WO2015129714A1 - 発光材料、有機発光素子および化合物 - Google Patents

発光材料、有機発光素子および化合物 Download PDF

Info

Publication number
WO2015129714A1
WO2015129714A1 PCT/JP2015/055313 JP2015055313W WO2015129714A1 WO 2015129714 A1 WO2015129714 A1 WO 2015129714A1 JP 2015055313 W JP2015055313 W JP 2015055313W WO 2015129714 A1 WO2015129714 A1 WO 2015129714A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
compound
light emitting
group
represent
Prior art date
Application number
PCT/JP2015/055313
Other languages
English (en)
French (fr)
Inventor
将嗣 種田
功將 志津
田中 啓之
大貴 野田
一 中野谷
安達 千波矢
Original Assignee
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学 filed Critical 国立大学法人九州大学
Priority to JP2016505244A priority Critical patent/JP6469076B2/ja
Publication of WO2015129714A1 publication Critical patent/WO2015129714A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D219/00Heterocyclic compounds containing acridine or hydrogenated acridine ring systems
    • C07D219/14Heterocyclic compounds containing acridine or hydrogenated acridine ring systems with hydrocarbon radicals, substituted by nitrogen atoms, attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D265/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one oxygen atom as the only ring hetero atoms
    • C07D265/281,4-Oxazines; Hydrogenated 1,4-oxazines
    • C07D265/341,4-Oxazines; Hydrogenated 1,4-oxazines condensed with carbocyclic rings
    • C07D265/38[b, e]-condensed with two six-membered rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1048Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a compound useful as a light emitting material and an organic light emitting device using the compound.
  • organic light emitting devices such as organic electroluminescence devices (organic EL devices)
  • organic electroluminescence devices organic electroluminescence devices
  • various efforts have been made to increase the light emission efficiency by newly developing and combining electron transport materials, hole transport materials, light emitting materials, and the like constituting the organic electroluminescence element.
  • compounds having a substituted amino group such as a carbazolyl group and a diphenylamino group are known as materials for the light emitting layer, and some of them have a fluorine atom.
  • Patent Document 1 describes that a compound having a carbazolyl group and a fluorine atom represented by the following formula can be used as a dopant material (light emitting material) of a light emitting layer.
  • Patent Document 2 describes that a compound having a diphenylamino group substituted with a methyl group and a fluorine atom, or a compound having a carbazolyl group and a fluorine atom, represented by the following formula, can be used as a light emitting material.
  • Patent Documents 1 and 2 describe that a compound having a diphenylamino group or carbazolyl group substituted with a methyl group and a fluorine atom can be used as a light emitting material.
  • the present inventors actually evaluated the light emission characteristics of a compound having a diphenylamino group or a carbazolyl group and a fluorine atom, the light emission characteristics were not sufficiently satisfactory (see Comparative Examples 1 and 2 below). ), It has been found that there is a need to provide a luminescent material with better luminescent properties.
  • Patent Documents 1 and 2 describe a compound having a fluorine atom with a diphenylamino group or carbazolyl group substituted with a methyl group, but a substituted amino group having a structure in which three 6-membered rings are condensed and fluorine. It does not describe compounds having atoms. For this reason, the usefulness of these compounds as luminescent materials is completely unpredictable.
  • the present inventors have further investigated the usefulness of a compound having a substituted amino group having a structure in which three 6-membered rings are condensed and a fluorine atom as a luminescent material, and has excellent luminescent properties. Research was conducted with the aim of finding compounds. And the general formula of the compound useful as a luminescent material was derived, and the earnest examination was advanced for the purpose of generalizing the structure of the organic light emitting element with high luminous efficiency.
  • the present inventors have found that a compound having a specific structure among compounds having a substituted amino group having a structure in which three 6-membered rings are condensed and a fluorine atom has excellent properties as a luminescent material. Found to have. In addition, it has been found that such a group of compounds is useful as a delayed fluorescent material, and it has been clarified that an organic light-emitting device having high emission efficiency can be provided at low cost. Based on these findings, the present inventors have provided the following present invention as means for solving the above problems.
  • a light emitting material comprising a compound represented by the following general formula (1).
  • R 1 , R 3 and R 5 represent a fluorine atom, or R 1 , R 2 , R 4 and R 5 represent a fluorine atom, and the remaining R 1 to R 6 are each independently Represents a group represented by any one of the following general formulas (2) to (6).
  • L 14 to L 18 represent a single bond or a substituted or unsubstituted arylene group, and * represents a bonding site to the benzene ring in the general formula (1).
  • R 31 to R 38 , R 3a , R 3b , R 41 to R 48 , R 4a , R 51 to R 58 , R 61 to R 68 , and R 71 to R 78 each independently represent a hydrogen atom or a substituent. .
  • R 31 and R 32, R 32 and R 33, R 33 and R 34, R 35 and R 36, R 36 and R 37, R 37 and R 38, R 3a and R 3b, R 41 and R 42, R 42 And R 43 , R 43 and R 44 , R 45 and R 46 , R 46 and R 47 , R 47 and R 48 , R 51 and R 52 , R 52 and R 53 , R 53 and R 54 , R 55 and R 56 , R 56 and R 57 , R 57 and R 58 , R 61 and R 62 , R 62 and R 63 , R 63 and R 64 , R 65 and R 66 , R 66 and R 67 , R 67 and R 68 , R 71 and R 72 , R 72 and R 73 , R 73 and R 74 , R 75 and R 76 , R 76 and R 77 , and R 77 and R 78 may be bonded to each other to form a cyclic structure. . ]
  • R 1 ′, R 3 ′ and R 5 ′ represent a fluorine atom, or R 1 ′, R 2 ′, R 4 ′ and R 5 ′ represent a fluorine atom, R 1 ′ to R 6 ′ each independently represents a group represented by any one of the following general formulas (2 ′) to (6 ′).
  • L 14 ′ to L 18 ′ represent a single bond or a substituted or unsubstituted arylene group, and * represents a bonding site to the benzene ring in the general formula (1). Represents.
  • the compound of the present invention is useful as a light emitting material.
  • the compounds of the present invention include those that emit delayed fluorescence.
  • An organic light emitting device using the compound of the present invention as a light emitting material can realize high luminous efficiency.
  • 2 is an absorption emission spectrum of a toluene solution of compound 1 of Example 1.
  • 2 is an absorption emission spectrum of a toluene solution of compound 2 of Example 2.
  • 2 is an absorption spectrum of a thin film type organic photoluminescence device of Compound 2 of Example 2.
  • 2 is an emission spectrum of a thin film type organic photoluminescence device of Compound 2 of Example 2. It is an emission spectrum of the thin film type organic photoluminescence element of the compound 2 of Example 2 and mCP. It is an emission spectrum of the thin film type organic photoluminescence element of the compound 2 of Example 2 and DPEPO.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the isotope species of the hydrogen atom present in the molecule of the compound used in the present invention is not particularly limited. For example, all the hydrogen atoms in the molecule may be 1 H, or a part or all of them are 2 H. (Deuterium D) may be used.
  • the luminescent material of the present invention is characterized by comprising a compound represented by the following general formula (1).
  • R 1 , R 3 and R 5 represent a fluorine atom, or R 1 , R 2 , R 4 and R 5 represent a fluorine atom, and the remaining R 1 to R 6 are each independently It represents a group represented by any one of the following general formulas (2) to (6). That is, when R 1 , R 3 and R 5 are fluorine atoms, the remaining R 2 , R 4 and R 6 are each independently a group represented by any one of the following general formulas (2) to (6). is there.
  • R 1 , R 2 , R 4 and R 5 are fluorine atoms
  • the remaining R 3 and R 6 are each independently a group represented by any one of the following general formulas (2) to (6). is there.
  • the remaining R 1 to R 6 may all be represented by any one of the general formulas (2) to (6), or may be represented by different general formulas. May be.
  • all of the remaining R 1 to R 6 are represented by any one of the general formulas (2) to (6)
  • all of the remaining R 1 to R 6 are groups having the same structure. It is preferable.
  • the compound represented by the general formula (1) has a rotationally symmetric structure.
  • a compound in which all of the remaining R 1 to R 6 have the same structure is useful, for example, when used as a dopant.
  • compounds in which some or all of the remaining R 1 to R 6 have different structures are also useful.
  • Such a compound is useful, for example, when a layer (neat film) made of only the compound is formed and used as a light emitting layer.
  • L 14 to L 18 represent a single bond or a substituted or unsubstituted arylene group, and * represents a bonding site to the benzene ring in the general formula (1).
  • the arylene group is preferably an arylene group having 6 to 18 carbon atoms. Examples of the arylene group having 6 to 18 carbon atoms include a phenylene group, a biphenylene group, a fluorenylene group, and a triphenylenylene group.
  • a more preferable linking group is a phenylene group, and a more preferable linking group is 1,4- A phenylene group.
  • L 14 to L 18 are preferably single bonds.
  • R 31 to R 38 , R 3a , R 3b , R 41 to R 48 , R 4a , R 51 to R 58 , R 61 to R 68 , and R 71 to R 78 each independently represent a hydrogen atom or a substituent. .
  • the number of substituents is not particularly limited, and all of R 31 to R 38 , R 3a , R 3b , R 41 to R 48 , R 4a , R 51 to R 58 , R 61 to R 68 , R 71 to R 78 May be unsubstituted (ie, a hydrogen atom).
  • R 31 to R 38 , R 3a , R 3b , R 41 to R 48 , R 4a , R 51 to R 58 , R 61 to R 68 , R 71 to R When two or more of 78 are substituents, the plurality of substituents may be the same as or different from each other.
  • R 31 to R 38 , R 3a , R 3b , R 41 to R 48 , R 4a , R 51 to R 58 , R 61 to R 68 , R 71 to R 78 may be, for example, hydroxy group, halogen Atom, cyano group, alkyl group having 1 to 20 carbon atoms, alkoxy group having 1 to 20 carbon atoms, alkylthio group having 1 to 20 carbon atoms, alkyl-substituted amino group having 1 to 20 carbon atoms, acyl having 2 to 20 carbon atoms Group, aryl group having 6 to 40 carbon atoms, heteroaryl group having 3 to 40 carbon atoms, alkenyl group having 2 to 10 carbon atoms, alkynyl group having 2 to 10 carbon atoms, alkoxycarbonyl group having 2 to 10 carbon atoms, carbon An alkylsulfonyl group having 1 to 10 carbon atoms, a haloalkyl group
  • substituents are a halogen atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, carbon A substituted or unsubstituted heteroaryl group having 3 to 40 carbon atoms, and a dialkyl-substituted amino group having 1 to 20 carbon atoms.
  • substituents are a halogen atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, carbon A substituted or unsubstituted heteroaryl group having 3 to 40 carbon atoms, and a dialkyl-substituted amino group having 1 to 20 carbon
  • substituents are a fluorine atom, a chlorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, and a substituted group having 6 to 15 carbon atoms.
  • it is an unsubstituted aryl group or a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms.
  • R 31 and R 32, R 32 and R 33, R 33 and R 34, R 35 and R 36, R 36 and R 37, R 37 and R 38, R 3a and R 3b, R 41 and R 42, R 42 And R 43 , R 43 and R 44 , R 45 and R 46 , R 46 and R 47 , R 47 and R 48 , R 51 and R 52 , R 52 and R 53 , R 53 and R 54 , R 55 and R 56 , R 56 and R 57 , R 57 and R 58 , R 61 and R 62 , R 62 and R 63 , R 63 and R 64 , R 65 and R 66 , R 66 and R 67 , R 67 and R 68 , R 71 and R 72 , R 72 and R 73 , R 73 and R 74 , R 75 and R 76 , R 76 and R 77 , and R 77 and R 78 may be bonded to each other to form a cyclic structure.
  • the cyclic structure may be an aromatic ring or an alicyclic ring, may contain a hetero atom, and the cyclic structure may be a condensed ring of two or more rings.
  • the hetero atom here is preferably selected from the group consisting of a nitrogen atom, an oxygen atom and a sulfur atom.
  • Examples of cyclic structures formed include benzene ring, naphthalene ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, pyrrole ring, imidazole ring, pyrazole ring, triazole ring, imidazoline ring, oxazole ring, isoxazole ring, thiazole And a ring, an isothiazole ring, a cyclohexadiene ring, a cyclohexene ring, a cyclopentaene ring, a cycloheptatriene ring, a cycloheptadiene ring, and a cycloheptaene ring.
  • R 31 to R 38 , R 3a , R 3b , R 41 to R 48 , R 4a , R 51 to R 58 , R 61 to R 68 , and R 71 to R 78 are each independently represented by the general formula (2) to A group represented by any one of (6) is also preferred.
  • R 3a and R 3b are preferably substituted or unsubstituted alkyl groups, and more preferably substituted or unsubstituted alkyl groups having 1 to 6 carbon atoms.
  • the substituent is preferably any one of R 32 to R 37 , R 3a , and R 3b in the case of the general formula (2). , R 3a and R 3b are more preferable.
  • any one of R 42 to R 47 is preferable, and in general formula (4), any one of R 52 to R 57 is preferable, and in general formula (5), If present, any one of R 62 to R 67 is preferable, and if it is general formula (6), any one of R 72 to R 77 is preferable.
  • R 1 , R 3 and R 5 are fluorine atoms, or R 1 , R 2 , R 4 and R 5 are fluorine atoms, and the remaining R Examples include compounds in which all of 1 to R 6 are groups represented by the general formula (2) or (4).
  • the molecular weight of the compound represented by the general formula (1) is, for example, 1500 or less when the organic layer containing the compound represented by the general formula (1) is intended to be formed by vapor deposition. Preferably, it is preferably 1200 or less, more preferably 1000 or less, and even more preferably 800 or less.
  • the lower limit of the molecular weight is the molecular weight of the minimum compound represented by the general formula (1).
  • the compound represented by the general formula (1) may be formed by a coating method regardless of the molecular weight. If a coating method is used, a film can be formed even with a compound having a relatively large molecular weight.
  • a compound containing a plurality of structures represented by the general formula (1) in the molecule as a light emitting material.
  • a polymer obtained by previously polymerizing a polymerizable group in the structure represented by the general formula (1) and polymerizing the polymerizable group as a light emitting material Specifically, a monomer containing a polymerizable functional group is prepared in any of R 2 , R 3 , R 4 , and R 6 in the general formula (1), and this is polymerized alone or together with other monomers It is conceivable to obtain a polymer having repeating units by copolymerization and use the polymer as a light emitting material. Alternatively, it is also conceivable that dimers and trimers are obtained by reacting compounds having a structure represented by the general formula (1) and used as a luminescent material.
  • a polymer having a repeating unit including a structure represented by the general formula (1) a polymer including a structure represented by the following general formula (7) or (8) can be given.
  • Q represents a group including the structure represented by the general formula (1)
  • L 1 and L 2 represent a linking group.
  • the linking group preferably has 0 to 20 carbon atoms, more preferably 1 to 15 carbon atoms, and still more preferably 2 to 10 carbon atoms. And preferably has a structure represented by - linking group -X 11 -L 11.
  • X 11 represents an oxygen atom or a sulfur atom, and is preferably an oxygen atom.
  • L 11 represents a linking group, preferably a substituted or unsubstituted alkylene group, or a substituted or unsubstituted arylene group, and a substituted or unsubstituted alkylene group having 1 to 10 carbon atoms, or a substituted or unsubstituted group A phenylene group is more preferable.
  • R 101 , R 102 , R 103 and R 104 each independently represent a substituent.
  • it is a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 6 carbon atoms, or a halogen atom, more preferably an unsubstituted alkyl group having 1 to 3 carbon atoms.
  • An unsubstituted alkoxy group having 1 to 3 carbon atoms, a fluorine atom, and a chlorine atom and more preferably an unsubstituted alkyl group having 1 to 3 carbon atoms and an unsubstituted alkoxy group having 1 to 3 carbon atoms.
  • the linking group represented by L 1 and L 2 is any one of R 2 , R 3 , R 4 and R 6 having the structure of the general formula (1) constituting Q, and R 31 having the structure of the general formula (2).
  • Two or more linking groups may be linked to one Q to form a crosslinked structure or a network structure.
  • a hydroxy group is introduced into any of R 2 , R 3 , R 4 and R 6 in the structure of the general formula (1). Then, it can be synthesized by reacting the following compound as a linker to introduce a polymerizable group and polymerizing the polymerizable group.
  • the polymer containing the structure represented by the general formula (1) in the molecule may be a polymer composed only of repeating units having the structure represented by the general formula (1), or other structures may be used. It may be a polymer containing repeating units.
  • the repeating unit having a structure represented by the general formula (1) contained in the polymer may be a single type or two or more types. Examples of the repeating unit not having the structure represented by the general formula (1) include those derived from monomers used in ordinary copolymerization. Examples thereof include a repeating unit derived from a monomer having an ethylenically unsaturated bond such as ethylene and styrene.
  • R 1 ′, R 3 ′ and R 5 ′ represent a fluorine atom, or R 1 ′, R 2 ′, R 4 ′ and R 5 ′ represent a fluorine atom, and the remaining R 1 ′ to R 6 ′ each independently represents a group represented by any one of the following general formulas (2 ′) to (6 ′).
  • L 14 ′ to L 18 ′ represent a single bond or a substituted or unsubstituted arylene group, and * represents a bonding site to the benzene ring in the general formula (1).
  • the explanation of the compound represented by formula (1) can be referred to.
  • X represents a halogen atom other than a fluorine atom, and examples include a chlorine atom, a bromine atom, and an iodine atom, and a bromine atom is preferable.
  • the above reaction is an application of a known reaction, and known reaction conditions can be appropriately selected and used. The details of the above reaction can be referred to the synthesis examples described below.
  • the compound represented by the general formula (1 ′) can also be synthesized by combining other known synthesis reactions.
  • the compound represented by the general formula (1) of the present invention is useful as a light emitting material of an organic light emitting device. For this reason, the compound represented by General formula (1) of this invention can be effectively used as a luminescent material for the light emitting layer of an organic light emitting element.
  • the compound represented by the general formula (1) includes a delayed fluorescent material (delayed phosphor) that emits delayed fluorescence. That is, the present invention relates to a delayed phosphor having a structure represented by the general formula (1), an invention using a compound represented by the general formula (1) as a delayed phosphor, and a general formula (1).
  • An invention of a method for emitting delayed fluorescence using the represented compound is also provided.
  • An organic light emitting device using such a compound as a light emitting material emits delayed fluorescence and has a feature of high luminous efficiency. The principle will be described below by taking an organic electroluminescence element as an example.
  • the organic electroluminescence element carriers are injected into the light emitting material from both positive and negative electrodes to generate an excited light emitting material and emit light.
  • 25% of the generated excitons are excited to the excited singlet state, and the remaining 75% are excited to the excited triplet state. Therefore, the use efficiency of energy is higher when phosphorescence, which is light emission from an excited triplet state, is used.
  • the excited triplet state has a long lifetime, energy saturation occurs due to saturation of the excited state and interaction with excitons in the excited triplet state, and in general, the quantum yield of phosphorescence is often not high.
  • delayed fluorescent materials after energy transition to an excited triplet state due to intersystem crossing, etc., are then crossed back to an excited singlet state due to triplet-triplet annihilation or absorption of thermal energy, and emit fluorescence.
  • a thermally activated delayed fluorescent material by absorption of thermal energy is particularly useful.
  • excitons in the excited singlet state emit fluorescence as usual.
  • excitons in the excited triplet state absorb heat generated by the device and cross between the excited singlets to emit fluorescence.
  • the light is emitted from the excited singlet, the light is emitted at the same wavelength as the fluorescence, but the light lifetime (luminescence lifetime) generated by the reverse intersystem crossing from the excited triplet state to the excited singlet state is normal. Since the fluorescence becomes longer than the fluorescence and phosphorescence, it is observed as fluorescence delayed from these. This can be defined as delayed fluorescence. If such a heat-activated exciton transfer mechanism is used, the ratio of the compound in an excited singlet state, which normally generated only 25%, is increased to 25% or more by absorbing thermal energy after carrier injection. It can be raised.
  • the heat of the device will sufficiently cause intersystem crossing from the excited triplet state to the excited singlet state and emit delayed fluorescence. Efficiency can be improved dramatically.
  • the compound represented by the general formula (1) of the present invention tends to exhibit good orientation with respect to the film forming surface when it is formed as a light emitting layer.
  • the orientation of the compound with respect to the film-forming surface is excellent, there is an advantage that the traveling direction of light emitted from the compound is aligned and the light extraction efficiency from the light emitting layer is easily improved.
  • the compound represented by the general formula (1) of the present invention as a light-emitting material of a light-emitting layer, excellent organic light-emitting devices such as an organic photoluminescence device (organic PL device) and an organic electroluminescence device (organic EL device) Can be provided.
  • the compound represented by the general formula (1) of the present invention may have a function of assisting light emission of another light emitting material included in the light emitting layer as a so-called assist dopant. That is, the compound represented by the general formula (1) of the present invention contained in the light emitting layer includes the lowest excitation singlet energy level of the host material contained in the light emitting layer and the lowest excitation of other light emitting materials contained in the light emitting layer.
  • the organic photoluminescence element has a structure in which at least a light emitting layer is formed on a substrate.
  • the organic electroluminescence element has a structure in which an organic layer is formed at least between an anode, a cathode, and an anode and a cathode.
  • the organic layer includes at least a light emitting layer, and may consist of only the light emitting layer, or may have one or more organic layers in addition to the light emitting layer. Examples of such other organic layers include a hole transport layer, a hole injection layer, an electron blocking layer, a hole blocking layer, an electron injection layer, an electron transport layer, and an exciton blocking layer.
  • the hole transport layer may be a hole injection / transport layer having a hole injection function
  • the electron transport layer may be an electron injection / transport layer having an electron injection function.
  • FIG. 1 A specific example of the structure of an organic electroluminescence element is shown in FIG.
  • 1 is a substrate
  • 2 is an anode
  • 3 is a hole injection layer
  • 4 is a hole transport layer
  • 5 is a light emitting layer
  • 6 is an electron transport layer
  • 7 is a cathode.
  • each member and each layer of an organic electroluminescent element are demonstrated.
  • substrate and a light emitting layer corresponds also to the board
  • the organic electroluminescence device of the present invention is preferably supported on a substrate.
  • the substrate is not particularly limited and may be any substrate conventionally used for organic electroluminescence elements.
  • a substrate made of glass, transparent plastic, quartz, silicon, or the like can be used.
  • an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) that can form a transparent conductive film may be used.
  • a thin film may be formed by vapor deposition or sputtering of these electrode materials, and a pattern of a desired shape may be formed by photolithography, or when pattern accuracy is not so high (about 100 ⁇ m or more) ), A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
  • wet film-forming methods such as a printing system and a coating system, can also be used.
  • the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
  • cathode a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this for example, a magnesium / silver mixture
  • Suitable are a magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture, aluminum and the like.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the emission luminance is advantageously improved.
  • a transparent or semi-transparent cathode can be produced. By applying this, an element in which both the anode and the cathode are transparent is used. Can be produced.
  • the light emitting layer is a layer that emits light after excitons are generated by recombination of holes and electrons injected from each of the anode and the cathode, and the light emitting material may be used alone for the light emitting layer. , Preferably including a luminescent material and a host material. As a luminescent material, the 1 type (s) or 2 or more types chosen from the compound group of this invention represented by General formula (1) can be used. In order for the organic electroluminescence device and the organic photoluminescence device of the present invention to exhibit high luminous efficiency, it is important to confine singlet excitons and triplet excitons generated in the light emitting material in the light emitting material.
  • a host material in addition to the light emitting material in the light emitting layer.
  • the host material an organic compound having at least one of excited singlet energy and excited triplet energy higher than that of the light emitting material of the present invention can be used.
  • singlet excitons and triplet excitons generated in the light emitting material of the present invention can be confined in the molecules of the light emitting material of the present invention, and the light emission efficiency can be sufficiently extracted.
  • high luminous efficiency can be obtained, so that host materials that can achieve high luminous efficiency are particularly limited. And can be used in the present invention.
  • the organic light emitting device or organic electroluminescent device of the present invention light emission is generated from the light emitting material of the present invention contained in the light emitting layer. This emission includes both fluorescence and delayed fluorescence. However, light emission from the host material may be partly or partly emitted.
  • the amount of the compound of the present invention, which is a light emitting material is preferably 0.1% by weight or more, more preferably 1% by weight or more, and 50% or more. It is preferably no greater than wt%, more preferably no greater than 20 wt%, and even more preferably no greater than 10 wt%.
  • the host material in the light-emitting layer is preferably an organic compound that has a hole transporting ability and an electron transporting ability, prevents the emission of longer wavelengths, and has a high glass transition temperature.
  • the injection layer is a layer provided between the electrode and the organic layer for lowering the driving voltage and improving the luminance of light emission, and includes a hole injection layer and an electron injection layer, Further, it may be present between the cathode and the light emitting layer or the electron transport layer.
  • the injection layer can be provided as necessary.
  • the blocking layer is a layer that can prevent diffusion of charges (electrons or holes) and / or excitons existing in the light emitting layer to the outside of the light emitting layer.
  • the electron blocking layer can be disposed between the light emitting layer and the hole transport layer and blocks electrons from passing through the light emitting layer toward the hole transport layer.
  • a hole blocking layer can be disposed between the light emitting layer and the electron transporting layer to prevent holes from passing through the light emitting layer toward the electron transporting layer.
  • the blocking layer can also be used to block excitons from diffusing outside the light emitting layer. That is, each of the electron blocking layer and the hole blocking layer can also function as an exciton blocking layer.
  • the term “electron blocking layer” or “exciton blocking layer” as used herein is used in the sense of including a layer having the functions of an electron blocking layer and an exciton blocking layer in one layer.
  • the hole blocking layer has a function of an electron transport layer in a broad sense.
  • the hole blocking layer has a role of blocking holes from reaching the electron transport layer while transporting electrons, thereby improving the recombination probability of electrons and holes in the light emitting layer.
  • the material for the hole blocking layer the material for the electron transport layer described later can be used as necessary.
  • the electron blocking layer has a function of transporting holes in a broad sense.
  • the electron blocking layer has a role to block electrons from reaching the hole transport layer while transporting holes, thereby improving the probability of recombination of electrons and holes in the light emitting layer. .
  • the exciton blocking layer is a layer for preventing excitons generated by recombination of holes and electrons in the light emitting layer from diffusing into the charge transport layer. It becomes possible to efficiently confine in the light emitting layer, and the light emission efficiency of the device can be improved.
  • the exciton blocking layer can be inserted on either the anode side or the cathode side adjacent to the light emitting layer, or both can be inserted simultaneously.
  • the layer when the exciton blocking layer is provided on the anode side, the layer can be inserted adjacent to the light emitting layer between the hole transport layer and the light emitting layer, and when inserted on the cathode side, the light emitting layer and the cathode Between the luminescent layer and the light-emitting layer.
  • a hole injection layer, an electron blocking layer, or the like can be provided between the anode and the exciton blocking layer adjacent to the anode side of the light emitting layer, and the excitation adjacent to the cathode and the cathode side of the light emitting layer can be provided.
  • an electron injection layer, an electron transport layer, a hole blocking layer, and the like can be provided.
  • the blocking layer is disposed, at least one of the excited singlet energy and the excited triplet energy of the material used as the blocking layer is preferably higher than the excited singlet energy and the excited triplet energy of the light emitting material.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has any one of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
  • hole transport materials that can be used include, for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, carbazole derivatives, indolocarbazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, Examples include amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • An aromatic tertiary amine compound and an styrylamine compound are preferably used, and an aromatic tertiary amine compound is more preferably used.
  • the electron transport layer is made of a material having a function of transporting electrons, and the electron transport layer can be provided as a single layer or a plurality of layers.
  • the electron transport material (which may also serve as a hole blocking material) may have a function of transmitting electrons injected from the cathode to the light emitting layer.
  • Examples of the electron transport layer that can be used include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyrandioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • the compound represented by the general formula (1) may be used not only for the light emitting layer but also for layers other than the light emitting layer.
  • the compound represented by General formula (1) used for a light emitting layer and the compound represented by General formula (1) used for layers other than a light emitting layer may be same or different.
  • the compound represented by the general formula (1) may be used for the injection layer, blocking layer, hole blocking layer, electron blocking layer, exciton blocking layer, hole transporting layer, electron transporting layer, and the like. .
  • the method for forming these layers is not particularly limited, and the layer may be formed by either a dry process or a wet process.
  • the preferable material which can be used for an organic electroluminescent element is illustrated concretely.
  • the material that can be used in the present invention is not limited to the following exemplary compounds.
  • R and R 1 to R 10 in the structural formulas of the following exemplary compounds each independently represent a hydrogen atom or a substituent.
  • n represents an integer of 3 to 5.
  • the organic electroluminescent device produced by the above-described method emits light by applying an electric field between the anode and the cathode of the obtained device. At this time, if the light is emitted by excited singlet energy, light having a wavelength corresponding to the energy level is confirmed as fluorescence emission and delayed fluorescence emission. In addition, in the case of light emission by excited triplet energy, a wavelength corresponding to the energy level is confirmed as phosphorescence. Since normal fluorescence has a shorter fluorescence lifetime than delayed fluorescence, the emission lifetime can be distinguished from fluorescence and delayed fluorescence.
  • the excited triplet energy is unstable and is converted into heat and the like, and the lifetime is short and it is immediately deactivated.
  • the excited triplet energy of a normal organic compound it can be measured by observing light emission under extremely low temperature conditions.
  • the organic electroluminescence element of the present invention can be applied to any of a single element, an element having a structure arranged in an array, and a structure in which an anode and a cathode are arranged in an XY matrix. According to the present invention, an organic light emitting device with greatly improved light emission efficiency can be obtained by containing the compound represented by the general formula (1) in the light emitting layer.
  • the organic light emitting device such as the organic electroluminescence device of the present invention can be further applied to various uses. For example, it is possible to produce an organic electroluminescence display device using the organic electroluminescence element of the present invention.
  • organic electroluminescence device of the present invention can be applied to organic electroluminescence illumination and backlights that are in great demand.
  • Photonics C11347), source meter (Ceethley: 2400 series), semiconductor parameter analyzer (Agilent Technology: E5273A), optical power meter measuring device (Newport: 1930C), optical spectrometer (The measurement was carried out using a spectroradiometer (manufactured by Topcon Co., Ltd .: SR-3) and a streak camera (C4334, manufactured by Hamamatsu Photonics Co., Ltd.). Further, the molecular orientation was measured using an ellipsometer ( M-2000 manufactured by JA Woollam). Construction of the optical model, fitting for minimizing the mean square error between the optical model and the actual measurement value, etc.
  • the order parameter S for evaluating the degree of orientation was defined by the following equation.
  • Mean value of the angle ⁇ is formed by the normal direction and the molecules of the substrate, which is k o, k e extinction coefficient of the molecules with the transition dipole in the horizontal direction and the normal direction respectively with respect to the substrate.
  • 1,4-dibromo-2,3,5,6-tetrafluorobenzene (0.240 g, 0.78 mmol)
  • 2- (4- (9H-phenoxazin-9-yl) phenyl-1-yl) -4 , 4,5,5-tetramethyl-1,3,2-dioxaborolane (0.05 g, 0.13 mmol), tetrahydrofuran (17 ml), Pd (PPh 3 ) 4 (0.08 g, 0.07 mmol)
  • 2M K 2 CO 3 aq 5 mL was placed in a 50 ml three-necked flask and degassed. The degassed solution was heated to 66 ° C.
  • 1,4-dibromo-2,3,5,6-tetrafluorobenzene (0.308 g, 1 mmol), 2- (4- (9H-10,10-dimethylacridin-9-yl) phenyl-1-yl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane (0.10 g, 0.2 mmol), tetrahydrofuran (50 ml), Pd (PPh 3 ) 4 (0.20 g, 0.17 mmol), 2M K 2 CO 3 aq (12 mL) was placed in a 200 ml three-necked flask and degassed. The degassed solution was heated to 66 ° C.
  • 1,3,5-tribromo-2,4,6-trifluorobenzene (0.738 g, 2 mmol), 2- ⁇ 4- (9H-carbazolyl-9-yl) phenyl-1-yl ⁇ -4,4 5,5-tetramethyl-1,3,2-dioxaborolane (0.52 g, 1.4 mmol), tetrahydrofuran (55 ml), tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 : 0.30 g,. 26 mmol), and 2M K 2 CO 3 aq (15 mL) were placed in a 200 ml three-necked flask and degassed.
  • the degassed solution was heated to 66 ° C. under a nitrogen stream, and further 1,4- ⁇ 4- (9H-carbazolyl-9-yl) phenyl-1-yl ⁇ -4,4,5,5-tetra
  • a solution of methyl-1,3,2-dioxaborolane (1.70 g, 4.6 mmol) in 20 ml of tetrahydrofuran was added dropwise over 12 hours, and the mixture was stirred for 6 days while maintaining the temperature at 66 ° C. After returning this reaction solution to room temperature, tetrahydrofuran was removed from the reaction solution using an evaporator to obtain a precipitate. The precipitate was collected by filtration, washed with water, and dried in vacuo.
  • Comparative Synthesis Example 2 Synthesis of Comparative Compound 2 Except for using 1,4-dibromo-2,3,5,6-tetrafluorobenzene instead of 1,3,5-tribromo-2,4,6-trifluorobenzene was synthesized in the same manner as in the synthesis step of Comparative Compound 1 in Comparative Synthesis Example 1.
  • Example 1 Preparation and Evaluation of Solution Using Compound 1
  • a toluene solution of Compound 1 was prepared in a glove box under an Ar atmosphere. An emission spectrum by 337 nm excitation light was measured. The measured emission spectrum is shown in FIG.
  • the maximum emission wavelength of the toluene solution of Compound 1 was 505 nm, and the photoluminescence quantum efficiency was 17.2% in air and 45.4% after deaeration.
  • the transient decay curve was measured about the toluene solution of the compound 1, the light emission lifetime (tau) in the air was 8.22 ns.
  • the emission lifetime ⁇ 1 of immediate fluorescence is 19.6 ns
  • the emission lifetime ⁇ 2 of delayed fluorescence is 8 .52 ⁇ s.
  • Example 2 Production and Evaluation of Organic Photoluminescence Device Using Compound 2
  • a toluene solution of Compound 2 was prepared by changing the point where Compound 2 was used instead of Compound 1. Further, a thin film of Compound 2 having a thickness of 50 nm was formed on a quartz substrate by a vacuum vapor deposition method under a vacuum degree of 4.0 ⁇ 10 ⁇ 4 Pa or less to obtain an organic photoluminescence device. Separately, Compound 2 and mCP are deposited on a quartz substrate by a vacuum deposition method under a vacuum degree of 4.0 ⁇ 10 ⁇ 4 Pa or less from different deposition sources, and the concentration of Compound 2 is 6.0 weight.
  • % Thin film was formed with a thickness of 50 nm to obtain an organic photoluminescence device.
  • Compound 2 and DPEPO are vapor-deposited from a different vapor deposition source on a quartz substrate by a vacuum vapor deposition method under a vacuum degree of 4.0 ⁇ 10 ⁇ 4 Pa or less.
  • a thin film of 0% by weight was formed with a thickness of 50 nm to obtain an organic photoluminescence device.
  • the orientation angle of the molecule relative to the film-forming surface of Compound 2 was 16.0 °.
  • the absorption emission spectrum of the toluene solution is shown in FIG.
  • An absorption spectrum of an organic photoluminescence device having a thin film of only Compound 2 is shown in FIG. 4, and an emission spectrum is shown in FIG.
  • An emission spectrum of an organic photoluminescence device having a thin film of Compound 2 and mCP is shown in FIG.
  • An emission spectrum of an organic photoluminescence device having a thin film of Compound 2 and DPEPO is shown in FIG. 7, and a fluorescence spectrum and a phosphorescence spectrum are shown in FIG.
  • the maximum emission wavelength was 457 nm
  • the photoluminescence quantum efficiency was 11.5% in air, and 18% after deaeration.
  • the photoluminescence quantum efficiency of the organic photoluminescence device is 31.1% for a device having a thin film of compound 2 only, 30% for a device having a thin film of compound 2 and mCP, and 48% of a device having a thin film of compound 2 and DPEPO. Met.
  • the difference ⁇ Est between the energy in the excited singlet state and the energy in the excited triplet state obtained from the fluorescence spectrum and the phosphorescence spectrum was 0.351 eV.
  • transient decay curves show the results of luminescence lifetime measurement in which the process in which the emission intensity is deactivated by applying excitation light to the compound is measured.
  • the light emission intensity decays in a single exponential manner. This means that if the vertical axis of the graph is semi-log, it will decay linearly.
  • Comparative Example 1 Preparation and Evaluation of Organic Photoluminescence Device Using Comparative Compound 1
  • a dichloromethane solution of Comparative Compound 1 and a thin film only of Comparative Compound 1 were used.
  • An organic photoluminescence device having the above was produced.
  • the emission wavelength peak of the degassed dichloromethane solution was 363 nm, and the emission quantum yield was 48%.
  • the light emission lifetime ⁇ was 4.795 ns, and no delay component was observed.
  • the neat thin film had an emission wavelength peak of 381 nm and an emission quantum yield of 30%.
  • the light emission lifetime was 4.993 ns, and no delay component was observed.
  • Comparative Example 2 Production and Evaluation of Organic Photoluminescence Device Using Comparative Compound 2
  • a dichloromethane solution of Comparative Compound 2 and a thin film only of Comparative Compound 2 were prepared.
  • An organic photoluminescence element having the same was produced.
  • the emission wavelength peak of the degassed dichloromethane solution was 447 nm, and the emission quantum yield was 92%.
  • the emission lifetime ⁇ was 2.133 ns, and no delay component was observed.
  • the neat thin film had an emission wavelength peak of 429 nm and an emission quantum yield of 30%. The emission lifetime was 1.296 ns, and no delay component was observed.
  • Example 3 Production and evaluation of organic electroluminescence device using compound 2 Each thin film was formed by vacuum deposition on a glass substrate on which an anode made of indium tin oxide (ITO) having a thickness of 100 nm was formed. And a degree of vacuum of 4 ⁇ 10 ⁇ 4 Pa. First, ⁇ -NPD was formed to a thickness of 40 nm on ITO. Next, Compound 2 and DPEPO were co-evaporated from different vapor deposition sources to form a layer having a thickness of 30 nm to form a light emitting layer. At this time, the concentration of Compound 2 was 6.0% by weight.
  • ITO indium tin oxide
  • DPEPO is formed to a thickness of 5 nm
  • TPBi is formed to a thickness of 30 nm
  • lithium fluoride (LiF) is vacuum-deposited to 0.5 nm
  • aluminum (Al) is then evaporated to a thickness of 100 nm.
  • a cathode was formed, and an organic electroluminescence element was obtained.
  • the emission spectrum of the manufactured organic electroluminescence device is shown in FIG. 11, the voltage-current density characteristic is shown in FIG. 12, and the current density-external quantum efficiency characteristic is shown in FIG.
  • the organic electroluminescence device using Compound 2 as the light emitting material achieved a high external quantum efficiency of 8.3%.
  • the compound of the present invention is useful as a luminescent material. For this reason, the compound of this invention is effectively used as a luminescent material for organic light emitting elements, such as an organic electroluminescent element. Since the compounds of the present invention include those that emit delayed fluorescence, it is also possible to provide an organic light-emitting device with high luminous efficiency. For this reason, this invention has high industrial applicability.

Abstract

 一般式(1)で表される化合物は発光材料として有用である。R1、R3およびR5がフッ素原子を表すか、R1、R2、R4およびR5がフッ素原子を表す。残りのR1~R6は下記一般式(2)等で表される基を表す。

Description

発光材料、有機発光素子および化合物
 本発明は、発光材料として有用な化合物とそれを用いた有機発光素子に関する。
 有機エレクトロルミネッセンス素子(有機EL素子)などの有機発光素子の発光効率を高める研究が盛んに行われている。特に、有機エレクトロルミネッセンス素子を構成する電子輸送材料、正孔輸送材料、発光材料などを新たに開発して組み合わせることにより、発光効率を高める工夫が種々なされてきている。例えば、発光層の材料としてはカルバゾリル基やジフェニルアミノ基等の置換アミノ基を有する化合物が知られており、その中には、フッ素原子を有するものも見受けられる。
 特許文献1には、下記式で表されるカルバゾリル基とフッ素原子を有する化合物が発光層のドーパント材料(発光材料)として用いうることが記載されている。
Figure JPOXMLDOC01-appb-C000010
 特許文献2には、下記式で表される、メチル基で置換されたジフェニルアミノ基とフッ素原子を有する化合物やカルバゾリル基とフッ素原子を有する化合物が発光材料として用いうることが記載されている。
Figure JPOXMLDOC01-appb-C000011
特許第4125076号公報 特許第4311707号公報
 上記のように、特許文献1、2にはメチル基で置換されたジフェニルアミノ基またはカルバゾリル基とフッ素原子を有する化合物が発光材料として用い得ることが記載されている。しかしながら、本発明者らがジフェニルアミノ基またはカルバゾリル基とフッ素原子を有する化合物の発光特性を実際に評価したところ、発光特性は十分に満足しうるものではなく(後掲の比較例1、2参照)、より優れた発光特性を有する発光材料を提供する必要があることが判明した。
 そこで本発明者らは、置換アミノ基とフッ素原子を有する化合物群について種々の検討を始め、多数の類似する化合物の中から、発光特性が優れた化合物を見出すことを目指して研究を重ねた。その研究の中で、6員環が3つ縮合した構造を有する置換アミノ基とフッ素原子を有する化合物群について検討することを思い立った。特許文献1、2には、メチル基で置換されたジフェニルアミノ基またはカルバゾリル基とフッ素原子を有する化合物については記載されているものの、6員環が3つ縮合した構造を有する置換アミノ基とフッ素原子を有する化合物については記載されていない。このため、これら化合物の発光材料としての有用性は全く予測がつかない。
 このような状況下において本発明者らは、6員環が3つ縮合した構造を有する置換アミノ基とフッ素原子を有する化合物の発光材料としての有用性についてさらに検討を進め、発光特性が優れた化合物を見出すことを目指して研究を重ねた。そして、発光材料として有用な化合物の一般式を導きだし、発光効率が高い有機発光素子の構成を一般化することを目的として鋭意検討を進めた。
 鋭意検討を進めた結果、本発明者らは、6員環が3つ縮合した構造を有する置換アミノ基とフッ素原子を有する化合物のうち、特定の構造を有するものが発光材料として優れた性質を有することを見出した。また、そのような化合物群の中に、遅延蛍光材料として有用なものがあることを見出し、発光効率が高い有機発光素子を安価に提供しうることを明らかにした。本発明者らは、これらの知見に基づいて、上記の課題を解決する手段として、以下の本発明を提供するに至った。
[1] 下記一般式(1)で表される化合物からなる発光材料。
Figure JPOXMLDOC01-appb-C000012
 [一般式(1)において、R1、R3およびR5がフッ素原子を表すか、R1、R2、R4およびR5がフッ素原子を表し、残りのR1~R6が各々独立に下記一般式(2)~(6)のいずれかで表される基を表す。]
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
[一般式(2)~(6)において、L14~L18は単結合、または置換もしくは無置換のアリーレン基を表し、*は一般式(1)におけるベンゼン環への結合部位を表す。R31~R38、R3a、R3b、R41~R48、R4a、R51~R58、R61~R68、R71~R78は、各々独立に水素原子または置換基を表す。R31とR32、R32とR33、R33とR34、R35とR36、R36とR37、R37とR38、R3aとR3b、R41とR42、R42とR43、R43とR44、R45とR46、R46とR47、R47とR48、R51とR52、R52とR53、R53とR54、R55とR56、R56とR57、R57とR58、R61とR62、R62とR63、R63とR64、R65とR66、R66とR67、R67とR68、R71とR72、R72とR73、R73とR74、R75とR76、R76とR77、R77とR78はそれぞれ互いに結合して環状構造を形成していてもよい。]
[2] 一般式(1)のR1、R2、R4およびR5がフッ素原子であることを特徴とする[1]に記載の発光材料。
[3] 一般式(1)のR1、R3およびR5がフッ素原子であることを特徴とする[1]に記載の発光材料。
[4] 一般式(2)~(6)のL14~L18が置換もしくは無置換のフェニレン基であることを特徴とする[1]~[3]のいずれか1項に記載の発光材料。
[5] 一般式(1)の前記残りのR1~R6が、いずれも一般式(2)で表される基であることを特徴とする[1]~[4]のいずれか1項に記載の発光材料。
[6] 一般式(1)の前記残りのR1~R6が、いずれも一般式(4)で表される基であることを特徴とする[1]~[4]のいずれか1項に記載の発光材料。
[7] 分子が回転対称構造を有していることを特徴とする[1]~[6]のいずれか1項に記載の発光材料。
[8] 上記一般式(1)で表される化合物からなる遅延蛍光体。
[9] [1]~[7]のいずれか1項に記載の発光材料を含むことを特徴とする有機発光素子。
[10] 遅延蛍光を放射することを特徴とする[9]に記載の有機発光素子。
[11] 有機エレクトロルミネッセンス素子であることを特徴とする[9]または[10]に記載の有機発光素子。
[12] 下記一般式(1’)で表される化合物。
Figure JPOXMLDOC01-appb-C000015
 [一般式(1’)において、R1’、R3’およびR5’がフッ素原子を表すか、R1’、R2’、R4’およびR5’がフッ素原子を表し、残りのR1’~R6’が各々独立に下記一般式(2’)~(6’)のいずれかで表される基を表す。]
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
[一般式(2’)~(6’)において、L14’~L18’は単結合、または置換もしくは無置換のアリーレン基を表し、*は一般式(1)におけるベンゼン環への結合部位を表す。R31’~R38’、R3a’、R3b’、R41’~R48’、R4a’、R51’~R58’、R61’~R68’、R71’~R78’は、各々独立に水素原子または置換基を表す。R31’とR32’、R32’とR33’、R33’とR34’、R35’とR36’、R36’とR37’、R37’とR38’、R3a’とR3b’、R41’とR42’、R42’とR43’、R43’とR44’、R45’とR46’、R46’とR47’、R47’とR48’、R51’とR52’、R52’とR53’、R53’とR54’、R55’とR56’、R56’とR57’、R57’とR58’、R61’とR62’、R62’とR63’、R63’とR64’、R65’とR66’、R66’とR67’、R67’とR68’、R71’とR72’、R72’とR73’、R73’とR74’、R75’とR76’、R76’とR77’、R77’とR78’はそれぞれ互いに結合して環状構造を形成していてもよい。]
 本発明の化合物は、発光材料として有用である。また、本発明の化合物の中には遅延蛍光を放射するものが含まれている。本発明の化合物を発光材料として用いた有機発光素子は、高い発光効率を実現しうる。
有機エレクトロルミネッセンス素子の層構成例を示す概略断面図である。 実施例1の化合物1のトルエン溶液の吸収発光スペクトルである。 実施例2の化合物2のトルエン溶液の吸収発光スペクトルである。 実施例2の化合物2の薄膜型有機フォトルミネッセンス素子の吸収スペクトルである。 実施例2の化合物2の薄膜型有機フォトルミネッセンス素子の発光スペクトルである。 実施例2の化合物2とmCPの薄膜型有機フォトルミネッセンス素子の発光スペクトルである。 実施例2の化合物2とDPEPOの薄膜型有機フォトルミネッセンス素子の発光スペクトルである。 実施例2の化合物2とDPEPOの薄膜型有機フォトルミネッセンス素子の蛍光スペクトルおよびりん光スペクトルである。 実施例2の化合物2のトルエン溶液の過渡減衰曲線である。 実施例2の化合物2とDPEPOの薄膜型有機フォトルミネッセンス素子の過渡減衰曲線である。 実施例3の化合物2を用いた有機エレクトロミネッセンス素子の発光スペクトルである。 実施例3の化合物2を用いた有機エレクトロルミネッセンス素子の電圧-電流密度特性を示すグラフである。 実施例3の化合物2を用いた有機エレクトロルミネッセンス素子の電流密度-外部量子効率特性を示すグラフである。
 以下において、本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様や具体例に基づいてなされることがあるが、本発明はそのような実施態様や具体例に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。また、本発明に用いられる化合物の分子内に存在する水素原子の同位体種は特に限定されず、例えば分子内の水素原子がすべて1Hであってもよいし、一部または全部が2H(デューテリウムD)であってもよい。
[一般式(1)で表される化合物]
 本発明の発光材料は、下記一般式(1)で表される化合物からなることを特徴とする。
Figure JPOXMLDOC01-appb-C000018
 一般式(1)において、R1、R3およびR5がフッ素原子を表すか、R1、R2、R4およびR5がフッ素原子を表し、残りのR1~R6が各々独立に下記一般式(2)~(6)のいずれかで表される基を表す。すなわち、R1、R3およびR5がフッ素原子であるとき、残りのR2、R4およびR6は各々独立に下記一般式(2)~(6)のいずれかで表される基である。また、R1、R2、R4およびR5がフッ素原子であるとき、残りのR3、R6は各々独立に下記一般式(2)~(6)のいずれかで表される基である。
 残りのR1~R6は、すべてが一般式(2)~(6)のいずれか1つの一般式で表されるものであってもよいし、互いに異なる一般式で表されるものであってもよい。
 残りのR1~R6のすべてが一般式(2)~(6)のいずれか1つの一般式で表される場合は、残りのR1~R6のすべてが同じ構造を有する基であることが好ましい。残りのR1~R6のすべてが同じ構造を有する基であるとき、一般式(1)で表される化合物は回転対称構造を有することになる。残りのR1~R6のすべてが同じ構造を有する化合物は、例えばドーパントとして用いる場合などに有用である。
 一方、残りのR1~R6の一部または全部が異なる構造である化合物も有用である。そのような化合物は、例えばその化合物のみからなる層(ニート膜)を形成して発光層として用いる場合などに有用である。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 一般式(2)~(6)において、L14~L18は単結合、または置換もしくは無置換のアリーレン基を表し、*は一般式(1)におけるベンゼン環への結合部位を表す。L14~L18がアリーレン基であるとき、アリーレン基としては炭素数6~18のアリーレン基であることが好ましい。炭素数6~18のアリーレン基としては、フェニレン基、ビフェニレン基、フルオレニレン基、トリフェニレニレン基等を挙げることができ、より好ましい連結基はフェニレン基であり、さらに好ましい連結基は1,4-フェニレン基である。アリーレン基が置換基を有するときの置換基の説明と好ましい範囲については、下記のR31~R38等がとりうる置換基の説明と好ましい範囲を参照することができる。また、L14~L18は単結合であることも好ましい。
 R31~R38、R3a、R3b、R41~R48、R4a、R51~R58、R61~R68、R71~R78は、各々独立に水素原子または置換基を表す。置換基の数は特に制限されず、R31~R38、R3a、R3b、R41~R48、R4a、R51~R58、R61~R68、R71~R78のすべてが無置換(すなわち水素原子)であってもよい。一般式(2)~(6)のそれぞれにおいて、R31~R38、R3a、R3b、R41~R48、R4a、R51~R58、R61~R68、R71~R78のうちの2つ以上が置換基である場合、複数の置換基は互いに同一であっても異なっていてもよい。
 R31~R38、R3a、R3b、R41~R48、R4a、R51~R58、R61~R68、R71~R78がとりうる置換基として、例えばヒドロキシ基、ハロゲン原子、シアノ基、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数1~20のアルキルチオ基、炭素数1~20のアルキル置換アミノ基、炭素数2~20のアシル基、炭素数6~40のアリール基、炭素数3~40のヘテロアリール基、炭素数2~10のアルケニル基、炭素数2~10のアルキニル基、炭素数2~10のアルコキシカルボニル基、炭素数1~10のアルキルスルホニル基、炭素数1~10のハロアルキル基、アミド基、炭素数2~10のアルキルアミド基、炭素数3~20のトリアルキルシリル基、炭素数4~20のトリアルキルシリルアルキル基、炭素数5~20のトリアルキルシリルアルケニル基、炭素数5~20のトリアルキルシリルアルキニル基およびニトロ基等が挙げられる。これらの具体例のうち、さらに置換基により置換可能なものは置換されていてもよい。より好ましい置換基は、ハロゲン原子、シアノ基、炭素数1~20の置換もしくは無置換のアルキル基、炭素数1~20のアルコキシ基、炭素数6~40の置換もしくは無置換のアリール基、炭素数3~40の置換もしくは無置換のヘテロアリール基、炭素数1~20のジアルキル置換アミノ基である。さらに好ましい置換基は、フッ素原子、塩素原子、シアノ基、炭素数1~10の置換もしくは無置換のアルキル基、炭素数1~10の置換もしくは無置換のアルコキシ基、炭素数6~15の置換もしくは無置換のアリール基、炭素数3~12の置換もしくは無置換のヘテロアリール基である。
 R31とR32、R32とR33、R33とR34、R35とR36、R36とR37、R37とR38、R3aとR3b、R41とR42、R42とR43、R43とR44、R45とR46、R46とR47、R47とR48、R51とR52、R52とR53、R53とR54、R55とR56、R56とR57、R57とR58、R61とR62、R62とR63、R63とR64、R65とR66、R66とR67、R67とR68、R71とR72、R72とR73、R73とR74、R75とR76、R76とR77、R77とR78は互いに結合して環状構造を形成していてもよい。環状構造は芳香環であっても脂肪環であってもよく、またヘテロ原子を含むものであってもよく、さらに環状構造は2環以上の縮合環であってもよい。ここでいうヘテロ原子としては、窒素原子、酸素原子および硫黄原子からなる群より選択されるものであることが好ましい。形成される環状構造の例として、ベンゼン環、ナフタレン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、ピロール環、イミダゾール環、ピラゾール環、トリアゾール環、イミダゾリン環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、シクロヘキサジエン環、シクロヘキセン環、シクロペンタエン環、シクロヘプタトリエン環、シクロヘプタジエン環、シクロヘプタエン環などを挙げることができる。
 R31~R38、R3a、R3b、R41~R48、R4a、R51~R58、R61~R68、R71~R78は、各々独立に上記一般式(2)~(6)のいずれかで表される基であることも好ましい。また、R3aおよびR3bは置換もしくは無置換のアルキル基であることが好ましく、炭素数1~6の置換もしくは無置換のアルキル基であることがより好ましい。一般式(2)~(6)に置換基が存在している場合、その置換基は一般式(2)であればR32~R37、R3a、R3bのいずれかであることが好ましく、R3aおよびR3bの少なくともいずれかであることがより好ましい。一般式(3)であればR42~R47のいずれかであることが好ましく、一般式(4)であればR52~R57のいずれかであることが好ましく、一般式(5)であればR62~R67のいずれかであることが好ましく、一般式(6)であればR72~R77のいずれかであることが好ましい。
 一般式(1)で表される化合物の好ましい例として、R1、R3およびR5がフッ素原子であるか、R1、R2、R4およびR5がフッ素原子であり、残りのR1~R6のすべてが一般式(2)または(4)で表される基である化合物を挙げることができる。
 以下において、一般式(1)で表される化合物の具体例を例示する。ただし、本発明において用いることができる一般式(1)で表される化合物はこれらの具体例によって限定的に解釈されるべきものではない。
Figure JPOXMLDOC01-appb-C000021
 一般式(1)で表される化合物の分子量は、例えば一般式(1)で表される化合物を含む有機層を蒸着法により製膜して利用することを意図する場合には、1500以下であることが好ましく、1200以下であることがより好ましく、1000以下であることがさらに好ましく、800以下であることがさらにより好ましい。分子量の下限値は、一般式(1)で表される最小化合物の分子量である。
 一般式(1)で表される化合物は、分子量にかかわらず塗布法で成膜してもよい。塗布法を用いれば、分子量が比較的大きな化合物であっても成膜することが可能である。
 本発明を応用して、分子内に一般式(1)で表される構造を複数個含む化合物を、発光材料として用いることも考えられる。
 例えば、一般式(1)で表される構造中にあらかじめ重合性基を存在させておいて、その重合性基を重合させることによって得られる重合体を、発光材料として用いることが考えられる。具体的には、一般式(1)のR2、R3、R4、R6のいずれかに重合性官能基を含むモノマーを用意して、これを単独で重合させるか、他のモノマーとともに共重合させることにより、繰り返し単位を有する重合体を得て、その重合体を発光材料として用いることが考えられる。あるいは、一般式(1)で表される構造を有する化合物どうしを反応させることにより、二量体や三量体を得て、それらを発光材料として用いることも考えられる。
 一般式(1)で表される構造を含む繰り返し単位を有する重合体の例として、下記一般式(7)または(8)で表される構造を含む重合体を挙げることができる。
Figure JPOXMLDOC01-appb-C000022
 一般式(7)または(8)において、Qは一般式(1)で表される構造を含む基を表し、L1およびL2は連結基を表す。連結基の炭素数は、好ましくは0~20であり、より好ましくは1~15であり、さらに好ましくは2~10である。連結基は-X11-L11-で表される構造を有するものであることが好ましい。ここで、X11は酸素原子または硫黄原子を表し、酸素原子であることが好ましい。L11は連結基を表し、置換もしくは無置換のアルキレン基、または置換もしくは無置換のアリーレン基であることが好ましく、炭素数1~10の置換もしくは無置換のアルキレン基、または置換もしくは無置換のフェニレン基であることがより好ましい。
 一般式(7)または(8)において、R101、R102、R103およびR104は、各々独立に置換基を表す。好ましくは、炭素数1~6の置換もしくは無置換のアルキル基、炭素数1~6の置換もしくは無置換のアルコキシ基、ハロゲン原子であり、より好ましくは炭素数1~3の無置換のアルキル基、炭素数1~3の無置換のアルコキシ基、フッ素原子、塩素原子であり、さらに好ましくは炭素数1~3の無置換のアルキル基、炭素数1~3の無置換のアルコキシ基である。
 L1およびL2で表される連結基は、Qを構成する一般式(1)の構造のR2、R3、R4、R6のいずれか、一般式(2)の構造のR31~R38、R3a、R3bのいずれか、一般式(3)の構造のR41~R48、R4aのいずれか、一般式(4)の構造のR51~R58のいずれか、一般式(5)の構造のR61~R68のいずれか、一般式(6)の構造のR71~R78のいずれかに結合することができる。1つのQに対して連結基が2つ以上連結して架橋構造や網目構造を形成していてもよい。
 繰り返し単位の具体的な構造例として、下記式(9)~(12)で表される構造を挙げることができる。
Figure JPOXMLDOC01-appb-C000023
 これらの式(9)~(12)を含む繰り返し単位を有する重合体は、一般式(1)の構造のR2、R3、R4、R6のいずれかにヒドロキシ基を導入しておき、それをリンカーとして下記化合物を反応させて重合性基を導入し、その重合性基を重合させることにより合成することができる。
Figure JPOXMLDOC01-appb-C000024
 分子内に一般式(1)で表される構造を含む重合体は、一般式(1)で表される構造を有する繰り返し単位のみからなる重合体であってもよいし、それ以外の構造を有する繰り返し単位を含む重合体であってもよい。また、重合体の中に含まれる一般式(1)で表される構造を有する繰り返し単位は、単一種であってもよいし、2種以上であってもよい。一般式(1)で表される構造を有さない繰り返し単位としては、通常の共重合に用いられるモノマーから誘導されるものを挙げることができる。例えば、エチレン、スチレンなどのエチレン性不飽和結合を有するモノマーから誘導される繰り返し単位を挙げることができる。
[一般式(1’)で表される化合物]
 下記一般式(1’)で表される化合物は新規化合物である。
Figure JPOXMLDOC01-appb-C000025
 一般式(1’)において、R1’、R3’およびR5’がフッ素原子を表すか、R1’、R2’、R4’およびR5’がフッ素原子を表し、残りのR1’~R6’が各々独立に下記一般式(2’)~(6’)のいずれかで表される基を表す。
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
 一般式(2’)~(6’)において、L14’~L18’は単結合、または置換もしくは無置換のアリーレン基を表し、*は一般式(1)におけるベンゼン環への結合部位を表す。R31’~R38’、R3a’、R3b’、R41’~R48’、R4a’、R51’~R58’、R61’~R68’、R71’~R78’は、各々独立に水素原子または置換基を表す。R31’とR32’、R32’とR33’、R33’とR34’、R35’とR36’、R36’とR37’、R37’とR38’、R3a’とR3b’、R41’とR42’、R42’とR43’、R43’とR44’、R45’とR46’、R46’とR47’、R47’とR48’、R51’とR52’、R52’とR53’、R53’とR54’、R55’とR56’、R56’とR57’、R57’とR58’、R61’とR62’、R62’とR63’、R63’とR64’、R65’とR66’、R66’とR67’、R67’とR68’、R71’とR72’、R72’とR73’、R73’とR74’、R75’とR76’、R76’とR77’、R77’とR78’はそれぞれ互いに結合して環状構造を形成していてもよい。
 一般式(1’)におけるR1'~R6'と、一般式(2’)~(6’)におけるL14’~L18’、*、
31’~R38’、R3a’、R3b’、R41’~R48’、R4a’、R51’~R58’、R61’~R68’、R71’~R78’の説明と好ましい範囲については、一般式(1)で表される化合物の説明を参照することができる。
[一般式(1’)で表される化合物の合成方法]
 一般式(1’)で表される化合物は、既知の反応を組み合わせることによって合成することができる。例えば、一般式(1’)のR1’、R2’、R4’、R5’がフッ素原子であり、R3’、R6’が一般式(2’)で表される基であり、L16’が1,4-フェニレン基である化合物は、以下の2つの化合物を反応させることにより合成することが可能である。
Figure JPOXMLDOC01-appb-C000028
 上記の反応式におけるR31’~R38’、R3a、R3bの説明については、一般式(1’)における対応する記載を参照することができる。Xはフッ素原子以外のハロゲン原子を表し、塩素原子、臭素原子、ヨウ素原子を挙げることができ、臭素原子が好ましい。
 上記の反応は、公知の反応を応用したものであり、公知の反応条件を適宜選択して用いることができる。上記の反応の詳細については、後述の合成例を参考にすることができる。また、一般式(1’)で表される化合物は、その他の公知の合成反応を組み合わせることによっても合成することができる。
[有機発光素子]
 本発明の一般式(1)で表される化合物は、有機発光素子の発光材料として有用である。このため、本発明の一般式(1)で表される化合物は、有機発光素子の発光層に発光材料として効果的に用いることができる。一般式(1)で表される化合物の中には、遅延蛍光を放射する遅延蛍光材料(遅延蛍光体)が含まれている。すなわち本発明は、一般式(1)で表される構造を有する遅延蛍光体の発明と、一般式(1)で表される化合物を遅延蛍光体として使用する発明と、一般式(1)で表される化合物を用いて遅延蛍光を発光させる方法の発明も提供する。そのような化合物を発光材料として用いた有機発光素子は、遅延蛍光を放射し、発光効率が高いという特徴を有する。その原理を、有機エレクトロルミネッセンス素子を例にとって説明すると以下のようになる。
 有機エレクトロルミネッセンス素子においては、正負の両電極より発光材料にキャリアを注入し、励起状態の発光材料を生成し、発光させる。通常、キャリア注入型の有機エレクトロルミネッセンス素子の場合、生成した励起子のうち、励起一重項状態に励起されるのは25%であり、残り75%は励起三重項状態に励起される。従って、励起三重項状態からの発光であるリン光を利用するほうが、エネルギーの利用効率が高い。しかしながら、励起三重項状態は寿命が長いため、励起状態の飽和や励起三重項状態の励起子との相互作用によるエネルギーの失活が起こり、一般にリン光の量子収率が高くないことが多い。一方、遅延蛍光材料は、項間交差等により励起三重項状態へとエネルギーが遷移した後、三重項-三重項消滅あるいは熱エネルギーの吸収により、励起一重項状態に逆項間交差され蛍光を放射する。有機エレクトロルミネッセンス素子においては、なかでも熱エネルギーの吸収による熱活性化型の遅延蛍光材料が特に有用であると考えられる。有機エレクトロルミネッセンス素子に遅延蛍光材料を利用した場合、励起一重項状態の励起子は通常通り蛍光を放射する。一方、励起三重項状態の励起子は、デバイスが発する熱を吸収して励起一重項へ項間交差され蛍光を放射する。このとき、励起一重項からの発光であるため蛍光と同波長での発光でありながら、励起三重項状態から励起一重項状態への逆項間交差により、生じる光の寿命(発光寿命)は通常の蛍光やりん光よりも長くなるため、これらよりも遅延した蛍光として観察される。これを遅延蛍光として定義できる。このような熱活性化型の励起子移動機構を用いれば、キャリア注入後に熱エネルギーの吸収を経ることにより、通常は25%しか生成しなかった励起一重項状態の化合物の比率を25%以上に引き上げることが可能となる。100℃未満の低い温度でも強い蛍光および遅延蛍光を発する化合物を用いれば、デバイスの熱で充分に励起三重項状態から励起一重項状態への項間交差が生じて遅延蛍光を放射するため、発光効率を飛躍的に向上させることができる。
 また、本発明の一般式(1)で表される化合物は、発光層として成膜したとき、その膜形成面に対して良好な配向性を示す傾向がある。化合物の膜形成面に対する配向性が優れていると、化合物が発した光の進行方向が揃えられ、発光層からの光取り出し効率を向上させやすいという利点がある。
 本発明の一般式(1)で表される化合物を発光層の発光材料として用いることにより、有機フォトルミネッセンス素子(有機PL素子)や有機エレクトロルミネッセンス素子(有機EL素子)などの優れた有機発光素子を提供することができる。このとき、本発明の一般式(1)で表される化合物は、いわゆるアシストドーパントとして、発光層に含まれる他の発光材料の発光をアシストする機能を有するものであってもよい。すなわち、発光層に含まれる本発明の一般式(1)で表される化合物は、発光層に含まれるホスト材料の最低励起一重項エネルギー準位と発光層に含まれる他の発光材料の最低励起一重項エネルギー準位の間の最低励起一重項エネルギー準位を有するものであってもよい。
 有機フォトルミネッセンス素子は、基板上に少なくとも発光層を形成した構造を有する。また、有機エレクトロルミネッセンス素子は、少なくとも陽極、陰極、および陽極と陰極の間に有機層を形成した構造を有する。有機層は、少なくとも発光層を含むものであり、発光層のみからなるものであってもよいし、発光層の他に1層以上の有機層を有するものであってもよい。そのような他の有機層として、正孔輸送層、正孔注入層、電子阻止層、正孔阻止層、電子注入層、電子輸送層、励起子阻止層などを挙げることができる。正孔輸送層は正孔注入機能を有した正孔注入輸送層でもよく、電子輸送層は電子注入機能を有した電子注入輸送層でもよい。具体的な有機エレクトロルミネッセンス素子の構造例を図1に示す。図1において、1は基板、2は陽極、3は正孔注入層、4は正孔輸送層、5は発光層、6は電子輸送層、7は陰極を表わす。
 以下において、有機エレクトロルミネッセンス素子の各部材および各層について説明する。なお、基板と発光層の説明は有機フォトルミネッセンス素子の基板と発光層にも該当する。
(基板)
 本発明の有機エレクトロルミネッセンス素子は、基板に支持されていることが好ましい。この基板については、特に制限はなく、従来から有機エレクトロルミネッセンス素子に慣用されているものであればよく、例えば、ガラス、透明プラスチック、石英、シリコンなどからなるものを用いることができる。
(陽極)
 有機エレクトロルミネッセンス素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物およびこれらの混合物を電極材料とするものが好ましく用いられる。このような電極材料の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In23-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極材料を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極材料の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な材料を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。さらに膜厚は材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。
(陰極)
 一方、陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物およびこれらの混合物を電極材料とするものが用いられる。このような電極材料の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性および酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極材料を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機エレクトロルミネッセンス素子の陽極または陰極のいずれか一方が、透明または半透明であれば発光輝度が向上し好都合である。
 また、陽極の説明で挙げた導電性透明材料を陰極に用いることで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
(発光層)
 発光層は、陽極および陰極のそれぞれから注入された正孔および電子が再結合することにより励起子が生成した後、発光する層であり、発光材料を単独で発光層に使用しても良いが、好ましくは発光材料とホスト材料を含む。発光材料としては、一般式(1)で表される本発明の化合物群から選ばれる1種または2種以上を用いることができる。本発明の有機エレクトロルミネッセンス素子および有機フォトルミネッセンス素子が高い発光効率を発現するためには、発光材料に生成した一重項励起子および三重項励起子を、発光材料中に閉じ込めることが重要である。従って、発光層中に発光材料に加えてホスト材料を用いることが好ましい。ホスト材料としては、励起一重項エネルギー、励起三重項エネルギーの少なくとも何れか一方が本発明の発光材料よりも高い値を有する有機化合物を用いることができる。その結果、本発明の発光材料に生成した一重項励起子および三重項励起子を、本発明の発光材料の分子中に閉じ込めることが可能となり、その発光効率を十分に引き出すことが可能となる。もっとも、一重項励起子および三重項励起子を十分に閉じ込めることができなくても、高い発光効率を得ることが可能な場合もあるため、高い発光効率を実現しうるホスト材料であれば特に制約なく本発明に用いることができる。本発明の有機発光素子または有機エレクトロルミネッセンス素子において、発光は発光層に含まれる本発明の発光材料から生じる。この発光は蛍光発光および遅延蛍光発光の両方を含む。但し、発光の一部或いは部分的にホスト材料からの発光があってもかまわない。
 ホスト材料を用いる場合、発光材料である本発明の化合物が発光層中に含有される量は0.1重量%以上であることが好ましく、1重量%以上であることがより好ましく、また、50重量%以下であることが好ましく、20重量%以下であることがより好ましく、10重量%以下であることがさらに好ましい。
 発光層におけるホスト材料としては、正孔輸送能、電子輸送能を有し、かつ発光の長波長化を防ぎ、なおかつ高いガラス転移温度を有する有機化合物であることが好ましい。
(注入層)
 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、正孔注入層と電子注入層があり、陽極と発光層または正孔輸送層の間、および陰極と発光層または電子輸送層との間に存在させてもよい。注入層は必要に応じて設けることができる。
(阻止層)
 阻止層は、発光層中に存在する電荷(電子もしくは正孔)および/または励起子の発光層外への拡散を阻止することができる層である。電子阻止層は、発光層および正孔輸送層の間に配置されることができ、電子が正孔輸送層の方に向かって発光層を通過することを阻止する。同様に、正孔阻止層は発光層および電子輸送層の間に配置されることができ、正孔が電子輸送層の方に向かって発光層を通過することを阻止する。阻止層はまた、励起子が発光層の外側に拡散することを阻止するために用いることができる。すなわち電子阻止層、正孔阻止層はそれぞれ励起子阻止層としての機能も兼ね備えることができる。本明細書でいう電子阻止層または励起子阻止層は、一つの層で電子阻止層および励起子阻止層の機能を有する層を含む意味で使用される。
(正孔阻止層)
 正孔阻止層とは広い意味では電子輸送層の機能を有する。正孔阻止層は電子を輸送しつつ、正孔が電子輸送層へ到達することを阻止する役割があり、これにより発光層中での電子と正孔の再結合確率を向上させることができる。正孔阻止層の材料としては、後述する電子輸送層の材料を必要に応じて用いることができる。
(電子阻止層)
 電子阻止層とは、広い意味では正孔を輸送する機能を有する。電子阻止層は正孔を輸送しつつ、電子が正孔輸送層へ到達することを阻止する役割があり、これにより発光層中での電子と正孔が再結合する確率を向上させることができる。
(励起子阻止層)
 励起子阻止層とは、発光層内で正孔と電子が再結合することにより生じた励起子が電荷輸送層に拡散することを阻止するための層であり、本層の挿入により励起子を効率的に発光層内に閉じ込めることが可能となり、素子の発光効率を向上させることができる。励起子阻止層は発光層に隣接して陽極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。すなわち、励起子阻止層を陽極側に有する場合、正孔輸送層と発光層の間に、発光層に隣接して該層を挿入することができ、陰極側に挿入する場合、発光層と陰極との間に、発光層に隣接して該層を挿入することができる。また、陽極と、発光層の陽極側に隣接する励起子阻止層との間には、正孔注入層や電子阻止層などを有することができ、陰極と、発光層の陰極側に隣接する励起子阻止層との間には、電子注入層、電子輸送層、正孔阻止層などを有することができる。阻止層を配置する場合、阻止層として用いる材料の励起一重項エネルギーおよび励起三重項エネルギーの少なくともいずれか一方は、発光材料の励起一重項エネルギーおよび励起三重項エネルギーよりも高いことが好ましい。
(正孔輸送層)
 正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、正孔輸送層は単層または複数層設けることができる。
 正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。使用できる公知の正孔輸送材料としては例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体およびピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられるが、ポルフィリン化合物、芳香族第3級アミン化合物およびスチリルアミン化合物を用いることが好ましく、芳香族第3級アミン化合物を用いることがより好ましい。
(電子輸送層)
 電子輸送層とは電子を輸送する機能を有する材料からなり、電子輸送層は単層または複数層設けることができる。
 電子輸送材料(正孔阻止材料を兼ねる場合もある)としては、陰極より注入された電子を発光層に伝達する機能を有していればよい。使用できる電子輸送層としては例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタンおよびアントロン誘導体、オキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 有機エレクトロルミネッセンス素子を作製する際には、一般式(1)で表される化合物を発光層に用いるだけでなく、発光層以外の層にも用いてもよい。その際、発光層に用いる一般式(1)で表される化合物と、発光層以外の層に用いる一般式(1)で表される化合物は、同一であっても異なっていてもよい。例えば、上記の注入層、阻止層、正孔阻止層、電子阻止層、励起子阻止層、正孔輸送層、電子輸送層などにも一般式(1)で表される化合物を用いてもよい。これらの層の製膜方法は特に限定されず、ドライプロセス、ウェットプロセスのどちらで作製してもよい。
 以下に、有機エレクトロルミネッセンス素子に用いることができる好ましい材料を具体的に例示する。ただし、本発明において用いることができる材料は、以下の例示化合物によって限定的に解釈されることはない。また、特定の機能を有する材料として例示した化合物であっても、その他の機能を有する材料として転用することも可能である。なお、以下の例示化合物の構造式におけるR、R1~R10は、各々独立に水素原子または置換基を表す。nは3~5の整数を表す。
 まず、発光層のホスト材料としても用いることができる好ましい化合物を挙げる。
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
 次に、正孔注入材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000034
 次に、正孔輸送材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
 次に、電子阻止材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000041
 次に、正孔阻止材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000042
 次に、電子輸送材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
 次に、電子注入材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000046
 さらに添加可能な材料として好ましい化合物例を挙げる。例えば、安定化材料として添加すること等が考えられる。
Figure JPOXMLDOC01-appb-C000047
 上述の方法により作製された有機エレクトロルミネッセンス素子は、得られた素子の陽極と陰極の間に電界を印加することにより発光する。このとき、励起一重項エネルギーによる発光であれば、そのエネルギーレベルに応じた波長の光が、蛍光発光および遅延蛍光発光として確認される。また、励起三重項エネルギーによる発光であれば、そのエネルギーレベルに応じた波長が、りん光として確認される。通常の蛍光は、遅延蛍光発光よりも蛍光寿命が短いため、発光寿命は蛍光と遅延蛍光で区別できる。
 一方、りん光については、本発明の化合物のような通常の有機化合物では、励起三重項エネルギーは不安定で熱等に変換され、寿命が短く直ちに失活するため、室温では殆ど観測できない。通常の有機化合物の励起三重項エネルギーを測定するためには、極低温の条件での発光を観測することにより測定可能である。
 本発明の有機エレクトロルミネッセンス素子は、単一の素子、アレイ状に配置された構造からなる素子、陽極と陰極がX-Yマトリックス状に配置された構造のいずれにおいても適用することができる。本発明によれば、発光層に一般式(1)で表される化合物を含有させることにより、発光効率が大きく改善された有機発光素子が得られる。本発明の有機エレクトロルミネッセンス素子などの有機発光素子は、さらに様々な用途へ応用することが可能である。例えば、本発明の有機エレクトロルミネッセンス素子を用いて、有機エレクトロルミネッセンス表示装置を製造することが可能であり、詳細については、時任静士、安達千波矢、村田英幸共著「有機ELディスプレイ」(オーム社)を参照することができる。また、特に本発明の有機エレクトロルミネッセンス素子は、需要が大きい有機エレクトロルミネッセンス照明やバックライトに応用することもできる。
 以下に合成例および実施例を挙げて本発明の特徴をさらに具体的に説明する。以下に示す材料、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。なお、発光特性の評価は、ハイパフォーマンス紫外可視近赤外分光光度計(パーキンエルマー社製:Lambda950)、蛍光分光光度計(堀場製作所社製:FluoroMax-4)、絶対PL量子収率測定装置(浜松ホトニクス社製:C11347)、ソースメータ(ケースレー社製:2400シリーズ)、半導体パラメータ・アナライザ(アジレント・テクノロジー社製:E5273A)、光パワーメータ測定装置(ニューポート社製:1930C)、光学分光器(オーシャンオプティクス社製:USB2000)、分光放射計(トプコン社製:SR-3)およびストリークカメラ(浜松ホトニクス(株)製C4334型)を用いて行った。また、分子配向の測定は、エリプソメーター(J.A.ウーラム社製M-2000)を用いて行った。光学モデルの構築、光学モデルと実測値の平均二乗誤差を最小にするためのフィッティング等は、エリプソメトリーデータ解析用ソフトであるWASE32(J.A.ウーラム社製)を用いて行った。配向性の度合いを評価するためのオーダーパラメーターSは、次式で定義した。
Figure JPOXMLDOC01-appb-M000048
θは基板の法線方向と分子がなす角度の平均値、ko,keはそれぞれ基板に対して水平方向および法線方向に遷移双極子を持つ分子の消衰係数である。
(合成例1) 化合物1の合成
Figure JPOXMLDOC01-appb-C000049
 1,4-ジブロモ-2,3,5,6-テトラフルオロベンゼン(0.240g,0.78mmol)、2-(4-(9H-フェノキサジン-9-イル)フェニル-1-イル)-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン(0.05g,0.13mmol)、テトラヒドロフラン(17ml)、Pd(PPh34(0.08g,0.07mmol)、2MのK2CO3aq(5mL)を50ml三口フラスコに入れて脱気した。脱気した溶液を、窒素気流下で66℃に昇温し、さらに2-(4-(9H-フェノキサジン-9-イル)フェニル-1-イル)-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン(550g,1.4mmol)をテトラヒドロフラン5mlに溶かした溶液を10時間かけて滴下し、温度を66℃に保ちつつ40時間撹拌した。この反応溶液を室温に戻した後、エバポレーターを用いて反応溶液からテトラヒドロフランを除去し、沈殿物を得た。この沈殿物をジクロロメタン150mlに加えて溶液とした。この溶液を、水150mlと飽和食塩水150mlで洗浄した後、無水硫酸マグネシウムで有機層を乾燥させ、エバポレートを用いて溶媒を除去した。得られた残渣をジクロロメタン/n-ヘキサンの混合溶媒で再結晶させ、白色固体(化合物1)として1,4-ビス(4-(9H-フェノキサジン-9-イル)フェニル-1-イル)-2,3,5,6-テトラフルオロベンゼンを収量90mg(0.14mmol)、収率18%で得た。
1H-NMR(500MHz,DMSO-d6):δ=5.96(m,4H;ArH),6.71-6.80(m,12H;ArH),7.68(dd,Jortho=6.6Hz,Jmeta=1.9Hz,4H;Ar),7.92(d,J=8.2Hz,4H;ArH).19F-NMR(500MHz,DMSO-d6):δ=-143.8.
(合成例2) 化合物2の合成
Figure JPOXMLDOC01-appb-C000050
 1,4-ジブロモ-2,3,5,6-テトラフルオロベンゼン(0.308g,1mmol)、2-(4-(9H-10,10-ジメチルアクリジン-9-イル)フェニル-1-イル)-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン(0.10g,0.2mmol)、テトラヒドロフラン(50ml)、Pd(PPh34(0.20g,0.17mmol)、2MのK2CO3aq(12mL)を200ml三口フラスコに入れて脱気した。脱気した溶液を、窒素気流下で66℃に昇温し、さらに1,4-{4-(9H-10,10-ジメチルアクリダン-9-イル)フェニル-1-イル}-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン(755g,1.7mmol)をテトラヒドロフラン10mlに溶かした溶液を8時間かけて滴下し、温度を66℃に保ちつつ40時間撹拌した。この反応溶液を室温に戻した後、エバポレーターを用いて反応溶液からテトラヒドロフランを除去し、沈殿物を得た。この沈殿物をジクロロメタン150mlに加えて溶液とした。この溶液を、水150mlと飽和食塩水150mlで洗浄した後、無水硫酸マグネシウムで有機層を乾燥させ、エバポレートを用いて溶媒を除去した。得られた残渣をジクロロメタン/n-ヘキサンの混合溶媒で再結晶させ、白色固体(化合物2)として1,4-ビス(4-(9H-10,10-ジメチルアクリジン-9-イル)フェニル-1-イル)-2,3,5,6-テトラフルオロベンゼンを収量332mg(46mmol)、収率46%で得た。
1H-NMR(500MHz,CDCl3):δ=1.72(s,12H;C 3),6.37(dd,Jortho=8.2Hz,Jmeta=1.2Hz,4H;Ar),6.96(dt,Jortho=7.4Hz,Jmeta=1.2Hz,4H;Ar),7.04(dt,Jortho=7.4Hz,Jmeta=1.5Hz,4H;Ar),7.49(dd,Jortho=7.8Hz,Jmeta=1.5Hz,4H;Ar),7.52(td,Jortho=8.5Hz,Jmeta=1.9Hz,4H;Ar),7.83(d,J=8.2Hz,4H;Ar).19F-NMR(500MHz,CDCl3):δ=-143.57.Anal.Calcd for C483642:C,80.43;H,5.06;N,3.91%.Found:C,80.54;H,5.06;N,3.95%.
(比較合成例1) 比較化合物1の合成
Figure JPOXMLDOC01-appb-C000051
 1,3,5-トリブロモ-2,4,6-トリフルオロベンゼン(0.738g,2mmol)、2-{4-(9H-カルバゾリル-9-イル)フェニル-1-イル}-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン(0.52g,1.4mmol)、テトラヒドロフラン(55ml)、テトラキス(トリフェニルホスフィン)パラジウム(Pd(PPh34:0.30g,0.26mmol)、および2MのK2CO3aq(15mL)を200ml三口フラスコに入れて脱気した。脱気した溶液を、窒素気流下で66℃に昇温し、さらに1,4-{4-(9H-カルバゾリル-9-イル)フェニル-1-イル}-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン(1.70g,4.6mmol)をテトラヒドロフラン20mlに溶かした溶液を12時間かけて滴下し、温度を66℃に保ちつつ6日間撹拌した。この反応溶液を室温に戻した後、エバポレーターを用いて反応溶液からテトラヒドロフランを除去し、沈殿物を得た。この沈殿物をろ取した後、水で洗浄し、真空乾燥した。得られた固体物を、加熱したジクロロメタン200mlに加えて溶液とし、この溶液をろ過した後濃縮した。得られた濃縮物にn-ヘキサンを加えて白色粉末を析出させ、析出した白色粉末(中間体1)をろ取した。以上の工程により、比較化合物1の1,3,5-(4-(9H-カルバゾリル-9-イル)フェニル-1-イル)-2,4,6-トリフルオロベンゼンを収量683mg(0.80mmol)、収率40%で得た。
1H-NMR(500MHz,CDCl3):δ=7.33(t,J=7.4Hz,6H;Ar),7.46(dt,Jortho=7.6Hz,Jmeta=1.0Hz,6H;Ar),7.55(d,J=8.2Hz,6H;Ar),7.76(d,J=8.4Hz,6H;Ar),7.84(d,J=8.2Hz,6H;Ar),8.17(d,J=7.8Hz,6H;Ar).19F-NMR(500MHz,CDCl3):δ=-115.32.
(比較合成例2) 比較化合物2の合成
 1,3,5-トリブロモ-2,4,6-トリフルオロベンゼンの代わりに1,4-ジブロモ-2,3,5,6-テトラフルオロベンゼン用いる以外は比較合成例1の比較化合物1の合成工程と同様にして比較化合物2を合成した。
Figure JPOXMLDOC01-appb-C000052
(実施例1) 化合物1を用いた溶液の作製と評価
 Ar雰囲気のグローブボックス中で化合物1のトルエン溶液を調製した。337nm励起光による発光スペクトルを測定した。測定された発光スペクトルを図2に示す。化合物1のトルエン溶液の最大発光波長は505nmであり、フォトルミネッセンス量子効率は、空気中で17.2%、脱気後で45.4%であった。
 また、化合物1のトルエン溶液について過渡減衰曲線を測定したところ、空気中での発光寿命τは8.22nsであった。脱気後のトルエン溶液の過渡減衰曲線では2種類の蛍光(即時蛍光、遅延蛍光)を観測することができ、即時蛍光の発光寿命τ1が19.6ns、遅延蛍光の発光寿命τ2が8.52μsであった。
(実施例2) 化合物2を用いた有機フォトルミネッセンス素子の作製と評価
 化合物1のかわりに化合物2を用いた点を変更して、化合物2のトルエン溶液を調製した。
 また、石英基板上に真空蒸着法にて、真空度4.0x10-4Pa以下の条件にて化合物2の薄膜を50nmの厚さで形成して有機フォトルミネッセンス素子とした。
 これとは別に、石英基板上に真空蒸着法にて、真空度4.0x10-4Pa以下の条件にて化合物2とmCPとを異なる蒸着源から蒸着し、化合物2の濃度が6.0重量%である薄膜を50nmの厚さで形成して有機フォトルミネッセンス素子とした。
 また、これとは別に、石英基板上に真空蒸着法にて、真空度4.0x10-4Pa以下の条件にて化合物2とDPEPOとを異なる蒸着源から蒸着し、化合物2の濃度が6.0重量%である薄膜を
50nmの厚さで形成して有機フォトルミネッセンス素子とした。
 化合物2のみの薄膜を有する有機フォトルミネッセンス素子についてエリプソメトリー分光法により配向性を測定したところ、化合物2の膜形成面に対する分子の配向角は16.0°であった。
 また、これらの化合物2を用いたサンプルについて、337nm励起光による発光スペクトルを測定した。トルエン溶液の吸収発光スペクトルを図3に示す。化合物2のみの薄膜を有する有機フォトルミネッセンス素子の吸収スペクトルを図4に示し、発光スペクトルを図5に示す。化合物2とmCPの薄膜を有する有機フォトルミネッセンス素子の発光スペクトルを図6に示す。化合物2とDPEPOの薄膜を有する有機フォトルミネッセンス素子の発光スペクトルを図7に示し、蛍光スペクトルおよびりん光スペクトルを図8に示す。
 トルエン溶液では、最大発光波長が457nm、フォトルミネッセンス量子効率が、空気中で11.5%、脱気後で18%であった。有機フォトルミネッセンス素子のフォトルミネッセンス量子効率は、化合物2のみの薄膜を有する素子で31.1%、化合物2とmCPの薄膜を有する素子で30%、化合物2とDPEPOの薄膜を有する素子で48%であった。また、化合物2とDPEPOの薄膜を有する素子について、蛍光スペクトルとりん光スペクトルから求めた励起一重項状態でのエネルギーと励起三重項状態でのエネルギーの差ΔEstは0.351eVであった。
 また、化合物2のトルエン溶液について過渡減衰曲線を測定した結果を図9に示し、化合物2とDPEPOの薄膜を有する有機フォトルミネッセンス素子について過渡減衰曲線を測定した結果を図10に示す。これらの過渡減衰曲線は、化合物に励起光を当てて発光強度が失活してゆく過程を測定した発光寿命測定結果を示すものである。通常の一成分の発光(蛍光もしくはリン光)では発光強度は単一指数関数的に減衰する。これは、グラフの縦軸がセミlog である場合には、直線的に減衰することを意味している。化合物2の過渡減衰曲線では、観測初期にこのような直線的成分(蛍光)が観測されているが、数μ秒以降には直線性から外れる成分が現れている。これは遅延成分の発光であり、初期の成分と加算される信号は、長時間側に裾をひくゆるい曲線になる。このように発光寿命を測定することによって、化合物2は蛍光成分のほかに遅延成分を含む発光体であることが確認された。トルエン溶液では、空気中での発光寿命τが4.79ns、脱気後の発光寿命τ1が6.51nsであった。化合物2とDPEPOの薄膜を有する有機フォトルミネッセンス素子では、2種類の蛍光(即時蛍光、遅延蛍光)を観測することができ、即時蛍光の発光寿命τ1が4.64ns、遅延蛍光の発光寿命τ2が2.9msであった。
(比較例1) 比較化合物1を用いた有機フォトルミネッセンス素子の作製と評価
 化合物1のかわりに比較化合物1を用いた点を変更して、比較化合物1のジクロロメタン溶液と、比較化合物1のみの薄膜を有する有機フォトルミネッセンス素子を作製した。
 脱気したジクロロメタン溶液の発光波長ピークは363nmで、発光量子収率は48%であった。発光寿命τは4.795 nsで、遅延成分は観測されなかった。ニート薄膜の発光波長ピークは381nmで、発光量子収率は30%であった。発光寿命は4.993nsであり、遅延成分は観測されなかった。
(比較例2) 比較化合物2を用いた有機フォトルミネッセンス素子の作製と評価
 化合物1のかわりに比較化合物2を用いた点を変更して、比較化合物2のジクロロメタン溶液、比較化合物2のみの薄膜を有する有機フォトルミネッセンス素子、を作製した。
 脱気したジクロロメタン溶液の発光波長ピークは447nmで、発光量子収率は92%であった。発光寿命τは2.133nsで、遅延成分は観測されなかった。ニート薄膜の発光波長ピークは429nmで、発光量子収率は30%であった。発光寿命は1.296nsであり、遅延成分は観測されなかった。
(実施例3) 化合物2を用いた有機エレクトロルミネッセンス素子の作製と評価
 膜厚100nmのインジウム・スズ酸化物(ITO)からなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度4×10-4Paで積層した。まず、ITO上にα-NPDを40nmの厚さに形成した。次に、化合物2とDPEPOを異なる蒸着源から共蒸着し、30nmの厚さの層を形成して発光層とした。この時、化合物2の濃度は6.0重量%とした。次に、DPEPOを5nmの厚さに形成し、TPBiを30nmの厚さに形成し、さらにフッ化リチウム(LiF)を0.5nm真空蒸着し、次いでアルミニウム(Al)を100nmの厚さに蒸着することにより陰極を形成し、有機エレクトロルミネッセンス素子とした。
 製造した有機エレクトロルミネッセンス素子の発光スペクトルを図11に示し、電圧-電流密度特性を図12に示し、電流密度-外部量子効率特性を図13に示す。化合物2を発光材料として用いた有機エレクトロルミネッセンス素子は8.3%の高い外部量子効率を達成した。仮に発光量子効率が100%の蛍光材料を用いてバランスの取れた理想的な有機エレクトロルミネッセンス素子を試作したとすると、光取り出し効率が20~30%であれば、蛍光発光の外部量子効率は5~7.5%となる。この値が一般に、蛍光材料を用いた有機エレクトロルミネッセンス素子の外部量子効率の理論限界値とされている。化合物2を用いた本発明の有機エレクトロルミネッセンス素子は、理論限界値を超える高い外部量子効率を実現している点で極めて優れている。
Figure JPOXMLDOC01-appb-C000053
 本発明の化合物は発光材料として有用である。このため本発明の化合物は、有機エレクトロルミネッセンス素子などの有機発光素子用の発光材料として効果的に用いられる。本発明の化合物の中には、遅延蛍光が放射するものも含まれているため、発光効率が高い有機発光素子を提供することも可能である。このため、本発明は産業上の利用可能性が高い。
 1 基板
 2 陽極
 3 正孔注入層
 4 正孔輸送層
 5 発光層
 6 電子輸送層
 7 陰極

Claims (12)

  1.  下記一般式(1)で表される化合物からなる発光材料。
    Figure JPOXMLDOC01-appb-C000001
     [一般式(1)において、R1、R3およびR5がフッ素原子を表すか、R1、R2、R4およびR5がフッ素原子を表し、残りのR1~R6が各々独立に下記一般式(2)~(6)のいずれかで表される基を表す。]
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    [一般式(2)~(6)において、L14~L18は単結合、または置換もしくは無置換のアリーレン基を表し、*は一般式(1)におけるベンゼン環への結合部位を表す。R31~R38、R3a、R3b、R41~R48、R4a、R51~R58、R61~R68、R71~R78は、各々独立に水素原子または置換基を表す。R31とR32、R32とR33、R33とR34、R35とR36、R36とR37、R37とR38、R3aとR3b、R41とR42、R42とR43、R43とR44、R45とR46、R46とR47、R47とR48、R51とR52、R52とR53、R53とR54、R55とR56、R56とR57、R57とR58、R61とR62、R62とR63、R63とR64、R65とR66、R66とR67、R67とR68、R71とR72、R72とR73、R73とR74、R75とR76、R76とR77、R77とR78はそれぞれ互いに結合して環状構造を形成していてもよい。]
  2.  一般式(1)のR1、R2、R4およびR5がフッ素原子であることを特徴とする請求項1に記載の発光材料。
  3.  一般式(1)のR1、R3およびR5がフッ素原子であることを特徴とする請求項1に記載の発光材料。
  4.  一般式(2)~(6)のL14~L18が置換もしくは無置換のフェニレン基であることを特徴とする請求項1~3のいずれか1項に記載の発光材料。
  5.  一般式(1)の前記残りのR1~R6が、いずれも一般式(2)で表される基であることを特徴とする請求項1~4のいずれか1項に記載の発光材料。
  6.  一般式(1)の前記残りのR1~R6が、いずれも一般式(4)で表される基であることを特徴とする請求項1~4のいずれか1項に記載の発光材料。
  7.  分子が回転対称構造を有していることを特徴とする請求項1~6のいずれか1項に記載の発光材料。
  8.  下記一般式(1)で表される化合物からなる遅延蛍光体。
    Figure JPOXMLDOC01-appb-C000004
     [一般式(1)において、R1、R3およびR5がフッ素原子を表すか、R1、R2、R4およびR5がフッ素原子を表し、残りのR1~R6が各々独立に下記一般式(2)~(6)のいずれかで表される基を表す。]
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    [一般式(2)~(6)において、L14~L18は単結合、または置換もしくは無置換のアリーレン基を表し、*は一般式(1)におけるベンゼン環への結合部位を表す。R31~R38、R3a、R3b、R41~R48、R4a、R51~R58、R61~R68、R71~R78は、各々独立に水素原子または置換基を表す。R31とR32、R32とR33、R33とR34、R35とR36、R36とR37、R37とR38、R3aとR3b、R41とR42、R42とR43、R43とR44、R45とR46、R46とR47、R47とR48、R51とR52、R52とR53、R53とR54、R55とR56、R56とR57、R57とR58、R61とR62、R62とR63、R63とR64、R65とR66、R66とR67、R67とR68、R71とR72、R72とR73、R73とR74、R75とR76、R76とR77、R77とR78はそれぞれ互いに結合して環状構造を形成していてもよい。]
  9.  請求項1~7のいずれか1項に記載の発光材料を含むことを特徴とする有機発光素子。
  10.  遅延蛍光を放射することを特徴とする請求項9に記載の有機発光素子。
  11.  有機エレクトロルミネッセンス素子であることを特徴とする請求項9または10に記載の有機発光素子。
  12.  下記一般式(1’)で表される化合物。
    Figure JPOXMLDOC01-appb-C000007
     [一般式(1’)において、R1’、R3’およびR5’がフッ素原子を表すか、R1’、R2’、R4’およびR5’がフッ素原子を表し、残りのR1’~R6’が各々独立に下記一般式(2’)~(6’)のいずれかで表される基を表す。]
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    [一般式(2’)~(6’)において、L14’~L18’は単結合、または置換もしくは無置換のアリーレン基を表し、*は一般式(1)におけるベンゼン環への結合部位を表す。R31’~R38’、R3a’、R3b’、R41’~R48’、R4a’、R51’~R58’、R61’~R68’、R71’~R78’は、各々独立に水素原子または置換基を表す。R31’とR32’、R32’とR33’、R33’とR34’、R35’とR36’、R36’とR37’、R37’とR38’、R3a’とR3b’、R41’とR42’、R42’とR43’、R43’とR44’、R45’とR46’、R46’とR47’、R47’とR48’、R51’とR52’、R52’とR53’、R53’とR54’、R55’とR56’、R56’とR57’、R57’とR58’、R61’とR62’、R62’とR63’、R63’とR64’、R65’とR66’、R66’とR67’、R67’とR68’、R71’とR72’、R72’とR73’、R73’とR74’、R75’とR76’、R76’とR77’、R77’とR78’はそれぞれ互いに結合して環状構造を形成していてもよい。]
PCT/JP2015/055313 2014-02-28 2015-02-25 発光材料、有機発光素子および化合物 WO2015129714A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016505244A JP6469076B2 (ja) 2014-02-28 2015-02-25 発光材料、有機発光素子および化合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014037718 2014-02-28
JP2014-037718 2014-02-28

Publications (1)

Publication Number Publication Date
WO2015129714A1 true WO2015129714A1 (ja) 2015-09-03

Family

ID=54009031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055313 WO2015129714A1 (ja) 2014-02-28 2015-02-25 発光材料、有機発光素子および化合物

Country Status (2)

Country Link
JP (1) JP6469076B2 (ja)
WO (1) WO2015129714A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016181846A1 (ja) * 2015-05-08 2016-11-17 コニカミノルタ株式会社 π共役系化合物、有機エレクトロルミネッセンス素子材料、発光材料、発光性薄膜、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2020076796A1 (en) 2018-10-09 2020-04-16 Kyulux, Inc. Novel composition of matter for use in organic light-emitting diodes
WO2021157642A1 (ja) 2020-02-04 2021-08-12 株式会社Kyulux ホスト材料、組成物および有機発光素子
US11101440B2 (en) 2015-07-01 2021-08-24 Kyushu University, National University Corporation Organic electroluminescent device
WO2021235549A1 (ja) 2020-05-22 2021-11-25 株式会社Kyulux 化合物、発光材料および発光素子
WO2022025248A1 (ja) 2020-07-31 2022-02-03 株式会社Kyulux 化合物、発光材料および発光素子
US11335872B2 (en) 2016-09-06 2022-05-17 Kyulux, Inc. Organic light-emitting device
WO2022168956A1 (ja) 2021-02-04 2022-08-11 株式会社Kyulux 化合物、発光材料および有機発光素子
US11476435B2 (en) 2017-08-24 2022-10-18 Kyushu University, National University Corporation Film and organic light-emitting device containing perovskite-type compound and organic light-emitting material
US11482679B2 (en) 2017-05-23 2022-10-25 Kyushu University, National University Corporation Compound, light-emitting lifetime lengthening agent, use of n-type compound, film and light-emitting device
WO2022244503A1 (ja) 2021-05-20 2022-11-24 株式会社Kyulux 有機発光素子
WO2022270354A1 (ja) 2021-06-23 2022-12-29 株式会社Kyulux 化合物、発光材料および有機発光素子
WO2022270602A1 (ja) 2021-06-23 2022-12-29 株式会社Kyulux 有機発光素子および膜
WO2022270113A1 (ja) 2021-06-23 2022-12-29 株式会社Kyulux 有機エレクトロルミネッセンス素子
WO2023282224A1 (ja) 2021-07-06 2023-01-12 株式会社Kyulux 有機発光素子およびその設計方法
WO2023053835A1 (ja) 2021-09-28 2023-04-06 株式会社Kyulux 化合物、組成物、ホスト材料、電子障壁材料および有機発光素子
US11930654B2 (en) 2017-07-06 2024-03-12 Kyulux, Inc. Organic light-emitting element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4125076B2 (ja) * 2002-08-30 2008-07-23 キヤノン株式会社 モノアミノフルオレン化合物およびそれを使用した有機発光素子
JP4311707B2 (ja) * 2002-08-28 2009-08-12 キヤノン株式会社 有機発光素子
JP2011176258A (ja) * 2010-01-28 2011-09-08 Fujifilm Corp 有機電界発光素子及び電荷輸送材料
WO2012143079A1 (de) * 2011-04-18 2012-10-26 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4311707B2 (ja) * 2002-08-28 2009-08-12 キヤノン株式会社 有機発光素子
JP4125076B2 (ja) * 2002-08-30 2008-07-23 キヤノン株式会社 モノアミノフルオレン化合物およびそれを使用した有機発光素子
JP2011176258A (ja) * 2010-01-28 2011-09-08 Fujifilm Corp 有機電界発光素子及び電荷輸送材料
WO2012143079A1 (de) * 2011-04-18 2012-10-26 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
C. LIU ET AL.: "Selective C4-F bond cleavage of pentafluorobenzene: synthesis of N- tetrafluoroarylated heterocyclic compounds", TETRAHEDRON LETTERS, vol. 54, 21 June 2013 (2013-06-21), pages 4649 - 4652, XP028681627 *
S. MI ET AL.: "Impact of substitution on the reorganization energy of bis-triarylamine derivatives", JOURNAL OF MOLECULAR STRUCTURE: THEOCHEM, vol. 940, pages 1 - 5, XP026810533 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170128517A (ko) * 2015-05-08 2017-11-22 코니카 미놀타 가부시키가이샤 π 공액계 화합물, 유기 일렉트로루미네센스 소자 재료, 발광 재료, 발광성 박막, 유기 일렉트로루미네센스 소자, 표시 장치 및 조명 장치
CN107531628A (zh) * 2015-05-08 2018-01-02 柯尼卡美能达株式会社 π共轭类化合物、有机电致发光元件材料、发光材料、发光性薄膜、有机电致发光元件、显示装置及照明装置
JPWO2016181846A1 (ja) * 2015-05-08 2018-02-22 コニカミノルタ株式会社 π共役系化合物、有機エレクトロルミネッセンス素子材料、発光材料、発光性薄膜、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2016181846A1 (ja) * 2015-05-08 2016-11-17 コニカミノルタ株式会社 π共役系化合物、有機エレクトロルミネッセンス素子材料、発光材料、発光性薄膜、有機エレクトロルミネッセンス素子、表示装置及び照明装置
KR102146446B1 (ko) 2015-05-08 2020-08-20 코니카 미놀타 가부시키가이샤 π 공액계 화합물, 유기 일렉트로루미네센스 소자 재료, 발광 재료, 발광성 박막, 유기 일렉트로루미네센스 소자, 표시 장치 및 조명 장치
US11358951B2 (en) 2015-05-08 2022-06-14 Merck Patent Gmbh Π(PI)-conjugated compound, organic electroluminescence element material, light-emitting material, light-emitting thin film, organic electroluminescence element, display device, and illumination device
US11101440B2 (en) 2015-07-01 2021-08-24 Kyushu University, National University Corporation Organic electroluminescent device
US11335872B2 (en) 2016-09-06 2022-05-17 Kyulux, Inc. Organic light-emitting device
US11482679B2 (en) 2017-05-23 2022-10-25 Kyushu University, National University Corporation Compound, light-emitting lifetime lengthening agent, use of n-type compound, film and light-emitting device
US11930654B2 (en) 2017-07-06 2024-03-12 Kyulux, Inc. Organic light-emitting element
US11476435B2 (en) 2017-08-24 2022-10-18 Kyushu University, National University Corporation Film and organic light-emitting device containing perovskite-type compound and organic light-emitting material
WO2020076796A1 (en) 2018-10-09 2020-04-16 Kyulux, Inc. Novel composition of matter for use in organic light-emitting diodes
WO2021157642A1 (ja) 2020-02-04 2021-08-12 株式会社Kyulux ホスト材料、組成物および有機発光素子
WO2021157593A1 (ja) 2020-02-04 2021-08-12 株式会社Kyulux 組成物、膜、有機発光素子、発光組成物を提供する方法およびプログラム
WO2021235549A1 (ja) 2020-05-22 2021-11-25 株式会社Kyulux 化合物、発光材料および発光素子
WO2022025248A1 (ja) 2020-07-31 2022-02-03 株式会社Kyulux 化合物、発光材料および発光素子
WO2022168956A1 (ja) 2021-02-04 2022-08-11 株式会社Kyulux 化合物、発光材料および有機発光素子
WO2022244503A1 (ja) 2021-05-20 2022-11-24 株式会社Kyulux 有機発光素子
WO2022270354A1 (ja) 2021-06-23 2022-12-29 株式会社Kyulux 化合物、発光材料および有機発光素子
WO2022270602A1 (ja) 2021-06-23 2022-12-29 株式会社Kyulux 有機発光素子および膜
WO2022270113A1 (ja) 2021-06-23 2022-12-29 株式会社Kyulux 有機エレクトロルミネッセンス素子
WO2023282224A1 (ja) 2021-07-06 2023-01-12 株式会社Kyulux 有機発光素子およびその設計方法
WO2023053835A1 (ja) 2021-09-28 2023-04-06 株式会社Kyulux 化合物、組成物、ホスト材料、電子障壁材料および有機発光素子

Also Published As

Publication number Publication date
JP6469076B2 (ja) 2019-02-13
JPWO2015129714A1 (ja) 2017-03-30

Similar Documents

Publication Publication Date Title
JP6469076B2 (ja) 発光材料、有機発光素子および化合物
JP6508835B2 (ja) 発光材料、有機発光素子および化合物
JP6284370B2 (ja) 発光材料、有機発光素子および化合物
JP6383538B2 (ja) 発光材料、有機発光素子および化合物
JP6326050B2 (ja) 化合物、発光材料および有機発光素子
JP6263524B2 (ja) 化合物、発光材料および有機発光素子
JP6277182B2 (ja) 化合物、発光材料および有機発光素子
JP6293417B2 (ja) 化合物、発光材料および有機発光素子
JP5594750B2 (ja) 化合物、発光材料および有機発光素子
JP6305391B2 (ja) 電荷輸送材料、ホスト材料、薄膜および有機発光素子
JP6367189B2 (ja) 発光材料、有機発光素子および化合物
WO2015133501A1 (ja) 発光材料、有機発光素子および化合物
WO2015080182A1 (ja) 発光材料、有機発光素子および化合物
WO2015137202A1 (ja) 有機発光素子、ホスト材料、発光材料および化合物
WO2014034535A1 (ja) 発光材料、化合物、およびそれらを用いた有機発光素子
WO2015137244A1 (ja) 発光材料、有機発光素子および化合物
WO2018117241A1 (ja) 発光材料、化合物および有機発光素子
JP6647514B2 (ja) 有機発光素子ならびにそれに用いる発光材料および化合物
WO2014126076A1 (ja) 化合物、発光材料および有機発光素子
JP2018111751A (ja) 発光材料、化合物および有機発光素子
JP2019206511A (ja) 化合物、発光材料および有機発光素子
JP2016084283A (ja) 化合物、発光材料および有機発光素子
JP2016084284A (ja) 化合物、発光材料および有機発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15754544

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016505244

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15754544

Country of ref document: EP

Kind code of ref document: A1