WO2015129642A1 - 可視化流体の流速計測方法及び流速計測システム - Google Patents

可視化流体の流速計測方法及び流速計測システム Download PDF

Info

Publication number
WO2015129642A1
WO2015129642A1 PCT/JP2015/055100 JP2015055100W WO2015129642A1 WO 2015129642 A1 WO2015129642 A1 WO 2015129642A1 JP 2015055100 W JP2015055100 W JP 2015055100W WO 2015129642 A1 WO2015129642 A1 WO 2015129642A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional
particle
image
slice region
visualization fluid
Prior art date
Application number
PCT/JP2015/055100
Other languages
English (en)
French (fr)
Inventor
耕一 西野
Original Assignee
株式会社フローテック・リサーチ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フローテック・リサーチ filed Critical 株式会社フローテック・リサーチ
Publication of WO2015129642A1 publication Critical patent/WO2015129642A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/704Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
    • G01F1/708Measuring the time taken to traverse a fixed distance
    • G01F1/7086Measuring the time taken to traverse a fixed distance using optical detecting arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/001Full-field flow measurement, e.g. determining flow velocity and direction in a whole region at the same time, flow visualisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/18Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the time taken to traverse a fixed distance
    • G01P5/20Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the time taken to traverse a fixed distance using particles entrained by a fluid stream

Definitions

  • the present invention relates to a flow velocity measurement method and flow velocity measurement system and flow velocity measurement system (Flow Velocimetry Method and Flow Velocimetry System for Visualized Fluid).
  • the present invention relates to a flow velocity measurement method and a flow velocity measurement system for photographing a field with an imaging device and measuring a three-dimensional velocity vector or a three velocity component of a visualization fluid.
  • a visualization measurement technique is known in which a tracer particle for visualizing a fluid is used as a marker in a fluid flow to measure a fluid velocity in a flow field.
  • the tracer particles are separated by a minute time interval (for example, by double exposure imaging or high-speed camera imaging, frame imaging using a pulse laser and a digital CCD camera). By continuously photographing at intervals of 1 ms), the moving distance of the particles is measured. The velocity of the particles is calculated by dividing the distance traveled by the time interval.
  • PIV Powder Image Velocimetry
  • the PIV measurement method irradiates a fluid with a laser sheet light, captures fine particles with a size of about 10 ⁇ m contained in the fluid by continuous photographing at minute time intervals (time t and time t + ⁇ t), and determines the velocity of the particle or particle group.
  • This is a flow velocity measuring method that is obtained by image analysis and thereby measures a flow velocity distribution and the like. According to such a PIV measurement method, it is possible to measure two in-plane velocity components in the laser sheet light.
  • a stereo PIV measurement method is known as a measurement technique for obtaining three velocity components in laser sheet light (two-dimensional).
  • the stereo PIV measurement method fine particles in a fluid are continuously photographed at a minute time interval by at least two CCD cameras that photograph visualization fluids from different angular directions, and based on the parallax of a plurality of camera images.
  • This is a flow velocity measurement method in which the three-dimensional movement amount is obtained by image analysis, and thereby, the velocity three components (x-axis, y-axis, and z-axis directions) of the visualization fluid are measured.
  • Patent Documents 1 and 2 Such PIV measurement method or stereo PIV measurement method is described in, for example, Japanese Patent Application Laid-Open Nos. 2011-247601 and 2004-286733 (Patent Documents 1 and 2).
  • the visualization fluid is irradiated with a band-shaped and three-dimensional laser beam of a predetermined thickness having a square or rectangular cross section, and the visualization fluid is photographed from different angular directions.
  • Image at least three CCD cameras, and reconstruct the particle distribution in the three-dimensional space based on the image data of the particle image obtained by the imaging, and the three-dimensional velocity of the visualization fluid in the three-dimensional space.
  • a tomographic PIV measuring method for measuring a vector or a three-speed component is known (Japanese Patent Laid-Open No. 2005-91364, Japanese Patent Laid-Open No. 2013-217902, etc.).
  • the tomographic PIV measurement method is a measurement technique that can measure a three-dimensional flow velocity distribution of a fluid efficiently and with high accuracy by fusing CT (Computed Tomography) technology and PIV technology.
  • CT Computer Planar Tomography
  • PIV Planar Imaging
  • the stereo PIV technique is a two-dimensional measurement technique, whereas the tomographic PIV technique is advantageous in that it is a three-dimensional measurement technique.
  • the storage device that constitutes the image analysis device of the measurement system uses three-dimensional data such as three-dimensional particle distribution data and three-dimensional voxel group luminance data as analysis data.
  • three-dimensional data such as three-dimensional particle distribution data and three-dimensional voxel group luminance data
  • a storage section or storage means having an excessive storage capacity must be possessed.
  • the arithmetic processing device can analyze data for a relatively long time for arithmetic processing. It takes time.
  • 3D data such as 3D particle distribution data and 3D voxel group luminance data are different from actual particle images captured by the camera.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide an arithmetic processing device for acquiring a three-dimensional velocity vector or a three-velocity component of a visualization fluid by a tomographic PIV measurement method.
  • An object of the present invention is to provide a flow velocity measurement method and a flow velocity measurement system that can reduce or shorten the load and data analysis time.
  • Another object of the present invention is to provide a flow velocity measurement method and a flow velocity measurement system that can reduce the storage capacity of the storage device in such a flow velocity measurement method and flow velocity measurement system.
  • the present invention is obtained by imaging a two-time particle image separated by a minute time interval with a plurality of imaging devices that image visualization fluid visualized by a group of microparticles.
  • the particle distribution in the three-dimensional space is reconstructed based on the image data of the particle image, and the three-dimensional velocity vector or the three velocity component of the visualization fluid in the three-dimensional space is measured.
  • a flow velocity measuring method characterized by having a step (S7, S8, S11) of acquiring.
  • the present invention also captures two continuous time particle images separated by a minute time interval by a plurality of imaging devices that image visualization fluid visualized by a group of microparticles, and converts the image data of the particle images obtained by the imaging into image data.
  • the particle distribution in the three-dimensional space is reconstructed based on the three-dimensional velocity vector or the three-velocity component of the visualization fluid in the three-dimensional space.
  • a slice region having a predetermined thickness formed by dividing the three-dimensional space is set, and the particle distribution at each time in the slice region is reconstructed based on the two-dimensional image data imaged by the imaging device, and the slice region Obtaining three-dimensional luminance information at two consecutive times (S3 ', S5'),
  • a flow velocity measuring method characterized by the above is provided.
  • a weighting factor for specifying the three-dimensional luminance information in the slice region is calculated and stored based on the pixels of the two-dimensional image, and the 2
  • the particle distribution in the slice region is projected onto the virtual projection plane according to the weighting factor.
  • the three-dimensional space in which the particle distribution is reconstructed is divided into slice regions, and the particle distribution in the slice region is extracted from the three-dimensional luminance information.
  • the particle distribution in the slice region is projected onto a plurality of virtual projection planes, and a plurality of virtual two-dimensional particle images at two consecutive times are generated.
  • Two-dimensional PIV is performed on a plurality of two-dimensional particle images, and two-dimensional movement vectors of the particles in the plurality of image planes obtained thereby are obtained. Based on the two-dimensional movement vectors thus obtained, three-dimensional A three-dimensional velocity vector or three velocity component of the visualization fluid in space is obtained.
  • the arithmetic processing unit does not perform arithmetic processing on the three-dimensional voxel group luminance data, but only performs arithmetic processing on the two-dimensional pixel group luminance data. Time is reduced or shortened. Therefore, according to the flow velocity measuring method or flow velocity measuring system having the above configuration, the analysis time of the arithmetic processing device can be shortened and the measurement can be speeded up.
  • the two-dimensional particle image obtained by projecting the particle group in each slice region is a particle image that can be directly compared with a normal PIV particle image photographed with sheet light illumination.
  • the validity of particle imaging by the imaging device can be evaluated, and the validity of reconstruction of the three-dimensional luminance information can be visually confirmed.
  • the present invention is arranged to image a visualization fluid visualized by a group of microparticles, and a plurality of imaging devices that capture particle images at two consecutive times separated by a minute time interval, and the imaging device
  • the flow velocity of the visualization fluid having the arithmetic processing unit for reconstructing the particle distribution in the three-dimensional space based on the image data obtained by the above and calculating the three-dimensional velocity vector or the three velocity component of the visualization fluid in the three-dimensional space
  • the arithmetic processing unit is configured to reconstruct the particle distribution at each time in the three-dimensional space based on the two-dimensional image data imaged by the imaging device and obtain three-dimensional luminance information at two consecutive times.
  • 3D luminance information acquisition means Setting a slice region of a predetermined thickness obtained by dividing the three-dimensional space, extracting a particle distribution inside the slice region from the three-dimensional luminance information, and projecting the particle distribution onto a plurality of virtual projection planes
  • two-dimensional particle image generation means S4, S6 for generating a plurality of virtual two-dimensional particle images at two consecutive times
  • a two-dimensional PIV is performed on the plurality of two-dimensional particle images, and a three-dimensional velocity vector or three velocities of the visualization fluid in the three-dimensional space is obtained based on the two-dimensional movement vectors of the particles in the plurality of image planes obtained by the two-dimensional PIV.
  • a flow velocity measurement system characterized by having calculation means (S7, S8, S11) for calculating components.
  • the present invention is also arranged to image a visualization fluid visualized by a group of microparticles, and a plurality of imaging devices that capture particle images at two consecutive times separated by a minute time interval, and the imaging device
  • a flow measurement system for a visualization fluid having a processing device for reconstructing a particle distribution in a three-dimensional space based on image data and calculating a three-dimensional velocity vector or a three-velocity component of the visualization fluid in the three-dimensional space
  • the arithmetic processing unit sets a slice region having a predetermined thickness obtained by dividing the three-dimensional space, and re-analyzes the particle distribution at each time in the slice region based on the two-dimensional image data captured by the imaging device.
  • Three-dimensional luminance information acquisition means (S3 ′, S5 ′) constructed to obtain three-dimensional luminance information at two consecutive times,
  • Two-dimensional particle image generation means (S6) for generating a plurality of virtual two-dimensional particle images at two consecutive times in the slice region by projecting the particle distribution inside the slice region onto a plurality of virtual projection planes;
  • a two-dimensional PIV is performed on a plurality of the two-dimensional particle images, and a three-dimensional velocity vector or a three-velocity component of the visualization fluid in the slice region is obtained based on two-dimensional movement vectors of the particles in the plurality of image planes obtained by the two-dimensional PIV.
  • First calculating means S7, S8 for calculating Second calculation means (S11) for collecting, integrating or synthesizing the information of the three-dimensional velocity vector or the three velocity components in each slice region to obtain the three-dimensional velocity vector or the three velocity components of the visualization fluid in the three-dimensional space.
  • a flow velocity measurement system characterized by comprising: Preferably, the three-dimensional luminance information acquisition means calculates and stores a weighting factor for specifying the three-dimensional luminance information in the slice region based on the pixels of the two-dimensional image, and the two-dimensional particle image The generation unit projects the particle distribution in the slice region onto the virtual projection plane according to the weighting factor.
  • the reconstruction of the three-dimensional luminance information, the generation of a virtual two-dimensional particle image, the calculation of the two-dimensional PIV, the three-dimensional velocity vector, or the three-velocity component are executed on a slice area basis.
  • the information of the three-dimensional velocity vector or the three velocity components in each slice region is collected, integrated, or synthesized to obtain the three-dimensional velocity vector or the three velocity components of the visualization fluid in the three-dimensional space.
  • the storage device configuring the measurement system only needs to have a storage capacity for storing the three-dimensional luminance information of each slice region, and thus the storage capacity of the storage device can be reduced.
  • the present invention not only the advantages of shortening the analysis time, visual confirmation of the validity of the reconstruction and increasing the accuracy of the measurement, but also the storage of the storage device constituting the measurement system. Since the capacity can be further reduced, the initial equipment cost of the measurement system can be further reduced, and the system configuration can be further simplified.
  • the load on the arithmetic processing unit and the data analysis time for acquiring the three-dimensional velocity vector or the three velocity components of the visualization fluid by the tomographic PIV measurement method are reduced or shortened. be able to.
  • the flow velocity measuring method and flow velocity measuring system of the present invention in which reconstruction of three-dimensional luminance information, generation of a two-dimensional particle image, calculation of a two-dimensional PIV, a three-dimensional velocity vector, or a three-velocity component is executed in units of slice regions.
  • the load on the arithmetic processing unit and the data analysis time can be reduced or shortened, and the storage capacity of the storage device can be reduced.
  • FIG. 1 is a schematic perspective view schematically showing a configuration of a measurement unit of a flow velocity measurement system according to a preferred embodiment of the present invention.
  • FIG. 2A is a perspective view showing the structure of the calibration plate and the support column arranged in the measurement channel in the initial setting of the measurement system, and FIG. 2B shows the pattern of the reference points of the calibration plate. It is a top view.
  • 3A is a plan view of the calibration plate shown in FIG. 2, and FIG. 3B is a bottom view of the calibration plate.
  • FIG. 4A is a particle image photographed at two consecutive times by a CCD camera
  • FIG. 4B is an enlarged image of the particle image photographed by the CCD camera.
  • FIG. 5 is an enlarged perspective view showing a photographing target area of the CCD camera.
  • FIG. 6A is image data illustrating a two-dimensional particle image obtained by projecting the particle distribution in the slice region onto the virtual projection plane
  • FIG. 6B is a plurality of two-dimensional particle images. It is a schematic perspective view which illustrates the three-dimensional velocity vector of the visualization fluid obtained based on this.
  • FIG. 7 is a flowchart showing a flow velocity measuring method according to a preferred embodiment of the present invention.
  • FIG. 8 is a flowchart showing another flow velocity measuring method according to a preferred embodiment of the present invention.
  • the slice region is a space obtained by equally dividing the three-dimensional space.
  • the slice region is a space that traverses the flow path of the visualization fluid in parallel with the optical axis of the laser light irradiated to the visualization fluid.
  • the virtual projection plane is a plane orthogonal to the optical axis of the imaging device.
  • the flow path of the visualization fluid has a circular flow path cross section, and a circular calibration plate disposed in the flow path is used to obtain a calibration image in order to obtain a relationship between image coordinates and physical coordinates.
  • the calibration plate has an orthogonal lattice array index disposed in the central circular region and an annular array index disposed circumferentially in the outer peripheral region.
  • FIG. 1 is a schematic perspective view schematically showing a configuration of a measurement unit of a flow velocity measurement system according to a preferred embodiment of the present invention.
  • a flow velocity measurement system is a tomographic stereo PIV system (hereinafter referred to as “TSPIV”) that efficiently and highly accurately measures a three-dimensional flow velocity distribution of fluid by fusing CT (Computed Tomography) technology and stereo PIV technology. System ”)).
  • the TSPIV system includes a cylindrical body 10 having a perfectly circular cross section that forms a visualization flow path of a visualization fluid (gas) P into which fine particles (tracer particles) are injected.
  • the size of the fine particles is, for example, about 10 ⁇ m.
  • the cylindrical body 10 has a tube wall 11 made of transparent resin or transparent glass, and the upper and lower portions of the cylindrical body 10 are connected to a supply path and a discharge path (not shown) for the fluid P.
  • the TSPIV system includes a light source (not shown) including a laser head and an optical system device, an image processing device (not shown) including a storage device, an arithmetic processing device, an image display (display) device, and various input / output devices.
  • the band-shaped and three-dimensional laser light L irradiated by the light source is irradiated in a direction orthogonal to the central axis of the cylindrical body 10.
  • the central axis of the cylindrical body 10 is oriented in the vertical direction
  • the optical axis of the laser light L is oriented in the horizontal direction.
  • the laser light L has a rectangular or rectangular cross section with a width W and a height H, the width W of the laser light L is larger than the inner diameter D of the cylindrical body 10, and the vertical flow path in the cylindrical body 10 is a laser. It is perpendicular to the optical axis of the light L and is included in the laser light L within a range of height H.
  • the height H of the laser beam L is set to a predetermined dimension of about several mm to several cm, for example, a predetermined value within a range of 5 to 10 mm.
  • the visualization fluid flows through the flow path in the cylindrical body 10 downward or upward (downward in this example).
  • CCD cameras 2 and 3 are arranged above the laser beam L, and CCD cameras 1 and 4 are arranged below the laser beam L.
  • the optical axes of the CCD cameras 1 to 4 are inclined at a predetermined angle with respect to the central axis of the cylindrical body 10, and the CCD cameras 1 to 4 take images of fine particles in the fluid P from four directions having different angles. Are positioned as follows.
  • FIG. 2A is a perspective view showing the structure of the calibration plate 20 and the support column 21 arranged in the cylindrical body 10, and FIG. 2B is a plan view showing the index pattern of the calibration plate 20.
  • FIG. FIG. 3A is a plan view of the calibration plate 20, and FIG. 3B is a bottom view of the calibration plate 20.
  • the calibration plate 20 is used to perform calibration of the CCD cameras 1 to 4 that specify in advance the relationship between the image coordinates of the CCD cameras 1 to 4 and the physical coordinates of the space in the flow path.
  • the calibration plate 20 is inserted into the cylindrical body 10 after the positions of the CCD cameras 1 to 4 are fixed, and removed after the camera calibration operation is completed.
  • FIG. 2A shows a state where the calibration plate 20 and the support column 21 are assembled.
  • the calibration plate 20 and the column 21 are made of a metal member having a black surface, and the top of the column 21 is fitted into the notch 22 of the calibration plate 20 to support the calibration plate 20 horizontally.
  • the calibration plate 20 has a configuration in which a white index (a reference point 23 shown in FIG. 3) is arranged at predetermined positions on the circular upper surface and the circular lower surface on a black background surface.
  • the background color and the reference point color need only differ greatly in brightness, and therefore it is possible to arrange a black circular reference point on the white background.
  • the reference point 23 is arranged at the same upper and lower positions on each surface (upper surface and lower surface) of the calibration plate 20.
  • the reference point 23 includes a reference point 23a of an orthogonal lattice arrangement disposed in the central circular region, and an annular array of reference points 23b disposed in the circumferential direction in the outer peripheral region.
  • the reference points 23a and 23b are basically circular contour indicators having the same diameter, but the specific reference points 23c arranged in the central region to indicate the XY directions are more than the reference points 23a and 23b. Have a large diameter.
  • the visualization fluid P containing fine particles is supplied into the cylindrical body 10 from the supply path (not shown).
  • the visualization fluid P flows through the flow path in the cylindrical body 10 and flows out to the discharge path (not shown).
  • FIG. 4A is a particle image taken at time t and time t + ⁇ t by the CCD cameras 1 to 4.
  • FIG. 4B is an enlarged image of the particle image taken at time t by the CCD camera 1.
  • FIG. 5 is an enlarged perspective view showing the photographing target area ⁇ of the CCD cameras 1 to 4.
  • the fine particle group moving in the flow path in the cylindrical body 10 reflects the laser beam L in the imaging target region ⁇ and is captured by the CCD cameras 1 to 4 as a particle image as shown in FIG.
  • MART Multiplicative Algebraic Reconstruction ⁇ Technique
  • the particle image From the reconstructed three-dimensional luminance information, a three-dimensional array using the voxel group (three-dimensional) as element data is obtained.
  • the luminance of each pixel of the particle image (two-dimensional) is represented by weighted addition of the luminance of the voxel group that is the source of the luminance, and a weighting coefficient is calculated.
  • FIG. 5 illustrates a slice region ⁇ having a thickness h.
  • the slice area ⁇ is a circular flat space obtained by equally dividing a three-dimensional space (that is, the imaging target area ⁇ ) in the cylindrical body 10 irradiated with the laser light L in parallel with the optical axis of the laser light L. It traverses the flow path of the visualization fluid parallel to the optical axis of the light L.
  • the thickness h of the slice region ⁇ is set to, for example, a predetermined value within the range of the height H ⁇ 1/5 to the height H ⁇ 1/10 of the laser light L, and each slice region ⁇ It is set by dividing evenly over the entire height H.
  • the particle distribution in the slice region ⁇ is projected onto a plurality of virtual projection planes defined in an arbitrary plurality of line-of-sight directions by applying the above-described calculation processing using a weighting coefficient, and as a result, continuous 2 optimal for stereo PIV is obtained.
  • a plurality of virtual particle images at time (t and t + ⁇ t) are generated.
  • the virtual projection plane is a plane orthogonal to the optical axis of the CCD cameras 1 to 4.
  • FIG. 6A is image data illustrating a virtual particle image projected on the virtual projection plane.
  • Two-dimensional PIV is performed on the virtual projection image generated as the particle image of the particle group located in each slice region ⁇ , and the two-dimensional movement vector of the particle in each image plane obtained thereby, and the slice region ⁇
  • the least square method is applied to the relational expression established between the three-dimensional velocity vector in, the separately generated camera parameter and the two-time time interval ⁇ t, and the three-dimensional velocity vector in the slice region ⁇ is calculated.
  • the three-dimensional velocity vector of the visualization fluid P in the target physical space (imaging target region ⁇ ) can be acquired.
  • FIG. 6B is a schematic perspective view illustrating a three-dimensional velocity vector in the imaging target region ⁇ obtained by the above process.
  • three-dimensional voxel group data using voxel groups (three-dimensional) as element data is converted into a plurality of two-dimensional particle images to which two-dimensional PIV can be applied.
  • image data captured by the CCD cameras 1 to 4 is not processed as three-dimensional voxel group data, but two-dimensional virtual particle images to which two-dimensional PIV can be applied.
  • the two-dimensional PIV is executed on a plurality of virtual particle images (projected images) at two consecutive times (t and t + ⁇ t), thereby obtaining a motion vector (two-dimensional) of the particle image.
  • the application of the least square method regarding the relational expression established between the movement vector, the separately generated camera parameter, the time interval ⁇ t of two times, and the three-dimensional velocity vector of the particle group allows the particle group 3 A dimensional velocity vector is obtained.
  • a three-dimensional flow velocity distribution is obtained.
  • the data to be calculated by the arithmetic processing unit is not the three-dimensional voxel group luminance data but the two-dimensional pixel group luminance data.
  • Data processing time is greatly reduced or shortened (it is reduced or shortened by about one or two digits). For this reason, it is possible to shorten the analysis time of the arithmetic processing unit and speed up the measurement.
  • the particle image obtained by projecting the particle group in each slice region ⁇ is a particle image that can be directly compared with a normal PIV particle image captured by sheet light illumination, the validity of capturing the particle image is evaluated. And the validity of the reconstruction can be confirmed visually.
  • FIG. 7 is a flowchart showing a flow velocity measuring method according to a preferred embodiment of the present invention.
  • the CCD cameras 1 to 4 simultaneously photograph particles in the photographing target region ⁇ at two different times (time t, t + ⁇ t) (S (step) 1).
  • This photographing is photographing in three directions and two consecutive times of particles in the fluid by three or more imaging devices.
  • the luminance value of each pixel is expressed by weighted accumulation of the luminance of the particle group in the three-dimensional space as the source.
  • the weighting coefficient w ij of the following formula is calculated (S2).
  • I (xi, yi) represents the luminance of the pixel of each coordinate (xi, yi) in the two-dimensional coordinates (xi, yi) of the two-dimensional image captured by the CCD cameras 1 to 4.
  • I is a pixel number in each two-dimensional image.
  • E (Xj, Xj, Xj) represents the luminance of a voxel having three-dimensional coordinates (Xj, Xj, Xj), where j is a voxel number.
  • voxel is a volume element
  • pixel is a normal lattice unit representing two-dimensional image data
  • voxel is a normal lattice unit in a three-dimensional space.
  • the fact that the luminance E (Xj, Xj, Xj) shows a relatively high value means that there is a relatively large amount of particles that reflect the laser beam at the jth voxel j having the coordinates (Xj, Xj, Xj). It means to do.
  • MART Multiplicative Algebraic Reconstruction Technique
  • the imaging target area ⁇ is equally divided into slice areas ⁇ having a predetermined thickness perpendicular to an arbitrary axial direction (in this example, the central axis of the flow path), and reconstructed three-dimensionally at two times (time t, t + ⁇ t).
  • the luminance distribution is divided into a three-dimensional luminance distribution of the slice region ⁇ (S4).
  • a specific slice region ⁇ is focused (S5), and the luminance I (xi, yi) of the pixel and the luminance E (Xj, Xj, voxel) of the pixel based on the three-dimensional luminance distribution information of the particles included in the slice region ⁇ .
  • Xj) is used to generate a virtual two-dimensional image obtained by projecting the images of the CCD cameras 1 to 4 onto the virtual projection plane (S6).
  • the two-dimensional PIV is applied to the virtual two-dimensional image at two times (time t, t + ⁇ t) generated in this way, and the two-dimensional movement vector of the particle on the virtual projection plane of each CCD camera 1 to 4 is calculated ( S7).
  • the least square method is applied to the relational expression established between the two-dimensional movement vector, the three-dimensional velocity vector of the particle, the separately generated camera parameter, and the time interval ⁇ t of two times, and the three-dimensional particle A velocity vector is calculated (S8).
  • the calculation of the three-dimensional velocity vector is executed for all slice regions ⁇ of the imaging target region ⁇ (S9: S10).
  • the three-dimensional velocity vectors calculated for each slice region ⁇ are integrated to obtain a particle velocity vector in the imaging target space ⁇ (S11).
  • a series of flow velocity measurement processes from photographing (S1) to obtaining a particle velocity vector (S11) of the CCD cameras 1 to 4 are repeatedly executed (S12, S13). Acquired serially.
  • a series of flow velocity measurement processes ends when a prescribed number of two-time particle velocity data is obtained (S12).
  • FIG. 8 is a flowchart showing another flow velocity measuring method according to a preferred embodiment of the present invention.
  • the flow velocity measurement method shown in FIG. 7 reconstructs the particle distribution of the imaging target region ⁇ , obtains the three-dimensional luminance information of the entire region ⁇ , extracts the particle distribution in the slice region ⁇ from the three-dimensional luminance information, Although the virtual two-dimensional particle image is generated and the two-dimensional PIV is executed, only the particle distribution of each slice region ⁇ is reconstructed by using the flow velocity measurement method shown in FIG. After obtaining the three-dimensional luminance information, the flow velocity measurement method may be configured to generate a virtual two-dimensional particle image and execute the two-dimensional PIV.
  • the slice region ⁇ is set based on the particle images at the respective photographing times (time t, t + ⁇ t) obtained by photographing the particles in the photographing target region ⁇ by the CCD cameras 1 to 4 (S1). (S2 ').
  • the specific slice region ⁇ is focused (S3 ′), the weighting coefficient w ij (the above formula 1) is calculated and stored for the particle group of the specific slice region ⁇ (S4 ′), and each imaging time ( At time t, t + ⁇ t), MART (Multiplicative Algebraic Reconstruction Technique) is applied from the particle images of all CCD cameras 1 to 4 using the weighting coefficient w ij, and the three-dimensional luminance distribution of the particles in the slice region ⁇ at each time Information is reconstructed and stored (S5 ′).
  • MART Multiplicative Algebraic Reconstruction Technique
  • the above-described virtual two-dimensional image is generated according to the weighting coefficient w ij (S6), and the virtual time 2 thus obtained (time t, t + ⁇ t) is obtained.
  • a two-dimensional PIV is applied to the two-dimensional image, and a two-dimensional movement vector of particles on the virtual projection planes of the CCD cameras 1 to 4 is calculated (S7).
  • the least square method is applied to the relational expression established between the two-dimensional movement vector, the three-dimensional velocity vector of the particle, the separately generated camera parameter, and the time interval ⁇ t of two times, and the three-dimensional particle A velocity vector is calculated (S8).
  • the process from the calculation of the weighting coefficient w ij (S4 ′) to the calculation of the three-dimensional velocity vector (S8) for the particle group in the slice region ⁇ is executed for all the slice regions ⁇ of the imaging target region ⁇ (S9: S10). .
  • the imaging target space is a cylindrical flow path having a perfect circular cross section, but may be designed as a flow path having various cross sectional forms such as a polygonal cross section, an elliptical cross section, and a triangular cross section. .
  • imaging devices CCD cameras
  • three or five or more imaging devices may be used for particle imaging.
  • the present invention is applied to a flow velocity measurement method and a flow velocity measurement system in which a flow field of a visualized fluid obtained by visualizing a fluid with a group of fine particles is photographed by an imaging device and a three-dimensional velocity vector or a three velocity component of the visualized fluid is measured.
  • a plurality of imaging devices that image visualization fluid visualized by a group of microparticles are used to capture two continuous time particle images separated by a minute time interval, and an image of a particle image obtained by imaging.
  • the method is applied to a flow velocity measurement method and a flow velocity measurement system for a visualization fluid that reconstructs the particle distribution in the three-dimensional space based on the data and measures the three-dimensional velocity vector or the three velocity component of the visualization fluid in the three-dimensional space.
  • the flow velocity measurement method and flow velocity measurement system of the present invention are a tomographic stereo PIV measurement method obtained by improving the tomographic PIV measurement method. According to the tomographic stereo PIV measurement method of the present invention, it is possible to reduce or shorten the load of the arithmetic processing unit and the data analysis time for acquiring the three-dimensional velocity vector or three-speed component of the visualization fluid. The practical effect of the invention is remarkable.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Measuring Volume Flow (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

【課題】トモグラフィックPIV計測法により可視化流体の3次元速度ベクトル又は3速度成分を取得するための演算処理装置の負荷及びデータ解析時間を軽減又は短縮する。 【解決手段】撮像装置(1-4)によって撮像された2次元画像データに基づいて3次元空間(α)内の各時刻(t,t+Δt)の粒子分布が再構築され(S3)、連続2時刻の3次元輝度情報が得られる。3次元空間を分割してなる所定厚のスライス領域(β)が設定され、スライス領域内の粒子分布が3次元輝度情報より抽出される(S4)。スライス領域内の粒子分布は、複数の仮想投影面に投影され、連続2時刻の複数且つ仮想の2次元粒子画像が生成される(S6)。複数の2次元粒子画像に2次元PIVを実行して得られる複数の画像面内の粒子の2次元移動ベクトルに基づいて、3次元空間における可視化流体の3次元速度ベクトル又は3速度成分が取得される(S7,S8,S11)。

Description

可視化流体の流速計測方法及び流速計測システム
 本発明は、可視化流体の流速計測方法及び流速計測システム(Flow Velocimetry Method and Flow Velocimetry System for Visualized Fluid)に関するものであり、より詳細には、微小粒子群により流体を可視化してなる可視化流体の流動場を撮像装置によって撮影し、可視化流体の3次元速度ベクトル又は3速度成分を計測する流速計測方法及び流速計測システムに関するものである。
 流体を可視化するためのトレーサ粒子をマーカとして流体の流れに混入し、流動場の流体速度等を計測する可視化計測技術が知られている。可視化流体計測技術として知られる直接撮影法においては、二重露光撮影又は高速度カメラ撮影や、パルスレーザ及びデジタルCCDカメラを用いたフレームまたぎ撮影等の方法によって、トレーサ粒子を微小時間間隔(例えば、1ms間隔)で連続撮影することにより、粒子の移動距離が測定される。粒子の速度は、移動距離を時間間隔で除すことによって演算される。
 可視化流体計測技術の一種として知られたPIV(Particle Image Velocimetry、粒子像流速計測)は、このような可視化流体の速度分布を調べる直接撮影法として普及した計測技法である。PIV計測法は、流体にレーザシート光を照射して、流体に含まれる寸法10μm程度の微小粒子を微小時間間隔(時刻t及び時刻t+Δt)の連続撮影により撮像し、粒子又は粒子群の速度を画像解析により求め、これにより、流速分布等を測定する流速計測方法である。このようなPIV計測法によれば、レーザシート光内における面内2成分の速度成分を計測することができる。
 また、レーザシート光(2次元)内の速度3成分を得る計測技法として、ステレオPIV計測法が知られている。ステレオPIV計測法は、異なる角度方向から可視化流体を撮影する少なくとも2台のCCDカメラによって流体中の微粒子を微小時間間隔で連続撮影し、複数のカメラ映像の視差に基づいて、粒子又は粒子群の三次元移動量を画像解析により求め、これにより、可視化流体の速度3成分(x軸、y軸及びz軸方向)を計測する流速計測方法である。
 このようなPIV計測法又はステレオPIV計測法は、例えば、特開2011-247601号公報、特開2004-286733号公報(特許文献1及び2)等に記載されている。
 可視化流体の速度3成分を計測するための他の流速計測方法として、方形断面又は矩形断面を有する所定厚の帯状且つ立体的なレーザ光を可視化流体に照射し、異なる角度方向から可視化流体を撮影する少なくとも3台のCCDカメラによって流体中の微粒子を撮像し、撮像により取得した粒子像の画像データに基づいて3次元空間内の粒子分布を再構築し、3次元空間における可視化流体の3次元速度ベクトル又は3速度成分を測定するトモグラフィックPIV計測法が知られている(特開2005-91364号公報、特開2013-217902号公報等)。トモグラフィックPIV計測法は、CT(Computed・Tomography)技術とPIV技術との融合により流体の3次元流速分布を効率的且つ高精度に測定することができる計測技法である。典型的には、4台のCCDカメラが撮影に使用され、各カメラは、連続2時刻(t及びt+Δt)の各々において流体中の微粒子を同時に撮影する。ステレオPIV技術が2次元計測技術であるのに対し、トモグラフィックPIV技術は、3次元計測技術である点で優位性がある。
特開2011-247601号公報 特開2004-286733号公報 特開2005-91364号公報 特開2013-217902号公報
 しかしながら、トモグラフィックPIV計測法においては、計測システムの画像解析装置を構成する記憶装置は、3次元粒子分布のデータや、3次元voxel(ボクセル)群の輝度データ等の3次元データを解析データとして記憶し且つ保存すべく、過大な記憶容量の記憶部又は記憶手段を保有しなければならない。また、計測システムを構成する演算処理装置には、多量の3次元データのデータ解析のために多大な動作負荷が課せられるので、演算処理装置は、演算処理のために比較的長時間のデータ解析時間を要する。このため、トモグラフィックPIV計測法においては、高性能且つ大容量の電子機器を記憶装置及び演算処理装置として採用せざるを得ず、この結果、計測システムの初期設備費が高額化するとともに、システム構成が複雑化する傾向がある。
 また、3次元粒子分布のデータや、3次元voxel群の輝度データ等の3次元データは、カメラによって撮影された実際の粒子画像とは相違するので、撮影された粒子画像の妥当性を計測過程において視覚的又は感覚的に評価し又は認識し難く、粒子画像に基づく3次元データの再構築の妥当性を視覚的又は感覚的に確認することもできない。
 本発明は、このような課題に鑑みてなされたものであり、その目的とするところは、トモグラフィックPIV計測法により可視化流体の3次元速度ベクトル又は3速度成分を取得するための演算処理装置の負荷及びデータ解析時間を軽減又は短縮することができる流速計測方法及び流速計測システムを提供することにある。
 本発明は更に、このような流速計測方法及び流速計測システムにおいて、記憶装置の記憶容量を低減することができる流速計測方法及び流速計測システムを提供することを目的とする。
 本発明は、上記目的を達成すべく、微小粒子群により可視化された可視化流体を撮像する複数の撮像装置によって、微小時間間隔を隔てた連続2時刻の粒子像を撮像し、撮像により得られた粒子像の画像データに基づいて3次元空間内の粒子分布を再構築し、前記3次元空間における可視化流体の3次元速度ベクトル又は3速度成分を測定する可視化流体の流速計測方法において、
 前記撮像装置によって撮像された2次元画像データに基づいて前記3次元空間内の各時刻の粒子分布を再構築し、連続2時刻の3次元輝度情報を得る工程(S3)と、
 前記3次元空間を分割してなる所定厚のスライス領域を設定し、該スライス領域の内部の粒子分布を前記3次元輝度情報より抽出して、該粒子分布を複数の仮想投影面に投影することによって、連続2時刻の複数且つ仮想の2次元粒子画像を生成する工程(S4,S6)と、
 複数の前記2次元粒子画像に2次元PIVを実行して得られる複数の画像面内の粒子の2次元移動ベクトルに基づいて、前記3次元空間における可視化流体の3次元速度ベクトル又は3速度成分を取得する工程(S7,S8,S11)とを有することを特徴とする流速計測方法を提供する。
 本発明は又、微小粒子群により可視化された可視化流体を撮像する複数の撮像装置によって、微小時間間隔を隔てた連続2時刻の粒子像を撮像し、撮像により得られた粒子像の画像データに基づいて3次元空間内の粒子分布を再構築し、前記3次元空間における可視化流体の3次元速度ベクトル又は3速度成分を測定する可視化流体の流速計測方法において、
 前記3次元空間を分割してなる所定厚のスライス領域を設定し、前記撮像装置によって撮像された2次元画像データに基づいて前記スライス領域内の各時刻の粒子分布を再構築し、前記スライス領域内における連続2時刻の3次元輝度情報を得る工程(S3',S5')と、
 前記3次元輝度情報に基づいて前記スライス領域の内部の粒子分布を複数の仮想投影面に投影することによって、連続2時刻の複数且つ仮想の2次元粒子画像を生成する工程(S6)と、
 複数の前記2次元粒子画像に2次元PIVを実行して得られる複数の画像面内の粒子の2次元移動ベクトルに基づいて、前記スライス領域における可視化流体の3次元速度ベクトル又は3速度成分を取得する工程(S7,S8)と、
 各スライス領域における前記3次元速度ベクトル又は3速度成分の情報を集合、統合又は合成して、前記3次元空間における可視化流体の3次元速度ベクトル又は3速度成分を取得する工程(S11)とを有することを特徴とする流速計測方法を提供する。
 好ましくは、前記3次元輝度情報を得る前記工程においては、前記2次元画像の画素に基づいて前記スライス領域内の前記3次元輝度情報を特定するための重み係数が算出され且つ記憶され、前記2次元粒子画像を生成する前記工程においては、前記スライス領域内の粒子分布は、前記重み係数に従って前記仮想投影面に投影される。
 本発明の上記構成によれば、粒子分布を再構築した3次元空間がスライス領域に分割され、スライス領域の粒子分布が3次元輝度情報より抽出される。スライス領域の粒子分布は、複数の仮想投影面に投影され、連続2時刻の複数且つ仮想の2次元粒子画像が生成される。複数の2次元粒子画像に対して2次元PIVが実行され、これにより得られる複数の画像面内の粒子の2次元移動ベクトルが求められ、かくして求められた2次元移動ベクトルに基づいて、3次元空間における可視化流体の3次元速度ベクトル又は3速度成分が得られる。即ち、演算処理装置は、3次元のvoxel群輝度データを演算処理するのではなく、2次元のpixel群輝度データを演算処理するにすぎないので、演算処理装置のデータ解析に要する負荷及びデータ処理時間は軽減又は短縮する。従って、上記構成の流速計測方法又は流速計測システムによれば、演算処理装置の解析時間を短縮し、計測を高速化することができる。
 また、本発明の上記構成によれば、各スライス領域の粒子群を投影した2次元粒子画像は、シート光照明で撮影される通常のPIV粒子画像と直接に対比可能な粒子画像であるので、上記撮像装置による粒子撮影の妥当性を評価し得るとともに、3次元輝度情報の再構築の妥当性を視覚的に確認することができる。
 更に、本発明の上記構成によれば、各スライス領域の粒子分布を仮想投影面に投影する過程において、ステレオPIV解析を最も精度良く行うことのできる視線方向を任意に選択することが可能であるので、測定精度の高精度化を達成することが可能となる。
 他の観点より、本発明は、微小粒子群により可視化された可視化流体を撮像するように配置され、微小時間間隔を隔てた連続2時刻の粒子像を撮像する複数の撮像装置と、該撮像装置によって得られた画像データに基づいて3次元空間内の粒子分布を再構築し、前記3次元空間における可視化流体の3次元速度ベクトル又は3速度成分を演算する演算処理装置とを有する可視化流体の流速計測システムにおいて、
 前記演算処理装置は、前記撮像装置によって撮像された2次元画像データに基づいて前記3次元空間内の各時刻の粒子分布を再構築し、連続2時刻の3次元輝度情報を得るように構成された3次元輝度情報取得手段(S3)と、
 前記3次元空間を分割してなる所定厚のスライス領域を設定し、該スライス領域の内部の粒子分布を前記3次元輝度情報より抽出して、該粒子分布を複数の仮想投影面に投影することによって、連続2時刻の複数且つ仮想の2次元粒子画像を生成する2次元粒子画像生成手段(S4,S6)と、
 複数の前記2次元粒子画像に2次元PIVを実行し、これにより得られる複数の画像面内の粒子の2次元移動ベクトルに基づいて、前記3次元空間における可視化流体の3次元速度ベクトル又は3速度成分を演算する演算手段(S7,S8,S11)とを有することを特徴とする流速計測システムを提供する。
 本発明は又、微小粒子群により可視化された可視化流体を撮像するように配置され、微小時間間隔を隔てた連続2時刻の粒子像を撮像する複数の撮像装置と、該撮像装置によって得られた画像データに基づいて3次元空間内の粒子分布を再構築し、前記3次元空間における可視化流体の3次元速度ベクトル又は3速度成分を演算する演算処理装置とを有する可視化流体の流速計測システムにおいて、
 前記演算処理装置は、前記3次元空間を分割してなる所定厚のスライス領域を設定し、前記撮像装置によって撮像された2次元画像データに基づいて前記スライス領域内の各時刻の粒子分布を再構築し、連続2時刻の3次元輝度情報を得るように構成された3次元輝度情報取得手段(S3',S5')と、
 前記スライス領域の内部の粒子分布を複数の仮想投影面に投影することによって、該スライス領域内における連続2時刻の複数且つ仮想の2次元粒子画像を生成する2次元粒子画像生成手段(S6)と、
 複数の前記2次元粒子画像に2次元PIVを実行し、これにより得られる複数の画像面内の粒子の2次元移動ベクトルに基づいて、前記スライス領域における可視化流体の3次元速度ベクトル又は3速度成分を演算する第1演算手段(S7,S8)と、
 各スライス領域における前記3次元速度ベクトル又は3速度成分の情報を集合、統合又は合成して、前記3次元空間における可視化流体の3次元速度ベクトル又は3速度成分を取得する第2演算手段(S11)とを有することを特徴とする流速計測システムを提供する。
 好ましくは、前記3次元輝度情報取得手段は、前記2次元画像の画素に基づいて前記スライス領域内の前記3次元輝度情報を特定するための重み係数を算出し且つ記憶し、前記2次元粒子画像生成手段は、前記スライス領域内の粒子分布を前記重み係数に従って前記仮想投影面に投影する。
 本発明の上記構成においては、3次元輝度情報の再構築、仮想の2次元粒子画像の生成、2次元PIV、3次元速度ベクトル又は3速度成分の算出は、スライス領域単位に実行される。各スライス領域における3次元速度ベクトル又は3速度成分の情報は、集合、統合又は合成され、3次元空間における可視化流体の3次元速度ベクトル又は3速度成分が得られる。このような構成によれば、計測システムを構成する記憶装置は、各スライス領域の3次元輝度情報を記憶する記憶容量を保有すれば良く、従って、記憶装置の記憶容量を低減することができる。即ち、本発明の上記構成によれば、前述した解析時間の短縮、再構築の妥当性の視覚的確認および測定精度の高精度化という優位性のみならず、計測システムを構成する記憶装置の記憶容量を低減することが更に可能となるので、計測システムの初期設備費を更に低廉化するとともに、システム構成を更に簡素化することができる。
 本発明の流速計測方法及び流速計測システムによれば、トモグラフィックPIV計測法により可視化流体の3次元速度ベクトル又は3速度成分を取得するための演算処理装置の負荷及びデータ解析時間を軽減又は短縮することができる。
 また、3次元輝度情報の再構築、2次元粒子画像の生成、2次元PIV、3次元速度ベクトル又は3速度成分の算出をスライス領域単位に実行する本発明の流速計測方法及び流速計測システムによれば、演算処理装置の負荷及びデータ解析時間を軽減又は短縮し得るだけではなく、記憶装置の記憶容量を低減することができる。
図1は、本発明の好適な実施形態に係る流速計測システムの計測部の構成を概略的に示す概略斜視図である。 図2(A)は、計測システムの初期設定において計測流路内に配置される校正板及び支柱の構造を示す斜視図であり、図2(B)は、校正板の基準点のパターンを示す平面図である。 図3(A)は、図2に示す校正板の平面図であり、図3(B)は、校正板の底面図である。 図4(A)は、CCDカメラによって連続2時刻に撮影された粒子画像であり、図4(B)は、CCDカメラによって撮影された粒子画像を拡大した画像である。 図5は、CCDカメラの撮影対象領域を拡大して示す斜視図である。 図6(A)は、スライス領域内の粒子分布を仮想投影面に投影することによって得られた2次元粒子画像を例示する画像データであり、図6(B)は、複数の2次元粒子画像に基づいて得られた可視化流体の3次元速度ベクトルを例示する概略斜視図である。 図7は、本発明の好適な実施例に係る流速計測方法を示すフローチャートである。 図8は、本発明の好適な実施例に係る他の流速計測方法を示すフローチャートである。
 本発明の好適な実施形態によれば、上記スライス領域は、上記3次元空間を等分割した空間である。好ましくは、スライス領域は、可視化流体に照射されるレーザー光の光軸と平行に可視化流体の流路を横断する空間である。
 本発明の或る実施形態においては、上記仮想投影面は、撮像装置の光軸と直交する平面である。
 好ましくは、可視化流体の流路は、円形の流路断面を有し、画像座標と物理座標との関係を求めるために校正画像を取得すべく流路内に配置される円形校正板が用いられる。校正板は、中心円形領域に配設された直交格子配列の指標と、外周領域に周方向に配設された環状配列の指標とを有する。このように外周領域の指標を流路の外周面の形態に相応するパターンに配置することにより、流路壁近傍における画像の歪みを適切に補正して画像座標と物理座標との関係を求め、計測領域の形状に最適な座標情報を効率良く取得することができる。
 以下、添付図面を参照して、本発明の好適な実施形態について詳細に説明する。
 図1は、本発明の好適な実施形態に係る流速計測システムの計測部の構成を概略的に示す概略斜視図である。
 本発明に係る流速計測システムは、CT(Computed・Tomography)技術とステレオPIV技術との融合により流体の3次元流速分布を効率的且つ高精度に測定するトモグラフィック・ステレオPIVシステム(以下、「TSPIVシステム」という。)である。TSPIVシステムは、微粒子(トレーサ粒子)を注入した可視化流体(気体)Pの可視化流路を形成する真円形断面の円筒体10を有する。微粒子の寸法は、例えば、10μm程度である。円筒体10は、透明樹脂又は透明ガラス等の管壁11を有し、円筒体10の上部及び下部は、流体Pの供給路及び排出路(図示せず)に接続される。
 TSPIVシステムは、レーザーヘッド及び光学系装置等を含む光源(図示せず)と、記憶装置、演算処理装置、画像表示(ディスプレイ)装置及び各種入・出力装置等を備えた画像処理装置(図示せず)とを有する。光源が照射した帯状且つ立体的なレーザー光Lが、円筒体10の中心軸線と直交する方向に照射される。本例において、円筒体10の中心軸線は、鉛直方向に配向され、レーザー光Lの光軸は、水平方向に配向される。レーザー光Lは、幅W及び高さHの方形断面又は矩形断面を有し、レーザー光Lの幅Wは、円筒体10の内径Dよりも大きく、円筒体10内の垂直流路は、レーザー光Lの光軸と直交し、高さHの範囲内においてレーザー光Lに包含される。レーザー光Lの高さHは、数mm~数cm程度の所定寸法、例えば、5~10mmの範囲内の所定値に設定される。可視化流体は、下向き又は上向き(本例では下向き)に円筒体10内の流路を流動する。
 CCDカメラ2、3がレーザー光Lの上側に配置され、CCDカメラ1、4がレーザー光Lの下側に配置される。CCDカメラ1~4の光軸は、円筒体10の中心軸線に対して所定角度をなして傾斜しており、CCDカメラ1~4は、角度が異なる4方向から流体P中の微粒子を撮影するように位置決めされる。
 図2(A)は、円筒体10内に配置される校正板20及び支柱21の構造を示す斜視図であり、図2(B)は、校正板20の指標パターンを示す平面図である。また、図3(A)は、校正板20の平面図であり、図3(B)は、校正板20の底面図である。
 校正板20は、CCDカメラ1~4の画像座標と、流路内空間の物理座標との関係を予め特定するCCDカメラ1~4の校正を実施するためのものである。校正板20は、CCDカメラ1~4の位置固定後に円筒体10内に挿入され、カメラ校正作業の完了後に撤去される。図2(A)には、校正板20及び支柱21を組み付けた状態が示されている。校正板20及び支柱21は、黒色の表面を有する金属部材からなり、支柱21の頂部は、校正板20の切欠き部22に嵌合し、校正板20を水平に支持する。
 図2(B)に示すように、校正板20は、黒色の背景面に白色の指標(図3に示す基準点23)を円形上面及び円形下面の所定位置に配置した構成を有する。背景の色と基準点の色とは輝度が大きく相違すれば良く、従って、白色の背景面に黒の円形基準点を配置することも可能である。図3に示すように、基準点23は、校正板20の各面(上面及び下面)に上下同一位置に配置される。基準点23は、中心円形領域に配設された直交格子配列の基準点23aと、外周領域に周方向に配設された環状配列の基準点23bとを有する。基準点23a、23bは、基本的に同一の直径を有する円形輪郭の指標であるが、XY方向を指示するために中央領域に配列された特定の基準点23cは、基準点23a、23bよりも大きい直径を有する。
 このように外周領域の基準点23bを管壁11の内周面の形態に相応するパターンに配置することにより、管壁11を透過して得られる画像に歪みが生じないように画像座標及び物理座標の関係(投影関数)を適切に求めることができる。
 校正板20を用いて画像座標と物理座標との関係を求め、TSPIVシステムの初期設定が完了すると、微粒子を含む可視化流体Pが供給路(図示せず)から円筒体10内に供給される。可視化流体Pは、円筒体10内の流路を流動して排出路(図示せず)に流出する。
 CCDカメラ1~4の撮影は、微小時間間隔Δtを隔てた2時刻(時刻t、t+Δt)の各々において同時に実行される。図4(A)は、CCDカメラ1~4によって時刻t及び時刻t+Δtに撮影された粒子画像である。図4(B)は、CCDカメラ1によって時刻tに撮影された粒子画像を拡大した画像である。また、図5は、CCDカメラ1~4の撮影対象領域αを拡大して示す斜視図である。
 円筒体10内の流路を移動する微粒子群は、撮影対象領域αにおいてレーザー光Lを反射し、図4に示すような粒子画像としてCCDカメラ1~4によって撮像される。粒子画像にMART(Multiplicative Algebraic Reconstruction Technique)を適用することにより、異なる時刻(t及びt+Δt)における3次元空間内の粒子分布を再構築することができる。再構築された3次元輝度情報より、voxel群(3次元)を要素データとした3次元配列が得られる。この再構築過程において、粒子画像(2次元)の各pixelの輝度は、その輝度の源泉となるvoxel群の輝度の重み付け加算により表され、重み付けの係数が算出される。
 再構築された時刻t及び時刻t+Δtの3次元輝度情報に対し、任意の位置に定義された所定厚のスライス領域βの粒子分布が抽出される。図5には、厚さhのスライス領域βが例示されている。スライス領域βは、レーザー光Lが照射された円筒体10内の3次元空間(即ち、撮像対象領域α)をレーザー光Lの光軸と平行に等分割した円形平板状の空間であり、レーザー光Lの光軸と平行に可視化流体の流路を横断する。スライス領域βの厚さhは、例えば、レーザー光Lの高さH×1/5~高さH×1/10の範囲内の所定値に設定され、各スライス領域βは、撮影対象領域αの全高さHに亘って均等に分割することより設定される。
 スライス領域βにおける粒子分布は、重み付け係数を用いた前述の計算処理の適用により、任意の複数の視線方向に定義された複数の仮想投影面に投影され、この結果、ステレオPIVに最適な連続2時刻(t及びt+Δt)の複数の仮想粒子画像が生成される。本例において、仮想投影面は、CCDカメラ1~4の光軸と直交する平面である。図6(A)は、仮想投影面に投影された仮想粒子画像を例示する画像データである。
 各スライス領域βに位置する粒子群の粒子画像として生成した仮想の投影画像に対し、2次元PIVが実行され、これにより得られた各画像面内の粒子の2次元移動ベクトルと、スライス領域βにおける3次元速度ベクトルと、別途に生成したカメラパラメータ及び2時刻の時間間隔Δtとの間に成立する関係式に関し、最小二乗法が適用され、スライス領域βにおける3次元速度ベクトルが算出される。このような過程を全てのスライス領域βに対して実行することにより、対象物理空間(撮影対象領域α)における可視化流体Pの3次元速度ベクトルを取得することができる。図6(B)は、上記過程により得られた撮影対象領域α内の3次元速度ベクトルを例示する概略斜視図である。
 以上説明したとおり、このようなTSPIVシステムによれば、voxel群(3次元)を要素データとした3次元のvoxel群データは、2次元PIVを適用可能な2次元の複数の粒子画像に変換される。即ち、TSPIVシステムにおいては、CCDカメラ1~4によって撮影された画像データは、3次元のvoxel群データとして演算処理されるのではなく、2次元PIVを適用可能な2次元の複数の仮想粒子画像に変換され、連続2時刻(t及びt+Δt)の複数の仮想粒子画像(投影画像)に対して2成分PIVを実行することにより、粒子画像の移動ベクトル(2次元)が求められる。前述したように、この移動ベクトル、別途生成したカメラパラメータ、2時刻の時間間隔Δtおよび粒子群の3次元の速度ベクトルとの間に成立する関係式に関する最小二乗法の適用により、粒子群の3次元速度ベクトルが求まる。これを流速分布と見做すことによって、3次元流速分布が得られる。
 このようなTSPIVシステムによれば、演算処理装置が演算すべきデータは、3次元のvoxel群輝度データではなく、2次元のpixel群輝度データであるので、演算処理装置のデータ解析に要する負荷及びデータ処理時間は大幅に軽減又は短縮する(一桁~二桁程度の軽減又は短縮である)。このため、演算処理装置の解析時間を短縮し、計測を高速化することができる。
 また、各スライス領域βの粒子群を投影した粒子画像は、シート光照明で撮影される通常のPIV粒子画像と直接に対比可能な粒子画像であるので、粒子像の撮影の妥当性を評価し得るとともに、再構築の妥当性を視覚的に確認することができる。
 更に、各スライス領域βの粒子群の投影において、ステレオPIV解析を最も精度良く行うことのできる視線方向を選択することができるので、測定精度の高精度化を達成することが可能となる。
 次に、TSPIVシステムの画像解析過程を示すフローチャートに基づいて本発明の流速計測方法について説明する。
 図7は、本発明の好適な実施例に係る流速計測方法を示すフローチャートである。
 図7に示す如く、CCDカメラ1~4は、異なる2時刻(時刻t、t+Δt)において撮影対象領域α内の粒子を同時に撮影する(S(ステップ)1)。この撮影は、3台以上の撮像装置による流体中粒子の3方向且つ連続2時刻の撮影である。
 各撮影時刻(時刻t、t+Δt)においてCCDカメラ1~4により撮像された各粒子画像に関し、各pixelの輝度値が、その源泉となる3次元空間における粒子群の輝度の重み付け累算で表される下式の重み付け係数wijを計算することにより求められる(S2)。
Figure JPOXMLDOC01-appb-M000001
 上式において、I(xi,yi)はCCDカメラ1~4によって撮像された2次元画像の2次元座標(xi,yi)において、各座標(xi,yi)のpixel(ピクセル)の輝度を表しており、iは、各2次元画像におけるpixelの番号である。E(Xj,Xj,Xj)は、3次元座標(Xj,Xj,Xj)を有するvoxel(ボクセル)の輝度を表しており、jはvoxel番号である。なお、voxelは、体積の要素であり、pixelが2次元画像データを表す正規格子単位であるのに対し、voxelは、3次元空間における正規格子単位である。輝度E(Xj,Xj,Xj)が相対的に高い値を示すことは、その座標(Xj,Xj,Xj)を有するj番目のvoxel jにレーザー光を反射する粒子群が比較的多量に存在することを意味する。
 各撮影時刻(時刻t、t+Δt)において、全CCDカメラ1~4の粒子画像に関し、重み付け係数wijを用いてMART(Multiplicative Algebraic Reconstruction Technique)が適用され、各時刻における粒子の3次元輝度分布情報が再構築される(S3)。
 撮影対象領域αは、任意の軸線方向(本例では、流路の中心軸線)に垂直な所定厚のスライス領域βに等分割され、再構築された2時刻(時刻t、t+Δt)の3次元輝度分布は、スライス領域βの3次元輝度分布に分割される(S4)。
 先ず、特定のスライス領域βが着目され(S5)、このスライス領域βに含まれる粒子の3次元輝度分布情報に基づき、pixelの輝度I(xi,yi)とvoxelの輝度E(Xj,Xj,Xj)との関係を示す上式を利用して、各CCDカメラ1~4の画像を仮想投影面に投影した仮想的な2次元画像が生成される(S6)。
 かくして生成された2時刻(時刻t、t+Δt)の仮想的な2次元画像に関し、2次元PIVが適用され、各CCDカメラ1~4の仮想投影面における粒子の2次元移動ベクトルが算出される(S7)。
 次いで、この2次元移動ベクトルと、粒子の3次元速度ベクトルと、別途生成したカメラパラメータ及び2時刻の時間間隔Δtとの間に成立する関係式に関し、最小二乗法が適用され、粒子の3次元速度ベクトルが算出される(S8)。3次元速度ベクトルの算出は、撮影対象領域αの全スライス領域βに関して実行される(S9:S10)。
 全スライス領域βに関し、このような画像解析及び演算処理が完了した後、各スライス領域βに対して算出した3次元速度ベクトルが統合され、撮影対象空間αにおける粒子速度ベクトルが得られる(S11)。所望により、CCDカメラ1~4の撮影(S1)~粒子速度ベクトル取得(S11)の一連の流速計測過程が反復実行され(S12、S13)、これにより、撮影対象空間αの粒子速度ベクトルが時系列的に取得される。規定数の2時刻粒子速度データが得られた段階で一連の流速計測過程が終了する(S12)。
 図8は、本発明の好適な実施形態に係る他の流速計測方法を示すフローチャートである。
 図7に示す流速計測方法は、撮影対象領域αの粒子分布を再構築して領域α全体の3次元輝度情報を得て、スライス領域β内の粒子分布を3次元輝度情報より抽出した後、仮想2次元粒子画像を生成して2次元PIVを実行するように構成されているが、図8に示す流速計測方法の如く、各スライス領域βの粒子分布だけを再構築して各スライス領域βの3次元輝度情報を得た後、仮想2次元粒子画像を生成して2次元PIVを実行するように流速計測方法を構成しても良い。
 図8に示す如く、CCDカメラ1~4による撮影対象領域α内の粒子の撮影(S1)により得られた各撮影時刻(時刻t、t+Δt)の粒子画像に基づき、スライス領域βが設定される(S2')。特定のスライス領域βが着目され(S3')、前述の重み付け係数wij(上記数式1)が特定のスライス領域βの粒子群に関して計算され且つ記憶されるとともに(S4’)、各撮影時刻(時刻t、t+Δt)において、全CCDカメラ1~4の粒子画像より、重み付け係数wijを用いてMART(Multiplicative Algebraic Reconstruction Technique)が適用され、各時刻におけるスライス領域β内の粒子の3次元輝度分布情報が再構築され、記憶される(S5')。
 スライス領域βに含まれる粒子の3次元輝度分布情報に基づき、前述した仮想の2次元画像が重み付け係数wijに従って生成され(S6)、かくして得られた2時刻(時刻t、t+Δt)の仮想2次元画像に関し、2次元PIVが適用され、各CCDカメラ1~4の仮想投影面における粒子の2次元移動ベクトルが算出される(S7)。
 次いで、この2次元移動ベクトルと、粒子の3次元速度ベクトルと、別途生成したカメラパラメータ及び2時刻の時間間隔Δtとの間に成立する関係式に関し、最小二乗法が適用され、粒子の3次元速度ベクトルが算出される(S8)。スライス領域β内の粒子群に関する重み付け係数wijの計算(S4’)~3次元速度ベクトルの算出(S8)の過程は、撮影対象領域αの全スライス領域βについて実行される(S9:S10)。
 全スライス領域βに関し、このような画像解析及び演算処理が完了した後、各スライス領域βに対して算出した3次元速度ベクトルが統合され、撮影対象空間α全域の粒子速度ベクトルが得られる(S11)。所望により、CCDカメラ1~4の撮影(S1)~粒子速度ベクトル取得(S11)の一連の流速計測過程が反復実行され(S12、S13)、これにより、撮影対象空間αの粒子速度ベクトルが時系列的に取得される。規定数の2時刻粒子速度データが得られた段階で一連の流速計測過程が終了する(S12)。
 このような流速計測方法によれば、前述の実施形態と同じく、演算処理装置の解析時間の短縮、計測の高速化等の利点が得られる。しかも、上記流速計測方法においては、3次元輝度情報の再構築がスライス領域単位に実行されることから、画像解析過程において記憶すべき3次元輝度情報の情報量又はデータ数が低減するので、記憶装置の記憶容量を低減することができる。
 以上、本発明の好適な実施形態について詳細に説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の範囲内で種々の変形又は変更が可能である。
 例えば、上記実施形態においては、撮影対象空間は、真円形断面の円筒形流路であるが、多角形断面、楕円形断面、3角形断面等の各種断面形態の流路に設計しても良い。
 また、上記実施形態では、粒子撮影のために4台の撮像装置(CCDカメラ)が使用されているが、粒子撮影のために3台又は5台以上の撮像装置を使用しても良い。
 本発明は、微小粒子群により流体を可視化してなる可視化流体の流動場を撮像装置によって撮影し、可視化流体の3次元速度ベクトル又は3速度成分を計測する流速計測方法及び流速計測システムに適用される。殊に、本発明は、微小粒子群により可視化された可視化流体を撮像する複数の撮像装置によって、微小時間間隔を隔てた連続2時刻の粒子像を撮像し、撮像により得られた粒子像の画像データに基づいて3次元空間内の粒子分布を再構築し、3次元空間における可視化流体の3次元速度ベクトル又は3速度成分を測定する可視化流体の流速計測方法及び流速計測システムに適用される。本発明の流速計測方法及び流速計測システムは、トモグラフィックPIV計測法を改良したトモグラフィック・ステレオPIV計測法である。本発明のトモグラフィック・ステレオPIV計測法によれば、可視化流体の3次元速度ベクトル又は3速度成分を取得するための演算処理装置の負荷及びデータ解析時間を軽減又は短縮することができるので、本発明の実用的効果は、顕著である。
1~4 CCDカメラ
10 円筒体
11 管壁
20 校正板
P 可視化流体
L レーザー光
α 撮影対象領域
β スライス領域
 
 

Claims (13)

  1.  微小粒子群により可視化された可視化流体を撮像する複数の撮像装置によって、微小時間間隔を隔てた連続2時刻の粒子像を撮像し、撮像により得られた粒子像の画像データに基づいて3次元空間内の粒子分布を再構築し、前記3次元空間における可視化流体の3次元速度ベクトル又は3速度成分を測定する可視化流体の流速計測方法において、
     前記撮像装置によって撮像された2次元画像データに基づいて前記3次元空間内の各時刻の粒子分布を再構築し、連続2時刻の3次元輝度情報を得る工程と、
     前記3次元空間を分割してなる所定厚のスライス領域を設定し、該スライス領域の内部の粒子分布を前記3次元輝度情報より抽出して、該粒子分布を複数の仮想投影面に投影することによって、連続2時刻の複数且つ仮想の2次元粒子画像を生成する工程と、
     複数の前記2次元粒子画像に2次元PIVを実行して得られる複数の画像面内の粒子の2次元移動ベクトルに基づいて、前記3次元空間における可視化流体の3次元速度ベクトル又は3速度成分を取得する工程とを有することを特徴とする流速計測方法。 
  2.  微小粒子群により可視化された可視化流体を撮像する複数の撮像装置によって、微小時間間隔を隔てた連続2時刻の粒子像を撮像し、撮像により得られた粒子像の画像データに基づいて3次元空間内の粒子分布を再構築し、前記3次元空間における可視化流体の3次元速度ベクトル又は3速度成分を測定する可視化流体の流速計測方法において、
     前記3次元空間を分割してなる所定厚のスライス領域を設定し、前記撮像装置によって撮像された2次元画像データに基づいて前記スライス領域内の各時刻の粒子分布を再構築し、前記スライス領域内における連続2時刻の3次元輝度情報を得る工程と、
     前記3次元輝度情報に基づいて前記スライス領域の内部の粒子分布を複数の仮想投影面に投影することによって、連続2時刻の複数且つ仮想の2次元粒子画像を生成する工程と、
     複数の前記2次元粒子画像に2次元PIVを実行して得られる複数の画像面内の粒子の2次元移動ベクトルに基づいて、前記スライス領域における可視化流体の3次元速度ベクトル又は3速度成分を取得する工程と、
     各スライス領域における前記3次元速度ベクトル又は3速度成分の情報を集合、統合又は合成して、前記3次元空間における可視化流体の3次元速度ベクトル又は3速度成分を取得する工程とを有することを特徴とする流速計測方法。
  3.  前記スライス領域は、前記3次元空間を等分割した空間であることを特徴とする請求項1又は2に記載の流速計測方法。
  4.  前記スライス領域は、前記可視化流体に照射されるレーザー光の光軸と平行に前記可視化流体の流路を横断する空間であることを特徴とする請求項1乃至3のいずれか1項に記載の流速計測方法。
  5.  前記仮想投影面は、前記撮像装置の光軸と直交する平面であることを特徴とする請求項1乃至4のいずれか1項に記載の流速計測方法。
  6.  前記3次元輝度情報を得る前記工程において、前記2次元画像の画素に基づいて前記スライス領域内の前記3次元輝度情報を特定するための重み係数を算出し且つ記憶し、
     前記2次元粒子画像を生成する前記工程において、前記スライス領域内の粒子分布を前記重み係数に従って前記仮想投影面に投影することを特徴とする請求項2に記載の流速計測方法。
  7.  微小粒子群により可視化された可視化流体を撮像するように配置され、微小時間間隔を隔てた連続2時刻の粒子像を撮像する複数の撮像装置と、該撮像装置によって得られた画像データに基づいて3次元空間内の粒子分布を再構築し、前記3次元空間における可視化流体の3次元速度ベクトル又は3速度成分を演算する演算処理装置とを有する可視化流体の流速計測システムにおいて、
     前記演算処理装置は、前記撮像装置によって撮像された2次元画像データに基づいて前記3次元空間内の各時刻の粒子分布を再構築し、連続2時刻の3次元輝度情報を得るように構成された3次元輝度情報取得手段と、
     前記3次元空間を分割してなる所定厚のスライス領域を設定し、該スライス領域の内部の粒子分布を前記3次元輝度情報より抽出して、該粒子分布を複数の仮想投影面に投影することによって、連続2時刻の複数且つ仮想の2次元粒子画像を生成する2次元粒子画像生成手段と、
     複数の前記2次元粒子画像に2次元PIVを実行し、これにより得られる複数の画像面内の粒子の2次元移動ベクトルに基づいて、前記3次元空間における可視化流体の3次元速度ベクトル又は3速度成分を演算する演算手段とを有することを特徴とする流速計測システム。 
  8.  微小粒子群により可視化された可視化流体を撮像するように配置され、微小時間間隔を隔てた連続2時刻の粒子像を撮像する複数の撮像装置と、該撮像装置によって得られた画像データに基づいて3次元空間内の粒子分布を再構築し、前記3次元空間における可視化流体の3次元速度ベクトル又は3速度成分を演算する演算処理装置とを有する可視化流体の流速計測システムにおいて、
     前記演算処理装置は、前記3次元空間を分割してなる所定厚のスライス領域を設定し、前記撮像装置によって撮像された2次元画像データに基づいて前記スライス領域内の各時刻の粒子分布を再構築し、連続2時刻の3次元輝度情報を得るように構成された3次元輝度情報取得手段と、
     前記スライス領域の内部の粒子分布を複数の仮想投影面に投影することによって、該スライス領域内における連続2時刻の複数且つ仮想の2次元粒子画像を生成する2次元粒子画像生成手段と、
     複数の前記2次元粒子画像に2次元PIVを実行し、これにより得られる複数の画像面内の粒子の2次元移動ベクトルに基づいて、前記スライス領域における可視化流体の3次元速度ベクトル又は3速度成分を演算する第1演算手段と、
     各スライス領域における前記3次元速度ベクトル又は3速度成分の情報を集合、統合又は合成して、前記3次元空間における可視化流体の3次元速度ベクトル又は3速度成分を取得する第2演算手段とを有することを特徴とする流速計測システム。 
  9.  前記スライス領域は、前記3次元空間を等分割した空間であることを特徴とする請求項7又は8に記載の流速計測システム。
  10.  前記スライス領域は、前記可視化流体に照射されるレーザー光の光軸と平行に前記可視化流体の流路を横断する空間であることを特徴とする請求項7乃至9のいずれか1項に記載の流速計測システム。
  11.  前記仮想投影面は、前記撮像装置の光軸と直交する平面であることを特徴とする請求項7乃至10のいずれか1項に記載の流速計測システム。
  12.  前記3次元輝度情報取得手段は、前記2次元画像の画素に基づいて前記スライス領域内の前記3次元輝度情報を特定するための重み係数を算出し且つ記憶し、
     前記2次元粒子画像生成手段は、前記スライス領域内の粒子分布を前記重み係数に従って前記仮想投影面に投影することを特徴とする請求項8に記載の流速計測システム。
  13.  前記可視化流体の流路は、円形の流路断面を有し、画像座標と物理座標との関係を求めるために校正画像を取得すべく前記流路内に配置される円形校正板が用いられ、該校正板は、中心円形領域に配設された直交格子配列の指標と、外周領域に周方向に配設された環状配列の指標とを有することを特徴とする請求項1乃至6のいずれか1項に記載の流速計測方法。
PCT/JP2015/055100 2014-02-28 2015-02-23 可視化流体の流速計測方法及び流速計測システム WO2015129642A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-038171 2014-02-28
JP2014038171A JP6136018B2 (ja) 2014-02-28 2014-02-28 可視化流体の流速計測方法及び流速計測システム

Publications (1)

Publication Number Publication Date
WO2015129642A1 true WO2015129642A1 (ja) 2015-09-03

Family

ID=54008960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055100 WO2015129642A1 (ja) 2014-02-28 2015-02-23 可視化流体の流速計測方法及び流速計測システム

Country Status (2)

Country Link
JP (1) JP6136018B2 (ja)
WO (1) WO2015129642A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106645791A (zh) * 2017-02-13 2017-05-10 常州大学 适用于多场耦合条件下的小孔射流测速实验装置
CN106706956A (zh) * 2015-11-17 2017-05-24 清华大学 一种记录空气速度场信息的装置及方法
CN107449936A (zh) * 2017-09-18 2017-12-08 三峡大学 利用piv技术测量鱼体尾迹涡场的装置及其绘制方法
CN113421284A (zh) * 2021-06-23 2021-09-21 北京理工大学 一种用于流场测试的piv测试系统精度判断方法及装置
CN113960043A (zh) * 2021-10-20 2022-01-21 中国人民解放军国防科技大学 超声速/高超声速湍流时间演化特征的确定方法及装置
CN114166463A (zh) * 2022-02-14 2022-03-11 中国空气动力研究与发展中心高速空气动力研究所 一种油流图谱与表面压力融合仿真可视化方法
CN115267251A (zh) * 2022-07-20 2022-11-01 清华大学 体视粒子图像测速方法及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6947112B2 (ja) * 2018-04-20 2021-10-13 トヨタ自動車株式会社 キャリブレーション方法
CN116203277B (zh) * 2023-05-06 2023-07-11 中国海洋大学 基于ptv与piv技术的海表面小尺度流场测量方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005091364A (ja) * 2003-09-18 2005-04-07 Lavision Gmbh ボリュームにおける三次元の速度フィールドを測定する方法
JP2009500115A (ja) * 2005-07-08 2009-01-08 ウイスコンシン アラムナイ リサーチ フオンデーシヨン Ct画像の逆投影再構成法
JP2013217902A (ja) * 2012-03-16 2013-10-24 Honda Motor Co Ltd 3次元空間の粒子画像流速測定装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1902328B1 (en) * 2005-07-08 2015-11-11 Wisconsin Alumni Research Foundation Constrained backprojection reconstruction method for undersampled mri

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005091364A (ja) * 2003-09-18 2005-04-07 Lavision Gmbh ボリュームにおける三次元の速度フィールドを測定する方法
JP2009500115A (ja) * 2005-07-08 2009-01-08 ウイスコンシン アラムナイ リサーチ フオンデーシヨン Ct画像の逆投影再構成法
JP2013217902A (ja) * 2012-03-16 2013-10-24 Honda Motor Co Ltd 3次元空間の粒子画像流速測定装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106706956A (zh) * 2015-11-17 2017-05-24 清华大学 一种记录空气速度场信息的装置及方法
CN106706956B (zh) * 2015-11-17 2023-08-25 清华大学 一种记录空气速度场信息的装置及方法
CN106645791B (zh) * 2017-02-13 2019-03-22 常州大学 适用于多场耦合条件下的小孔射流测速实验装置
CN106645791A (zh) * 2017-02-13 2017-05-10 常州大学 适用于多场耦合条件下的小孔射流测速实验装置
CN107449936B (zh) * 2017-09-18 2023-07-11 三峡大学 利用piv技术测量鱼体尾迹涡场的装置及其绘制方法
CN107449936A (zh) * 2017-09-18 2017-12-08 三峡大学 利用piv技术测量鱼体尾迹涡场的装置及其绘制方法
CN113421284A (zh) * 2021-06-23 2021-09-21 北京理工大学 一种用于流场测试的piv测试系统精度判断方法及装置
CN113421284B (zh) * 2021-06-23 2022-09-13 北京理工大学 一种用于流场测试的piv测试系统精度判断方法及装置
CN113960043A (zh) * 2021-10-20 2022-01-21 中国人民解放军国防科技大学 超声速/高超声速湍流时间演化特征的确定方法及装置
CN113960043B (zh) * 2021-10-20 2024-05-28 中国人民解放军国防科技大学 超声速/高超声速湍流时间演化特征的确定方法及装置
CN114166463A (zh) * 2022-02-14 2022-03-11 中国空气动力研究与发展中心高速空气动力研究所 一种油流图谱与表面压力融合仿真可视化方法
CN114166463B (zh) * 2022-02-14 2022-05-03 中国空气动力研究与发展中心高速空气动力研究所 一种油流图谱与表面压力融合仿真可视化方法
CN115267251A (zh) * 2022-07-20 2022-11-01 清华大学 体视粒子图像测速方法及装置

Also Published As

Publication number Publication date
JP6136018B2 (ja) 2017-05-31
JP2015161639A (ja) 2015-09-07

Similar Documents

Publication Publication Date Title
JP6136018B2 (ja) 可視化流体の流速計測方法及び流速計測システム
JP5932626B2 (ja) 3次元空間の粒子画像流速測定装置
Fahringer et al. Volumetric particle image velocimetry with a single plenoptic camera
CN104048744B (zh) 一种非接触式的基于影像的实时在线振动测量方法
CN108120392B (zh) 气液两相流中气泡三维测量系统及方法
US8803943B2 (en) Formation apparatus using digital image correlation
CN107525945B (zh) 基于集成成像技术的3d-3c粒子图像测速系统及方法
JP6223169B2 (ja) 情報処理装置、情報処理方法およびプログラム
CN109211264A (zh) 测量系统的标定方法、装置、电子设备及可读存储介质
CN102589516B (zh) 一种基于双目线扫描摄像机的动态距离测量系统
CN106605122B (zh) 测量对象的系统、方法和非暂时性计算机可用介质
JP2017063414A5 (ja)
CN108169510B (zh) 基于单光场相机的微尺度流动三维速度场测量装置和方法
Cao et al. Characteristics of tomographic reconstruction of light-field Tomo-PIV
JP2017003525A (ja) 三次元計測装置
JP2022058658A (ja) 画像の鮮鋭レベルを表わす位置合わせ誤差マップを得るための装置および方法
Zhao et al. Metric calibration of unfocused plenoptic cameras for three-dimensional shape measurement
CN109474817A (zh) 光学传感装置、方法及光学侦测模块
Gong et al. Axial-stereo 3-D optical metrology for inner profile of pipes using a scanning laser endoscope
Lynch et al. Preliminary development of a 3-D, 3-C PIV technique using light field imaging
Ding et al. Automatic 3D reconstruction of SEM images based on Nano-robotic manipulation and epipolar plane images
Clifford et al. Visualization of an SBLI using Plenoptic BOS
Ettl Introductory review on ‘Flying Triangulation’: a motion-robust optical 3D measurement principle
Fahringer et al. Comparing volumetric reconstruction algorithms for plenoptic-PIV
Du et al. The study for particle image velocimetry system based on binocular vision

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15755085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15755085

Country of ref document: EP

Kind code of ref document: A1