired by the magnetic field information acquiring unit 202, the measurement target person X in the vicinity where the magnetic sensor 103 is arranged.
  • the electrical conductivity acquisition part (not shown) which acquires the electrical conductivity of this is provided.
  • FIG. 12A and 12B show an example in which the base body 101A is inserted into the body X ′ of the measurement subject X.
  • FIG. 12A shows a case where the conductivity of the body X ′ surrounding the detection unit 10 is high
  • FIG. 12B shows a case where the conductivity of the body X ′ surrounding the detection unit 10 is low. Is shown.
  • the electrical conductivity of the body X ′ is high
  • the alternating current I that flows through the body X ′ increases, so that the alternating current I flowing between the pair of electrodes 102 is, as shown in FIG.
  • the magnetic field information acquisition unit 202 acquires the magnetic field strength corresponding to the conductivity of the body X ′.
  • the magnetic field information acquisition unit 202 may detect a plurality of magnetic field strengths for different frequencies based on the frequency control of the alternating current input unit 201.
  • the conductivity acquisition unit calculates the conductivity around the base body 101A based on the magnetic field intensity acquired by the magnetic field information acquisition unit 202.
  • the conductivity acquisition unit calculates the conductivity ⁇ according to the acquired magnetic field strength using, for example, the formula (4), the formula (5), the predetermined length l, the cross-sectional area s, and the like.
  • the conductivity acquisition unit may calculate up to a real component and an imaginary component of the conductivity ⁇ based on the acquired frequency characteristic of the magnetic field strength.
  • the conductivity acquisition device 1A can grasp
  • the conductivity acquiring apparatus 1A according to the present modification can acquire the conductivity in a state where both the detection unit 10 (the electrode 102 and the magnetic sensor 103) are arranged at positions away from the inner wall surface of the body, The electrical conductivity in the body can be easily obtained, which contributes to reducing the burden on the measurement subject.
  • the detection unit 10 according to this modification includes only a pair of electrodes 102 and one magnetic sensor 103, the configuration of the detection unit 10 compared to the image generation device 1 according to each of the above-described embodiments. Can be simplified, and the downsizing and cost reduction of the apparatus can be promoted.
  • 1 A of conductivity acquisition apparatuses which concern on this modification are limited to the aspect (FIG. 12 (a), (b)) attached to the front-end
  • the conductivity acquisition device 1 ⁇ / b> A may be configured such that the detection unit 10 is brought close to the body surface of the measurement subject X and the conductivity near the body surface is acquired. At least a part of the electrode 102 and the magnetic sensor 103 is disposed in non-direct contact with the body surface in the vicinity of the body surface. Alternatively, at least a portion of the electrode 102 and the magnetic sensor 103 can be placed in direct contact with the body surface at least temporarily.
  • the conductivity acquiring device 1A is formed in an annular shape so as to go around the entire circumference in the circumferential direction of the base body (cylindrical casing) 101A (so as to continuously extend in the circumferential direction of the base body 101A). It is not limited to things. Alternatively, the conductivity acquisition device 1A is formed, for example, so as to go around only a part of the circumferential direction of the base body 101A (partially extend in the circumferential direction of the base body 101A). There may be. Further, in the conductivity acquisition device 1A, the electrode 102 is not limited to an annular shape. Alternatively, the electrode 102 may be formed in another shape such as a plate shape.
  • the orientations of the plate surfaces of the two electrodes 102 are oriented in the direction perpendicular to the extending axis direction of the base body 101A, that is, in one of the centrifugal directions of the base body 101A (and the same orientation as each other). Arranged. If it does so, especially strong alternating current will be radiated
  • the direction, density, and the like of the alternating current may be adjusted by attaching a shield electrode or a guard electrode in the vicinity where the electrode 102 is disposed.
  • the “position away from the measurement object (measurement subject X)” means “position away from the inner wall surface of the measurement subject X”, “measurement subject” In the body of X, the meaning of “a position having a gap with the inner wall surface” and “a position in the body of the measurement subject X in non-direct contact with the inner surface” is included.
  • the image generation apparatus 1 includes a plurality of electrodes 102, a plurality of magnetic sensors (a plurality of sensor cells, a plurality of sensor heads) 103, and an alternating current supplied via the electrodes 102. And a main body (controller) 20 that provides a tomographic image of the measurement object based on the strength of the magnetic field generated by the current. It is configured to acquire the strength of the magnetic field via the magnetic sensor 103 in a state of being placed in direct contact.
  • the main body 20 has a state in which at least a part of the plurality of electrodes 102 and the plurality of magnetic sensors (a plurality of sensor cells, a plurality of sensor heads) 103 are substantially in contact with the surface of the measurement object.
  • the image generation apparatus 1 has advantages such as a reduction in the burden on the operator and the person to be measured, a reduction in apparatus cost and installation space.
  • the detection unit 10 may include a base body 101 that is configured to be deformable.
  • the plurality of electrodes and the plurality of magnetic sensors are arranged such that at least a part of the plurality of electrodes and the plurality of magnetic sensors (see FIG. 3 and the like) move according to the movement of the base body 101.
  • At least a part of the head is provided on the base body 101.
  • the base body 101 can be configured to have at least one node and at least two beams.
  • the base body 101 can be configured to have a flexible structure having appropriate flexibility and appropriate rigidity.
  • the base body 101 can have a configuration having at least one open section and / or a configuration that can be assembled and disassembled.
  • the arrangement of the electrodes and the magnetic sensor can be adjusted according to the deformation of the base body 101. Adjustment of the arrangement of the electrodes and the magnetic sensor is advantageous for improving the measurement accuracy.
  • the plurality of magnetic sensors can be arranged such that at least one of the magnetic sensors can independently change the distance to the measurement object. For example, in a state where the distance (first distance) to the measurement object in one magnetic sensor (sensor cell, sensor head) is kept constant, the distance (second distance) to the measurement object in at least one other is changed. be able to. As a result, the first distance and the second distance can be made substantially the same value. It is advantageous for improvement in measurement accuracy that the distances between the plurality of magnetic sensors and the body surface are the same.
  • the image generating apparatus 1 includes (a) a position (coordinates with respect to an origin) of at least one of a plurality of sensor cells, (b) a distance with respect to a measurement object, and ( c) A positional information sensor 106 capable of detecting at least one of a relative positional relationship with respect to the measurement object can be provided.
  • the position information sensor 106 can be configured to detect at least a part of the position, posture, and contour (surface shape) of the measurement object with respect to at least a part of the detection unit 10.
  • the position information sensor 106 can be configured to detect a relative positional relationship between the detection unit 10 and the measurement object.
  • the position information acquisition unit 205 is based on an output signal from the position information sensor 106, and (a) a reference of at least one of a plurality of magnetic sensors (a plurality of sensor cells and a plurality of sensor heads). At least one of a position with respect to the point (coordinates with respect to the origin), (b) a distance with respect to the measurement object, and (c) a relative positional relationship with respect to the measurement object can be acquired. Based on this positional information, control over at least one of the electrode and the magnetic sensor can be adjusted. For example, the main body 20 can adjust the supply control of the alternating current based on the output signal from the position information sensor 106.
  • the main-body part 20 can correct
  • FIG. The main body 20 can calculate the strength of the magnetic field based on the output from the position information sensor 106 and the outputs from the plurality of magnetic sensors. Such control is advantageous for improving measurement accuracy.
  • a process for recording the program for realizing the function of the CPU 200 in each of the above-described embodiments is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into a computer system and executed. You may go.
  • the “computer system” includes an OS and hardware such as peripheral devices.
  • the “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system.
  • the “computer-readable recording medium” refers to a volatile memory (RAM) in a computer system that becomes a server or a client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. In addition, those holding programs for a certain period of time are also included.
  • RAM volatile memory
  • the program may be transmitted from a computer system storing the program in a storage device or the like to another computer system via a transmission medium or by a transmission wave in the transmission medium.
  • the “transmission medium” for transmitting the program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
  • the program may be for realizing a part of the functions described above. Furthermore, what can implement

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Human Computer Interaction (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

画像生成装置(1)は、複数の電極と、複数のセンサセルと、複数の電極を介して供給された交流電流で生じた磁界の強度に基づいて測定対象物の断層画像を提供するコントローラ(20)を備える。コントローラ(20)は、複数のセンサセルを介して磁界の強度を取得する。

Description

画像生成装置、導電率取得装置、画像生成方法及びプログラム
 本発明は、対象物の断層画像を取得する画像生成装置、導電率取得装置、画像生成方法及びプログラムに関する。
 本願は、2014年2月25日に出願された特願2014-034335号に基づき優先権を主張し、その内容をここに援用する。
 電気インピーダンストモグラフィ(以下、EIT(Electrical Impedance Tomography)と記載する)測定装置は、体表面上に貼付した電極対から微弱電流を流すとともに、体表面上に生じた電位差から、生体内の導電率分布または導電率変化の分布を画像化する技術である。
 EIT測定は、対象物に微弱電流を流すだけでその断層画像を取得できるので、X線CT(Computed tomography)と比較して、被曝の問題がなく、小型化や長時間測定、リアルタイムの測定が容易であるという利点がある。
 EIT測定では、一般的に、8個から64個程度の電極を用いる。これらの電極を対象部位の周囲の体表面に貼付し、かつ、当該電極に対して個々に接続された信号ケーブルを引き回して、測定用回路に接続する。近年では、これら複数の電極並びに信号ケーブルをモジュールとして単一化し、電極の着脱、測定装置のセッティングを容易にする方法が試みられている(例えば、特許文献1、特許文献2参照)。
特開2012-228514号公報 特表2009-523037号公報
 しかしながら、上述のEIT測定においては、いずれも、体表面上に複数の電極を貼付する作業を要する。したがって、モジュール化によりある程度容易化されたとしても、測定作業者(オペレータ)には、少なからず一定の負担が生じる。また、測定対象者(被検者)によっては、電極の貼付の際に身体的な負担が強いられる場合もある。
 本発明の態様は、対象物の状態をより簡易的かつ高精度に取得することができる画像生成装置、導電率取得装置、画像生成方法及びプログラムを提供することを目的としている。
 本発明の一態様は、複数の電極と、複数のセンサセルと、前記複数の電極を介して供給された交流電流で生じた磁界の強度に基づいて測定対象物の断層画像を提供するコントローラであり、前記複数のセンサセルを介して前記磁界の強度が取得される、前記コントローラと、を備える、ことを特徴とする画像生成装置である。
 また、本発明の一態様は、測定対象物から離れた位置に配された電極を介して当該測定対象物に交流電流を入力する交流電流入力部と、前記測定対象物から離れた位置に配された磁気センサを介して、前記交流電流入力部により入力された交流電流に基づいて生じた磁界の強度を取得する磁界情報取得部と、前記磁界情報取得部が取得した磁界の強度に基づいて前記測定対象物の断層画像を生成する画像生成部と、を備えることを特徴とする画像生成装置である。
 また、本発明の一態様は、上述の画像生成装置において、前記磁界情報取得部が、少なくとも、前記測定対象物の特定の断層面を囲う複数の位置における磁界の強度を取得することを特徴とする。
 また、本発明の一態様は、上述の画像生成装置において、前記交流電流入力部が、前記測定対象物の特定の断層面を囲う複数の位置に配された電極を介して前記交流電流を入力することを特徴とする。
 また、本発明の一態様は、上述の画像生成装置において、前記磁界情報取得部が、前記特定の断層面と同一の断層面の周囲に配された前記磁気センサを介して、前記交流電流入力部により入力された交流電流に基づいて生じた磁界の強度を取得することを特徴とする。
 また、本発明の一態様は、上述の画像生成装置において、前記磁界情報取得部が、前記測定対象物の一の断層面を囲う複数の位置における磁界の強度と同時に、前記一の断層面とは異なる他の断層面を囲う複数の位置における磁界の強度を取得することを特徴とする。
 また、本発明の一態様は、上述の画像生成装置において、前記画像生成部が、前記一の断層面を囲う複数の位置における磁界の強度に基づいて生成した第1の中間画像と、前記他の断層面を囲う複数の位置における磁界の強度に基づいて生成した第2の中間画像と、を組み合わせて、前記一の断層面が表された断層画像を生成することを特徴とする。
 また、本発明の一態様は、上述の画像生成装置において、前記交流電流入力部が、前記電極として、非磁性材料を用いることを特徴とする。
 また、本発明の一態様は、上述の画像生成装置において、前記磁界情報取得部が、前記磁気センサとして、光ポンピング原子磁気センサを用いることを特徴とする。
 また、本発明の一態様は、上述の画像生成装置において、前記交流電流入力部が、少なくとも、前記測定対象物の特定の断層面に周囲を囲われた複数の位置に配された電極を介して前記交流電流を入力することを特徴とする。
 また、本発明の一態様は、測定対象物から離れた位置に配された電極を介して当該測定対象物に交流電流を入力し、前記測定対象物から離れた位置に配された磁気センサを介して、前記入力された交流電流に基づいて生じた磁界の強度を取得し、前記取得した磁界の強度を用いて前記測定対象物の断層画像を生成することを特徴とする画像生成方法である。
 また、本発明の一態様は、画像生成装置のコンピュータを、測定対象物から離れた位置に配された電極を介して当該測定対象物に交流電流を入力する交流電流入力手段、前記測定対象物から離れた位置に配された磁気センサを介して、前記交流電流入力部により入力された交流電流に基づいて生じた磁界の強度を取得する磁界情報取得手段、前記磁界情報取得部が取得した磁界の強度に基づいて前記測定対象物の断層画像を生成する画像生成手段、として機能させるプログラムである。
 また、本発明の一態様は、測定対象物から離れた位置に配された電極を介して当該測定対象物に交流電流を入力する交流電流入力部と、前記測定対象物から離れた位置に配された磁気センサを介して、前記交流電流入力部により入力された交流電流に基づいて生じた磁界の強度を取得する磁界情報取得部と、前記磁界情報取得部が取得した磁界の強度に基づいて、前記測定対象物の、前記磁気センサが配された周辺における導電率を取得する導電率取得部と、を備えることを特徴とする導電率取得装置である。
 上述の画像生成装置、導電率取得装置、画像生成方法またはプログラムによれば、対象物の状態をより簡易的かつ高精度に取得することができる。
第1の実施形態に係る画像生成装置の概要を示す図である。 第1の実施形態に係る本体部の機能構成を示す図である。 第1の実施形態に係る検知部の構造を示す第1の図である。 第1の実施形態に係る検知部の構造を示す第2の図である。 第1の実施形態に係る電極及び磁気センサの機能を説明する図である。 第1の実施形態に係るCPUの処理フローを示すフローチャート図である。 第1の実施形態の変形例に係る検知部の構造を示す図である。 第1の実施形態の変形例に係る電極及び磁気センサの機能を説明する図である。 第2の実施形態に係る検知部の構造を示す図である。 第2の実施形態の変形例に係る画像生成部の機能について説明する図である。 生体によるインピーダンス変化の特性を説明する図である。 第1の実施形態の変形例に係る導電率取得装置の機能を説明する図である。 別の実施形態に係る検知部を示す模式図である。 別の実施形態に係る本体部の機能構成を示す図である。
 <第1の実施形態>
[全体構成]
 以下、第1の実施形態に係る画像生成装置を、図面を参照して説明する。
 図1は、第1の実施形態に係る画像生成装置の概要を示す図である。
 図1に示す画像生成装置1は、検知部10と、駆動部11と、本体部(コントローラ)20と、を備え、測定対象者(被検者)Xの断層画像を取得可能である。
 検知部10は、使用時において測定対象者Xの周囲を囲うように、環状に形成される。ここで、「環状」は、対象物の少なくとも一部を囲む全体的な形状を意味し、対象物を完全に連続的に囲む形状に限定されない。また、「環状」は、円環に限定されず、様々な形態をとり得る。例えば、環状は、部分的な開放区間を有する環状や、円環以外の全体形状を有する環などを含むことができる。検知部10は、後述するように、複数の電極とセンサ(複数の磁気センサ、複数のセンサ、複数のセンサセル、複数のセンサヘッド)とを有する。本体部20は、測定対象者Xに対する各種検知信号を検知部10から取得する。本体部20は、この検知信号に基づき、測定対象者Xの、検知部10が配される面の断層画像(検知部10の軸方向の位置に従って設定される面に対する被検者Xの断層画像)を取得することができる。
 駆動部11は、検知部10に固定され、検知部10を対象物の表面に沿って(例えば、対象物(被検部位)の軸方向、上下方向(鉛直方向))に移動させる移動体を有する。一例において、移動体の直線的な移動に伴い、検知部10が直線的に移動可能である。なお、駆動部11による検知部10の移動は直線移動に限定されない。駆動部11は、例えば、図示しないステッピングモータ等の駆動機構を有する。駆動部11は、本体部20から入力される電気信号(指示信号)に基づいて、検知部10の位置(例えば、鉛直方向の位置)を変更する。これにより、オペレータは、測定対象者Xに対する検知部10の相対位置を任意に変更可能である。駆動部11を用いて検知部10を移動することで、当該測定対象者Xの所望の断層画像を容易に取得することができる。代替的な実施形態において、画像生成装置1は、電力を用いることなく検知部10が移動する構成、又は駆動部11を実質的に省いた構成を有することができる。
 本体部(コントローラ)20は、検知部10による検知信号の取得、駆動部11を用いた検知部10の駆動、並びに、断層画像の生成等、画像生成装置1の画像生成処理全体の制御を司る。本体部20の詳細な機能構成については後述する。
[本体部の機能構成]
 図2は、第1の実施形態に係る本体部の機能構成を示す図である。
 図2に示すように、本実施形態に係る本体部20は、CPU(Central Processing Unit)200と、RAM(Random Access Memory)210と、HDD(Hard Disk Drive)211と、操作入力部212と、画像表示部213と、外部インターフェイス214と、を備えている。
 CPU200は、画像生成装置1の画像生成処理全体の制御を司る。CPU200は、所定の記憶領域(RAM210等)に読み込まれた測定用プログラムに基づいて動作することで、交流電流入力部201、磁界情報取得部202、画像生成部203としての機能を発揮する。
 RAM210は、測定用プログラムに基づいて動作するCPU200のワークエリアとなる記憶領域である。
 HDD211は、各種プログラムまたは画像生成部203が生成した断層画像等を記憶する記憶手段である。
 操作入力部212は、例えばマウス、キーボード、タッチパネル等から構成され、オペレータによる各種操作の入力を受け付ける。
 画像表示部213は、液晶ディスプレイ等であって、オペレータの操作において必要な情報や、取得された断層画像等を表示する。
 外部インターフェイス214は、外部装置との通信を行うための通信インターフェイスであり、特に本実施形態においては、専用の通信ケーブルを介して検知部10及び駆動部11に接続される。
 なお、図2に示すように、CPU200、RAM210、HDD211、操作入力部212、画像表示部213、外部インターフェイス214は、システムバス215を介して相互に電気的に接続されている。
[CPUの具体的な機能]
 次に、測定用プログラムに基づくCPU200の動作によって実現される交流電流入力部201、磁界情報取得部202、画像生成部203及び駆動制御部204について簡単に説明する。
 交流電流入力部201は、測定対象物(測定対象者X)から離れた位置に配された複数の電極102(図3に記載)を介して測定対象者Xに交流電流を入力する。
 磁界情報取得部202は、測定対象者Xから離れた位置に配された複数の磁気センサ(複数のセンサセル、複数のセンサヘッド)103(図3に記載)を介して、交流電流入力部201により入力された交流電流に基づいて生じた磁界を取得する。
 画像生成部203は、磁界情報取得部202が取得した磁界に基づいて測定対象者Xの断層画像を生成する。
 駆動制御部204は、駆動部11に対して所定の駆動指示信号を出力し、駆動部11の動作を制御する。
 交流電流入力部201、磁界情報取得部202、画像生成部203及び駆動制御部204についてのより具体的な機能については後述する。
[検知部の構造]
 図3は、第1の実施形態に係る検知部の構造を示す第1の図である。また、図4は、第1の実施形態に係る検知部の構造を示す第2の図である。
 図3には、検知部10の側面の構造を示している。また、図4には、図3における面A-A’の断面構造を模式的に示している。図3、図4に示すように、検知部10は、ベース体(ベースフレーム、環状筐体)101と、電極102と、磁気センサ103と、を備えている。
 本実施形態において、ベース体101は、使用時において測定対象者Xの周囲を囲うように(測定対象者の少なくとも一部を囲むように)、環状に形成されている。ベース体101は、駆動部11(図1)に取り付けられている。駆動部11による駆動制御に基づいてベース体101の測定対象者Xとの相対位置が変化する。ベース体101は、例えば、アクリル樹脂等で形成される。ベース体101の材料としては、様々な材料が適用可能である。ベース体の材料は、好ましくは、実質的に絶縁体であって、かつ、実質的に非磁性体材料である。また、ベース体101は、円形環状に限定されない。ベース体101の全体形状は、例えば、楕円形であったり、一部が間欠された構造であったりしてもよい。あるいは、ベース体101は、全体形状を変更可能な構造を有してもよく、開閉可能な構造を有してもよい。
 電極102は、面A-A’の同一面内において、ベース体101の周方向に沿ってベース体101に一定間隔ごとに複数取り付けられている。電極102の配置は、様々に変更可能である。電極102は、例えば、銅、アルミ、ステンレスなどの導電性を有し、かつ、実質的に非磁性体の材料で形成される。電極102の材料は、上記例に限定されない。
 磁気センサ103(複数のセンサセル、複数のセンサヘッド)は、電極102と同様に、面A-A’の同一面内において、ベース体101の周方向に沿ってベース体101に一定間隔ごとに複数取り付けられている。複数の磁気センサ(複数のセンサヘッド)103は、複数の電極102が配される面と同一面内に配される(図3)。磁気センサ(センサヘッド)103の配置は、様々に変更可能である。
 また、本実施形態において、磁気センサ103は、常温でありながら超高感度な磁気センサである光ポンピング原子磁気センサを用いる。光ポンピング原子磁気センサは、極低温状態を要するSQUID(Superconducting Quantum Interference Device)と同程度の(10-15T(テスラ)オーダー)の磁場を観測することができる。
 図4に示すように、交流電流入力部201は、交流駆動回路201Aを制御して、複数の電極102のうちの2つの電極102間に交流電流を流す。交流駆動回路201Aは、交流電源及び定電流回路(或いは定電圧回路)を有する回路であって、交流電流入力部201による制御に応じて、高周波(例えば数kHz~数MHzオーダー)の交流電流を出力可能とする。これにより、交流電流は、電極102から空中に放射される成分が高まるため、電極102を測定対象者Xの体表面に直接貼付することなく交流電流を測定対象者Xの内部に流すことができる。また、上記周波数帯は、人体を測定対象物とした場合において、インピーダンスの変化が顕著となることが知られている(図11(b)参照)。
 なお、図示していないが、交流電流入力部201は、交流駆動回路201Aと、複数の電極102のうちの任意の2つの電極102と、を選択して接続可能な切替部を有する。交流電流入力部201は、交流駆動回路201Aと、複数の電極102の各々と、の接続を順次切り替えながら測定者Xに交流電流を流す処理を行う。
 このように、交流電流入力部201は、測定対象者Xの特定の断層面を囲う複数の位置に配された電極102を介して交流電流を入力する。
 また、図4に示すように、磁界情報取得部202は、磁気センサ103と接続されるとともに、磁気センサ103で検知された磁界の強度をデータ(磁界強度情報)として取得する。なお、図示を省略しているが、磁界情報取得部202も磁気センサ(センサセル、センサヘッド)103の全てと並列に接続されており、磁気センサ103が配された各箇所に発生した磁界の強度を同時に取得可能としている。また、磁気センサ103と磁界情報取得部202との間の接続には、バンドパスフィルタ、増幅器、A/D(Analog/Digital)変換器等、磁界強度を電気的なデータ(磁界強度情報)として取得するために必要な回路が挿入されている。
 このように、磁界情報取得部202は、電極102が囲う測定対象者Xの特定の断層面と同一の断層面の周囲に配された磁気センサ103を介して、当該特定の断層面を囲う複数の位置における磁界の強度を示す磁界強度情報を取得する。
[検知部の動作原理]
 図5は、第1の実施形態に係る電極及び磁気センサの機能を説明する図である。
 交流電流入力部201が交流駆動回路201Aを制御して、ある隣接する一対の電極102の間に交流電流を流す場合を考える。交流電流の周波数が数MHzオーダーの場合、図5に示すように、隣接する電極102間において、空中に円弧状に広がるように交流電流が発生する。これにより、測定対象物Xの内部にも交流電流(交流電流I1、I2等)が入力される。測定対象物Xに入力される交流電流I1、I2等は、それぞれ、測定対象者Xの内部を伝わる経路に応じた値となる。
 より具体的に説明すると、測定対象者Xに含まれる血液等は電解質であるため、測定対象者Xの内部の方が大気中に比べて電気インピーダンスが低い。したがって、両電極102間から大気中に放射される交流電流は、電気的な抵抗(電気インピーダンス)が低い測定対象者Xの内部の方を流れようとする。そうすると、例えば、交流電流I2、I3等は、測定対象者Xがその場に存在しない場合に比べ、存在する場合の方が全体として高い電流値となる。また、測定対象者Xの内部であっても、例えば、空気で満たされた肺野等を通る交流電流は、その分低い電流値となる。
 以上のように、ある電極102間に生じる交流電流は、測定対象物Xの内部における電気インピーダンスの分布に応じた電流値となる。
 また、図5に示すように、各交流電流(交流電流I1、I2等)の周囲には、磁界Hが発生する。磁界Hの強度は、発生した交流電流値に比例する。磁界情報取得部202は、ベース体101の周上に配列された各磁気センサ(センサセル、センサヘッド)103を介して、各々の位置において生じた磁界Hの強度を検知する。
 後述する画像生成部203は、ここで磁界情報取得部202が取得した各磁気センサ103が検知した磁界Hの強度情報に基づいて、主に、電極102、磁気センサ103と同一面内に存在する断層面S(測定対象者Xの面A-A’(図3)についての断層面)の断層画像を生成する。
 なお、入力する交流電流の周波数は、上述したように、人体を測定対象物とした場合において高精度な計測が可能となるように、数kHz~数MHzオーダーとしている(図11参照)。そのため、この交流電流に基づいて発生する磁界も同周波数で発振している。そこで、本実施形態においては、磁気センサ103として超高感度の光ポンピング原子磁気センサを用いることで、比較的高い周波数(数MHzオーダー)で発振する磁界であっても、その磁界強度を精度よく検知することが可能となっている。上記数値は一例であって本発明はこれに限定されない。
 磁気センサ103の態様は、光ポンピング原子磁気センサに限定されない。磁気センサ103として、好ましくは、いわゆる高感度磁気センサが用いられる。一例において、磁気センサ103は、少なくとも数kHzオーダーの磁界Hを高精度で検知可能である。上記数値は一例でありこれに限定されない。例えば、MIセンサ(磁気インピーダンス素子センサ)、超伝導量子干渉素子(Superconducting quantum interference device: SQUID)等の様々なタイプの中から選択されたものを磁気センサ103として用いることができる。
[CPUの処理フロー]
 図6は、第1の実施形態に係るCPUの処理フローを示すフローチャート図である。
 以下、本実施形態に係る画像生成装置1の測定手続において、CPU200が実行する処理フローを、図6を参照しながら順を追って説明する。
 まず、操作入力部212を介してオペレータから測定開始の入力操作を受け付けると、交流電流入力部201は、隣接する一対の電極102を選択し、交流駆動回路201A(図4)に接続する(ステップS10)。次に、交流電流入力部201は、交流駆動回路201Aに予め定められた制御信号を入力し、設定された周波数及び出力強度の交流電流を、選択された電極102間に発生させる(ステップS11)。これにより、測定対象者Xの内部に所定の強度の交流電流(交流電流I1、I2等(図5))が入力される。
 磁界情報取得部202は、交流電流の入力中に、全ての磁気センサ(センサセル、センサヘッド)103から並列して入力される各検知信号(センサからの出力信号)を受け付けて、各位置における磁界強度を示す磁界強度情報を取得する(ステップS12)。これにより、磁界情報取得部202は、磁気センサ103が配された各位置における、交流電流入力部201により入力された交流電流に基づいて生じた磁界の強度を取得する。磁界情報取得部202は、取得した磁界強度情報を記憶領域(RAM210、HDD211等)に、一時的に記憶する。
 隣接する一対の電極102間についての磁界強度情報を取得すると、交流電流入力部201は、別の隣接する一対の電極102を選択し、交流電流を入力する。交流電流入力部201は、全ての電極の対を選択するまで上述の処理を繰り返す(ステップS13)。これにより、磁界情報取得部202は、全ての隣接する電極102の組において生じた磁界強度についての磁界強度情報を取得する。
 全ての電極102の対についての磁界強度情報を取得すると(ステップS13:YES)、画像生成部203は、磁界情報取得部202によって取得、記憶された各磁界強度情報を参照して、測定対象者Xの断層画像を生成する(ステップS14)。一例において、ステップS12で取得された磁界強度情報に基づいて測定対象者Xの断層画像を生成する手法については、既に知られているEIT測定と同様の手法を用いることができる。
 ここで、ステップS14における断層画像の生成処理の手法について簡単に説明する。まず、従来のEIT測定の場合、通常、複数の電極は体表面に貼付される。そして、ある選択された電極間に定電流(一般に、数kHzオーダの交流電流)を流しながら、他の電極間に生じる電位差を順次計測することで、測定対象者の断層面における抵抗率分布を取得する。従来のEIT測定では、この抵抗率分布を基に、例えば、既知の逆投影法(Back projection method)を用いて断層画像を生成する。
 EITをリアルタイムで画像再構成するために、(1)測定対象の境界が円形、(2)電極を等間隔で配置、(3)初期の導電率分布が均一、(4)導電率変化が小さい、(5)対象が2次元、と仮定する。まず、Geselowitzの定理を用いて定義される感度行列Sを使うと、測定される電圧変化Δgと導電率の変化Δcの関係は、
Figure JPOXMLDOC01-appb-M000001
 で示される。ここで、Δcは均一な導電率分布cの一部がcへ変化したときの変化量、Δgはそれに伴って境界で測定される電圧がgからgまで変化したときの変化量を示す。各感度係数は、
Figure JPOXMLDOC01-appb-M000002
 となる。ここで、測定対象eに各1組のdrive電極とreceive電極がある場合、receive電極に生じた電位勾配を∇Φとし、逆にreceive電極に同じ電流を印加してdrive電極に生じた電位勾配を∇Φとする。感度係数Sは、有限要素法と2点の電極対からの距離r1、r2に位置する点電位をΦ=(r1)-1-(r2)-1と仮定して求められる。Sの逆行列を求めることが非常に困難であるため、変化率として画像再構成をすると、
Figure JPOXMLDOC01-appb-M000003
 となる。ここで、Fは、正規化感度行列を示し、Δg=g/gref、Δc=c/crefで、ある基準値に対する変化率を示す。すなわち再構成される画像は、導電率の変化率分布を示す。なお、式(3)中の“+”の記号は、当該“+”が付される行列の疑似逆行列であることを示す。
 電磁界系の逆問題を解くことは非常に困難であるため、本実施形態では、測定される磁場の変化率と導電率の変化率が比例関係にあることから、上記のEITにおける画像解析手法を利用した。
 EITにおいて測定される電極間の電圧Vは、式(4)のように表される。
Figure JPOXMLDOC01-appb-M000004
 ここで、“σ”は測定対象物(測定対象者X)の導電率(単位:S/m、抵抗率ρ=1/σ)、“l”及び“s”は、測定対象物を直方体と考えたときの長さ(単位:m)及び断面積(単位:m)、“I”は、測定対象物に流れる電流(単位:A)である。つまり、測定対象物のインピーダンスが測定中に変化しないものとすれば、電位差Vは、電流Iに比例する。
 一方、磁界強度“H”と、電流“I”とは、一般に、式(5)の関係を満たすことが知られている。
Figure JPOXMLDOC01-appb-M000005
 すなわち、電流Iの流れる方向から直角方向に距離“r”(単位:m)だけ離れた点における磁界強度H(単位:A/m)は式(5)のように求められ、これにより、磁界強度Hと電流Iとは比例関係にあることがわかる。
 したがって、電位差Vと磁界強度Hも比例関係にあることから、既知の逆投映法において、「電位差V」についての入力をそのまま「磁界強度H」と置き換えても、同等の断層画像を取得することができる。
 なお、画像生成部203が実行する断層画像生成処理は、上述したEIT測定に用いられる逆投影法を利用した手法に限定されることはなく、その他の手法を用いてもよい。例えば、取得した磁界強度情報に基づいて、電磁界系の逆問題を解く手法が用いられてもよい。
 ステップS14にて断層画像を生成すると、画像生成部203は、生成した断層画像を画像表示部213に出力する。オペレータは、画像表示部213に表示された断層画像を視認しながら診断を行うことができる。
 一の断層画像の生成処理が完了すると、次に、駆動制御部204は、駆動部11の駆動制御を行う。具体的には、駆動制御部204は、測定対象者Xについての全ての断層画像を取得したか否かを判定する(ステップS15)。なお、断層画像を取得する断層面Sの位置や取得する回数などは、オペレータによる最初の設定入力の際に決定されるものとする。
 そして、全ての断層画像を取得していない場合(ステップS15:NO)、駆動制御部204は、駆動部11に所定の指示信号を出力して、検知部10を上下方向に移動させ(ステップS16)。これにより、駆動部11は、検知部10の測定対象者Xに対する相対位置を変更する。
 ステップS16にて、検知部10の測定対象者Xに対する相対位置の変更がなされると、交流電流入力部201、磁界情報取得部202及び画像生成部203は、上述したステップS10からステップS14までの処理を繰り返す。これにより、測定対象物Xの異なる断層面についての断層画像をさらに取得することができる。
 ステップS16にて、予定されていた全ての断層画像の取得を終えると(ステップS15:YES)、CPU200は、処理を終了する。
[作用効果]
 上述したように、従来のEIT測定の場合、測定対象者Xの体表面に複数の電極を貼付する作業を必要とする。
 一方、本実施形態に係る画像生成装置1は、図3~図5等を用いて説明したように、測定対象者Xに対し入力する交流電流の出力先となる複数の電極102と、その交流電流を磁界強度として検知する複数の磁気センサ(複数のセンサセル、複数のセンサヘッド)103と、がいずれも測定対象者Xから離れた位置に配されている。複数の電極102及び複数の磁気センサ(複数のセンサセル、複数のセンサヘッド)103が測定対象物Xの表面に対して非直接接触に配される。これにより、測定対象者Xと電極等とが完全に非接触な状態(非直接接触状態)としながら、測定対象者Xの所望の断層面についての断層画像を取得することができる。
 これにより、オペレータによる電極の貼付作業の負担を軽減することができるばかりでなく、測定対象者Xに対する身体的な負担をも軽減することができる。「測定対象物Xの表面に対する非直接接触」は、電極102/磁気センサ103と測定対象者の体表面との間に別の物体が介在している状態を含み、例えば、測定対象者が着用している衣服の外面上に電極102/磁気センサ103が配された状態を含む。追加的に及び/又は代替的に、検知部10は、測定対象物(測定対象者)に対して装着タイプとすることができる。例えば、検知部10は、測定対象者が着用可能に形成されたベース体101に、電極102及び磁気センサ103の少なくとも一部が設けられた構成(例えば、バンドタイプ、キャップタイプ、ヘルメットタイプ等)を有することができる。
 なお、本実施形態においては、図3等において、測定対象者Xが直立した状態で、かつ、測定対象者Xの周囲を囲う検知部10が鉛直方向に移動しながら測定が行われている例を示しているが、他の実施形態においてはこの態様に限定されない。例えば、画像生成装置1は、測定対象者Xが専用のベッド等に横たわった状態にあって、検知部10が測定対象者Xを囲んだ状態で検知部10が水平方向に移動する態様としてもよい。このようにすることで、測定対象者Xが身体を起こすことが困難な状況にあっても、測定対象者Xに身体的な負担を強いることなく断層画像を取得することができる。
 また、従来のEIT測定の場合、体表面の状態(汗の有無など)によっては、その接触面における電気インピーダンスが変動してしまい、測定結果に誤差を生じさせてしまう場合が想定される。
 その点、本実施形態に係る画像生成装置1によれば、電極102と測定対象者Xとの接触面(体表面)が存在しないため、その接触面の状態に応じた誤差要因を排除することができる。
 また、本実施形態においては、上述したように、電極102が非磁性体材料で形成されている。これにより、電極102自身の存在が、磁気センサ103による磁界強度の検知に与える影響を最小限に抑制することができる。これにより、各磁気センサ103は、ベース体101における電極102との位置関係に依存せずに、その位置に発生した磁界の強度を精度よく検知することができる。
 以上、第1の実施形態に係る画像生成装置1によれば、対象物の断層画像をより簡易的かつ高精度に取得することができる。
 なお、第1の実施形態に係る画像生成装置1は、更に、以下のように変形可能である。
 図7は、第1の実施形態の変形例に係る検知部の構造を示す図である。
 第1の実施形態に係る画像生成装置1においては、磁気センサ103として光ポンピング原子磁気センサを用いている。これにより、数kHz~数MHzオーダーで発振する磁界であっても、その磁界強度を常温で精度よく検知することができる。すなわち、SQUIDのように極低温で使用するために必要な構成を全て排することができるので、磁気センサ103の個体のサイズを小型化することができる。この場合、図7に示すように、電極102の配列とは無関係に、その個体のサイズに応じた制約の範囲内で、配置可能な限りの個数の磁気センサ103を配置するようにしてもよい。
 具体的には、ベース体101の周方向に沿って配される磁気センサ103の個数は、当該磁気センサ103単体の幅方向の長さD[m]及びベース体101の円周R[m]のみに基づいて決定されるもの(例えば、個数=R÷D)であってもよい。
 このようにすることで、サイズの制約上可能な限り、磁界の検知箇所(すなわち、磁界強度についての情報量)を増やすことができる。断層画像を高解像度化することで、より高精度な断層画像を取得することができる。
 なお、この場合は、第1の実施形態と同様に、電極102が非磁性材料で形成されていてもよい。
 また、第1の実施形態に係るCPU200が実行する処理フローは、図6に示したものに限定されることはない。すなわち、CPU200は、EIT測定に用いられる画像生成処理(例えば、逆投影法等)に基づいて断層画像を生成するのに必要な情報量の磁界強度情報を取得するものであれば、いかなる手順で磁界強度情報を取得してもよい。
 図8は、第1の実施形態の変形例に係る電極及び磁気センサの機能を説明する図である。
 また、第1の実施形態に係るCPU200(交流電流入力部201)は、互いに隣接する電極102の対を順次選択しながら交流電流を入力するものとして説明した(ステップS10~ステップS11(図6))。しかしながら、他の実施形態に係る交流電流入力部201は、さらに、隣接する電極102の対以外の組み合わせも含めて、交流電流を入力してもよい。例えば、交流電流入力部201は、一の電極102と、当該一の電極102に対向する位置に存在する他の電極102と、を選択して、各電極102間において交流電流を出力してもよい。
 ここで、図5において、互いに隣接する電極102間に生じる交流電流は、その近傍では大きい電流が流れるが、当該電極102間から離れるほどその電流量は小さくなることが知られている。したがって、隣接する電極102間のみに交流電流を発生させた場合、測定対象物Xの体表面に近い側を流れる電流量に比べ、測定対象物Xの内部を流れる電流は微弱なものとなる。そのため、互いに隣接する電極102間に生じる交流電流のみに基づいて取得された断層画像は、断層面Sのうち、体表面に近い領域については高い精度で再現されているが、体表面から離れた深い領域については再現の精度が低下する場合がある。
 そこで、図8に示すように、例えば、対向する電極102の対を順次選択しながら交流電流I1等を流すことで、測定対象者Xの体内の深い領域を通る電流量が増す。磁界情報取得部202は、このような電流分布に基づいて発生する磁界を取得することで、体表面から離れた深い領域をも精度よく再現することができる。
 また、互いに隣接する電極102の対、または、対向する電極102の対のみならず、他の任意の2つの電極102の対の組み合わせによって交流電流を入力してもよい。
 また、第1の実施形態に係る画像生成装置1において、検知部10は、複数の電極102と複数の磁気センサ103とが同一面(面A-A’(図3))に配される態様としている。これにより、各電極102間に流れる交流電流に基づいて生じる磁界を高い強度で取得することができ、これに基づいて生成される断層画像の精度を向上させることができる。ただし、他の実施形態に係る画像生成装置1においてこの態様に限定されず、例えば、複数の電極102と複数の磁気センサ103とがそれぞれ異なる面に配されているような態様であってもよい。また、当該他の実施形態に係る画像生成装置1は、複数の電極102が配列されたベース体(環状筐体)101と、磁気センサ103が配列されたベース体(筐体)と、を各々有する態様としてもよい。
<第2の実施形態>
 次に、第2の実施形態に係る画像生成装置1について説明する。
 図9は、第2の実施形態に係る検知部の構造を示す図である。
 第1の実施形態に係る画像生成装置1は、環状に形成された検知部10が直立する測定対象者Xを囲うとともに、駆動部11の動作に応じて鉛直方向に移動しながら測定対象者Xの複数の断層画像を取得する態様として説明した。
 本実施形態に係る画像生成装置1の検知部10は、図9に示すように、全体的に鉛直方向に延伸して筒状に形成される。そして、筒状に形成された検知部10の内部に測定対象者Xの全身が収まる態様となっている。
 また、本実施形態に係る検知部10は、図9に示すように、鉛直方向に沿って複数の電極102と複数の磁気センサ103とが配列されている。面A1-A1’、A2-A2’、・・・ごとの複数の電極102及び複数の磁気センサ103の配列のされ方は、第1の実施形態と同様である。このようにすることで、画像生成装置1は、測定対象者Xの複数箇所の断層画像を同時に取得することができる。
 具体的には、本実施形態に係る交流電流入力部201は、面A1-A1’に属する電極102と、面A2-A2’に属する電極102と、・・・の全てに並列に交流電流を流すことができる。
 また、本実施形態に係る磁界情報取得部202は、面A1-A1’に属する磁気センサ103と、面A2-A2’に属する磁気センサ103と、・・・の全てから同時に磁界強度情報を取得可能とする。つまり、磁界情報取得部202は、測定対象者Xの一の断層面を囲う複数の位置における磁界の強度と同時に、当該一の断層面とは異なる他の断層面を囲う複数の位置における磁界の強度を取得可能とする。
 これにより、本実施形態に係る画像生成装置1は、面A1-A1’、A2-A2’、・・・のそれぞれに属する磁気センサ103を介して取得される各磁界強度情報に基づいて、面A1-A1’、面A2-A2’、・・・の各々に属する測定対象者Xの断層面Sについての断層画像を同時に取得することができる。
 このようにすることで、第1の実施形態に係る画像生成装置1において検知部10を移動させるための手段(駆動部11)を排することができるとともに、複数の断層画像を取得する際に要する時間を短縮することができる。つまり、第1の実施形態においては、検知部10の移動中に測定対象者Xが動くと、取得した複数の断層画像間にズレが生じるが、第2の実施形態のように、複数の断層画像を同時に取得できる態様とすることで、複数の断層画像間のズレを軽減させることができ、より精度の高い診断を実施することができる。
 なお、上述の画像生成装置1の説明に用いた「同時に」という表現は、必ずしも「全く同時刻に」という意味に限定されるものではなく、取得される複数の断層画像間のズレが許容される範囲内で時刻上の差異を有していてもよい。
 図10は、第2の実施形態の変形例に係る画像生成部の機能について説明する図である。
 上述の第1の実施形態及び第2の実施形態に係る画像生成装置1は、同一面に存在する複数の電極102と複数の磁気センサ103とによって取得される磁界強度情報に基づいて、当該同一面に属する測定対象者Xの断層面を取得するものとして説明した。
 しかし、この場合、図10に示すように、電極102間に生じる交流電流は、実際には、当該電極102が属する面A1-A1’を流れる交流電流成分I1の他、他の面A2-A2’や面A3-A3’を流れる交流電流成分I2、I3を含んでいる。つまり、電極102間に流れる交流電流は、実際には、鉛直方向へ広がった成分(交流電流I2、I3等)を有している。そうすると、面A1-A1’に属する磁気センサ103が検知した磁界強度に基づいて生成された断層画像は、面A1-A1’に属する断層面についての情報のみならず、他の断層面(面A2-A2’、A3-A3’等)についての情報が混じったものとなる。したがって、鉛直方向への広がる交流電流成分により、生成される断層画像は、他の断層面の情報を含んでぼやけたものとなってしまう。
 そこで、本実施形態の変形例に係る磁界情報取得部202は、電極102間に流す交流電流に基づいて生じた磁界を、当該電極102と同一面に属する磁気センサ103の他、隣接する他の面に属する磁気センサ103を介して取得する。
 例えば、図10に示すように、磁界情報取得部202は、面A1-A1’に属する電極102間に流す交流電流に基づいて生じた磁界を、当該面A1-A1’に属する磁気センサ103とともに、面A2-A2’、A3-A3’に属する磁気センサ103を介して取得する。
 そして、当該変形例に係る画像生成部203は、まず、面A1-A1’に属する磁気センサ103を介して取得された磁界強度情報に基づいて第1の中間画像を生成する。ここで、第1の中間画像は、主に交流電流成分I1に基づいて取得された断層画像であるが、他の断層面を流れる交流電流成分I2、I3等を含むためにぼやけた画像となる。
 さらに、画像生成部203は、面A2-A2’、A3-A3’に属する磁気センサ103を介して取得された磁界強度情報に基づいて第2、第3の中間画像を生成する。ここで、当該第2、第3の中間画像は、主に、それぞれ鉛直方向に広がった電流成分I2、I3に基づいて取得された断層画像である。
 本実施形態に係る画像生成部203は、第1の中間画像から第2、第3の中間画像の差分を取得する処理を行う。具体的には、例えば、第1の中間画像の各画素の“明度”から、第2、第3の中間画像において対応する各画素の“明度”を差し引く処理を行う。画像生成部203は、このようにして算出された最終画像を、面A1-A1’に属する測定対象者Xの断層面を表した断層画像として取得する。
 以上のように、第2の実施形態の変形例に係る画像生成装置1は、一の断層面を囲う複数の位置における磁界に基づいて生成した第1の中間画像と、他の断層面を囲う複数の位置における磁界に基づいて生成した第2、第3・・・の中間画像と、を組み合わせて、当該一の断層面が表された断層画像を生成するものとしてもよい。
 このようにすることで、所望する断層面以外の断層面を流れる交流電流成分(交流電流成分I2、I3等)に基づいて取得される情報を除外することができるので、より精度の高い断層画像を取得することができる。
 なお、上記変形例に係る画像生成装置1は、筒状の検知部10(図9参照)を備えた第2の実施形態を基本として例示したが、第1の実施形態、すなわち環状の検知部10(図3参照)を有する画像生成装置1に適用してもよい。この場合、当該環状の検知部10には、少なくとも磁気センサ103が鉛直方向に複数配列されているものとする。
 また、上記変形例に係る画像生成装置1は、第1~第3の中間画像を生成した後に、各々の画素ごとの“明度”を差し引いて断層画像を差し引く処理をするものとして説明したが、ここで説明した第1~第3の中間画像は実際に生成され、表示されるものでなくともよい。すなわち、第1~第3の中間画像の画素ごとの明度に対応する基の観測値である磁界強度を予め差し引いた上で、一の断層画像を生成するものとしてもよい。
 また、上述の各実施形態に係る画像生成装置1は、予め定められた一定の周波数(数kHz~数MHz)の交流電流により断層画像を取得するものとして説明したが、他の実施形態においてはこの態様に限定されない。例えば、他の実施形態に係る画像生成装置1は、異なる複数の周波数の交流電流に基づいて断層画像を取得するものとしてもよい。
 具体的には、当該他の実施形態に係る交流電流入力部201は、交流駆動回路201Aに対し、交流電流の周波数を指定する周波数指定信号を出力する。そして、交流駆動回路201Aは、受け付けた周波数指定信号に応じた周波数の交流電流を出力する。
 また、この場合、画像生成装置1は、交流駆動回路201Aから出力された交流電流の周波数ごとに断層画像を生成し、得られた複数の断層画像を構成する画素ごとの周波数特性に基づいて断層面の導電率分布を取得する。
 例えば、交流電流入力部201は、まず、図6に示す処理フローの開始時に一つの周波数を選択する。次いで、CPU200は、ステップS10~ステップS14の処理を実施して断層画像を取得する。その後、交流電流入力部201が交流電流を他の周波数に切り替える。このように、CPU200は、ステップS10~ステップS14の処理を交流電流の周波数を切り替えながら繰り返し実施する。画像生成部203は、各周波数によって生じた磁界の強度に基づいて、異なる周波数ごとに複数の断層画像を生成する。
 また、この場合、CPU200は、さらに、異なる周波数ごとに生成された複数の断層画像に基づいて測定対象者Xの断層面の導電率分布を算出する導電率演算部としての機能を発揮する。
 具体的には、当該導電率演算部は、周波数ごとに生成された複数の断層画像のうち同一の画素に対応する箇所の導電率を抽出し、当該画素ごとに、導電率の周波数特性を取得する。導電率演算部は、導電率の周波数特性に基づいて、当該画素に対応する導電率の実数成分(レジスタンス、コンダクタンス)及び虚数成分(リアクタンス、サセプタンス)を算出する。このようにすることで、断層面における導電率分布を実数成分及び虚数成分に分けて把握することができるので、より詳細な断層画像を取得することができる。
 図11は、生体によるインピーダンス変化の特性を説明する図である。
 図11(a)のように、離間された2電極間に非接触で生体(本実験では“拳”)を挿入した場合を考える。
 図11(b)に示すグラフは、2電極間に生体が存在する場合と、生体が存在しない場合における2電極間のインピーダンスを比較したものである。図11(b)によれば、計測に用いる周波数が数kHz~数MHz程度の場合、生体の有無の差異が明確に表れる。したがって、生体の断層画像の取得に用いる周波数は、数kHz~数MHzとするのが好ましい。また、周波数1000kHz未満の領域では、インピーダンスそのものが非常に高くなり、生体に流れる電流が微弱となるため、高精度な計測は困難となる場合がある。したがって、生体の断層画像生成に用いる周波数は、1MHz前後とするのがより好ましい。この場合、磁気センサ103として「光ポンピング原子磁気センサ」を用いることで、当該1MHz前後の磁界強度を高精度で検出することができる。
<その他の変形例について>
 上述の各実施形態に係る画像生成装置1は、例えば、図4に示すように、環状に形成された検知部10の内側に断層画像を取得する測定対象者Xが配されているが、他の実施形態に係る画像生成装置1においてはこの態様に限定されない。
 例えば、第1の実施形態の変形例として、磁界情報取得部202は、測定対象者Xの特定の断層面に周囲を囲われる複数の位置における磁界の強度を取得するものとしてもよい。より具体的に説明すると、当該変形例に係る検知部10は、例えば、図4に示す態様のまま小型化されて、内視鏡やカテーテル等の先端に取り付けられる。そして、検知部10は、内視鏡と共に測定対象者Xの体内に挿入される。この場合、画像生成装置1は、挿入された体内における特定の断層面に周囲を囲われた検知部10を介して、その断層画像を取得する。
 ここで例えば、図5において、隣接する電極102間を流れる交流電流のうちベース体101の内側を巡るもののみを交流電流I1~I3として表記しているが、実際には、ベース体101の外側を巡る交流電流も存在する。したがって、電極102間を流れる交流電流は、ベース体101の外側に配される断層面の導電率分布に応じても変化する。したがって、画像生成部203が磁気センサ103の各々から検出される磁界強度を用いて画像の再構成処理を実施することで、検知部10の周囲を囲う断層面の断層画像を取得することができる。
 以上のような変形例に係る画像生成装置1によれば、測定対象者Xの体内から非接触に交流電流の通電及び磁界強度の計測を行うので、測定対象者Xの体内における局所的な断層面を精密に評価することができる。
 次に、第1の実施形態及び上述の変形例をより簡素化した導電率取得装置について説明する。
 図12は、第1の実施形態の変形例に係る導電率取得装置の機能を説明する図である。
 本変形例に係る導電率取得装置1Aは、図12(a)、(b)に示すような検知部10を備えている。一例において、具体的には、図12(a)、(b)に示すように、検知部10は、ベース体(筒状筐体)101Aの両端付近に取り付けられた一対の電極102と、当該一対の電極102の間に配された磁気センサ103と、を備えている。
 一対の電極102は、それぞれ、ベース体101Aの周方向の全周に沿って環状に形成されている。このように形成されることで、一対の電極102間を流れる交流電流Iは、ベース体101Aの遠心方向の全方位において、空中に円弧状に広がる経路を巡る(図12(a)、(b)を参照)。
 一対の電極102は、交流電流入力部201及び交流駆動回路201A(図12には図示せず)に接続されている。また、磁気センサ103は、磁界情報取得部202(図12には図示せず)に接続されている。なお、交流電流入力部201、交流駆動回路201A、磁界情報取得部202については、上述の各実施形態と同一の機能のため説明を省略する。ただし、交流電流入力部201は、交流電流の周波数を指定する周波数指定信号を出力する機能を有するのが好ましい。
 また、本変形例に係る導電率取得装置1Aは、画像生成部203の代わりに、磁界情報取得部202が取得した磁界の強度に基づいて、磁気センサ103が配された周辺における測定対象者Xの導電率を取得する導電率取得部(図示せず)を備えている。
 図12(a)、(b)は、ベース体101Aが測定対象者Xの体内X’に挿入される例を示している。ここで、例として、図12(a)は、検知部10を囲う体内X’の導電率が高い場合を、図12(b)は、検知部10を囲う体内X’の導電率が低い場合を示している。
 体内X’の導電率が高い場合、体内X’を流れようとする交流電流Iが増すため、一対の電極102間を流れる交流電流Iは、図12(a)に示すように、ベース体101Aの延伸軸に対する半径方向に広がった経路を巡る。これにより、交流電流Iによって生じる磁界Hが全体的に磁気センサ103から遠ざかるため、磁気センサ103に検出される磁界強度は相対的に減少する。一方、体内X’の導電率が低い場合、体内X’を流れようとする交流電流Iが減少するため、一対の電極102間を流れる交流電流Iは、図12(b)に示すように、ベース体101Aの延伸軸に対する半径方向に狭まった経路を巡る。これにより、交流電流Iによって生じる磁界Hが全体的に磁気センサ103に近づくため、磁気センサ103に検出される磁界強度は相対的に増加する。
 このようにして、磁界情報取得部202は、体内X’の導電率に応じた磁界強度を取得する。なお、磁界情報取得部202は、交流電流入力部201の周波数制御に基づき、異なる周波数ごとの複数の磁界強度を検出してもよい。
 また、上記導電率取得部は、磁界情報取得部202に取得された磁界強度に基づいて、ベース体101Aの周辺の導電率を算出する。この場合、上記導電率取得部は、例えば、式(4)、式(5)及び予め規定した長さl及び断面積s等を用いて、取得した磁界強度に応じた導電率σを算出する。また、上記導電率取得部は、取得した磁界強度の周波数特性に基づいて、導電率σの実数成分及び虚数成分まで算出してもよい。
 従来、体内に人体内部を観察することを目的とした内視鏡等の医療機器が開発されている。このような医療機器は、本体に光学系を内蔵し、先端を体内に挿入することによって内部の映像を観察することができる。しかしながら、上記内視鏡等は、光学的観察によるものであるため、観察面において光学的な変化(すなわち見た目の変化)が現れない特徴を把握することが出来ない。
 一方、本変形例に係る導電率取得装置1Aによれば、検知部10の周辺における体内X’の状態を、その箇所における導電率に基づいて評価する。このようにすることで、オペレータは、観察面の見た目に現れない症状であっても、その箇所における導電率の相違により把握することができる。例えば、ガン化した細胞が見た目に現れない箇所に存在していた場合であっても、本実施形態に係る導電率取得装置1Aによれば、ガン化した細胞と正常な細胞との導電率の相違により、当該ガン化した細胞を発見することができる。
 また、本変形例に係る導電率取得装置1Aは、検知部10(電極102及び磁気センサ103)をいずれも体内の内壁面から離れた位置に配した状態で導電率を取得可能としているため、体内における導電率を容易に取得することができ、測定対象者の負担の軽減にも寄与する。
 また、本変形例に係る検知部10は、一対の電極102と一つの磁気センサ103のみを有する構成としているため、上述の各実施形態に係る画像生成装置1と比較して検知部10の構成を簡素化となり、装置の小型化及び低価格化を促進させることができる。
 なお、本変形例に係る導電率取得装置1Aは、内視鏡やカテーテルの先端に取り付けられて、測定対象者Xの体内に挿入される態様(図12(a)、(b))に限定されない。代替的に、導電率取得装置1Aは、検知部10を測定対象者Xの体表面付近に近接させて、その体表面付近の導電率を取得する態様であってもよい。電極102と磁気センサ103の少なくとも一部が体表面の近傍において体表面に対して非直接接触に配される。代替的に、電極102と磁気センサ103の少なくとも一部が、少なくとも一時的に、体表面に直接接触に配されることができる。
 また、導電率取得装置1Aは、ベース体(筒状筐体)101Aの周方向の全周を巡るように(ベース体101Aの周方向に連続的に延在するように)環状に形成されるものに限定されない。代替的に、導電率取得装置1Aは、例えば、ベース体101Aの周方向のうち一部のみを巡るように(ベース体101Aの周方向に部分的に延在するように)形成されたものであってもよい。また、導電率取得装置1Aにおいて、電極102は環状に限定されない。代替的に、電極102が、板状などの他の形状に形成されていてもよい。この場合、2つの電極102の板面の向く方位は、ベース体101Aの延伸軸方向と垂直な方向、即ち、ベース体101Aの遠心方向の何れかの方位(かつ、互いに同一の方位)を向くように配される。そうすると、ベース体101Aの周方向のうち一部の範囲において特に強い交流電流が空中に放射される。このようにすることで、オペレータは、ベース体101Aの周方向の向きを所望に操作することで、ベース体101Aの周囲を囲う体内X’のうち所望する一部の領域のみの導電率分布を取得することができる。
 同様に、導電率取得装置1Aは、電極102が配される付近にシールド電極やガード電極が取り付けられることで、交流電流の方向、密度等が調整されてもよい。
 また、上述の各変形例においては、「測定対象物(測定対象者X)から離れた位置」とは、「測定対象者Xの体内において、その内壁面から離れた位置」、「測定対象者Xの体内において、その内壁面との間にギャップを有する位置」、「測定対象者Xの体内において、内表面に対して非直接接触に配された位置」、の意味を含むものとする。
 図1及び図2等に示す実施形態では、画像生成装置1は、複数の電極102と、複数の磁気センサ(複数のセンサセル、複数のセンサヘッド)103と、電極102を介して供給された交流電流で生じた磁界の強度に基づいて測定対象物の断層画像を提供する本体部(コントローラ)20とを備え、コントローラ20は、電極及び磁気センサが測定対象物の表面に対して実質的に非直接接触に配された状態で磁気センサ103を介して磁界の強度を取得するように構成される。他の実施形態において、本体部20は、複数の電極102及び複数の磁気センサ(複数のセンサセル、複数のセンサヘッド)103の少なくとも一部が測定対象物の表面に対して実質的に接触した状態で磁気センサ103を介して磁界の強度を取得するように構成されることができる。いずれの形態においても、電極102及び磁気センサの配置の高い柔軟性、高い操作性、及び構成の簡素化等が実現可能である。したがって、画像生成装置1は、オペレータや測定対象者の負担の軽減、装置コストや設置スペースの削減等の利点を有する。
 図13(a)及び(b)に示すように、一実施形態において、検知部10は、変形自在に構成されたベース体101を備えることができる。一例において、ベース体101の動きに応じて複数の電極及び複数の磁気センサ(図3等参照)の少なくとも一部が動くように、複数の電極及び複数の磁気センサ(複数のセンサセル、複数のセンサヘッド)の少なくとも一部がベース体101に設けられる。ベース体101は、少なくとも1つの節と、少なくとも2つの梁を有する構成にできる。あるいは、ベース体101は、適度な柔軟性と適度な剛性とを有するフレキシブル構造を有する構成にできる。あるいは、ベース体101は、少なくとも1つの開放区間を有する構成及び/又は組立・分解可能な構成にできる。ベース体101の変形に応じて、電極及び磁気センサの配置を調整可能である。電極及び磁気センサの配置の調整は、測定精度の向上に有利である。
 一実施形態において、複数の磁気センサは、少なくとも1つが測定対象物に対する距離を独立して変化自在であるように、配されることができる。例えば、1つの磁気センサ(センサセル、センサヘッド)における測定対象物に対する距離(第1距離)を一定に保った状態で、別の少なくとも1つにおける測定対象物に対する距離(第2距離)を変化させることができる。その結果、第1距離と第2距離とを概ね同値にすることができる。複数の磁気センサの間で、体表面に対する距離が、互いに同程度であることは、測定精度の向上に有利である。
 図14に示すように、一実施形態において、画像生成装置1は、複数のセンサセルの少なくとも1つの、(a)基準点に対する位置(原点に対する座標)、(b)測定対象物に対する距離、及び(c)測定対象物に対する相対的な位置関係、の少なくとも1つを検出可能な位置情報センサ106を備えることができる。あるいは、位置情報センサ106は、検知部10の少なくとも一部に対する測定対象物の位置、姿勢、及び輪郭(表面形状)の少なくとも一部を検出可能に構成できる。あるいは、位置情報センサ106は、検知部10と測定対象物との間の相対的な位置関係を検出可能に構成できる。本体部(コントローラ)20において、位置情報取得部205は、位置情報センサ106からの出力信号に基づいて、複数の磁気センサ(複数のセンサセル、複数のセンサヘッド)の少なくとも1つの、(a)基準点に対する位置(原点に対する座標)、(b)測定対象物に対する距離、及び(c)測定対象物に対する相対的な位置関係、の少なくとも1つを取得することができる。この位置情報に基づき、電極及び磁気センサの少なくとも1つに関する制御が調整可能である。例えば、本体部20は、位置情報センサ106からの出力信号に基づいて、交流電流の供給制御を調整することができる。あるいは、本体部20は、位置情報センサ106からの出力信号に基づいて、磁気センサからの出力信号に基づく演算制御を補正することができる。本体部20は、位置情報センサ106からの出力と、複数の磁気センサからの出力とに基づいて、磁界の強度を算出することができる。こうした制御は、測定精度の向上に有利である。
 また、上述の各実施形態におけるCPU200の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより工程を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(RAM)のように、一定時間プログラムを保持しているものも含むものとする。
 また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。また、上記プログラムは、前述した機能の一部を実現するためのものであっても良い。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であっても良い。
 以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものとする。
1 画像生成装置
1A 導電率取得装置
10 検知部
101 ベース体(環状筐体)
101A ベース体(筒状筐体)
102 電極
103 磁気センサ(センサセル、センサヘッド)
106 位置情報センサ
11 駆動部
20 本体部
200 CPU
201 交流電流入力部
201A 交流駆動回路
202 磁界情報取得部
203 画像生成部
204 駆動制御部
205 位置情報取得部
210 RAM
211 HDD
212 操作入力部
213 画像表示部
214 外部インターフェイス
215 システムバス

Claims (20)

  1.  複数の電極と、
     複数のセンサセルと、
     前記複数の電極を介して供給された交流電流で生じた磁界の強度に基づいて測定対象物の断層画像を提供するコントローラであり、前記複数のセンサセルを介して前記磁界の強度が取得される、前記コントローラと、
     を備える、ことを特徴とする画像生成装置。
  2.  前記複数の電極及び前記複数のセンサセルの少なくとも一部が前記測定対象物の表面に対して非直接接触に配された状態で前記複数のセンサセルを介して前記磁界の強度が取得される、ことを特徴とする請求項1に記載の画像生成装置。
  3.  前記複数のセンサセルの各々は、光ポンピング原子磁気センサ、又は磁気インピーダンス素子センサの一部である、ことを特徴とする請求項1または請求項2に記載の画像生成装置。
  4.  ベース体であり、前記ベース体の動きに応じて前記複数の電極及び前記複数のセンサセルの少なくとも一部が動くように前記複数の電極及び前記複数のセンサセルの少なくとも一部が設けられた、前記ベース体、をさらに備える、
     ことを特徴とする請求項1から請求項3の何れか一項に記載の画像生成装置。
  5.  前記複数のセンサセルは、少なくとも1つが前記測定対象物に対する距離を独立して変化自在であるように、配される、
     ことを特徴とする請求項1から請求項4の何れか一項に記載の画像生成装置。
  6.  前記複数のセンサセルの少なくとも1つの、(a)基準点に対する位置、(b)前記測定対象物に対する距離、及び(c)前記測定対象物に対する相対的な位置関係、の少なくとも1つを検出可能な位置情報センサをさらに備え、
     前記コントローラは、前記位置情報センサからの出力と、前記複数のセンサセルからの出力とに基づいて、前記磁界の強度を算出する、
     ことを特徴とする請求項1から請求項5の何れか一項に記載の画像生成装置。
  7.  測定対象物から離れた位置に配された電極を介して当該測定対象物に交流電流を入力する交流電流入力部と、
     前記測定対象物から離れた位置に配された磁気センサを介して、前記交流電流入力部により入力された交流電流に基づいて生じた磁界の強度を取得する磁界情報取得部と、
     前記磁界情報取得部が取得した磁界の強度に基づいて前記測定対象物の断層画像を生成する画像生成部と、
     を備えることを特徴とする画像生成装置。
  8.  前記磁界情報取得部は、
     少なくとも、前記測定対象物の特定の断層面を囲う複数の位置における磁界の強度を取得する
     ことを特徴とする請求項7に記載の画像生成装置。
  9.  前記交流電流入力部は、
     前記測定対象物の特定の断層面を囲う複数の位置に配された電極を介して前記交流電流を入力する
     ことを特徴とする請求項7または請求項8に記載の画像生成装置。
  10.  前記磁界情報取得部は、
     前記特定の断層面と同一の断層面の周囲に配された前記磁気センサを介して、前記交流電流入力部により入力された交流電流に基づいて生じた磁界の強度を取得する
     ことを特徴とする請求項9に記載の画像生成装置。
  11.  前記磁界情報取得部は、
     前記測定対象物の一の断層面を囲う複数の位置における磁界の強度と同時に、前記一の断層面とは異なる他の断層面を囲う複数の位置における磁界の強度を取得する
     ことを特徴とする請求項7から請求項10の何れか一項に記載の画像生成装置。
  12.  前記画像生成部は、
     前記一の断層面を囲う複数の位置における磁界の強度に基づいて生成した第1の中間画像と、前記他の断層面を囲う複数の位置における磁界の強度に基づいて生成した第2の中間画像と、を組み合わせて、前記一の断層面が表された断層画像を生成する
     ことを特徴とする請求項11に記載の画像生成装置。
  13.  前記交流電流入力部は、
     前記電極として、非磁性材料を用いる
     ことを特徴とする請求項7から請求項12の何れか一項に記載の画像生成装置。
  14.  前記磁界情報取得部は、
     前記磁気センサとして、光ポンピング原子磁気センサを用いる
     ことを特徴とする請求項7から請求項13の何れか一項に記載の画像生成装置。
  15.  前記交流電流入力部は、
     少なくとも、前記測定対象物の特定の断層面に周囲を囲われた複数の位置に配された電極を介して前記交流電流を入力する
     ことを特徴とする請求項7から請求項14の何れか一項に記載の画像生成装置。
  16.  複数の電極を介して測定対象物に交流電流を供給することと、
     前記交流電流で生じた磁界の強度を複数のセンサセルを介して取得することと、
     前記取得した磁界の強度を用いて前記測定対象物の断層画像を生成することと、
     を含む、
     ことを特徴とする画像生成方法。
  17.  測定対象物から離れた位置に配された電極を介して当該測定対象物に交流電流を入力し、
     前記測定対象物から離れた位置に配された磁気センサを介して、前記入力された交流電流に基づいて生じた磁界の強度を取得し、
     前記取得した磁界の強度を用いて前記測定対象物の断層画像を生成する
     ことを特徴とする画像生成方法。
  18.  画像生成装置のコンピュータを、
     測定対象物から離れた位置に配された電極を介して当該測定対象物に交流電流を入力する交流電流入力手段、
     前記測定対象物から離れた位置に配された磁気センサを介して、前記交流電流入力手段により入力された交流電流に基づいて生じた磁界の強度を取得する磁界情報取得手段、
     前記磁界情報取得手段が取得した磁界の強度に基づいて前記測定対象物の断層画像を生成する画像生成手段、
     として機能させるプログラム。
  19.  測定対象物から離れた位置に配された電極を介して当該測定対象物に交流電流を入力する交流電流入力部と、
     前記測定対象物から離れた位置に配された磁気センサを介して、前記交流電流入力部により入力された交流電流に基づいて生じた磁界の強度を取得する磁界情報取得部と、
     前記磁界情報取得部が取得した磁界の強度に基づいて、前記測定対象物の、前記磁気センサが配された周辺における導電率を取得する導電率取得部と、
     を備えることを特徴とする導電率取得装置。
  20.  電極と、
     磁気センサと、
     前記電極を介して供給された交流電流で生じた磁界の強度に基づいて測定対象物の断層画像を提供するコントローラであり、前記電極及び前記磁気センサの少なくとも一部が前記測定対象物の表面に対して非直接接触に配された状態で前記磁気センサを介して前記磁界の強度が取得される、前記コントローラと、
     を備えることを特徴とする画像生成装置。
PCT/JP2015/055433 2014-02-25 2015-02-25 画像生成装置、導電率取得装置、画像生成方法及びプログラム WO2015129756A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/121,116 US11534076B2 (en) 2014-02-25 2015-02-25 Image generation apparatus, conductivity acquisition apparatus, image generation method, and program
EP20181100.7A EP3785624B1 (en) 2014-02-25 2015-02-25 Image generation apparatus, conductivity acquisition apparatus, image generation method, and program
JP2016505266A JP6583829B2 (ja) 2014-02-25 2015-02-25 画像生成装置
EP15754467.7A EP3111837B1 (en) 2014-02-25 2015-02-25 Image generating device and image generating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-034335 2014-02-25
JP2014034335 2014-02-25

Publications (1)

Publication Number Publication Date
WO2015129756A1 true WO2015129756A1 (ja) 2015-09-03

Family

ID=54009071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055433 WO2015129756A1 (ja) 2014-02-25 2015-02-25 画像生成装置、導電率取得装置、画像生成方法及びプログラム

Country Status (4)

Country Link
US (1) US11534076B2 (ja)
EP (2) EP3785624B1 (ja)
JP (2) JP6583829B2 (ja)
WO (1) WO2015129756A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020000894A (ja) * 2014-02-25 2020-01-09 学校法人北里研究所 導電率取得装置
EP3646782A1 (en) 2018-11-02 2020-05-06 Ricoh Company, Ltd. Biomagnetic-field measurement apparatus, biomagnetic-field measurement method, and magnetic shield box
JP2020532343A (ja) * 2017-08-09 2020-11-12 ジェネテシス インク. 生体磁場の検出
WO2020241465A1 (ja) * 2019-05-31 2020-12-03 旭化成株式会社 計測装置、計測方法、およびプログラム
CN112450910A (zh) * 2020-12-04 2021-03-09 桂林电子科技大学 一种电阻抗断层成像的边界测量装置及方法
JPWO2020017636A1 (ja) * 2018-07-19 2021-08-12 Posh Wellness Laboratory株式会社 検出装置、測定システム、監視システム、およびプログラム
WO2021261092A1 (ja) 2020-06-24 2021-12-30 朝日インテック株式会社 医療システム、および、画像生成方法
JPWO2022102021A1 (ja) * 2020-11-11 2022-05-19
US11585869B2 (en) 2019-02-08 2023-02-21 Genetesis, Inc. Biomagnetic field sensor systems and methods for diagnostic evaluation of cardiac conditions
US12097032B2 (en) 2017-05-22 2024-09-24 Genetesis, Inc. Machine differentiation of abnormalities in bioelectromagnetic fields
US12127842B2 (en) 2021-08-16 2024-10-29 Genetesis, Inc. Biomagnetic detection

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10352887B1 (en) * 2016-06-22 2019-07-16 Ronald W. Parker Conductivity measurement methods and systesms
DE102018008545A1 (de) * 2018-11-01 2020-05-07 Drägerwerk AG & Co. KGaA Vorrichtung und Verfahren zur Elektro-lmpedanz-Tomographie (EIT) mit Ermittlung einer Herzregion

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06225860A (ja) * 1992-12-22 1994-08-16 Siemens Ag 生体の内部の電気的インピーダンスの空間的分布の非破壊的測定装置
JP2006508734A (ja) * 2002-12-03 2006-03-16 アイデックス・エーエスエー 複素インピーダンスの4点測定による生きている指の検出
JP2009125396A (ja) * 2007-11-26 2009-06-11 Hitachi Ltd 磁気検出コイルおよび磁場計測装置

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2191285A1 (en) * 1996-11-26 1998-05-26 Philip Maurice Church Electrode arrangement for electrical impedance tomography system
JP4193382B2 (ja) * 2001-07-19 2008-12-10 株式会社日立製作所 磁場計測装置
US7998080B2 (en) * 2002-01-15 2011-08-16 Orsan Medical Technologies Ltd. Method for monitoring blood flow to brain
US20060125475A1 (en) * 2002-09-17 2006-06-15 Sodickson Daniel K Radio frequency impedance mapping
AU2003286457A1 (en) * 2002-10-17 2004-05-04 The General Hospital Corporation Arrangement and method for detecting abnormalities and inconsistencies in a body
CA2480430C (en) * 2003-09-04 2013-11-05 Adrian Nachman Current density impedance imaging (cdii)
WO2005051163A2 (en) * 2003-11-25 2005-06-09 University-Industry Cooperation Group Of Kyunghee University System and method for visualizing conductivity and current density distribution in object
US9820658B2 (en) * 2006-06-30 2017-11-21 Bao Q. Tran Systems and methods for providing interoperability among healthcare devices
EP1962680A1 (en) 2005-12-20 2008-09-03 Dixtal Biomedica Industria e Commercio Ltda. Electrode assembly for electrical impedance tomography
EP1966633A2 (en) * 2005-12-22 2008-09-10 Philips Intellectual Property & Standards GmbH Magnetic induction tomography system and method
WO2008129446A1 (en) 2007-04-24 2008-10-30 Philips Intellectual Property & Standards Gmbh Sensor arrangement and method for monitoring physiological parameters
US8030938B2 (en) * 2008-03-26 2011-10-04 Baker Hughes Incorporated Apparatus and method for imaging subsurface materials using a pad having a plurality of electrode sets
US8538509B2 (en) 2008-04-02 2013-09-17 Rhythmia Medical, Inc. Intracardiac tracking system
GB2462243A (en) 2008-05-28 2010-02-03 Ugcs Magnetic induction tomography with two reference signals
GB0907806D0 (en) * 2009-05-06 2009-06-17 Neurophysix Telemed Ltd Impedance Tomography Apparatus
GB0920388D0 (en) 2009-11-20 2010-01-06 Wzvi Ltd Electrical impedance detection and ultrasound scanning of body tissue
US9579038B2 (en) * 2010-03-16 2017-02-28 Swisstom Ag Electrode for a scanning electrical impedance tomography device and a scanning electrical impedance tomography device
US8844648B2 (en) * 2010-06-22 2014-09-30 Halliburton Energy Services, Inc. System and method for EM ranging in oil-based mud
GB2481506B (en) * 2010-06-22 2012-09-12 Halliburton Energy Serv Inc Systems and methods for EM ranging in oil-based mud
MX337523B (es) 2010-10-15 2016-03-09 Fresenius Med Care Hldg Inc Pronostificador de peso seco.
DE102011018505B4 (de) 2011-04-23 2021-06-24 Drägerwerk AG & Co. KGaA Vorrichtung zur Elektroimpedanztomographie
JP5726662B2 (ja) 2011-07-22 2015-06-03 学校法人上智学院 血液インピーダンス計測装置、人工透析装置及び血液のインピーダンスを計測する装置の作動方法
US10031009B2 (en) * 2011-08-23 2018-07-24 Cidra Corporate Services, Inc. Flow profiling techniques based on modulated magnetic-electrical impedance tomography
JP2013124873A (ja) * 2011-12-13 2013-06-24 Seiko Epson Corp 磁場測定装置及びセルアレイ
JP2014034335A (ja) 2012-08-09 2014-02-24 Mitsubishi Motors Corp 車両の充放電制御装置
US9395425B2 (en) * 2012-08-24 2016-07-19 The Trustees Of Dartmouth College Method and apparatus for magnetic susceptibility tomography, magnetoencephalography, and taggant or contrast agent detection
GB2514114A (en) * 2013-05-13 2014-11-19 Univ Bath Apparatus and method for measuring electromagnetic properties
EP3021757B1 (en) * 2013-07-17 2020-08-26 Gencer, Nevzat Guneri Multifrequency electrical impedance imaging using lorentz fields
EP3785624B1 (en) * 2014-02-25 2024-10-09 School Juridical Person The Kitasato Institute Image generation apparatus, conductivity acquisition apparatus, image generation method, and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06225860A (ja) * 1992-12-22 1994-08-16 Siemens Ag 生体の内部の電気的インピーダンスの空間的分布の非破壊的測定装置
JP2006508734A (ja) * 2002-12-03 2006-03-16 アイデックス・エーエスエー 複素インピーダンスの4点測定による生きている指の検出
JP2009125396A (ja) * 2007-11-26 2009-06-11 Hitachi Ltd 磁気検出コイルおよび磁場計測装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3111837A4 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020000894A (ja) * 2014-02-25 2020-01-09 学校法人北里研究所 導電率取得装置
US12097032B2 (en) 2017-05-22 2024-09-24 Genetesis, Inc. Machine differentiation of abnormalities in bioelectromagnetic fields
JP2020532343A (ja) * 2017-08-09 2020-11-12 ジェネテシス インク. 生体磁場の検出
JPWO2020017636A1 (ja) * 2018-07-19 2021-08-12 Posh Wellness Laboratory株式会社 検出装置、測定システム、監視システム、およびプログラム
EP3646782A1 (en) 2018-11-02 2020-05-06 Ricoh Company, Ltd. Biomagnetic-field measurement apparatus, biomagnetic-field measurement method, and magnetic shield box
US11585869B2 (en) 2019-02-08 2023-02-21 Genetesis, Inc. Biomagnetic field sensor systems and methods for diagnostic evaluation of cardiac conditions
JPWO2020241465A1 (ja) * 2019-05-31 2020-12-03
TWI752510B (zh) * 2019-05-31 2022-01-11 日商旭化成股份有限公司 量測裝置、量測方法以及電腦程式
JP7204908B2 (ja) 2019-05-31 2023-01-16 旭化成株式会社 計測装置、計測方法、およびプログラム
WO2020241465A1 (ja) * 2019-05-31 2020-12-03 旭化成株式会社 計測装置、計測方法、およびプログラム
WO2021261092A1 (ja) 2020-06-24 2021-12-30 朝日インテック株式会社 医療システム、および、画像生成方法
JPWO2022102021A1 (ja) * 2020-11-11 2022-05-19
WO2022102021A1 (ja) * 2020-11-11 2022-05-19 朝日インテック株式会社 測定装置および測定方法
EP4245214A4 (en) * 2020-11-11 2023-12-27 Asahi Intecc Co., Ltd. MEASURING DEVICE AND METHOD
JP7438398B2 (ja) 2020-11-11 2024-02-26 朝日インテック株式会社 測定装置および測定方法
CN112450910A (zh) * 2020-12-04 2021-03-09 桂林电子科技大学 一种电阻抗断层成像的边界测量装置及方法
CN112450910B (zh) * 2020-12-04 2023-07-14 桂林电子科技大学 一种电阻抗断层成像的边界测量装置及方法
US12127842B2 (en) 2021-08-16 2024-10-29 Genetesis, Inc. Biomagnetic detection

Also Published As

Publication number Publication date
US11534076B2 (en) 2022-12-27
EP3111837B1 (en) 2020-10-28
JP6860229B2 (ja) 2021-04-14
EP3111837A1 (en) 2017-01-04
JPWO2015129756A1 (ja) 2017-03-30
EP3785624B1 (en) 2024-10-09
EP3785624A1 (en) 2021-03-03
JP2020000894A (ja) 2020-01-09
JP6583829B2 (ja) 2019-10-02
EP3111837A4 (en) 2017-11-08
US20170071499A1 (en) 2017-03-16

Similar Documents

Publication Publication Date Title
JP6583829B2 (ja) 画像生成装置
EP2790574B1 (en) Removal of background in mpi
JP6574480B2 (ja) 空間分解金属検出器
US8494620B2 (en) Electrocardiograph for magnetic resonance imaging and electrode patch for same
EP3742184A1 (en) Multi-channel pilot tone motion detection
JP7278785B2 (ja) 医用画像診断装置及び医用画像診断システム
CN112515679A (zh) 无屏蔽式心磁图设备
JP5837268B2 (ja) Mpiにおける動的バックグラウンド補正
US11191506B2 (en) Diagnosis support system, diagnosis support apparatus, and recording medium
US9492107B2 (en) Medical imaging apparatus with a movement detection unit and a method for detecting patient movement
US10168408B2 (en) MPI apparatus with fast field of view motion
JP2018011952A (ja) 診断支援システム、診断支援装置及び診断支援プログラム
JP5642184B2 (ja) Mpiを用いた非侵襲的心臓内心電図検査法のための装置及びその作動方法
JP6037424B2 (ja) 磁気共鳴イメージング装置
JP5963163B2 (ja) 医用画像診断装置
JP2022533177A (ja) 統合されたx線システムとパイロットトーンシステム
JP2017221273A (ja) 画像処理装置及び磁気共鳴イメージング装置
JP4822399B2 (ja) 医用画像診断装置
JP6945338B2 (ja) 医用画像診断装置及び磁気共鳴イメージング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15754467

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016505266

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015754467

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015754467

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15121116

Country of ref document: US