WO2015129602A1 - Sheet-like material and method for producing same - Google Patents

Sheet-like material and method for producing same Download PDF

Info

Publication number
WO2015129602A1
WO2015129602A1 PCT/JP2015/054941 JP2015054941W WO2015129602A1 WO 2015129602 A1 WO2015129602 A1 WO 2015129602A1 JP 2015054941 W JP2015054941 W JP 2015054941W WO 2015129602 A1 WO2015129602 A1 WO 2015129602A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
polyurethane
water
base material
fibrous base
Prior art date
Application number
PCT/JP2015/054941
Other languages
French (fr)
Japanese (ja)
Inventor
寿 村原
俊一郎 中井
貴大 土本
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2015525673A priority Critical patent/JP6551227B2/en
Priority to EP15755868.5A priority patent/EP3112530B1/en
Priority to KR1020167024554A priority patent/KR102297654B1/en
Priority to CN201580010454.XA priority patent/CN106029976B/en
Priority to US15/119,025 priority patent/US20160362832A1/en
Publication of WO2015129602A1 publication Critical patent/WO2015129602A1/en
Priority to US16/741,890 priority patent/US20200149216A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0004Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using ultra-fine two-component fibres, e.g. island/sea, or ultra-fine one component fibres (< 1 denier)
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/14Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2205/00Condition, form or state of the materials
    • D06N2205/02Dispersion
    • D06N2205/023Emulsion, aqueous dispersion, latex

Definitions

  • the present invention relates to a method for producing an environmentally friendly sheet material that does not use an organic solvent in the production process, and particularly relates to a sheet material having good surface quality and texture and a method for producing the same.
  • a sheet-like material mainly composed of a fibrous base material such as nonwoven fabric and polyurethane has excellent characteristics not found in natural leather, and is widely used in various applications such as artificial leather.
  • sheet-like materials using a polyester-based fibrous base material are excellent in light resistance, and therefore their use has been expanded year by year for use in clothing, chair upholstery and automobile interior materials.
  • the obtained fibrous base material is immersed in water or an organic solvent aqueous solution which is a non-solvent of polyurethane.
  • a combination of processes for wet coagulation of polyurethane is generally employed.
  • a water-miscible organic solvent such as N, N-dimethylformamide is used as the organic solvent that is a solvent for the polyurethane.
  • organic solvents are generally highly harmful to the human body and the environment, a technique that does not use organic solvents is strongly demanded in the production of sheet-like materials.
  • a sheet-like material obtained by impregnating a fibrous base material with a water-dispersed polyurethane dispersion in which water-dispersed polyurethane is dispersed in a liquid and solidifying the polyurethane has a problem that the texture tends to be hard.
  • the coagulation method of the organic solvent-based polyurethane liquid is a so-called wet coagulation method in which polyurethane molecules dissolved in the organic solvent are replaced with water to coagulate, and when viewed as a polyurethane film, the porous film has a low density. Is formed. Therefore, even when polyurethane is impregnated in the fibrous base material and solidified, the bonding area between the fiber and the polyurethane is reduced, resulting in a soft sheet.
  • water-dispersed polyurethane mainly uses a so-called wet heat coagulation method in which the hydration state of the water-dispersed polyurethane dispersion is disrupted by heating and solidifies by agglomerating polyurethane emulsions.
  • the resulting polyurethane film structure is a non-porous film having a high density. Therefore, the adhesion between the fibrous base material and the polyurethane becomes dense, and the entangled portion of the fiber is strongly gripped, so that the texture becomes hard.
  • a water-dispersed polyurethane liquid containing a foaming agent is applied to a fibrous base material such as a nonwoven fabric, and the foaming agent is foamed by heating to make the polyurethane structure in the fibrous base material porous.
  • a method has been proposed (see Patent Document 1). In this proposal, by making the water-dispersible polyurethane porous, the adhesive area between the fiber and polyurethane is reduced, the gripping force of the fiber entanglement point is weakened, and a sheet-like material having a good texture that is soft to the touch. Although it can be obtained, it tends to be poor in flexibility as compared with the case where the organic solvent-based polyurethane is applied.
  • a water-dispersible polyurethane dispersion containing an associative thickener is applied to the fibrous base material and coagulated with heat and moisture.
  • a method for making water-dispersible polyurethane porous has been proposed (see Patent Document 2). Also in this proposal, by making the water-dispersible polyurethane porous, the adhesive area between the fiber and the polyurethane is reduced, the gripping force at the entanglement point of the fiber is weakened, and the sheet-like material having a good texture that is soft to the touch.
  • the flexibility is still poor.
  • JP 2011-214210 A Japanese Patent No. 4042016
  • the object of the present invention is a uniform feeling comparable to artificial leather to which organic solvent-based polyurethane is applied by an environmentally friendly manufacturing process, and has an elegant surface quality and good texture. It is in providing the sheet-like material which has this, and its manufacturing method.
  • an object of the present invention is to achieve a porous structure of polyurethane by applying water-dispersed polyurethane, and to have a sheet-like material having a crease recovery property and flexibility very similar to artificial leather to which solvent-based polyurethane is applied. And providing a manufacturing method thereof.
  • the sheet-like material of the present invention is a polymer elastic body having a hydrophilic group on a fibrous base material composed of ultrafine fibers and / or ultrafine fiber bundles.
  • a sheet-like material provided as a binder and in the cross-section cut in the thickness direction of the sheet-like material, among the polymer elastic bodies observed in the cut surface, independently 50 ⁇ m 2 or more
  • the sheet-like product is characterized in that the occupation ratio of the portion having the cross-sectional area is 0.1% or more and 5.0% or less with respect to the area of the cross section of the artificial leather in the observation visual field.
  • 1% or more and 35% or less of the outer periphery of the cross-section of the ultrafine fiber and / or ultrafine fiber bundle is a polymer elastic body. It is covered with a film.
  • the sheet-like material according to claim 1 or 2 wherein the polymer elastic body has a structure crosslinked by a crosslinking agent.
  • the present invention is intended to achieve the above-described object, and in the method for producing a sheet-like material of the present invention, a polymer elastic body having a hydrophilic group is applied as a binder to a fibrous base material composed of ultrafine fibers.
  • a polymer elastic body having a hydrophilic group is applied as a binder to a fibrous base material composed of ultrafine fibers.
  • an aqueous resin dispersion containing a polymer elastic body and a thickener dispersed in water is applied to a fibrous base material, and is heated in hot water at a temperature of 50 to 100 ° C.
  • a method for producing a sheet-like material, comprising solidifying the polymer elastic body.
  • the aqueous resin dispersion is non-Newtonian.
  • the thickener is a nonionic thickener.
  • the aqueous resin dispersion is to exhibit thixotropic properties.
  • the thickener contained in the aqueous resin dispersion is a thickening polysaccharide.
  • the thickener is guar gum.
  • the aqueous resin dispersion contains a heat-sensitive coagulant.
  • the aqueous resin dispersion contains a crosslinking agent.
  • a water-dispersed polyurethane is made porous by an environmentally-friendly manufacturing process, and a wrinkle recovery property and flexibility very similar to those obtained when an organic solvent-based polyurethane is applied to a fibrous base material are achieved.
  • it has a uniform raised length equivalent to artificial leather to which organic solvent-based polyurethane is applied, and has an elegant surface quality excellent in fiber denseness and a soft texture that is flexible and excellent in wrinkle recovery. Is obtained.
  • FIG. 1 is a drawing-substituting SEM photograph of a cross section of artificial leather obtained in Example 13 of the present invention.
  • FIG. 2 is an SEM photograph substituting for a drawing of a cross section of the artificial leather obtained in Comparative Example 4 of the present invention.
  • FIG. 3 is a drawing-substituting reference SEM photograph for explaining an outline of a method for calculating the occupation ratio of a non-porous mass of a polymer elastic body of 50 ⁇ m 2 or more.
  • FIG. 4 is a drawing-substituting reference SEM photograph for explaining a method of calculating the polymer elastic body coating ratio of the ultrafine fiber cross section.
  • the sheet-like material of the present invention is obtained by applying a polymer elastic body made of a hydrophilic group-containing resin such as water-dispersed polyurethane as a binder to a fibrous base material such as a nonwoven fabric made of ultrafine fibers.
  • a polymer elastic body made of a hydrophilic group-containing resin such as water-dispersed polyurethane as a binder
  • a fibrous base material such as a nonwoven fabric made of ultrafine fibers.
  • fibers constituting the fibrous base material include polyethylene terephthalate, polybutylene terephthalate, polyester such as polytrimethylene terephthalate and polylactic acid, polyamide such as 6-nylon and 66-nylon, acrylic, polyethylene, polypropylene, and thermoplastic cellulose.
  • polyester fibers are preferably used from the viewpoints of strength, dimensional stability, and light resistance.
  • the fibrous base material may be configured by mixing fibers of different materials.
  • a round cross-section may be used, but a cross-sectional shape having a polygonal shape such as an ellipse, a flat shape, and a triangle, a cross-sectional shape such as a sector shape and a cross shape may be employed.
  • the average single fiber diameter of the ultrafine fibers constituting the fibrous base material is preferably 0.1 to 7 ⁇ m.
  • the average single fiber diameter is preferably 0.1 ⁇ m or more, more preferably 0.3 ⁇ m or more, still more preferably 0.7 ⁇ m or more, and particularly preferably 1 ⁇ m or more. Excellent dispersibility and ease of handling of bundled fibers during napping such as grinding.
  • Woven fabrics, knitted fabrics, non-woven fabrics and the like can be adopted as the form of the fibrous base material made of ultrafine fibers. Especially, since the surface quality of the sheet-like thing at the time of surface raising treatment is favorable, a nonwoven fabric is used preferably.
  • nonwoven fabric either a short fiber nonwoven fabric or a long fiber nonwoven fabric is used, but a short fiber nonwoven fabric is preferably used in terms of texture and quality.
  • the fiber length of the short fibers in the short fiber nonwoven fabric is preferably 25 mm or more and 90 mm or less, more preferably 35 mm or more and 75 mm or less.
  • the fiber length is preferably 25 mm or more and 90 mm or less, more preferably 35 mm or more and 75 mm or less.
  • the non-woven fabric When the fibrous base material made of ultrafine fibers is a non-woven fabric, the non-woven fabric preferably has a structure in which ultrafine fiber bundles (fiber bundles) are intertwined. Since the ultrafine fibers are entangled in a bundle state, the strength of the sheet-like material is improved.
  • the nonwoven fabric of such an embodiment can be obtained by causing the ultrafine fibers to develop after entanglement of the ultrafine fiber-expressing fibers in advance.
  • a woven fabric or a knitted fabric can be inserted into the nonwoven fabric for the purpose of improving the strength.
  • the average single fiber diameter of the fibers constituting such a woven or knitted fabric is preferably about 0.1 to 10 ⁇ m.
  • the hydrophilic group-containing resin that is an elastic polymer used as a binder includes water-dispersed silicone resins, water-dispersed acrylic resins, water-dispersed urethane resins and copolymers thereof. Among them, water-dispersed polyurethane is preferably used from the viewpoint of texture.
  • a resin obtained by a reaction between a polymer polyol having a number average molecular weight of preferably 500 or more and 5000 or less, an organic polyisocyanate, and a chain extender is preferably used.
  • an active hydrogen component-containing compound having a hydrophilic group is used in combination.
  • polyether polyol in the above-mentioned polymer polyol monomers such as ethylene oxide, propylene oxide, butylene oxide, styrene oxide, tetrahydrofuran, epichlorohydrin, and cyclohexylene are added and polymerized using polyhydric alcohol or polyamine as an initiator.
  • polyols obtained by ring-opening polymerization of the above monomers using a protonic acid, a Lewis acid, a cationic catalyst or the like as a catalyst Specific examples include polyethylene glycol, polypropylene glycol, polytetramethylene glycol and the like, and copolymerized polyols combining them.
  • polyester-based polyol examples include polyester polyols obtained by condensing various low molecular weight polyols and polybasic acids, polyols obtained by open polymerization of lactones, and the like.
  • low molecular weight polyol examples include ethylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1.8- Linear alkylene glycol such as octanediol, 1,9-nonanediol, 1,10-decanediol, neopentyl glycol, 3-methyl-1,5-pentanediol, 2,4-diethyl-1,5-pentane Diols, branched alkylene glycols such as 2-methyl-1,8-octanediol, alicyclic diols such as 1,4-cyclohexanediol, and aromatic divalents such as 1,4-bis ( ⁇ -hydroxyethoxy) benzene 1 type or 2 types or more chosen from alcohol etc. are mentioned. Further, an
  • Polybasic acids include, for example, succinic acid, maleic acid, adipic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, phthalic acid, isophthalic acid, terephthalic acid, and hexahydro 1 type, or 2 or more types chosen from isophthalic acid etc. are mentioned.
  • polylactone polyol examples include polylactone polyol obtained by ring-opening polymerization of ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, etc., alone or in a mixture of two or more, using polyhydric alcohol as an initiator.
  • polycarbonate-based polyol examples include compounds obtained by a reaction between a polyol and a carbonate compound such as dialkyl carbonate or diaryl carbonate.
  • the polyol used as the raw material for producing the polycarbonate polyol the polyols mentioned as the raw material for producing the polyester polyol can be used.
  • the dialkyl carbonate dimethyl carbonate, diethyl carbonate and the like can be used, and as the diaryl carbonate, diphenyl carbonate and the like can be mentioned.
  • examples of the component for allowing the polymer elastic body to contain a hydrophilic group include a hydrophilic group-containing active hydrogen component.
  • examples of the hydrophilic group-containing active hydrogen component include compounds containing a nonionic group and / or an anionic group and / or a cationic group and active hydrogen.
  • the compound having a nonionic group and active hydrogen a compound containing two or more active hydrogen components or two or more isocyanate groups and having a polyoxyethylene glycol group having a molecular weight of 250 to 9000 in the side chain, And triols such as trimethylolpropane and trimethylolbutane.
  • Examples of the compound having an anionic group and active hydrogen include carboxyl group-containing compounds such as 2,2-dimethylolpropionic acid, 2,2-dimethylolbutanoic acid and 2,2-dimethylolvaleric acid, and derivatives thereof.
  • Compounds containing sulfonic acid groups such as 1,3-phenylenediamine-4,6-disulfonic acid, 3- (2,3-dihydroxypropoxy) -1-propanesulfonic acid and their derivatives, and these compounds Examples include salts neutralized with a neutralizing agent.
  • examples of the compound containing a cationic group and active hydrogen include tertiary amino group-containing compounds such as 3-dimethylaminopropanol, N-methyldiethanolamine, and N-propyldiethanolamine, and derivatives thereof.
  • the hydrophilic group-containing active hydrogen component can also be used in the form of a salt neutralized with a neutralizing agent.
  • the hydrophilic group-containing active hydrogen component used in the polyurethane molecule is 2,2-dimethylolpropionic acid, 2,2-dimethylolbutanoic acid, and among them. It is preferable to use a Japanese salt.
  • hydrophilic group-containing active hydrogen component is preferably selected and manufactured.
  • chain extender a compound used in conventional production of polyurethane can be used, and among them, a low molecular weight compound having a molecular weight of 600 or less having two or more active hydrogen atoms capable of reacting with an isocyanate group in the molecule is preferably used. It is done.
  • Diols such as, triols such as trimethylolpropane and trimethylolbutane, hydrazine, ethylenediamine, isophoronediamine, piperazine, 4,4'-methylenedianiline, tolylenediamine, xylylenediamine, hexamethylenediamine, 4, Examples thereof include diamines such as 4′-dicyclohexylmethanediamine, triamines such as diethylenetriamine, and amino alcohols such as aminoethyl alcohol and aminopropyl alcohol.
  • organic polyisocyanates examples include aliphatic diisocyanates such as hexamethylene diisocyanate, isophorone diisocyanate (hereinafter abbreviated as IPDI), hydrogenated xylylene diisocyanate, dicyclohexylmethane diisocyanate (hereinafter abbreviated as hydrogenated MDI).
  • IPDI isophorone diisocyanate
  • MDI dicyclohexylmethane diisocyanate
  • Aromatic / aliphatic diisocyanates such as xylylene diisocyanate (hereinafter abbreviated as XDI) and tetramethyl-m-xylylene diisocyanate, and tolylene diisocyanate Isocyanate (hereinafter sometimes abbreviated as TDI), 4,4′-diphenylmethane diisocyanate (hereinafter sometimes abbreviated as MDI), tolidine diisocyanate, and naphthalene diisocyanate (hereinafter referred to as “MDI”) , NDI, etc.)) and the like.
  • XDI xylylene diisocyanate
  • TDI tetramethyl-m-xylylene diisocyanate
  • MDI 4,4′-diphenylmethane diisocyanate
  • MDI tolidine diisocyanate
  • MDI naphthalene diisocyanate
  • the reaction is carried out. Later, the resin has a high molecular weight and the crosslink density of the resin increases. For this reason, durability, a weather resistance, heat resistance, and the strong retention rate at the time of wetness can further be improved.
  • cross-linking agent a cross-linking agent having two or more reactive groups in the molecule that can react with the reactive group introduced into the polyurethane can be used.
  • polyisocyanate crosslinking agents such as water-soluble isocyanate compounds and block isocyanate compounds, melamine crosslinking agents, oxazoline crosslinking agents, carbodiimide crosslinking agents, aziridine crosslinking agents, epoxy crosslinking agents and hydrazine crosslinking agents
  • a crosslinking agent may be used individually by 1 type, and can also use 2 or more types together.
  • the water-soluble isocyanate compound has two or more isocyanate groups in the molecule, and examples thereof include the above-mentioned organic polyisocyanate-containing compounds.
  • examples of commercially available products include “Baihijoule” (registered trademark) series and “Death Module” (registered trademark) series manufactured by Bayer MaterialScience.
  • the blocked isocyanate compound has two or more blocked isocyanate groups in the molecule.
  • the blocked isocyanate group means a group obtained by blocking the organic polyisocyanate compound with a blocking agent such as alcohols, amines, phenols, imines, mercaptans, pyrazoles, oximes and active methylenes.
  • the commercial products include “Elastoron” (registered trademark) series of Daiichi Kogyo Seiyaku Co., Ltd., “Duranate” (registered trademark) series manufactured by Asahi Kasei Chemicals Corporation, and “Takenate” (manufactured by Mitsui Chemicals, Inc.). Registered trademark) series and the like.
  • Examples of the melamine-based crosslinking agent include compounds having two or more methylol groups or methoxymethylol groups in the molecule.
  • Commercially available products include “Uban” (registered trademark) series manufactured by Mitsui Chemicals, “Cymel” (registered trademark) series manufactured by Nippon Cytec Co., Ltd., and “Sumimar” (registered trademark) manufactured by Sumitomo Chemical Co., Ltd. ) Series.
  • Examples of the oxazoline-based crosslinking agent include compounds having two or more oxazoline groups (oxazoline skeletons) in the molecule.
  • Examples of commercially available products include “Epocross” (registered trademark) series manufactured by Nippon Shokubai Co., Ltd.
  • Examples of the carbodiimide-based crosslinking agent include compounds having two or more carbodiimide groups in the molecule.
  • Examples of the commercial products include “Carbodilite” (registered trademark) series manufactured by Nisshinbo Industries, Ltd.
  • Examples of the epoxy crosslinking agent include compounds having two or more epoxy groups in the molecule.
  • Examples of commercially available products include “Denacol” (registered trademark) series manufactured by Nagase Chemtech, diepoxy / polyepoxy compounds manufactured by Sakamoto Pharmaceutical Co., Ltd., and “EPICRON” (registered trademark) series manufactured by DIC.
  • Examples of the aziridine-based crosslinking agent include compounds having two or more aziridinyl groups in the molecule.
  • Examples of the hydrazine-based crosslinking agent include hydrazine and compounds having two or more hydrazine groups (hydrazine skeleton) in the molecule.
  • a functional group possessed by polyurethane is preferably a hydroxyl group and / or a carboxyl group and / or a sulfonic acid group
  • a cross-linking agent is preferably a polyisocyanate-based cross-linking agent or a carbodiimide compound.
  • the combined use of a carbodiimide compound and a polyisocyanate-based cross-linking agent can further increase the cross-linking structure of the polyurethane resin and enhance the moist heat resistance effect while maintaining flexibility.
  • water-dispersed polyurethane generally contains a hydrophilic group in its molecular structure, it has a high affinity with water molecules compared to conventional organic solvent-based polyurethanes, and it easily swells in a wet environment, and the molecular structure of polyurethane is Since it is easily relaxed, it tends to be difficult to maintain the high physical properties obtained during drying in a wet environment.
  • crosslinking agent by applying the above-mentioned crosslinking agent, the moist heat resistance effect can be enhanced and the tensile strength of the sheet when wet can be increased.
  • the carbodiimide crosslinking agent has excellent crosslinking reactivity even at a low temperature of 100 ° C. or lower, it is preferably used from the viewpoint of productivity.
  • the isocyanate compound and / or the blocked isocyanate compound in addition to mainly reacting with a hydroxyl group, in a high temperature region, particularly at a temperature of 120 ° C. to 200 ° C., preferably 140 ° C. to 200 ° C. Increased reactivity with urethane bonds and / or urea bonds constituting the segment (HS) part, forming allophanate bonds and burette bonds, giving a tougher cross-linked structure, and clarifying the micro phase separation structure of polyurethane be able to.
  • the storage elastic modulus E ′ at a temperature of 20 ° C. of the polyurethane film in the present invention is preferably 1 to 100 MPa, more preferably 2 to 50 MPa from the viewpoint of flexibility and impact resilience. Further, the loss elastic modulus is preferably 0.1 MPa to 20 MPa, and more preferably 0.5 MPa to 12 MPa. Further, tan ⁇ is preferably 0.01 to 0.4, more preferably 0.02 to 0.35.
  • the storage elastic modulus E ′ and tan ⁇ in the present invention were measured at a frequency of 12 Hz using a storage elastic modulus measuring apparatus [DMA7100 (manufactured by Hitachi High-Tech Science Co., Ltd.)] for a polyurethane film (film) having a film thickness of 200 ⁇ m. It is a measured value.
  • tan ⁇ is a numerical value represented by E ′′ / E ′ (E ′′ represents a loss elastic modulus).
  • E ' indicates the elastic properties of the polyurethane resin. If this E' is too small, the wrinkle recovery property of the sheet-like material becomes poor, and if it is too large, the texture of the sheet-like material becomes hard.
  • tan ⁇ indicated by E ′′ / E ′ means a ratio of the viscous property based on the elastic property of polyurethane. If tan ⁇ is too small, the wrinkle recovery property of the sheet-like material is poor as in E ′, and if it is too large, the texture of the sheet-like material becomes hard.
  • the density of the sheet-like material of the present invention is preferably 0.2 to 0.7 g / cm 3 .
  • the density is more preferably 0.2 g / cm 3 or more, and still more preferably 0.25 g / cm 3 or more.
  • the density of the sheet-like material is preferably 0.7 g / cm 3 or less, more preferably 0.6 g / cm 3 or less, the texture of the sheet-like material can be prevented from becoming hard.
  • the ratio of polyurethane contained in the sheet-like material of the present invention is preferably 10 to 80% by mass.
  • the ratio of polyurethane is preferably 10% by mass or more, more preferably 15% by mass or more, it is possible to obtain sheet strength and to prevent the fibers from falling off.
  • the ratio of polyurethane is preferably 70% by mass or less, it is possible to prevent the texture from becoming hard and to obtain a good napped quality.
  • the sheet-like material of the present invention is obtained by applying an elastic polymer such as water-dispersible polyurethane and coagulating a liquid in which a thickener is used in combination with an aqueous dispersion such as the water-dispersible polyurethane in water.
  • an elastic polymer such as water-dispersible polyurethane
  • coagulating a liquid in which a thickener is used in combination with an aqueous dispersion such as the water-dispersible polyurethane in water.
  • the sheet-like material of the present invention is a sheet-like material obtained by applying a polymer elastic body having a hydrophilic group as a binder to a fibrous base material composed of ultrafine fibers and / or ultrafine fiber bundles.
  • a polymer elastic body having a hydrophilic group as a binder to a fibrous base material composed of ultrafine fibers and / or ultrafine fiber bundles.
  • the occupation ratio of the portion having a cross-sectional area of 50 ⁇ m 2 or more independently is within the observation field. It is a sheet-like material characterized by being 0.1% or more and 5.0% or less with respect to the area.
  • a sheet-like material in which a polymeric elastic body having a hydrophilic group is provided as a binder to a fibrous base material composed of ultrafine fibers and / or ultrafine fiber bundles.
  • a sheet-like product characterized in that 1% or more and 35% or less of the outer periphery of the cross section of the ultrafine fiber and / or ultrafine fiber bundle is covered with a polymer elastic film.
  • the fibrous base material used in the present invention as described above, fabrics such as woven fabrics, knitted fabrics and non-woven fabrics can be preferably employed. Especially, since the surface quality of the sheet-like thing at the time of surface raising treatment is favorable, a nonwoven fabric is used preferably. In the fibrous base material of the present invention, these woven fabrics, knitted fabrics, nonwoven fabrics and the like can be appropriately laminated and used together.
  • nonwoven fabric used in the present invention either a short fiber nonwoven fabric or a long fiber nonwoven fabric may be used, but a short fiber nonwoven fabric is preferably used in that a surface quality consisting of a uniform raised length can be obtained.
  • the fiber length of the short fibers in the short fiber nonwoven fabric is preferably 25 mm to 90 mm, more preferably 35 mm to 75 mm.
  • the fiber length is preferably 25 mm to 90 mm, more preferably 35 mm to 75 mm.
  • fibers constituting the fibrous base material include polyesters such as polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate and polylactic acid, polyamides such as 6-nylon and 66-nylon, acrylic, polyethylene, polypropylene, and thermoplastic cellulose.
  • a fiber made of a thermoplastic resin that can be melt-spun such as can be used.
  • polyester fibers are preferably used from the viewpoints of strength, dimensional stability, and light resistance.
  • the fibrous base material may be configured by mixing fibers of different materials.
  • the cross-sectional shape of the fiber used in the present invention may be a round cross section, but may be a polygonal shape such as an ellipse, a flat shape, and a triangular shape, or an irregular cross section such as a sector shape and a cross shape.
  • the average fiber diameter of the fibers constituting the fibrous base material is preferably 0.1 to 7 ⁇ m, more preferably 0.3 to 5 ⁇ m. By making the average fiber diameter of the fibers 7 ⁇ m or less, the feel of the fibrous base material becomes more flexible. On the other hand, when the average fiber diameter of the fibers is 0.1 ⁇ m or more, the color developability after dyeing is further improved.
  • the nonwoven fabric when the fibrous base material is a nonwoven fabric, the nonwoven fabric can be combined with a woven fabric or a knitted fabric for the purpose of improving the strength.
  • the combination of a nonwoven fabric and a woven fabric or a knitted fabric can employ any method such as laminating the woven fabric or knitted fabric on the nonwoven fabric, or inserting the woven fabric or knitted fabric into the nonwoven fabric.
  • the single yarn (warp and weft) constituting the woven fabric or knitted fabric may be a single yarn made of synthetic fiber such as polyester fiber or polyamide fiber. It is preferable that the yarn is made of fibers of the same material as the ultrafine fibers.
  • Examples of the form of such a single yarn include filament yarn and spun yarn, and these strong twisted yarns are preferably used.
  • filament yarn is preferably used for the spun yarn because it causes surface fluff to fall off.
  • the number of twists is preferably 1000 T / m or more and 4000 T / m or less, more preferably 1500 T / m or more and 3500 T / m or less. If the number of twists is less than 1000 T / m, the number of single fibers constituting the strong twisted yarn by needle punching increases, and the physical properties of the product tend to deteriorate and the exposure of the single fibers to the product surface tends to increase. Moreover, when the number of twists is greater than 4000 T / m, the single fiber breakage is suppressed, but the strong twisted yarns constituting the woven fabric and the knitted fabric become too hard, and thus tend to cause hardening of the texture.
  • an ultrafine fiber expression type fiber as the fibrous base material.
  • the ultrafine fiber expression type fiber for the fibrous base material, it is possible to stably obtain a form in which the bundle of ultrafine fibers described above is entangled.
  • the non-woven fabric When the fibrous base material is a non-woven fabric, the non-woven fabric preferably has a structure in which a bundle of ultrafine fibers (fiber bundle) is entangled. Since the ultrafine fibers are entangled in a bundle state, the strength of the sheet-like material is improved.
  • the nonwoven fabric of such an embodiment can be obtained by causing the ultrafine fibers to develop after entanglement of the ultrafine fiber-expressing fibers in advance.
  • the ultra-fine fiber development type fiber is a sea-island type in which two component thermoplastic resins with different solvent solubility are used as a sea component and an island component, and the sea component is dissolved and removed using a solvent, etc. It is possible to employ a peelable composite fiber in which the composite fiber and the two-component thermoplastic resin are alternately arranged radially or in a multilayer shape on the fiber cross section, and each component is peeled and divided to divide the fiber into ultrafine fibers.
  • the sea-island type composite fiber can be preferably used also from the viewpoint of the flexibility and texture of the sheet-like material because it can provide an appropriate gap between the island components, that is, between the ultrafine fibers, by removing the sea component. .
  • sea-island type composite fiber a sea-island type composite base is used, and the sea-island type composite fiber, in which two components of the sea component and the island component are mutually arranged and spun, and the two components of the sea component and the island component are mixed and spun.
  • sea-island type composite fibers are preferably used from the viewpoint that ultrafine fibers having a uniform fineness can be obtained and that a sufficiently long ultrafine fiber is obtained and contributes to the strength of the sheet-like material.
  • polyethylene, polypropylene, polystyrene, copolymer polyester obtained by copolymerizing sodium sulfoisophthalic acid, polyethylene glycol, or the like, polylactic acid, polyvinyl alcohol, or the like can be used.
  • copolymerizable polyesters polylactic acid and hot water-soluble polyvinyl alcohol, which are copolymerizable with alkali-decomposable sodium sulfoisophthalic acid or polyethylene glycol, which can be decomposed without using an organic solvent, are preferably used.
  • the mass ratio of the island fiber to the sea-island type composite fiber is preferably 0.2 to 0.9, more preferably 0.3 to 0.00. 8.
  • the mass ratio of the sea component and the island component is preferably 0.2 to 0.9, more preferably 0.3 to 0.00. 8.
  • the major axis of a single fiber of an ultrafine fiber expression type fiber such as a sea-island type composite fiber is preferably 5 to 80 ⁇ m, more preferably 10 to 50 ⁇ m. If the long diameter of the single fiber is smaller than 5 ⁇ m, the strength of the fiber is weak, and there is a tendency that single fiber breakage increases due to the needle punching process described later. Moreover, when the long diameter of a single fiber becomes larger than 80 micrometers, efficient entanglement may not be performed by a needle punch process etc.
  • a method of entanglement of a fiber web by a needle punching process or a water jet punching process, a spunbond method, a melt blow method, a papermaking method, or the like is adopted.
  • a method that undergoes a treatment such as a needle punching treatment or a water jet punching treatment is preferably used in order to obtain the state of the ultrafine fiber bundle as described above.
  • needle punch processing is preferably used from the viewpoint of fiber entanglement.
  • needle punching is preferably used from the viewpoint that the fibers can be oriented in the vertical direction of the fibrous base material without being limited by the sheet thickness.
  • the needle used in the needle punching process preferably has 1 to 9 barbs.
  • the number of barbs By making the number of barbs one or more, efficient fiber entanglement becomes possible.
  • fiber damage can be suppressed by setting the number of barbs to 9 or less. When the number of barbs is more than 9, fiber damage increases, and needle marks may remain on the fibrous base material, resulting in poor appearance of the product.
  • the nonwoven fabric and the woven fabric or knitted fabric are entangled and integrated, the nonwoven fabric is preliminarily entangled. This is a desirable mode for further prevention.
  • a method of providing preliminary entanglement in advance by needle punching it is effective to perform the punch density at 20 pieces / cm 2 or more.
  • the pre-entanglement is preferably given at a punch density of 100 / cm 2 or more, and more preferably pre-entanglement is given at a punch density of 300 / cm 2 to 1300 / cm 2 .
  • the width of the nonwoven fabric leaves room for narrowing due to the needle punch process during and after entanglement with the woven fabric or knitted fabric. This is because wrinkles may occur in the woven fabric or knitted fabric with the change, and a smooth fibrous base material may not be obtained.
  • the punch density of the preliminary entanglement is higher than 1300 / cm 2 , generally the entanglement of the nonwoven fabric itself proceeds so much that the entanglement with the fibers constituting the woven fabric or the knitted fabric is sufficiently formed. This is because there is less room, which is disadvantageous for realizing a non-separated integrated structure in which the nonwoven fabric and the woven or knitted fabric are intertwined firmly.
  • the punch density range is preferably 300 / cm 2 to 6000 / cm 2, and 1000 / It is a more preferable aspect to set it to cm 2 to 3000 pieces / cm 2 .
  • fabric or knitted fabric is laminated on one or both sides of the nonwoven fabric, or woven fabric or knitted fabric is sandwiched between multiple nonwoven fabrics, and fibers are entangled by needle punching. It can be a quality substrate.
  • water jet punching process it is a preferable aspect that water is performed in a columnar flow state.
  • water is preferably ejected from a nozzle having a diameter of 0.05 to 1.0 mm at a pressure of 1 to 60 MPa.
  • the apparent density of the nonwoven fabric composed of ultrafine fiber generating fibers after needle punching or water jet punching is preferably 0.13 to 0.45 g / cm 3 , more preferably 0.15 to 0.30 g / cm 3 .
  • the apparent density is 0.13 to 0.45 g / cm 3 or more, an artificial leather having sufficient form stability and dimensional stability can be obtained.
  • the apparent density is 0.45 g / cm 3 or less, a sufficient space for applying the polymer elastic body can be maintained.
  • the thickness of the fibrous base material is preferably 0.3 mm or more and 6.0 mm or less, and more preferably 1.0 mm or more and 3.0 mm or less. If the thickness of the fibrous base material is smaller than 0.3 mm, the form stability of the sheet-like material may be poor. On the other hand, when the thickness is larger than 6.0 mm, needle breakage tends to occur frequently in the needle punching process.
  • the nonwoven fabric composed of the ultrafine fiber-generating fibers thus obtained can be shrunk by dry heat or wet heat or both from the viewpoint of densification and further densified.
  • the sea removal treatment for removing the sea components of the fibers is performed before and / or after the application of the water-dispersed polyurethane dispersion containing the water-dispersed polyurethane to the fibrous base material. It can be carried out.
  • sea removal treatment is performed before application of the water-dispersed polyurethane dispersion, the polyurethane tends to be in direct contact with the ultrafine fibers, and the ultrafine fibers can be strongly held, so that the wear resistance of the sheet-like material is improved.
  • an aqueous dispersion type polyurethane dispersion liquid after adding an inhibitor such as ultrafine fibers and cellulose derivatives or polyvinyl alcohol (hereinafter sometimes abbreviated as PVA) before applying the water dispersion type polyurethane dispersion liquid.
  • PVA polyvinyl alcohol
  • the adhesion between the ultrafine fiber and the polyurethane resin can be lowered, and a softer texture can also be achieved.
  • the aforementioned inhibitor application can be performed either before or after the sea-sealing treatment of the sea-island structure fibers.
  • an inhibitor before the sea removal treatment even when the fabric weight is lowered and the tensile strength of the sheet is lowered, the shape retention of the fibrous base material can be increased.
  • the thickness retention of the fibrous base material in the sea removal treatment step can be increased, and densification of the fibrous base material can be suppressed.
  • the densification of the fibrous base material can be realized by applying the inhibitor after the sea removal treatment, it is preferable to appropriately adjust according to the purpose.
  • PVA is preferably used because it has a high reinforcing effect on the fibrous base material and is difficult to dissolve in water.
  • PVA it is difficult to elute an inhibitor at the time of applying a water-dispersed polyurethane dispersion, and it is possible to apply a high water saponification degree PVA, which is more difficult to water, from the viewpoint of being able to inhibit adhesion between ultrafine fibers and polyurethane. This is a more preferable embodiment.
  • the saponification degree of the high saponification degree PVA is preferably 95% or more and 100% or less, more preferably 98% or more and 100% or less.
  • the polymerization degree of PVA is preferably 500 or more and 3500 or less, and more preferably 500 or more and 2000 or less.
  • the polymerization degree of PVA is preferably 500 or more and 3500 or less, and more preferably 500 or more and 2000 or less.
  • the amount of PVA applied is preferably 0.1% by mass to 80% by mass with respect to the fibrous base material remaining in the product, and the amount applied is more preferably 5% by mass to 60% by mass.
  • the amount of PVA applied is preferably 0.1% by mass to 80% by mass with respect to the fibrous base material remaining in the product, and the amount applied is more preferably 5% by mass to 60% by mass.
  • the inhibitor As a method of applying the inhibitor to the fibrous base material, from the viewpoint that the inhibitor can be uniformly applied, the inhibitor is dissolved in water, impregnated into the fibrous base material, and dried by heating. Is preferably used. If the drying temperature is too low, drying time is required for a long time. If the temperature is too high, the inhibitor is completely insolubilized and cannot be dissolved and removed later. For this reason, it is preferable to dry at the temperature of 80 degreeC or more and 180 degrees C or less, More preferably, it is 110 degreeC or more and 160 degrees C or less. Moreover, it is preferable that drying time is 1 minute or more and 30 minutes or less from a viewpoint of workability.
  • Dissolving and removing the inhibitor is performed by immersing the fibrous base material to which the inhibitor is applied in steam having a temperature of 100 ° C. or higher and hot water having a temperature of 60 ° C. or higher and 100 ° C. or lower. It is a preferred embodiment to dissolve and remove by squeezing.
  • the sea removal treatment can be performed by immersing a fibrous base material containing sea-island type composite fibers in the liquid and squeezing it.
  • a fibrous base material containing sea-island type composite fibers in the liquid and squeezing it.
  • the solvent for dissolving the sea component when the sea component is polyethylene, polypropylene and polystyrene, an organic solvent such as toluene or trichloroethylene is used.
  • the sea component is a copolyester or polylactic acid, a sodium hydroxide aqueous solution is used.
  • the sea component is polyvinyl alcohol, hot water can be used.
  • the polyurethane is dispersed in an aqueous medium as particles, from the viewpoint of dispersion stability of the polyurethane, it is preferable to use the above-mentioned hydrophilic group-containing active hydrogen component as a constituent component of the polyurethane, and it is more preferable to use a neutralized salt. It is.
  • Examples of the neutralizing agent used in the neutralized salt of the compound having a hydrophilic group and active hydrogen include trimethylamine, triethylamine, amine compounds of triethanolamine, hydroxides such as sodium hydroxide and potassium hydroxide, and the like. It is done.
  • the addition time of the neutralizing agent used for the hydrophilic group-containing active hydrogen component is not particularly specified before and after the polyurethane polymerization step or before and after the dispersion step in an aqueous medium, but from the viewpoint of stability in the aqueous dispersion of polyurethane, It is preferably added before the dispersion step in the aqueous medium or during the dispersion step in the aqueous medium.
  • the content of the hydrophilic group-containing active hydrogen component and / or salt thereof based on the mass of the polyurethane is preferably 0.005 to 30% by mass, more preferably from the viewpoint of dispersion stability and water resistance of the polyurethane. 0.01 to 15% by mass.
  • the polyurethane When the polyurethane is dispersed in the aqueous medium as particles, in addition to using the hydrophilic group-containing active hydrogen component, the polyurethane can be dispersed in the aqueous medium using a surfactant as an external emulsifier of the polyurethane.
  • surfactants examples include nonionic surfactants, anionic surfactants, cationic surfactants, and amphoteric surfactants.
  • surfactant may be used independently and can also use 2 or more types together.
  • Nonionic surfactants include polyoxyethylene nonyl phenyl ether, polyoxyethylene dinonyl phenyl ether, polyoxyethylene laurel ether, polyoxyethylene stearyl ether and other alkylene oxide addition types, and glycerin monostearate and other polyhydric alcohols. Examples include molds.
  • anionic surfactant examples include sodium laurate, sodium laurel sulfate, ammonium lauryl sulfate, sodium dodecylbenzenesulfonate, sodium salt of higher alcohol phosphate diester, sulfate ester salt, sulfonate salt, and phosphate ester Salt.
  • cationic surfactant examples include quaternary ammonium salts such as distearyldimethylammonium chloride.
  • amphoteric surfactants include methyl laurylaminopropionate, lauryldimethylbetaine, and palm oil fatty acid amidopropyldimethylaminoacetic acid betaine.
  • a conventional polyurethane dispersion manufacturing method can be applied to the polyurethane dispersion used in the present invention.
  • a prepolymer having an isocyanate group at the molecular end reacted with a chain extender and / or a hydrophilic group-containing polyol is prepared, and the prepolymer is emulsified in water in the presence of an emulsifier, the chain extender is used at the same time or later.
  • Examples thereof include a method of completing the elongation reaction and a method of emulsifying in water as it is without using an emulsifier after reacting the aforementioned polyisocyanate, polyol and / or chain extender and / or hydrophilic group-containing polyol.
  • the polymerization may be performed in the absence of a solvent or in an organic solvent such as methyl ethyl ketone, toluene, and acetone.
  • the polyurethane is applied to the fibrous base material by, for example, immersing the aqueous dispersed polyurethane dispersion containing the synthesized water-dispersible polyurethane in the fibrous base material, and then coagulated and solidified by heating and drying. .
  • the water-dispersed polyurethane dispersion added with the above-mentioned thickener is applied to the fibrous base material, and the heat is preferably 50 ° C. to 100 ° C., more preferably 60 ° C. to 97 ° C.
  • a porous structure of polyurethane can be achieved by coagulating water-dispersed polyurethane in water.
  • the immersion time in hot water is preferably from 10 seconds to 5 minutes, more preferably from 30 seconds to 3 minutes. By setting the immersion time in this way, the polyurethane can be sufficiently solidified.
  • the amount of heat per hour required for polyurethane increases, so the coagulation rate increases and the bias of the water-dispersed polyurethane dispersion to the fibrous base material decreases. Therefore, the adhesion between the fiber and the polyurethane is reduced, and the texture is softened.
  • the polyurethane emulsion in the water-dispersed polyurethane dispersion impregnated in the fibrous base material is affected by the viscosity of the liquid, and the Brownian motion of the emulsion Is suppressed. Therefore, the number of times of contact between emulsions is reduced, the polyurethane lump at the time of coagulation can be reduced, and a soft texture can be achieved.
  • the dispersion does not diffuse into the hot water, so that the dropping of the polyurethane during the coagulation step can be suppressed, and a coagulation process with excellent productivity can be achieved.
  • nonionic, anionic, cationic and amphoteric thickeners can be applied.
  • nonionic thickeners are preferably used.
  • the type of thickener can be selected from associative thickeners and water-soluble polymer thickeners.
  • associative thickener associative thickeners known for urethane-modified compounds, acrylic-modified compounds and their copolymer compounds can be applied.
  • water-soluble polymer compounds examples include natural polymer compounds, semi-synthetic polymer compounds, and synthetic polymer compounds.
  • Non-natural compounds such as tamarind gum, guar gum, roast bean gum, tragacanth gum, starch, dextrin, gelatin, agarose, casein and curdlan, xanthan gum, carrageenan, gum arabic, pectin, collagen, chondroitin Examples include anionic compounds such as sodium sulfate, sodium hyaluronate, carboxymethyl starch, and phosphate starch, and cationic compounds such as cationic starch and chitosan.
  • Semi-synthetic polymer compounds include nonionic compounds such as methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, ethyl hydroxyethyl cellulose, methyl hydroxypropyl cellulose, soluble starch and methyl starch, and anionic compounds such as carboxymethyl cellulose, carboxymethyl starch and alginate The compound of this is mentioned.
  • Synthetic polymer compounds include nonionic compounds such as polyvinyl alcohol, polyacrylamide, polyvinyl pyrrolidone, polymethyl vinyl ether, polyethylene glycol and polyisopropyl acrylamide, carboxyvinyl polymer, sodium polyacrylate and sodium polystyrene sulfonate. And anionic compounds such as dimethylaminoethyl (meth) acrylate quaternary salt, dimethyldiallylammonium chloride, polyamidine, polyvinylimidazoline, and polyethyleneimine.
  • the thickener it is preferable to apply a nonionic thickener that hardly affects the stability of the water-dispersed polyurethane dispersion.
  • the water-dispersed polyurethane dispersion added with a thickener exhibits non-Newtonian properties. If the water-dispersed polyurethane dispersion is non-Newtonian and its viscosity is lowered by applying force, the viscosity is lowered by applying force by stirring or the like. In addition, after the impregnation, the viscosity returns to its original value by leaving it stationary, so that the dispersion impregnated in the fibrous base material is less likely to fall off the fibrous base material. .
  • the water-dispersed polyurethane dispersion added with the thickener exhibits thixotropic properties. If the water-dispersed polyurethane dispersion is thixotropic, the viscosity can be lowered by applying force by stirring or the like, and the dispersion can be uniformly impregnated into the fibrous base material. By leaving it at rest, the viscosity returns to the original, so that the dispersion liquid impregnated in the fibrous base material is less likely to fall off from the fibrous base material.
  • the thickener exhibiting thixotropy can be appropriately selected from the above-mentioned thickeners. Natural polymer compounds (polysaccharides) that are expected to have a large thickening effect with a small addition amount are preferably used.
  • guar gum is more preferable because it is excellent in water solubility, excellent in compatibility with water-dispersed polyurethane liquid, and has high thixotropic properties at low concentrations.
  • the viscosity of the aqueous resin dispersion containing a thickener is preferably 200 mPa ⁇ s to 100,000 mPa ⁇ s, more preferably 200 mPa ⁇ s to 10,000 mPa ⁇ s, and still more preferably 200 mPa ⁇ s to 5000 mPa ⁇ s. is there.
  • the viscosity of the aqueous resin dispersion By setting the viscosity of the aqueous resin dispersion to 200 mPa ⁇ s or more, dropping of polyurethane in the hot water coagulation step can be suppressed, and by setting the viscosity to 100000 mPa ⁇ s or less, the water dispersion type
  • the polyurethane dispersion can be uniformly impregnated into the fibrous base material.
  • the water-dispersed polyurethane dispersion applied to the fibrous base material contains a heat-sensitive coagulant from the viewpoint that the migration of polyurethane during polyurethane coagulation can be suppressed and the fibrous base material can be uniformly impregnated with polyurethane. It is preferable.
  • heat-sensitive coagulant examples include inorganic salts such as sodium sulfate, magnesium sulfate, calcium sulfate, calcium chloride, magnesium chloride and calcium chloride, and ammonium salts such as sodium persulfate, potassium persulfate, ammonium persulfate and ammonium sulfate.
  • inorganic salts such as sodium sulfate, magnesium sulfate, calcium sulfate, calcium chloride, magnesium chloride and calcium chloride
  • ammonium salts such as sodium persulfate, potassium persulfate, ammonium persulfate and ammonium sulfate.
  • the heat-sensitive coagulation temperature of the water-dispersed polyurethane dispersion is preferably 40 to 90 ° C., more preferably 50 to 80 ° C., from the viewpoint of storage stability and texture of the processed fiber product.
  • the following various additives can be further added to the polyurethane dispersion.
  • pigments such as carbon black, antioxidants (hindered phenol-based and sulfur-based, phosphorus-based antioxidants), ultraviolet absorbers (benzotriazole-based, triazine-based, benzophenone-based and benzoate-based ultraviolet absorbers, etc.) ), Weathering stabilizers such as hindered amine light stabilizers, soft water repellents (soft water repellents such as polysiloxanes, silicone compounds such as modified silicone oils, and fluorine compounds such as fluoroalkyl ester polymers of acrylic acid) , Wetting agents (wetting agents such as ethylene glycol, diethylene glycol, propylene glycol and glycerin), antifoaming agents (foaming agents such as octyl alcohol, sorbitan monooleate, polydimethylsiloxane, polyether-modified silicone and fluorine-modified silicone), filling Agent (carbonic acid cal , Titanium oxide, silica, talc, ceramics, fine
  • Foaming agents and inorganic foaming agents such as sodium hydrogen carbonate (eg “Cermic 266” (registered trademark) manufactured by Sankyo Kasei) and the like], 2,2′-azobis [2-methyl-N- (2-hydroxyethyl) Propionamide] (Example: “VA-086” manufactured by Wako Pure Chemical Industries, Ltd.), viscosity modifier, plasticizer (phthalate ester, adipic acid ester, etc.), and mold release agent (wax, metal soap, and mixtures thereof) Additives such as system release agents and the like may be included.
  • sodium hydrogen carbonate eg “Cermic 266” (registered trademark) manufactured by Sankyo Kasei) and the like
  • 2,2′-azobis [2-methyl-N- (2-hydroxyethyl) Propionamide] Example: “VA-086” manufactured by Wako Pure Chemical Industries, Ltd.
  • viscosity modifier e.g., plasticizer, phthalate ester, adip
  • Cure After impregnating the fiber-dispersed polyurethane dispersion into a fibrous base material and solidifying it, additional heating (in order to promote fusion of the water-dispersed polyurethane emulsion, optimize the molecular structure of the polyurethane, and improve the heat and moisture resistance ( Curing) is a preferred mode. Cure can be performed continuously with the step of solidifying the fibrous base material after impregnating the water-dispersed polyurethane dispersion, and the fibrous base material is impregnated with the water-dispersed polyurethane dispersion and solidified. Later, it can also be carried out in a separate process.
  • the drying time is required for a long time, and when the temperature is too high, the thermal decomposition of polyurethane is promoted. Therefore, it is preferable to dry at a temperature of 80 ° C. or higher and 200 ° C. or lower, more preferably It is 120 degreeC or more and 190 degrees C or less, More preferably, they are 150 degreeC or more and 180 degrees C or less.
  • the drying time is preferably 1 minute or more and 60 minutes or less, more preferably 1 minute or more and 30 minutes or less from the viewpoint of workability.
  • the fluidity of the polyurethane molecules is increased, and the hard segment (HS) portion formed mainly from urethane groups and urea groups and mainly formed from polyols.
  • the aggregation of the HS portion can be further enhanced, the microphase separation structure of the HS and SS portion can be clarified, and the heat and moisture resistance can be improved.
  • a lubricant such as a silicone emulsion can be applied to the polyurethane-applied sheet.
  • applying an antistatic agent before the raising treatment is a preferable mode in order to make it difficult for the grinding powder generated from the sheet-like material to be deposited on the sandpaper by grinding.
  • raising treatment can be performed.
  • the raising treatment can be performed by a method of grinding using sandpaper, roll sander or the like.
  • the thickness of the sheet material is too thin, physical properties such as tensile strength and tear strength of the sheet material will be weak, and if it is too thick, the texture of the sheet material will be hard. Preferably there is.
  • the sheet-like material can be dyed.
  • a dyeing method it is preferable to use a liquid dyeing machine because the sheet-like material can be softened by dyeing the sheet-like material and at the same time giving a stagnation effect. If the dyeing temperature is too high, the polyurethane may be deteriorated. Conversely, if the dyeing temperature is too low, dyeing of the dye onto the fiber becomes insufficient, and therefore the dyeing temperature can be set depending on the type of the fiber.
  • the dyeing temperature is preferably 80 ° C. or higher and 150 ° C. or lower, more preferably 110 ° C. or higher and 130 ° C. or lower.
  • the dye used is selected according to the type of fiber constituting the fibrous base material.
  • disperse dyes can be used for polyester fibers, acidic dyes or metal-containing dyes can be used for polyamide fibers, and combinations thereof can be used.
  • reduction washing can be performed after dyeing.
  • a dyeing assistant during dyeing.
  • a dyeing assistant By using a dyeing assistant, the uniformity and reproducibility of dyeing can be improved.
  • a finishing treatment using a softening agent such as silicone, an antistatic agent, a water repellent, a flame retardant, a light proofing agent, and an antibacterial agent can be performed in the same bath or after dyeing.
  • the sheet-like material obtained by the present invention is mainly used as artificial leather, for example, as a skin material for furniture, chairs and wall materials, and seats, ceilings and interiors in vehicles such as automobiles, trains and aircraft.
  • Interior materials with elegant appearance, shirts, jackets, casual shoes, sports shoes, upper shoes for men's shoes and women's shoes, trims, bags, belts, wallets, etc., and clothing materials used for some of them It can be suitably used as industrial materials such as wiping cloth, polishing cloth and CD curtain.
  • Viscosity measurement of water-dispersed polyurethane dispersion The viscosity of the prepared water-dispersed polyurethane dispersion was measured using a rotational viscometer (B-type viscometer: Tokyo Keiki Seisakusho) under an atmosphere at a temperature of 25 ° C. and a rotational speed condition of 0.5 rpm. The measurement was performed under a rotation speed condition of rotation / min.
  • Appearance quality of sheet-like material The appearance quality of the sheet-like material was evaluated on the basis of visual and sensory evaluations in the following five stages, with 10 healthy adult males and 10 adult females each, with a total of 20 evaluators. It was. Appearance quality was rated as 4th to 5th grades. Grade 5: There is uniform fiber napping, the fiber dispersion state is good, and the appearance is good. Grade 4: Evaluation between grade 5 and grade 3. Third grade: The dispersion state of the fibers is somewhat poor, but there are fiber nappings and the appearance is reasonably good. Second grade: An evaluation between the third grade and the first grade. First grade: Overall, the fiber dispersion is very poor and the appearance is poor.
  • Texture of sheet The texture of the sheet is evaluated by the following three sensory evaluations using tactile sensation, with 10 healthy adult males and 10 adult females each. It was a good evaluation. The texture was good (excellent rubber elasticity). (Double-circle): It is softer than the artificial leather which applied the organic solvent type polyurethane of the same basis weight, and is excellent in crease wrinkle recovery. ⁇ : The same softness and crease recovery properties as artificial leather using organic solvent-based polyurethane with the same basis weight. X: The sheet is hard and has a paper-like feel.
  • FIG. 3 shows a schematic diagram of the parameter A calculation method.
  • FIG. 3 is a schematic view showing a polyurethane lump 1 of parameter A, and is a diagram illustrating a polyurethane cross-section (not including the back part of the cross-section) in which the artificial leather is observed in the cross-section with the polyurethane lump 1. is there.
  • FIG. 4 shows a schematic diagram of the parameter B calculation method.
  • FIG. 4 is a schematic diagram showing the outer periphery 2 of the ultrafine fiber and / or ultrafine fiber bundle of parameter B and the outer periphery 3 covered with the polymer elastic film, and the solid line portion indicates the outer periphery 2 of the ultrafine fiber bundle and the dotted line portion.
  • polyurethane liquid A Polycarbonate diol with Mn of 2,000 [“Duranol” (registered trademark) T5652 ”manufactured by Asahi Kasei Chemicals Co., Ltd.] as the polyol, MDI as the isocyanate, and 2,2-dimethylolpropionic acid as the intramolecular hydrophilic group
  • ethylene glycol and ethylenediamine as chain extenders and polyoxyethylene nonylphenyl ether and water as external emulsifiers are added and stirred, and then toluene is removed by decompression to remove water.
  • a dispersion type polyurethane dispersion A was obtained.
  • polyurethane liquid B Polycarbonate diol with Mn of 2,000 [“Duranol” (registered trademark) T6002 ”manufactured by Asahi Kasei Chemicals Co., Ltd.] as the polyol, IPDI as the isocyanate, a diol compound having polyethylene glycol in the side chain as an intramolecular hydrophilic group, and A 2,2-dimethylolpropionic acid is used to prepare a prepolymer in an acetone solvent, and then ethylene glycol, ethylenediamine and water are added as chain extenders and stirred, and then the acetone is removed under reduced pressure to remove water. A dispersion type polyurethane dispersion B was obtained.
  • Example 1 As the sea component, polyethylene terephthalate copolymerized with 8 mol% of sodium 5-sulfoisophthalate is used, and as the island component, polyethylene terephthalate is used. The sea component is 20% by mass and the island component is 80% by mass. A sea-island type composite fiber having several 16 islands / 1 filament and an average fiber diameter of 20 ⁇ m was obtained. The obtained sea-island type composite fiber was cut into a fiber length of 51 mm to form a staple, a fiber web was formed through a card and a cross wrapper, and a nonwoven fabric was formed by needle punching.
  • the nonwoven fabric obtained in this manner was immersed in hot water at a temperature of 97 ° C. for 2 minutes to shrink and dried at a temperature of 100 ° C. for 5 minutes.
  • an active ingredient of an associative thickener (“Sickner 627N” manufactured by San Nopco Co., Ltd.] is added to the water-dispersible polyurethane dispersion A having a polyurethane solid content concentration of 20%.
  • a sheet provided with water-dispersed polyurethane was obtained so that the polyurethane mass relative to the island component mass of the nonwoven fabric was 35 mass%. There was almost no dropping of the polyurethane at 0.1% during the hot water coagulation of the polyurethane.
  • the sheet thus obtained was immersed in a 10 g / L sodium hydroxide aqueous solution heated to a temperature of 95 ° C. and treated for 25 minutes to remove the sea components of the sea-island composite fibers. I got a sea sheet.
  • the average monofilament diameter of the monofilament on the surface of the obtained sea removal sheet was 4.2 ⁇ m.
  • the sea removal sheet is cut in half in the direction perpendicular to the thickness direction, and the non-half-cut side is ground using 120 mesh and 240 mesh sandpaper, Treated.
  • Example 2 The water-dispersed polyurethane dispersion A having a solid content adjusted to 20% is associated with an active ingredient of an epoxy-based crosslinking agent [“CR-5L” manufactured by DIC Corporation] in an amount of 5% by mass relative to the polyurethane solid content.
  • an epoxy-based crosslinking agent ““CR-5L” manufactured by DIC Corporation”
  • Example 4 A dispersion in which an active ingredient of a type thickener [Sickner 627N manufactured by San Nopco Co., Ltd.] was added in an amount of 4% by mass with respect to the polyurethane solid content and 1.2% by mass of magnesium sulfate with respect to the polyurethane solid content
  • An artificial leather having a basis weight of 223 g / m 2 was obtained in the same manner as in Example 1 except that the same nonwoven fabric as 1 was impregnated.
  • the water-dispersed polyurethane was coagulated with hot water, the polyurethane did not fall off at 0.1%.
  • the appearance quality of the obtained artificial leather was good, and the texture was good with no paper-like feeling.
  • Parameter A was 4.1% and parameter B was 25.4%.
  • Example 3 As the sea component, polyethylene terephthalate copolymerized with 8 mol% of sodium 5-sulfoisophthalate is used, and as the island component, polyethylene terephthalate is used. The sea component is 20% by mass, and the island component is 80% by mass. A sea-island type composite fiber having 16 islands / 1 filament and an average fiber diameter of 20 ⁇ m was obtained. The obtained sea-island type composite fiber was cut into a fiber length of 51 mm to form a staple, a fiber web was formed through a card and a cross wrapper, and a nonwoven fabric was formed by needle punching.
  • the nonwoven fabric thus obtained was immersed in hot water at a temperature of 97 ° C. for 5 minutes to shrink and dried at a temperature of 100 ° C. for 10 minutes.
  • an aqueous solution in which PVA having a degree of saponification of 99% and a degree of polymerization of 1400 [“NM-14” manufactured by Nippon Synthetic Chemical Co., Ltd.] was adjusted to an aqueous solution having a solid content of 10% by mass was applied to the obtained nonwoven fabric.
  • additional heating was performed at a temperature of 150 ° C. for 20 minutes to obtain a sheet.
  • the sheet thus obtained was immersed in a 100 g / L sodium hydroxide aqueous solution heated to a temperature of 50 ° C. and treated for 20 minutes to remove the sea components of the sea-island composite fibers. I got a sea sheet. The average fiber diameter of single fibers on the surface of the obtained sea removal sheet was 4.2 ⁇ m. Thereafter, the seawater-removed sheet was impregnated with water-dispersed polyurethane dispersion A prepared in the same manner as in Example 2, treated in hot water at a temperature of 95 ° C. for 1 minute, and then dried in hot air at a drying temperature of 100 ° C. for 15 minutes.
  • a sheet provided with water-dispersed polyurethane was obtained so that the polyurethane mass relative to the island component mass of the nonwoven fabric was 35 mass%.
  • the sheet provided with the water-dispersible polyurethane was immersed in hot water at a temperature of 98 ° C. for 10 minutes to remove the applied PVA, and then dried at a temperature of 100 ° C. for 10 minutes. Thereafter, the obtained sheet was further heated at a temperature of 160 ° C. for 20 minutes.
  • the sea removal sheet is cut in half perpendicular to the thickness direction, and the non-half cut side is ground using 120 mesh and 240 mesh sandpaper, and raised. Then, it was dyed with a disperse dye using a circular dyeing machine and subjected to reduction washing to obtain an artificial leather having a basis weight of 230 g / m 2 .
  • the water-dispersed polyurethane was coagulated with hot water, the polyurethane did not fall off at 0.2%.
  • the appearance quality of the obtained artificial leather was good, and the texture was good with no paper-like feeling. Parameter A was 3.8% and parameter B was 20.3%.
  • Example 4 3% by mass of the active ingredient of the associative thickener [Sannoco Co., Ltd. “Thickner 623N”] is added to the water-dispersed polyurethane dispersion B adjusted to a solid content concentration of 20% relative to the polyurethane solid content.
  • An artificial leather having a basis weight of 218 g / m 2 was obtained in the same manner as in Example 1, except that the same nonwoven fabric as in Example 1 was impregnated with the dispersion.
  • Example 5 In the water-dispersed polyurethane dispersion B having a solid content adjusted to 20%, an active component of aqueous isocyanate [“Desmodur (registered trademark) N3900” manufactured by Bayer MaterialScience) is added to the polyurethane solid content.
  • “Desmodur (registered trademark) N3900” manufactured by Bayer MaterialScience) is added to the polyurethane solid content.
  • carbodiimide-based cross-linking agent ““Carbodilite” (registered trademark) V-02-L2 ”manufactured by Nisshinbo Chemicals Co., Ltd.) 3% by mass with respect to polyurethane solid content
  • associative thickening Example 1 except that the same non-woven fabric as Example 1 was impregnated with a dispersion obtained by adding 3% by mass of the active ingredient of the agent [Sannoco Co., Ltd. “Thickner 623N”] to the polyurethane solid content.
  • An artificial leather having a basis weight of 220 g / m 2 was obtained.
  • Example 6 In the water-dispersed polyurethane dispersion B having a solid content adjusted to 20%, an active component of aqueous isocyanate [“Desmodur (registered trademark) N3900” manufactured by Bayer MaterialScience) is added to the polyurethane solid content.
  • “Desmodur (registered trademark) N3900” manufactured by Bayer MaterialScience) is added to the polyurethane solid content.
  • carbodiimide-based cross-linking agent ““Carbodilite” (registered trademark) V-02-L2 ”manufactured by Nisshinbo Chemicals Co., Ltd.) 3% by mass with respect to polyurethane solid content
  • associative thickening Example 3 except that the same non-woven fabric as Example 3 was impregnated with a dispersion liquid in which 3% by mass of an active ingredient of the agent [Sannopco Co., Ltd. “Thickener 623N”] was added to the polyurethane solid content.
  • An artificial leather having a basis weight of 220 g / m 2 was obtained.
  • Example 7 Using the sea-island composite fiber of Example 1, a fiber web was formed through a card and a cross wrapper, and the resulting fiber web was laminated. After that, the twisted yarn was composed of 84 dtex-72 filaments with a weaving density of 96 per inch. After a woven fabric of x76 (longitudinal x weft) was superimposed on the front and back of the laminated fiber web, a laminated nonwoven fabric was formed by needle punching, and the polyurethane mass relative to the island component mass of the nonwoven fabric was 28 mass%.
  • Water-dispersed polyurethane was applied to the sheet, and the sea removal sheet was cut in half perpendicular to the thickness direction using a half-cutting machine having an endless band knife, and the half-cut side was used with 120-mesh and 240-mesh sandpaper by grinding Te, except that subjected to raising treatment, in the same manner as in example 6, having a basis weight of 393 g / m 2 artificial To give the leather.
  • the water-dispersed polyurethane was coagulated with hot water, the polyurethane did not fall off at 0.2%.
  • the appearance quality of the obtained artificial leather was good, and the texture was good with no paper-like feeling. Parameter A was 3.6% and parameter B was 20.1%.
  • Example 8 In the water-dispersed polyurethane dispersion A adjusted to a solid content concentration of 20%, an active ingredient of aqueous isocyanate [“Desmodur (registered trademark) N3900” manufactured by Bayer MaterialScience Co., Ltd.]] is compared with polyurethane solid content.
  • Example 3 3% by mass, 3% by mass of an active ingredient of a carbodiimide-based cross-linking agent [“Carbodilite” (registered trademark) V-02-L2 ”manufactured by Nisshinbo Chemicals Co., Ltd.) relative to the solid content of polyurethane,
  • a carbodiimide-based cross-linking agent ““Carbodilite” (registered trademark) V-02-L2 ”manufactured by Nisshinbo Chemicals Co., Ltd.
  • the same dispersion as in Example 3 was prepared by adding 2% by mass of an active ingredient of “Neosoft G” manufactured by Taiyo Kagaku Co., Ltd. to the polyurethane solid content and 1.2% by mass of magnesium sulfate relative to the polyurethane solid content. Except that it was impregnated into a nonwoven fabric and treated in hot water at a temperature of 95 ° C. for 3 minutes after impregnation with a poly
  • Example 9 Using the sea-island composite fiber of Example 1, a fiber web was formed through a card and a cross wrapper, and the resulting fiber web was laminated. After that, the twisted yarn was composed of 84 dtex-72 filaments with a weaving density of 96 per inch. After a woven fabric of x76 (longitudinal x weft) was superimposed on the front and back of the laminated fiber web, a laminated nonwoven fabric was formed by needle punching, and the polyurethane mass relative to the island component mass of the nonwoven fabric was 28 mass%.
  • Water-dispersed polyurethane was applied to the sheet, and the sea removal sheet was cut in half perpendicular to the thickness direction using a half-cutting machine having an endless band knife, and the half-cut side was used with 120-mesh and 240-mesh sandpaper by grinding Te, except that subjected to raising treatment, in the same manner as in example 8, basis weight of 390 g / m 2 artificial To give the leather.
  • basis weight of 390 g / m 2 artificial To give the leather basis weight of 390 g / m 2 artificial To give the leather.
  • the water-dispersed polyurethane was coagulated with hot water, the polyurethane did not fall off at 0.1%.
  • the half-cut surface of the half-cutting machine had no polyurethane unevenness, and the fibrous base material was impregnated with uniform polyurethane.
  • the appearance quality of the obtained artificial leather was good, and the texture was good with no paper-like feeling. Parameter A was 2.9% and parameter B was
  • Example 10 Except that the non-woven fabric was not applied with PVA with a degree of saponification of 99% and a degree of polymerization of 1400 [“NM-14” manufactured by Nippon Synthetic Chemical Co., Ltd.] and dried, the same as in Example 9, An artificial leather having a basis weight of 388 g / m 2 was obtained.
  • the water-dispersed polyurethane was coagulated with hot water, the polyurethane did not fall off at 0.1%.
  • the half-cut surface of the half-cutting machine had no polyurethane unevenness, and the fibrous base material was impregnated with uniform polyurethane.
  • the appearance quality of the obtained artificial leather was good, and the texture was good with no paper-like feeling. Parameter A was 1.1% and parameter B was 4.9%.
  • Example 11 In the water-dispersed polyurethane dispersion B adjusted to a solid content concentration of 20%, an active component of aqueous isocyanate [“Desmodur (registered trademark) N3900” manufactured by Bayer MaterialScience Co., Ltd.] is compared with polyurethane solid content. Except for impregnating the nonwoven fabric with 4% by mass and a dispersion obtained by adding 2.5% by mass of the active ingredient of guar gum of thickening polysaccharide [“Neosoft G” manufactured by Taiyo Kagaku Co., Ltd.] in terms of polyurethane solid content. In the same manner as in Example 9, an artificial leather having a basis weight of 388 g / m 2 was obtained.
  • Example 12 An active ingredient of a carbodiimide-based cross-linking agent [“Carbodilite” (registered trademark) V-02-L2 ”manufactured by Nisshinbo Chemicals Co., Ltd.] was added to the water-dispersed polyurethane dispersion C having a solid content adjusted to 20%.
  • a carbodiimide-based cross-linking agent ““Carbodilite” (registered trademark) V-02-L2 ”manufactured by Nisshinbo Chemicals Co., Ltd.] was added to the water-dispersed polyurethane dispersion C having a solid content adjusted to 20%.
  • Example 13 Except that the non-woven fabric was not applied with PVA having a saponification degree of 99% and a polymerization degree of 1400 [“NM-14” manufactured by Nippon Synthetic Chemical Co., Ltd.] and drying, in the same manner as in Example 12, An artificial leather having a basis weight of 388 g / m 2 was obtained.
  • the water-dispersed polyurethane was coagulated with hot water, the polyurethane did not fall off at 0.1%.
  • the half-cut surface of the half-cutting machine had no polyurethane unevenness, and the fibrous base material was impregnated with uniform polyurethane.
  • the appearance quality of the obtained artificial leather was good, and the texture was good with no paper-like feeling. Parameter A was 0.7% and parameter B was 4.0%.
  • FIG. 1 shows a cross section of the artificial leather obtained in Example 13.
  • the state of the polyurethane and the ultrafine fiber bundle observed in the cross section of FIG. 1 was a state in which the polyurethane cross section was small (polyurethane lump was small), and the adhesion between the ultrafine fiber bundle and the polyurethane was small.
  • Example 1 Except that the same non-woven fabric as in Example 1 was impregnated with a dispersion obtained by adding 1.2% by mass of magnesium sulfate to the water-dispersed polyurethane dispersion A adjusted to a solid content concentration of 20% with respect to the polyurethane solid content.
  • the dropping of the polyurethane was 22.1%, and uneven adhesion of the polyurethane to the fibrous base material occurred.
  • Example 3 The same non-woven fabric as in Example 1 was impregnated with the water-dispersed polyurethane dispersion B adjusted to a solid content concentration of 20%, treated in a moist heat atmosphere at a temperature of 97 ° C. and a humidity of 100% for 5 minutes, and then at 110 ° C.
  • the weight per unit area is 223 g / m 2 in the same manner as in Example 1 except that it is dried at a temperature for 15 minutes and a water-dispersed polyurethane resin is applied so that the polyurethane mass relative to the island component mass of the nonwoven fabric is 35 mass%.
  • artificial leather Of artificial leather.
  • the weight per unit area is 389 g / m 2 in the same manner as in Example 13, except that the polyurethane is mass-dried at a temperature for 15 minutes, and the water-dispersible polyurethane resin is applied so that the mass of polyurethane with respect to the mass of island components of the nonwoven fabric is 28 mass%.
  • the drop-out of the polyurethane during hot water coagulation of the water-dispersed polyurethane was 0.0%, but the texture of the obtained artificial leather had a strong paper-like feeling. Parameter A was 8.1% and parameter B was 43.1%.
  • FIG. 2 shows a cross section of the artificial leather obtained in Comparative Example 4.
  • the state of the polyurethane and the ultrafine fiber bundle observed in the cross section of FIG. 2 was a state where there were many polyurethane cross sections (polyurethane mass was large) and there was much adhesion between the ultrafine fiber bundle and the polyurethane.
  • the polyurethane lump is small, and the polyurethane is uniformly dispersed inside the artificial leather, giving a soft texture.
  • the parameter B is smaller than that of the comparative example, the embodiment has less adhesion between the ultrafine fiber bundle and the polyurethane, and has a soft texture.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

The present invention pertains to a method for manufacturing a sheet-like material without using an organic solvent in the manufacturing process, and provides a sheet-like material having excellent surface quality and texture and a method for manufacturing the same. This sheet-like material is formed by adding, as a binder, a polymer elastomer having a hydrophilic group to a fibrous base material comprising ultra-fine fibers, wherein, in a cross-section of the sheet-like material that is cut in the thickness direction, the occupancy ratio of a portion of the polymer elastomer observed within the cut surface, the portion independently having a cross-sectional area of 50 μm2 or more, is 0.1-5.0% inclusive with respect to the area of an artificial leather cross-section within the observation visual field. This method for manufacturing the sheet-like material comprises adding, as a binder, a polymer elastomer having a hydrophilic group to a fibrous base material comprising ultra-fine fibers, wherein a polymer elastomer dispersed in water and an aqueous resin dispersion containing a thickener are added to a fibrous base material, and the polymer elastomer is coagulated in hot water at a temperature of 50-100℃.

Description

シート状物およびその製造方法Sheet material and method for producing the same
 本発明は、製造工程に有機溶剤を使用しない環境に配慮したシート状物の製造方法に関するものであり、特に表面品位および風合いが良好なシート状物とその製造方法に関するものである。 The present invention relates to a method for producing an environmentally friendly sheet material that does not use an organic solvent in the production process, and particularly relates to a sheet material having good surface quality and texture and a method for producing the same.
 主として不織布等の繊維質基材とポリウレタンからなるシート状物は、天然皮革にない優れた特徴を有しており、人工皮革等の種々の用途に広く利用されている。とりわけ、ポリエステル系繊維質基材を用いたシート状物は、耐光性に優れているため、衣料や椅子張りおよび自動車内装材用途等にその使用が年々広がってきた。 A sheet-like material mainly composed of a fibrous base material such as nonwoven fabric and polyurethane has excellent characteristics not found in natural leather, and is widely used in various applications such as artificial leather. In particular, sheet-like materials using a polyester-based fibrous base material are excellent in light resistance, and therefore their use has been expanded year by year for use in clothing, chair upholstery and automobile interior materials.
 このようなシート状物を製造するにあたっては、繊維質基材にポリウレタンの有機溶剤溶液を含浸せしめた後、得られた繊維質基材をポリウレタンの非溶媒である水または有機溶剤水溶液中に浸漬してポリウレタンを湿式凝固せしめる工程の組み合わせが、一般的に採用されている。この場合、ポリウレタンの溶媒である有機溶剤としては、N,N-ジメチルホルムアミド等の水混和性有機溶剤が用いられる。しかしながら、一般的に有機溶剤は、人体や環境への有害性が高いことから、シート状物の製造に際しては、有機溶剤を使用しない手法が強く求められている。 In manufacturing such a sheet-like material, after impregnating the fibrous base material with an organic solvent solution of polyurethane, the obtained fibrous base material is immersed in water or an organic solvent aqueous solution which is a non-solvent of polyurethane. A combination of processes for wet coagulation of polyurethane is generally employed. In this case, a water-miscible organic solvent such as N, N-dimethylformamide is used as the organic solvent that is a solvent for the polyurethane. However, since organic solvents are generally highly harmful to the human body and the environment, a technique that does not use organic solvents is strongly demanded in the production of sheet-like materials.
 その具体的な解決手段として、従来の有機溶剤系のポリウレタンに代えて、分子内に親水性基を含ませ、水中にポリウレタン樹脂を分散させた水分散型ポリウレタンを用いる方法が検討されている。 As a specific solution, a method using a water-dispersed polyurethane in which a hydrophilic group is contained in a molecule and a polyurethane resin is dispersed in water has been studied in place of a conventional organic solvent-based polyurethane.
 しかしながら、水分散型ポリウレタンを液中に分散させた水分散型ポリウレタン分散液を繊維質基材に含浸し、ポリウレタンを凝固したシート状物は、風合いが硬くなりやすいという課題がある。 However, a sheet-like material obtained by impregnating a fibrous base material with a water-dispersed polyurethane dispersion in which water-dispersed polyurethane is dispersed in a liquid and solidifying the polyurethane has a problem that the texture tends to be hard.
 その主な理由の一つとして、両者の凝固方式の違いがある。すなわち、有機溶剤系ポリウレタン液の凝固方式は、有機溶剤に溶解しているポリウレタン分子を、水で溶媒置換して凝固する、いわゆる湿式凝固方式であり、ポリウレタン膜で見ると、密度が低い多孔膜が形成される。そのため、ポリウレタンが繊維質基材内に含浸され、凝固された場合も繊維とポリウレタンの接着面積が少なくなり、柔らかいシート状物となる。 】 One of the main reasons is the difference between the two coagulation methods. That is, the coagulation method of the organic solvent-based polyurethane liquid is a so-called wet coagulation method in which polyurethane molecules dissolved in the organic solvent are replaced with water to coagulate, and when viewed as a polyurethane film, the porous film has a low density. Is formed. Therefore, even when polyurethane is impregnated in the fibrous base material and solidified, the bonding area between the fiber and the polyurethane is reduced, resulting in a soft sheet.
 一方、水分散型ポリウレタンは、主に加熱することにより、水分散型ポリウレタン分散液の水和状態を崩壊させ、ポリウレタンエマルジョン同士を凝集させることにより凝固する、いわゆる湿熱凝固方式が主流であり、得られるポリウレタン膜構造は密度が高い無孔膜となる。そのため、繊維質基材とポリウレタンの接着は密になり、繊維の交絡部分が強く把持されるため、風合いが硬くなる。 On the other hand, water-dispersed polyurethane mainly uses a so-called wet heat coagulation method in which the hydration state of the water-dispersed polyurethane dispersion is disrupted by heating and solidifies by agglomerating polyurethane emulsions. The resulting polyurethane film structure is a non-porous film having a high density. Therefore, the adhesion between the fibrous base material and the polyurethane becomes dense, and the entangled portion of the fiber is strongly gripped, so that the texture becomes hard.
 この水分散型ポリウレタンの適用による風合いの改善、すなわち、ポリウレタンによる繊維交絡点の把持を抑制するために、繊維質基材内でのポリウレタンの構造を多孔構造とする技術が提案されている。 In order to improve the texture by applying this water-dispersed polyurethane, that is, to suppress the gripping of fiber entanglement points by polyurethane, a technique for making the structure of polyurethane in a fibrous base material porous is proposed.
 具体的に、不織布等の繊維質基材に、発泡剤を含有する水分散型ポリウレタン液を付与し、加熱によって発泡剤を発泡させ、繊維質基材内でのポリウレタンの構造を多孔構造とする方法が提案されている(特許文献1参照。)。この提案では、水分散型ポリウレタンを多孔とすることにより、繊維とポリウレタンとの接着面積が少なくなり、繊維の交絡点の把持力は弱まり、触感が柔軟である良好な風合いを有するシート状物を得ることが可能であるが、有機溶剤系ポリウレタンを付与させた場合と比較すると、まだ柔軟性に乏しい傾向である。 Specifically, a water-dispersed polyurethane liquid containing a foaming agent is applied to a fibrous base material such as a nonwoven fabric, and the foaming agent is foamed by heating to make the polyurethane structure in the fibrous base material porous. A method has been proposed (see Patent Document 1). In this proposal, by making the water-dispersible polyurethane porous, the adhesive area between the fiber and polyurethane is reduced, the gripping force of the fiber entanglement point is weakened, and a sheet-like material having a good texture that is soft to the touch. Although it can be obtained, it tends to be poor in flexibility as compared with the case where the organic solvent-based polyurethane is applied.
 また別に、繊維質基材内でのポリウレタンの構造を多孔構造とする技術として、繊維質基材に、会合型増粘剤を含有する水分散型ポリウレタン分散液を付与し、湿熱凝固することにより、水分散型ポリウレタンを多孔化する方法が提案されている(特許文献2参照。)。この提案においても、水分散型ポリウレタンを多孔とすることにより、繊維とポリウレタンとの接着面積が少なくなり、繊維の交絡点の把持力は弱まり、触感が柔軟である良好な風合いを有するシート状物を得ることが可能であるが、やはり有機溶剤系ポリウレタンを付与させた場合に比較すると、まだ柔軟性に乏しい傾向である。 Separately, as a technology for making the structure of polyurethane in a fibrous base material porous, a water-dispersible polyurethane dispersion containing an associative thickener is applied to the fibrous base material and coagulated with heat and moisture. A method for making water-dispersible polyurethane porous has been proposed (see Patent Document 2). Also in this proposal, by making the water-dispersible polyurethane porous, the adhesive area between the fiber and the polyurethane is reduced, the gripping force at the entanglement point of the fiber is weakened, and the sheet-like material having a good texture that is soft to the touch. However, as compared with the case where the organic solvent-based polyurethane is applied, the flexibility is still poor.
特開2011-214210号公報JP 2011-214210 A 特許第4042016号公報Japanese Patent No. 4042016
 そこで本発明の目的は、上記従来技術の背景に鑑み、環境に配慮した製造工程によって、有機溶剤系ポリウレタンを適用した人工皮革と比べて遜色ない均一感があり、優美な表面品位と良好な風合いを有するシート状物とその製造方法を提供することにある。 Therefore, in view of the background of the above-mentioned prior art, the object of the present invention is a uniform feeling comparable to artificial leather to which organic solvent-based polyurethane is applied by an environmentally friendly manufacturing process, and has an elegant surface quality and good texture. It is in providing the sheet-like material which has this, and its manufacturing method.
 さらに、本発明の目的は、水分散型ポリウレタンを適用することにより、ポリウレタンの多孔構造化を達成し、溶剤系ポリウレタンを適用した人工皮革に酷似した折れシワ回復性と柔軟性を有するシート状物とその製造方法を提供することにある。 Furthermore, an object of the present invention is to achieve a porous structure of polyurethane by applying water-dispersed polyurethane, and to have a sheet-like material having a crease recovery property and flexibility very similar to artificial leather to which solvent-based polyurethane is applied. And providing a manufacturing method thereof.
 本発明は、上記の課題を達成せんとするものであって、本発明のシート状物は、極細繊維および/または極細繊維束からなる繊維質基材に、親水性基を有する高分子弾性体がバインダーとして付与されてなるシート状物であって、前記のシート状物の厚み方向に切断した断面において、切断面内に観察される前記高分子弾性体のうち、独立して50μm以上の断面積を有する部分の占有比率が観察視野内の人工皮革断面の面積に対し0.1%以上5.0%以下であることを特徴とするシート状物である。 The present invention is to achieve the above-mentioned problem, and the sheet-like material of the present invention is a polymer elastic body having a hydrophilic group on a fibrous base material composed of ultrafine fibers and / or ultrafine fiber bundles. Is a sheet-like material provided as a binder, and in the cross-section cut in the thickness direction of the sheet-like material, among the polymer elastic bodies observed in the cut surface, independently 50 μm 2 or more The sheet-like product is characterized in that the occupation ratio of the portion having the cross-sectional area is 0.1% or more and 5.0% or less with respect to the area of the cross section of the artificial leather in the observation visual field.
 
 本発明のシート状物の好ましい様態によれば、前記のシート状物の厚み方向に切断した断面において、極細繊維および/または極細繊維束断面の外周の1%以上35%以下が高分子弾性体被膜で覆われていることである。

According to a preferred embodiment of the sheet-like material of the present invention, in the cross-section cut in the thickness direction of the sheet-like material, 1% or more and 35% or less of the outer periphery of the cross-section of the ultrafine fiber and / or ultrafine fiber bundle is a polymer elastic body. It is covered with a film.
 本発明のシート状物の好ましい様態によれば、前記の高分子弾性体が架橋剤により架橋された構造を持つことを特徴とする請求項1または2に記載のシート状物である。 According to a preferred aspect of the sheet-like material of the present invention, the sheet-like material according to claim 1 or 2, wherein the polymer elastic body has a structure crosslinked by a crosslinking agent.
 本発明は、上記課題を達成せんとするものであって、本発明のシート状物の製造方法は、極細繊維からなる繊維質基材に、親水性基を有する高分子弾性体がバインダーとして付与されてなるシート状物の製造方法において、水に分散された高分子弾性体と増粘剤を含む水系樹脂分散液を繊維質基材に付与し、50~100℃の温度の熱水中で前記の高分子弾性体を凝固させることを特徴とするシート状物の製造方法である。 The present invention is intended to achieve the above-described object, and in the method for producing a sheet-like material of the present invention, a polymer elastic body having a hydrophilic group is applied as a binder to a fibrous base material composed of ultrafine fibers. In the method for producing a sheet-like product thus formed, an aqueous resin dispersion containing a polymer elastic body and a thickener dispersed in water is applied to a fibrous base material, and is heated in hot water at a temperature of 50 to 100 ° C. A method for producing a sheet-like material, comprising solidifying the polymer elastic body.
 本発明のシート状物の製造方法の好ましい態様によれば、前記の水系樹脂分散液は、非ニュートン性を示すことである。 According to a preferred embodiment of the method for producing a sheet-like material of the present invention, the aqueous resin dispersion is non-Newtonian.
 本発明のシート状物の製造方法の好ましい態様によれば、前記の増粘剤は、ノニオン系増粘剤である。 According to a preferred embodiment of the method for producing a sheet-like material of the present invention, the thickener is a nonionic thickener.
 本発明のシート状物の製造方法の好ましい態様によれば、前記の水系樹脂分散液は、チキソトロピー性を示すことである。 According to a preferred embodiment of the method for producing a sheet-like material of the present invention, the aqueous resin dispersion is to exhibit thixotropic properties.
 本発明のシート状物の製造方法の好ましい態様によれば、前記の水系樹脂分散液に含まれる増粘剤は、増粘多糖類である。 According to a preferred embodiment of the method for producing a sheet-like material of the present invention, the thickener contained in the aqueous resin dispersion is a thickening polysaccharide.
 本発明のシート状物の製造方法の好ましい態様によれば、前記の増粘剤は、グァーガムである。 According to a preferred embodiment of the method for producing a sheet-like product of the present invention, the thickener is guar gum.
 本発明のシート状物の製造方法の好ましい態様によれば、前記の水系樹脂分散液は、感熱凝固剤を含むことである。 According to a preferred embodiment of the method for producing a sheet-like material of the present invention, the aqueous resin dispersion contains a heat-sensitive coagulant.
 本発明のシート状物の製造方法の好ましい態様によれば、前記の水系樹脂分散液は、架橋剤を含むことである。 According to a preferred embodiment of the method for producing a sheet-like material of the present invention, the aqueous resin dispersion contains a crosslinking agent.
 本発明によれば、環境に配慮した製造工程によって、水分散型ポリウレタンを多孔構造化し、繊維質基材に有機溶剤系ポリウレタンを付与した場合と酷似した折れシワ回復性と柔軟性を達成することができ、さらに有機溶剤系ポリウレタンを適用した人工皮革と同等に均一な起毛長からなり、繊維緻密感に優れる優美な表面品位と柔軟で折れシワ回復性にも優れる良好な風合いを有するシート状物が得られる。 According to the present invention, a water-dispersed polyurethane is made porous by an environmentally-friendly manufacturing process, and a wrinkle recovery property and flexibility very similar to those obtained when an organic solvent-based polyurethane is applied to a fibrous base material are achieved. In addition, it has a uniform raised length equivalent to artificial leather to which organic solvent-based polyurethane is applied, and has an elegant surface quality excellent in fiber denseness and a soft texture that is flexible and excellent in wrinkle recovery. Is obtained.
図1は、本発明の実施例13で得られた人工皮革断面の図面代用SEM写真である。FIG. 1 is a drawing-substituting SEM photograph of a cross section of artificial leather obtained in Example 13 of the present invention. 図2は、本発明の比較例4で得られた人工皮革断面の図面代用SEM写真である。FIG. 2 is an SEM photograph substituting for a drawing of a cross section of the artificial leather obtained in Comparative Example 4 of the present invention. 図3は、50μm以上の高分子弾性体の無孔状の塊の占有比率の算出方法の概要を説明するための図面代用参考SEM写真である。FIG. 3 is a drawing-substituting reference SEM photograph for explaining an outline of a method for calculating the occupation ratio of a non-porous mass of a polymer elastic body of 50 μm 2 or more. 図4は、極細繊維断面の高分子弾性体被膜率の算出方法を説明するための図面代用参考SEM写真である。FIG. 4 is a drawing-substituting reference SEM photograph for explaining a method of calculating the polymer elastic body coating ratio of the ultrafine fiber cross section.
 [シート状物について]
 まず、本発明のシート状物について説明する。
[About sheet-like materials]
First, the sheet-like material of the present invention will be described.
 本発明のシート状物は、極細繊維からなる不織布等の繊維質基材に、水分散型ポリウレタン等の親水性基含有樹脂からなる高分子弾性体がバインダーとして付与されてなるものである。 The sheet-like material of the present invention is obtained by applying a polymer elastic body made of a hydrophilic group-containing resin such as water-dispersed polyurethane as a binder to a fibrous base material such as a nonwoven fabric made of ultrafine fibers.
 繊維質基材を構成する繊維としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレートおよびポリ乳酸などのポリエステル、6-ナイロンや66-ナイロンなどのポリアミド、アクリル、ポリエチレン、ポリプロピレン、および熱可塑性セルロースなどの溶融紡糸可能な熱可塑性樹脂からなる繊維が挙げられる。中でも、強度、寸法安定性および耐光性の観点から、ポリエステル繊維が好ましく用いられる。また、繊維質基材は、異なる素材の繊維が混合され構成されていてもよい。 Examples of fibers constituting the fibrous base material include polyethylene terephthalate, polybutylene terephthalate, polyester such as polytrimethylene terephthalate and polylactic acid, polyamide such as 6-nylon and 66-nylon, acrylic, polyethylene, polypropylene, and thermoplastic cellulose. Examples thereof include fibers made of a thermoplastic resin that can be melt-spun. Among these, polyester fibers are preferably used from the viewpoints of strength, dimensional stability, and light resistance. The fibrous base material may be configured by mixing fibers of different materials.
 極細繊維の断面形状としては、丸断面でよいが、楕円、扁平および三角などの多角形、扇形および十字型などの異形断面の断面形状のものを採用することができる。 As the cross-sectional shape of the ultrafine fiber, a round cross-section may be used, but a cross-sectional shape having a polygonal shape such as an ellipse, a flat shape, and a triangle, a cross-sectional shape such as a sector shape and a cross shape may be employed.
 繊維質基材を構成する極細繊維の平均単繊維直径は、好ましくは0.1~7μmである。平均単繊維直径を好ましくは7μm以下、より好ましくは6μm以下、更に好ましくは5μm以下とすることにより、優れた柔軟性や立毛品位のシート状物を得ることができる。一方、平均単繊維直径を好ましくは0.1μm以上、より好ましくは0.3μm以上、更に好ましくは0.7μm以上、特に好ましくは1μm以上とすることにより、染色後の発色性やサンドペーパーなどによる研削など立毛処理時の束状繊維の分散性とさばけ易さに優れる。 The average single fiber diameter of the ultrafine fibers constituting the fibrous base material is preferably 0.1 to 7 μm. By setting the average single fiber diameter to preferably 7 μm or less, more preferably 6 μm or less, and even more preferably 5 μm or less, a sheet-like product having excellent flexibility and napping quality can be obtained. On the other hand, the average single fiber diameter is preferably 0.1 μm or more, more preferably 0.3 μm or more, still more preferably 0.7 μm or more, and particularly preferably 1 μm or more. Excellent dispersibility and ease of handling of bundled fibers during napping such as grinding.
 極細繊維からなる繊維質基材の形態としては、織物、編物および不織布等を採用することができる。中でも、表面起毛処理した際のシート状物の表面品位が良好であることから、不織布が好ましく用いられる。 Woven fabrics, knitted fabrics, non-woven fabrics and the like can be adopted as the form of the fibrous base material made of ultrafine fibers. Especially, since the surface quality of the sheet-like thing at the time of surface raising treatment is favorable, a nonwoven fabric is used preferably.
 不織布としては、短繊維不織布および長繊維不織布のいずれも用いられるが、風合いや品位の点では短繊維不織布が好ましく用いられる。 As the nonwoven fabric, either a short fiber nonwoven fabric or a long fiber nonwoven fabric is used, but a short fiber nonwoven fabric is preferably used in terms of texture and quality.
 短繊維不織布における短繊維の繊維長は、好ましくは25mm以上90mm以下であり、より好ましくは35mm以上75mm以下である。繊維長を25mm以上とすることにより、絡合により耐摩耗性に優れたシート状物を得ることができる。また、繊維長を90mm以下とすることにより、より風合いや品位に優れたシート状物を得ることができる。 The fiber length of the short fibers in the short fiber nonwoven fabric is preferably 25 mm or more and 90 mm or less, more preferably 35 mm or more and 75 mm or less. By setting the fiber length to 25 mm or more, a sheet-like material having excellent abrasion resistance can be obtained by entanglement. In addition, when the fiber length is 90 mm or less, it is possible to obtain a sheet-like product having a better texture and quality.
 極細繊維からなる繊維質基材が不織布の場合、その不織布は極細繊維の束(繊維束)が絡合してなる構造を有するものであることが好ましい態様である。極細繊維が束の状態で絡合していることによって、シート状物の強度が向上する。このような態様の不織布は、極細繊維発現型繊維同士をあらかじめ絡合した後に、極細繊維を発現させることによって得ることができる。 When the fibrous base material made of ultrafine fibers is a non-woven fabric, the non-woven fabric preferably has a structure in which ultrafine fiber bundles (fiber bundles) are intertwined. Since the ultrafine fibers are entangled in a bundle state, the strength of the sheet-like material is improved. The nonwoven fabric of such an embodiment can be obtained by causing the ultrafine fibers to develop after entanglement of the ultrafine fiber-expressing fibers in advance.
 極細繊維あるいはその繊維束が不織布を構成する場合、その不織布の内部に強度を向上させるなどの目的で、織物や編物を挿入することができる。このような織物や編物を構成する繊維の平均単繊維直径は、0.1~10μm程度が好ましい。 When ultrafine fibers or fiber bundles constitute a nonwoven fabric, a woven fabric or a knitted fabric can be inserted into the nonwoven fabric for the purpose of improving the strength. The average single fiber diameter of the fibers constituting such a woven or knitted fabric is preferably about 0.1 to 10 μm.
 本発明のシート状物において、バインダーとして用いられる弾性重合体である親水性基含有樹脂としては、水分散型シリコーン樹脂、水分散型アクリル樹脂、および水分散型ウレタン樹脂やそれらの共重合体が挙げられるが、それらの中でも風合いの面から、水分散型ポリウレタンが好ましく用いられる。 In the sheet-like product of the present invention, the hydrophilic group-containing resin that is an elastic polymer used as a binder includes water-dispersed silicone resins, water-dispersed acrylic resins, water-dispersed urethane resins and copolymers thereof. Among them, water-dispersed polyurethane is preferably used from the viewpoint of texture.
 ポリウレタンとしては、数平均分子量が好ましくは500以上5000以下の高分子ポリオールと、有機ポリイソシアネートと、鎖伸長剤との反応により得られる樹脂が好ましく用いられる。また、水分散型ポリウレタン分散液の安定性を高めるために、親水性基を有する活性水素成分含有化合物が併用される。高分子ポリオールの数平均分子量を500以上、より好ましくは1500以上とすることにより、風合いが硬くなるのを防ぐことができ、また、数平均分子量を5000以下、より好ましくは4000以下とすることにより、バインダーとしてのポリウレタンとしての強度を維持することができる。 As the polyurethane, a resin obtained by a reaction between a polymer polyol having a number average molecular weight of preferably 500 or more and 5000 or less, an organic polyisocyanate, and a chain extender is preferably used. In order to improve the stability of the water-dispersed polyurethane dispersion, an active hydrogen component-containing compound having a hydrophilic group is used in combination. By setting the number average molecular weight of the polymer polyol to 500 or more, more preferably 1500 or more, it is possible to prevent the texture from becoming hard, and by setting the number average molecular weight to 5000 or less, more preferably 4000 or less. The strength as polyurethane as a binder can be maintained.
 前述の高分子ポリオールの中のポリエーテル系ポリオールとしては、多価アルコールやポリアミンを開始剤として、エチレンオキシド、プロピレンオキサイド、ブチレンオキサイド、スチレンオキサイド、テトラヒドロフラン、エピクロルヒドリン、およびシクロヘキシレン等のモノマーを付加・重合したポリオール、および、前記のモノマーをプロトン酸、ルイス酸およびカチオン触媒等を触媒として開環重合したポリオールが挙げられる。具体的には、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等およびそれらを組み合わせた共重合ポリオールを挙げることができる。 As the polyether polyol in the above-mentioned polymer polyol, monomers such as ethylene oxide, propylene oxide, butylene oxide, styrene oxide, tetrahydrofuran, epichlorohydrin, and cyclohexylene are added and polymerized using polyhydric alcohol or polyamine as an initiator. And polyols obtained by ring-opening polymerization of the above monomers using a protonic acid, a Lewis acid, a cationic catalyst or the like as a catalyst. Specific examples include polyethylene glycol, polypropylene glycol, polytetramethylene glycol and the like, and copolymerized polyols combining them.
 ポリエステル系ポリオールとしては、各種低分子量ポリオールと多塩基酸とを縮合させて得られるポリエステルポリオールやラクトンを開重合することによって得られるポリオール等を挙げることができる。 Examples of the polyester-based polyol include polyester polyols obtained by condensing various low molecular weight polyols and polybasic acids, polyols obtained by open polymerization of lactones, and the like.
 低分子量ポリオールとしては、例えば、エチレングリコール、1,3-プロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1.8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール等の直鎖アルキレングリコールや、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、2,4-ジエチル-1,5-ペンタンジオール、2-メチル-1,8-オクタンジオール等の分岐アルキレングリコール、1,4-シクロヘキサンジオールなどの脂環式ジオール、および1,4-ビス(β-ヒドロキシエトキシ)ベンゼン等の芳香族2価アルコール等から選ばれる1種または2種以上が挙げられる。また、ビスフェノールAに各種アルキレンオキサイドを付加させた付加物も、低分子量ポリオールとして使用可能である。 Examples of the low molecular weight polyol include ethylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1.8- Linear alkylene glycol such as octanediol, 1,9-nonanediol, 1,10-decanediol, neopentyl glycol, 3-methyl-1,5-pentanediol, 2,4-diethyl-1,5-pentane Diols, branched alkylene glycols such as 2-methyl-1,8-octanediol, alicyclic diols such as 1,4-cyclohexanediol, and aromatic divalents such as 1,4-bis (β-hydroxyethoxy) benzene 1 type or 2 types or more chosen from alcohol etc. are mentioned. Further, an adduct obtained by adding various alkylene oxides to bisphenol A can also be used as a low molecular weight polyol.
 また、多塩基酸としては、例えば、コハク酸、マレイン酸、アジピン酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、フタル酸、イソフタル酸、テレフタル酸、およびヘキサヒドロイソフタル酸等から選ばれる1種または2種以上が挙げられる。 Polybasic acids include, for example, succinic acid, maleic acid, adipic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, phthalic acid, isophthalic acid, terephthalic acid, and hexahydro 1 type, or 2 or more types chosen from isophthalic acid etc. are mentioned.
 ポリラクトンポリオールとしては、多価アルコールを開始剤として、γ-ブチロラクトン、γ-バレロラクトン、およびε-カプロラクトン等を単独または2種以上の混合物等を開環重合したポリラクトンポリオール等が挙げられる。 Examples of the polylactone polyol include polylactone polyol obtained by ring-opening polymerization of γ-butyrolactone, γ-valerolactone, ε-caprolactone, etc., alone or in a mixture of two or more, using polyhydric alcohol as an initiator.
 ポリカーボネート系ポリオールとしては、ポリオールとジアルキルカーボネート、ジアリールカーボネート等のカーボネート化合物との反応によって得られる化合物を挙げることができる。 Examples of the polycarbonate-based polyol include compounds obtained by a reaction between a polyol and a carbonate compound such as dialkyl carbonate or diaryl carbonate.
 ポリカーボネートポリオールの製造原料のポリオールとしては、ポリエステルポリオールの製造原料で挙げたポリオールを用いることができる。ジアルキルカーボネートとしては、ジメチルカーボネートやジエチルカーボネート等を用いることができ、ジアリールカーボネートとしてはジフェニルカーボネート等を挙げることができる。 As the polyol used as the raw material for producing the polycarbonate polyol, the polyols mentioned as the raw material for producing the polyester polyol can be used. As the dialkyl carbonate, dimethyl carbonate, diethyl carbonate and the like can be used, and as the diaryl carbonate, diphenyl carbonate and the like can be mentioned.
 本発明で用いられる親水性基を有する高分子弾性体において、高分子弾性体に親水性基含有させる成分として、例えば、親水性基含有活性水素成分が挙げられる。親水性基含有活性水素成分としては、ノニオン性基および/またはアニオン性基および/またはカチオン性基と活性水素を含有する化合物等が挙げられる。ノニオン性基と活性水素を有する化合物としては、2つ以上の活性水素成分または2つ以上のイソシアネート基を含み、側鎖に分子量250~9000のポリオキシエチレングリコール基等を有している化合物、および、トリメチロールプロパンやトリメチロールブタン等のトリオール等が挙げられる。 In the polymer elastic body having a hydrophilic group used in the present invention, examples of the component for allowing the polymer elastic body to contain a hydrophilic group include a hydrophilic group-containing active hydrogen component. Examples of the hydrophilic group-containing active hydrogen component include compounds containing a nonionic group and / or an anionic group and / or a cationic group and active hydrogen. As the compound having a nonionic group and active hydrogen, a compound containing two or more active hydrogen components or two or more isocyanate groups and having a polyoxyethylene glycol group having a molecular weight of 250 to 9000 in the side chain, And triols such as trimethylolpropane and trimethylolbutane.
 また、アニオン性基と活性水素を有する化合物としては、2,2-ジメチロールプロピオン酸、2,2-ジメチロールブタン酸、2,2-ジメチロール吉草酸等のカルボキシル基含有化合物およびそれらの誘導体や、1,3-フェニレンジアミン-4,6-ジスルホン酸、3-(2,3-ジヒドロキシプロポキシ)-1-プロパンスルホン酸等のスルホン酸基を含有する化合物およびそれらの誘導体、並びにこれらの化合物を中和剤で中和した塩が挙げられる。 Examples of the compound having an anionic group and active hydrogen include carboxyl group-containing compounds such as 2,2-dimethylolpropionic acid, 2,2-dimethylolbutanoic acid and 2,2-dimethylolvaleric acid, and derivatives thereof. Compounds containing sulfonic acid groups such as 1,3-phenylenediamine-4,6-disulfonic acid, 3- (2,3-dihydroxypropoxy) -1-propanesulfonic acid and their derivatives, and these compounds Examples include salts neutralized with a neutralizing agent.
 また、カチオン性基と活性水素を含有する化合物としては、3-ジメチルアミノプロパノール、N-メチルジエタノールアミン、N-プロピルジエタノールアミン等の3級アミノ基含有化合物およびそれらの誘導体が挙げられる。 Further, examples of the compound containing a cationic group and active hydrogen include tertiary amino group-containing compounds such as 3-dimethylaminopropanol, N-methyldiethanolamine, and N-propyldiethanolamine, and derivatives thereof.
 前記の親水性基含有活性水素成分は、中和剤で中和した塩の状態でも用いることができる。 The hydrophilic group-containing active hydrogen component can also be used in the form of a salt neutralized with a neutralizing agent.
 ポリウレタン分子内に用いられる親水性基含有活性水素成分は、ポリウレタン樹脂の機械的強度および分散安定性の観点から、2,2-ジメチロールプロピオン酸、2,2-ジメチロールブタン酸およびこれらの中和塩を用いることが好ましい。 From the viewpoint of mechanical strength and dispersion stability of the polyurethane resin, the hydrophilic group-containing active hydrogen component used in the polyurethane molecule is 2,2-dimethylolpropionic acid, 2,2-dimethylolbutanoic acid, and among them. It is preferable to use a Japanese salt.
 ポリウレタンに、前述の親水性基含有活性水素成分の中で特に水酸基およびスルホン酸基およびカルボキシル基等を導入することにより、ポリウレタン分子の親水性を高めるだけでなく、後述する架橋剤を併用することにより、ポリウレタン分子内に3次元架橋構造を付与し、物性向上させることもできるため、前記の親水性基含有活性水素成分を適宜選択して用い製造することが好ましい。 Introducing a hydroxyl group, a sulfonic acid group, a carboxyl group, etc. among the above-mentioned hydrophilic group-containing active hydrogen components to the polyurethane, in addition to enhancing the hydrophilicity of the polyurethane molecule, and using a crosslinking agent described later together Thus, a three-dimensional crosslinked structure can be imparted to the polyurethane molecule and the physical properties can be improved. Therefore, the hydrophilic group-containing active hydrogen component is preferably selected and manufactured.
 鎖伸長剤としては、ポリウレタンの従来の製造に用いられる化合物を用いることができ、その中でもイソシアネート基と反応し得る活性水素原子を分子中に2個以上有する分子量600以下の低分子化合物が好ましく用いられる。具体的には、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、ネオペンチルグリコール、1,4-シクロヘキサンジオール、キシリレンジグリコール等のジオール類や、トリメチロールプロパン、トリメチロールブタン等のトリオールや、ヒドラジン、エチレンジアミン、イソホロンジアミン、ピペラジン、4,4’-メチレンジアニリン、トリレンジアミン、キシリレンジアミン、ヘキサメチレンジアミン、4、4’-ジシクロヘキシルメタンジアミン等のジアミン類や、ジエチレントリアミン等のトリアミン類や、アミノエチルアルコールおよびアミノプロピルアルコール等のアミノアルコール等が挙げられる。 As the chain extender, a compound used in conventional production of polyurethane can be used, and among them, a low molecular weight compound having a molecular weight of 600 or less having two or more active hydrogen atoms capable of reacting with an isocyanate group in the molecule is preferably used. It is done. Specifically, ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, neopentyl glycol, 1,4-cyclohexanediol, xylylene glycol Diols such as, triols such as trimethylolpropane and trimethylolbutane, hydrazine, ethylenediamine, isophoronediamine, piperazine, 4,4'-methylenedianiline, tolylenediamine, xylylenediamine, hexamethylenediamine, 4, Examples thereof include diamines such as 4′-dicyclohexylmethanediamine, triamines such as diethylenetriamine, and amino alcohols such as aminoethyl alcohol and aminopropyl alcohol.
 有機ポリイソシアネートとしては、ヘキサメチレンジイソシアネート等の脂肪族系ジイソシアネートや、イソホロンジイソシアネート(以下、IPDIと略記することがある。)、水添加キシリレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート(以下、水添MDIと略記することがある。)等の脂環族系ジイソシアネートや、キシリレンジイソシアネート(以下、XDIと略記することがある。)やテトラメチル-m-キシリレンジイソシアネート等の芳香族/脂肪族ジイソシアネートや、トリレンジイソシアネート(以下、TDIと略記することがある。)、4,4’-ジフェニルメタンジイソシアネート(以下、MDIと略記することがある。)、トリジンジイソシアネート、およびナフタレンジイソシアネート(以下、NDIと略記することがある。)等の芳香族ジイソシアネート等が挙げられる。 Examples of organic polyisocyanates include aliphatic diisocyanates such as hexamethylene diisocyanate, isophorone diisocyanate (hereinafter abbreviated as IPDI), hydrogenated xylylene diisocyanate, dicyclohexylmethane diisocyanate (hereinafter abbreviated as hydrogenated MDI). ), Aromatic / aliphatic diisocyanates such as xylylene diisocyanate (hereinafter abbreviated as XDI) and tetramethyl-m-xylylene diisocyanate, and tolylene diisocyanate Isocyanate (hereinafter sometimes abbreviated as TDI), 4,4′-diphenylmethane diisocyanate (hereinafter sometimes abbreviated as MDI), tolidine diisocyanate, and naphthalene diisocyanate (hereinafter referred to as “MDI”) , NDI, etc.)) and the like.
 本発明で用いられるポリウレタンに、スルホン酸基、カルボキシル基、水酸基または1級若しくは2級アミノ基を導入し、これらの官能基と反応性を有する架橋剤をポリウレタン分散液に含有させることにより、反応後に樹脂が高分子量化し、かつ樹脂の架橋密度が増加する。このため、耐久性、耐候性、耐熱性および湿潤時の強力保持率を更に向上させることができる。 By introducing a sulfonic acid group, a carboxyl group, a hydroxyl group, or a primary or secondary amino group into the polyurethane used in the present invention and allowing the polyurethane dispersion to contain a crosslinking agent having reactivity with these functional groups, the reaction is carried out. Later, the resin has a high molecular weight and the crosslink density of the resin increases. For this reason, durability, a weather resistance, heat resistance, and the strong retention rate at the time of wetness can further be improved.
 架橋剤としては、ポリウレタンに導入された反応性基と反応し得る反応性基を、分子内に2個以上有する架橋剤を使用することができる。具体的には、水溶性イソシアネート化合物やブロックイソシアネート化合物等のポリイソシアネート系架橋剤、メラミン系架橋剤、オキサゾリン系架橋剤、カルボジイミド系架橋剤、アジリジン系架橋剤、エポキシ架橋剤およびヒドラジン系架橋剤等の架橋剤が挙げられる。架橋剤は、1種を単独で用いてもよく、2種以上を併用することもできる。 As the cross-linking agent, a cross-linking agent having two or more reactive groups in the molecule that can react with the reactive group introduced into the polyurethane can be used. Specifically, polyisocyanate crosslinking agents such as water-soluble isocyanate compounds and block isocyanate compounds, melamine crosslinking agents, oxazoline crosslinking agents, carbodiimide crosslinking agents, aziridine crosslinking agents, epoxy crosslinking agents and hydrazine crosslinking agents These crosslinking agents can be mentioned. A crosslinking agent may be used individually by 1 type, and can also use 2 or more types together.
 水溶性イソシアネート系化合物は、分子内にイソシアネート基を2個以上有するものであり、前記の有機ポリイソシアネート含有の化合物等が挙げられる。市販品としては、バイエルマテリアルサイエンス(株)製“バイヒジュール”(登録商標)シリーズ、“デスモジュール”(登録商標)シリーズ等が挙げられる。 The water-soluble isocyanate compound has two or more isocyanate groups in the molecule, and examples thereof include the above-mentioned organic polyisocyanate-containing compounds. Examples of commercially available products include “Baihijoule” (registered trademark) series and “Death Module” (registered trademark) series manufactured by Bayer MaterialScience.
 ブロックイソシアネート系化合物は、分子内にブロックイソシアネート基を2個以上有するものである。ブロックイソシアネート基は、前記の有機ポリイソシアネート化合物をアルコール類、アミン類やフェノール類やイミン類やメルカプタン類や、ピラゾール類やオキシム類や活性メチレン類等のブロック化剤によりブロックしたものを意味する。その市販品としては、第一工業製薬(株)の“エラストロン”(登録商標)シリーズ、旭化成ケミカルズ(株)製の“デュラネート”(登録商標)シリーズおよび三井化学(株)製の“タケネート”(登録商標)シリーズ等が挙げられる。 The blocked isocyanate compound has two or more blocked isocyanate groups in the molecule. The blocked isocyanate group means a group obtained by blocking the organic polyisocyanate compound with a blocking agent such as alcohols, amines, phenols, imines, mercaptans, pyrazoles, oximes and active methylenes. The commercial products include “Elastoron” (registered trademark) series of Daiichi Kogyo Seiyaku Co., Ltd., “Duranate” (registered trademark) series manufactured by Asahi Kasei Chemicals Corporation, and “Takenate” (manufactured by Mitsui Chemicals, Inc.). Registered trademark) series and the like.
 メラミン系架橋剤としては、分子内にメチロール基やメトキシメチロール基を2個以上有する化合物が挙げられる。市販品としては、三井化学(株)製の“ユーバン”(登録商標)シリーズ、日本サイテック(株)製の“サイメル”(登録商標)シリーズおよび住友化学(株)製の“スミマール”(登録商標)シリーズが挙げられる。 Examples of the melamine-based crosslinking agent include compounds having two or more methylol groups or methoxymethylol groups in the molecule. Commercially available products include “Uban” (registered trademark) series manufactured by Mitsui Chemicals, “Cymel” (registered trademark) series manufactured by Nippon Cytec Co., Ltd., and “Sumimar” (registered trademark) manufactured by Sumitomo Chemical Co., Ltd. ) Series.
 オキサゾリン系架橋剤としては、分子内にオキサゾリン基(オキサゾリン骨格)を2個以上有する化合物が挙げられる。市販品としては、日本触媒株式会社製“エポクロス”(登録商標)シリーズ等が挙げられる。カルボジイミド系架橋剤としては、分子内にカルボジイミド基を2個以上有する化合物が挙げられる。その市販品としては、日清紡績株式会社製“カルボジライト”(登録商標)シリーズ等が挙げられる。 Examples of the oxazoline-based crosslinking agent include compounds having two or more oxazoline groups (oxazoline skeletons) in the molecule. Examples of commercially available products include “Epocross” (registered trademark) series manufactured by Nippon Shokubai Co., Ltd. Examples of the carbodiimide-based crosslinking agent include compounds having two or more carbodiimide groups in the molecule. Examples of the commercial products include “Carbodilite” (registered trademark) series manufactured by Nisshinbo Industries, Ltd.
 エポキシ系架橋剤としては、分子内にエポキシ基を2個以上有する化合物が挙げられる。市販品としては、ナガセケムテック社製“デナコール”(登録商標)シリーズ、坂本薬品工業のジエポキシ・ポリエポキシ系化合物、およびDIC社製“EPICRON”(登録商標)シリーズ等が挙げられる。 Examples of the epoxy crosslinking agent include compounds having two or more epoxy groups in the molecule. Examples of commercially available products include “Denacol” (registered trademark) series manufactured by Nagase Chemtech, diepoxy / polyepoxy compounds manufactured by Sakamoto Pharmaceutical Co., Ltd., and “EPICRON” (registered trademark) series manufactured by DIC.
 アジリジン系架橋剤としては、分子内にアジリジニル基を2個以上有する化合物が挙げられる。ヒドラジン系架橋剤としては、ヒドラジンおよび分子内にヒドラジン基(ヒドラジン骨格)を2個以上有する化合物が挙げられる。 Examples of the aziridine-based crosslinking agent include compounds having two or more aziridinyl groups in the molecule. Examples of the hydrazine-based crosslinking agent include hydrazine and compounds having two or more hydrazine groups (hydrazine skeleton) in the molecule.
 これらの中でも、ポリウレタンが有する官能基として好ましいのは、水酸基および/またはカルボキシル基および/またはスルホン酸基であり、架橋剤として好ましいのはポリイソシアネート系架橋剤およびカルボジイミド化合物である。また、カルボジイミド化合物とポリイソシアネート系架橋剤を併用することにより、さらにポリウレタン樹脂の架橋構造を高め、かつ柔軟性を維持したまま耐湿熱性効果を高めることができる。 Among these, a functional group possessed by polyurethane is preferably a hydroxyl group and / or a carboxyl group and / or a sulfonic acid group, and a cross-linking agent is preferably a polyisocyanate-based cross-linking agent or a carbodiimide compound. Moreover, the combined use of a carbodiimide compound and a polyisocyanate-based cross-linking agent can further increase the cross-linking structure of the polyurethane resin and enhance the moist heat resistance effect while maintaining flexibility.
 水分散型ポリウレタンは、一般的に分子構造内に親水性基を含有するため、従来の有機溶剤系ポリウレタン対比で水分子との親和性が高く、湿潤環境で膨潤しやすく、ポリウレタンの分子構造が緩和されやすいため、湿潤環境では乾燥時に得られていた高物性を維持しにくい傾向である。一方で、前記の架橋剤を適用することにより、耐湿熱効果を高められ、湿潤時のシートの抗張力を高めることができる。その結果、染色工程等での水によるポリウレタン分子の構造変化を抑制することができ、シート状物としての形態安定性およびポリウレタンと繊維質基材の付着性を維持できるため、高物性でかつ均一感のある品位を達成することができる。 Since water-dispersed polyurethane generally contains a hydrophilic group in its molecular structure, it has a high affinity with water molecules compared to conventional organic solvent-based polyurethanes, and it easily swells in a wet environment, and the molecular structure of polyurethane is Since it is easily relaxed, it tends to be difficult to maintain the high physical properties obtained during drying in a wet environment. On the other hand, by applying the above-mentioned crosslinking agent, the moist heat resistance effect can be enhanced and the tensile strength of the sheet when wet can be increased. As a result, it is possible to suppress structural changes of polyurethane molecules due to water in the dyeing process, etc., and to maintain the form stability as a sheet-like material and the adhesion between polyurethane and fibrous base material. A sense of quality can be achieved.
 カルボジイミド架橋剤は、100℃以下の低温でも優れた架橋反応性を有するため、生産性の面から好ましく用いられる。また、イソシアネート化合物および/またはブロックイソシアネート化合物は、主に水酸基と反応すること以外に、高温領域、特に120℃以上200℃以下の温度、好ましくは140℃以上200℃以下の温度において、ポリウレタンのハードセグメント(HS)部を構成するウレタン結合および/またはウレア結合との反応性が高まり、アロファネート結合やビュレット結合を形成し、より強靭な架橋構造を付与し、ポリウレタンのミクロ相分離構造を明瞭にすることができる。 Since the carbodiimide crosslinking agent has excellent crosslinking reactivity even at a low temperature of 100 ° C. or lower, it is preferably used from the viewpoint of productivity. In addition, the isocyanate compound and / or the blocked isocyanate compound, in addition to mainly reacting with a hydroxyl group, in a high temperature region, particularly at a temperature of 120 ° C. to 200 ° C., preferably 140 ° C. to 200 ° C. Increased reactivity with urethane bonds and / or urea bonds constituting the segment (HS) part, forming allophanate bonds and burette bonds, giving a tougher cross-linked structure, and clarifying the micro phase separation structure of polyurethane be able to.
 本発明におけるポリウレタン膜の20℃の温度における貯蔵弾性率E’は、柔軟性および反発弾性の観点から、好ましくは1~100MPaであり、より好ましくは2~50MPaである。また、損失弾性率は、好ましくは0.1MPa~20MPaであり、より好ましくは0.5MPa~12MPaである。また、tanδは、好ましくは0.01~0.4であり、より好ましくは0.02~0.35である。 The storage elastic modulus E ′ at a temperature of 20 ° C. of the polyurethane film in the present invention is preferably 1 to 100 MPa, more preferably 2 to 50 MPa from the viewpoint of flexibility and impact resilience. Further, the loss elastic modulus is preferably 0.1 MPa to 20 MPa, and more preferably 0.5 MPa to 12 MPa. Further, tan δ is preferably 0.01 to 0.4, more preferably 0.02 to 0.35.
 本発明における貯蔵弾性率E’およびtanδは、膜厚が200μmのポリウレタンのフィルム(膜)について、貯蔵弾性率測定装置[DMA7100{日立ハイテクサイエンス(株)製}]を使用して、周波数12Hzで測定した値である。tanδは、E’’/E’で示される数値である(E’’は、損失弾性率を示す。)。 The storage elastic modulus E ′ and tan δ in the present invention were measured at a frequency of 12 Hz using a storage elastic modulus measuring apparatus [DMA7100 (manufactured by Hitachi High-Tech Science Co., Ltd.)] for a polyurethane film (film) having a film thickness of 200 μm. It is a measured value. tan δ is a numerical value represented by E ″ / E ′ (E ″ represents a loss elastic modulus).
 また、E’は、ポリウレタン樹脂の弾性性質を示し、このE’が小さすぎるとシート状物の折れシワ回復性が乏しくなり、大きすぎるとシート状物の風合が硬くなる。 E 'indicates the elastic properties of the polyurethane resin. If this E' is too small, the wrinkle recovery property of the sheet-like material becomes poor, and if it is too large, the texture of the sheet-like material becomes hard.
 一方、E’’/E’( E’’は、損失弾性率であり粘性性質を示す。)で示されるtanδは、ポリウレタンの弾性性質を基準とするときの粘性性質の割合を意味する。tanδが小さすぎると、E’と同様に、シート状物の折れシワ回復性が乏しくなり、大きすぎるとシート状物の風合が硬くなる。 On the other hand, tan δ indicated by E ″ / E ′ (E ″ is a loss elastic modulus and indicates a viscous property) means a ratio of the viscous property based on the elastic property of polyurethane. If tan δ is too small, the wrinkle recovery property of the sheet-like material is poor as in E ′, and if it is too large, the texture of the sheet-like material becomes hard.
 本発明のシート状物の密度は、好ましくは0.2~0.7g/cmである。密度はより好ましくは0.2g/cm以上であり、さらに好ましくは0.25g/cm以上である。密度を0.2g/cm以上とすることにより、表面外観が緻密となり高級な品位を発現させることができる。一方、シート状物の密度を好ましくは0.7g/cm以下、より好ましくは0.6g/cm以下とすることにより、シート状物の風合いが硬くなることを防ぐことができる。 The density of the sheet-like material of the present invention is preferably 0.2 to 0.7 g / cm 3 . The density is more preferably 0.2 g / cm 3 or more, and still more preferably 0.25 g / cm 3 or more. By setting the density to 0.2 g / cm 3 or more, the surface appearance becomes dense and high-grade quality can be expressed. On the other hand, when the density of the sheet-like material is preferably 0.7 g / cm 3 or less, more preferably 0.6 g / cm 3 or less, the texture of the sheet-like material can be prevented from becoming hard.
 本発明のシート状物に含まれるポリウレタンの比率は、10~80質量%であることが好ましい。ポリウレタンの比率を10質量%以上、より好ましくは15質量%以上とすることにより、シート強度を得るとともに繊維の脱落を防ぐことができる。また、ポリウレタンの比率を80質量%以下、より好ましくは70質量%以下とすることにより、風合いが硬くなるのを防ぎ良好な立毛品位を得ることができる。 The ratio of polyurethane contained in the sheet-like material of the present invention is preferably 10 to 80% by mass. By setting the ratio of polyurethane to 10% by mass or more, more preferably 15% by mass or more, it is possible to obtain sheet strength and to prevent the fibers from falling off. Further, by setting the ratio of polyurethane to 80% by mass or less, more preferably 70% by mass or less, it is possible to prevent the texture from becoming hard and to obtain a good napped quality.
 本発明のシート状物は、水分散型ポリウレタン等の弾性重合体を適用し、当該水分散型ポリウレタン等の水分散液に増粘剤を併用した液を熱水中で凝固させることにより、水分散型ポリウレタン(弾性重合体)の多孔構造化を達成し、溶剤系ポリウレタンを適用した人工皮革に酷似した、優れた折れシワ回復性と柔軟性を得ることができる。 The sheet-like material of the present invention is obtained by applying an elastic polymer such as water-dispersible polyurethane and coagulating a liquid in which a thickener is used in combination with an aqueous dispersion such as the water-dispersible polyurethane in water. By achieving a porous structure of the dispersion type polyurethane (elastic polymer), it is possible to obtain excellent crease recovery and flexibility that are very similar to artificial leather to which a solvent-based polyurethane is applied.
 すなわち、本発明のシート状物は、極細繊維および/または極細繊維束からなる繊維質基材に、親水性基を有する高分子弾性体がバインダーとして付与されてなるシート状物であって、このシート状物を厚み方向に切断した断面において、切断面内に観察される前記高分子弾性体のうち、独立して50μm以上の断面積を有する部分の占有比率が観察視野内の人工皮革断面の面積に対し0.1%以上5.0%以下であることを特徴とするシート状物である。 That is, the sheet-like material of the present invention is a sheet-like material obtained by applying a polymer elastic body having a hydrophilic group as a binder to a fibrous base material composed of ultrafine fibers and / or ultrafine fiber bundles. In the cross section obtained by cutting the sheet-like material in the thickness direction, among the polymer elastic bodies observed in the cut surface, the occupation ratio of the portion having a cross-sectional area of 50 μm 2 or more independently is within the observation field. It is a sheet-like material characterized by being 0.1% or more and 5.0% or less with respect to the area.
 
 さらに、好ましい様態によれば、極細繊維および/または極細繊維束からなる繊維質基材に、親水性基を有する高分子弾性体がバインダーとして付与されてなるシート状物であって、このシート状物の厚み方向に切断した断面において、極細繊維および/または極細繊維束断面の外周の1%以上35%以下が高分子弾性体被膜で覆われていることを特徴とするシート状物である。

Further, according to a preferred embodiment, there is provided a sheet-like material in which a polymeric elastic body having a hydrophilic group is provided as a binder to a fibrous base material composed of ultrafine fibers and / or ultrafine fiber bundles. In the cross section cut in the thickness direction of the product, a sheet-like product characterized in that 1% or more and 35% or less of the outer periphery of the cross section of the ultrafine fiber and / or ultrafine fiber bundle is covered with a polymer elastic film.
 [シート状物の製造方法]
 次に、本発明のシート状物の製造方法について説明する。
[Method for producing sheet-like material]
Next, the manufacturing method of the sheet-like material of this invention is demonstrated.
 本発明で用いられる繊維質基材としては、前述のとおり、織物、編物および不織布等の布帛を好ましく採用することができる。中でも、表面起毛処理した際のシート状物の表面品位が良好であることから、不織布が好ましく用いられる。本発明の繊維質基材においては、これらの織物、編物および不織布等を適宜積層して併用することができる。 As the fibrous base material used in the present invention, as described above, fabrics such as woven fabrics, knitted fabrics and non-woven fabrics can be preferably employed. Especially, since the surface quality of the sheet-like thing at the time of surface raising treatment is favorable, a nonwoven fabric is used preferably. In the fibrous base material of the present invention, these woven fabrics, knitted fabrics, nonwoven fabrics and the like can be appropriately laminated and used together.
 本発明で用いられる不織布としては、短繊維不織布および長繊維不織布のいずれでもよいが、均一な起毛長からなる表面品位が得られる点で短繊維不織布が好ましく用いられる。 As the nonwoven fabric used in the present invention, either a short fiber nonwoven fabric or a long fiber nonwoven fabric may be used, but a short fiber nonwoven fabric is preferably used in that a surface quality consisting of a uniform raised length can be obtained.
 短繊維不織布における短繊維の繊維長は、好ましくは25mm~90mmであり、より好ましくは35mm~75mmである。繊維長を25mm以上とすることにより、絡合により耐摩耗性に優れたシート状物が得られる。また、繊維長を90mm以下とすることにより、より品位に優れたシート状物が得られる。 The fiber length of the short fibers in the short fiber nonwoven fabric is preferably 25 mm to 90 mm, more preferably 35 mm to 75 mm. By setting the fiber length to 25 mm or more, a sheet-like material having excellent wear resistance can be obtained by entanglement. Further, by making the fiber length 90 mm or less, a sheet-like product having a higher quality can be obtained.
 繊維質基材を構成する繊維としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレートおよびポリ乳酸などのポリエステル、6-ナイロンおよび66-ナイロンなどのポリアミド、アクリル、ポリエチレン、ポリプロピレン、および熱可塑性セルロースなどの溶融紡糸可能な熱可塑性樹脂からなる繊維を用いることができる。中でも、強度、寸法安定性および耐光性の観点から、ポリエステル繊維が好ましく用いられる。また、繊維質基材は、異なる素材の繊維が混合して構成されていてもよい。 Examples of fibers constituting the fibrous base material include polyesters such as polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate and polylactic acid, polyamides such as 6-nylon and 66-nylon, acrylic, polyethylene, polypropylene, and thermoplastic cellulose. A fiber made of a thermoplastic resin that can be melt-spun such as can be used. Among these, polyester fibers are preferably used from the viewpoints of strength, dimensional stability, and light resistance. The fibrous base material may be configured by mixing fibers of different materials.
 本発明で用いられる繊維の横断面形状は、丸断面でよいが、楕円、扁平および三角などの多角形、扇形および十字型などの異形断面のものを採用することができる。 The cross-sectional shape of the fiber used in the present invention may be a round cross section, but may be a polygonal shape such as an ellipse, a flat shape, and a triangular shape, or an irregular cross section such as a sector shape and a cross shape.
 繊維質基材を構成する繊維の平均繊維直径は、0.1~7μmであることが好ましく、より好ましくは0.3~5μmである。繊維の平均繊維直径を7μm以下にすることにより、繊維質基材の触感はより柔軟となる。一方、繊維の平均繊維直径を0.1μm以上とすることにより、染色後の発色性に一層優れる。 The average fiber diameter of the fibers constituting the fibrous base material is preferably 0.1 to 7 μm, more preferably 0.3 to 5 μm. By making the average fiber diameter of the fibers 7 μm or less, the feel of the fibrous base material becomes more flexible. On the other hand, when the average fiber diameter of the fibers is 0.1 μm or more, the color developability after dyeing is further improved.
 本発明において、繊維質基材が不織布の場合、その内部に、強度を向上させるなどの目的で、不織布に織物や編物を組み合わせることができる。不織布と織物や編物の組み合わせは、織物や編物を不織布に積層すること、および織物や編物を不織布内に挿入すること等いずれも採用することができる。中でも、形態安定性向上および強力向上が期待できる観点から、織物を用いることが好ましい態様である。 In the present invention, when the fibrous base material is a nonwoven fabric, the nonwoven fabric can be combined with a woven fabric or a knitted fabric for the purpose of improving the strength. The combination of a nonwoven fabric and a woven fabric or a knitted fabric can employ any method such as laminating the woven fabric or knitted fabric on the nonwoven fabric, or inserting the woven fabric or knitted fabric into the nonwoven fabric. Especially, it is a preferable aspect to use a textile fabric from a viewpoint which can expect form stability improvement and strength improvement.
 織物や編物を構成する単糸(経糸と緯糸)としては、ポリエステル繊維やポリアミド繊維などの合成繊維からなる単糸が挙げられるが、染色堅牢度の点から、最終的に不織布等の布帛を構成する極細繊維と同素材の繊維からなる糸条であることが好ましい。 The single yarn (warp and weft) constituting the woven fabric or knitted fabric may be a single yarn made of synthetic fiber such as polyester fiber or polyamide fiber. It is preferable that the yarn is made of fibers of the same material as the ultrafine fibers.
 このような単糸の形態としては、フィラメントヤーンや紡績糸などが挙げられるが、好ましくはこれらの強撚糸が使用される。また、紡績糸は、表面毛羽の脱落が惹起されることから、フィラメントヤーンが好ましく用いられる。 Examples of the form of such a single yarn include filament yarn and spun yarn, and these strong twisted yarns are preferably used. In addition, filament yarn is preferably used for the spun yarn because it causes surface fluff to fall off.
 強撚糸を用いる場合、撚数は、1000T/m以上4000T/m以下が好ましく、より好ましくは1500T/m以上3500T/m以下である。撚数が1000T/mより小さいと、ニードルパンチ処理による強撚糸を構成する単繊維切れが多くなり、製品の物理特性の低下や単繊維の製品表面への露出が多くなる傾向を示す。また、撚数が4000T/mより大きいと、単繊維切れは抑えられるが、織物や編物を構成する強撚糸が硬くなりすぎるため、風合の硬化を惹起する傾向を示す。 When using a strong twisted yarn, the number of twists is preferably 1000 T / m or more and 4000 T / m or less, more preferably 1500 T / m or more and 3500 T / m or less. If the number of twists is less than 1000 T / m, the number of single fibers constituting the strong twisted yarn by needle punching increases, and the physical properties of the product tend to deteriorate and the exposure of the single fibers to the product surface tends to increase. Moreover, when the number of twists is greater than 4000 T / m, the single fiber breakage is suppressed, but the strong twisted yarns constituting the woven fabric and the knitted fabric become too hard, and thus tend to cause hardening of the texture.
 また、本発明では、繊維質基材に極細繊維発現型繊維を用いることは好ましい態様である。繊維質基材に極細繊維発現型繊維を用いることにより、前述した極細繊維の束が絡合した形態を安定して得ることができる。 Further, in the present invention, it is a preferable aspect to use an ultrafine fiber expression type fiber as the fibrous base material. By using the ultrafine fiber expression type fiber for the fibrous base material, it is possible to stably obtain a form in which the bundle of ultrafine fibers described above is entangled.
 繊維質基材が不織布の場合、その不織布は極細繊維の束(繊維束)が絡合してなる構造を有するものであることが好ましい態様である。極細繊維が束の状態で絡合していることによって、シート状物の強度が向上する。このような態様の不織布は、極細繊維発現型繊維同士をあらかじめ絡合した後に、極細繊維を発現させることによって、得ることができる。 When the fibrous base material is a non-woven fabric, the non-woven fabric preferably has a structure in which a bundle of ultrafine fibers (fiber bundle) is entangled. Since the ultrafine fibers are entangled in a bundle state, the strength of the sheet-like material is improved. The nonwoven fabric of such an embodiment can be obtained by causing the ultrafine fibers to develop after entanglement of the ultrafine fiber-expressing fibers in advance.
 極細繊維発現型繊維としては、溶剤溶解性の異なる2成分の熱可塑性樹脂を海成分と島成分とし、海成分を、溶剤などを用いて溶解除去することによって島成分を極細繊維とする海島型複合繊維および、2成分の熱可塑性樹脂を繊維断面に放射状または多層状に交互に配置し、各成分を剥離分割することによって極細繊維に割繊する剥離型複合繊維などを採用することができる。 The ultra-fine fiber development type fiber is a sea-island type in which two component thermoplastic resins with different solvent solubility are used as a sea component and an island component, and the sea component is dissolved and removed using a solvent, etc. It is possible to employ a peelable composite fiber in which the composite fiber and the two-component thermoplastic resin are alternately arranged radially or in a multilayer shape on the fiber cross section, and each component is peeled and divided to divide the fiber into ultrafine fibers.
 中でも、海島型複合繊維は、海成分を除去することによって島成分間、すなわち極細繊維間に適度な空隙を付与することができるので、シート状物の柔軟性や風合いの観点からも好ましく用いられる。 Among these, the sea-island type composite fiber can be preferably used also from the viewpoint of the flexibility and texture of the sheet-like material because it can provide an appropriate gap between the island components, that is, between the ultrafine fibers, by removing the sea component. .
 海島型複合繊維には、海島型複合用口金を用い、海成分と島成分の2成分を相互配列して紡糸する海島型複合繊維や、海成分と島成分の2成分を混合して紡糸する混合紡糸繊維などがあるが、均一な繊度の極細繊維が得られる点、また十分な長さの極細繊維が得られシート状物の強度にも資する点から、海島型複合繊維が好ましく用いられる。 For the sea-island type composite fiber, a sea-island type composite base is used, and the sea-island type composite fiber, in which two components of the sea component and the island component are mutually arranged and spun, and the two components of the sea component and the island component are mixed and spun. Although there are mixed spun fibers, sea-island type composite fibers are preferably used from the viewpoint that ultrafine fibers having a uniform fineness can be obtained and that a sufficiently long ultrafine fiber is obtained and contributes to the strength of the sheet-like material.
 海島型複合繊維の海成分としては、ポリエチレン、ポリプロピレン、ポリスチレン、ナトリウムスルホイソフタル酸やポリエチレングリコールなどを共重合した共重合ポリエステル、ポリ乳酸およびポリビニルアルコール等を用いることができる。中でも、有機溶剤を使用せずに分解可能な、アルカリ分解性のナトリウムスルホイソフタル酸やポリエチレングリコールなどを共重合した共重合ポリエステルやポリ乳酸および熱水可溶のポリビニルアルコールが好ましく用いられる。 As the sea component of the sea-island composite fiber, polyethylene, polypropylene, polystyrene, copolymer polyester obtained by copolymerizing sodium sulfoisophthalic acid, polyethylene glycol, or the like, polylactic acid, polyvinyl alcohol, or the like can be used. Among these, copolymerizable polyesters, polylactic acid and hot water-soluble polyvinyl alcohol, which are copolymerizable with alkali-decomposable sodium sulfoisophthalic acid or polyethylene glycol, which can be decomposed without using an organic solvent, are preferably used.
 海島型複合繊維の海成分と島成分の(割合)比率は、海島型複合繊維に対する島繊維の質量比が0.2~0.9であることが好ましく、より好ましくは0.3~0.8である。海成分と島成分の質量比を0.2以上とすることにより、海成分の除去率を少なくすることができ、より生産性が向上する。また、質量比を0.9以下とすることにより、島繊維の開繊性の向上、および島成分の合流を防止することができる。島本数は、口金設計により適宜調整することができる。 As for the (ratio) ratio of the sea component to the island component of the sea-island type composite fiber, the mass ratio of the island fiber to the sea-island type composite fiber is preferably 0.2 to 0.9, more preferably 0.3 to 0.00. 8. By setting the mass ratio of the sea component and the island component to 0.2 or more, the removal rate of the sea component can be reduced, and the productivity is further improved. In addition, by setting the mass ratio to 0.9 or less, it is possible to improve the spreadability of the island fibers and prevent the island components from joining. The number of islands can be adjusted as appropriate according to the design of the base.
 海島型複合繊維等の極細繊維発現型繊維の単繊維の長径は、5~80μmであることが好ましく、より好ましくは10~50μmである。単繊維の長径が5μmより小さいと繊維の強度が弱く、後述するニードルパンチ処理等で単繊維切れが多くなる傾向がある。また、単繊維の長径が80μmより大きくなると、ニードルパンチ処理等で効率的な絡合ができないことがある。 The major axis of a single fiber of an ultrafine fiber expression type fiber such as a sea-island type composite fiber is preferably 5 to 80 μm, more preferably 10 to 50 μm. If the long diameter of the single fiber is smaller than 5 μm, the strength of the fiber is weak, and there is a tendency that single fiber breakage increases due to the needle punching process described later. Moreover, when the long diameter of a single fiber becomes larger than 80 micrometers, efficient entanglement may not be performed by a needle punch process etc.
 本発明で用いられる繊維質基材としての不織布を得る方法としては、繊維ウェブをニードルパンチ処理やウォータージェットパンチ処理により絡合させる方法、スパンボンド法、およびメルトブロー法および抄紙法などを採用することができる。中でも、前述のような極細繊維束の様態とする上で、ニードルパンチ処理やウォータージェットパンチ処理等の処理を経る方法が好ましく用いられる。 As a method of obtaining a nonwoven fabric as a fibrous base material used in the present invention, a method of entanglement of a fiber web by a needle punching process or a water jet punching process, a spunbond method, a melt blow method, a papermaking method, or the like is adopted. Can do. Among them, a method that undergoes a treatment such as a needle punching treatment or a water jet punching treatment is preferably used in order to obtain the state of the ultrafine fiber bundle as described above.
 また、繊維質基材として用いられる不織布と織物や編物の積層一体化には、繊維の絡合性の面から、ニードルパンチ処理やウォータージェットパンチ処理等が好ましく用いられる。それらの中でも、シート厚みに制限されず、繊維質基材の垂直方向に繊維を配向させることができるという観点から、ニードルパンチ処理が好ましく用いられる。 Further, in order to laminate and integrate the nonwoven fabric used as the fibrous base material with the woven fabric or the knitted fabric, needle punch processing, water jet punch processing or the like is preferably used from the viewpoint of fiber entanglement. Among them, needle punching is preferably used from the viewpoint that the fibers can be oriented in the vertical direction of the fibrous base material without being limited by the sheet thickness.
 ニードルパンチ処理で使用される針には、バーブの本数は1~9本であることが好ましい。バーブの本数を1本以上とすることにより、効率的な繊維の絡合が可能となる。一方、バーブの本数を9本以下とすることにより、繊維損傷を抑えることができる。バーブ数が9本より多くなると、繊維損傷が大きくなり、また針跡が繊維質基材に残り製品の外観不良になることがある。 The needle used in the needle punching process preferably has 1 to 9 barbs. By making the number of barbs one or more, efficient fiber entanglement becomes possible. On the other hand, fiber damage can be suppressed by setting the number of barbs to 9 or less. When the number of barbs is more than 9, fiber damage increases, and needle marks may remain on the fibrous base material, resulting in poor appearance of the product.
 また、不織布と織物や編物を絡合一体化させる場合は、不織布に予備的な絡合が与えられていることが、不織布と織物や編物をニードルパンチ処理で不離一体化させる際のシワ発生をより防止するために望ましい態様である。このように、ニードルパンチ処理により、あらかじめ予備的絡合を与える方法を採用する場合には、そのパンチ密度は、20本/cm以上で行なうことが効果的である。好適には100本/cm以上のパンチ密度で予備絡合を与えるのがよく、より好適には300本/cm~1300本/cmのパンチ密度で予備絡合を与えることである。 In addition, when the nonwoven fabric and the woven fabric or knitted fabric are entangled and integrated, the nonwoven fabric is preliminarily entangled. This is a desirable mode for further prevention. As described above, when a method of providing preliminary entanglement in advance by needle punching is employed, it is effective to perform the punch density at 20 pieces / cm 2 or more. The pre-entanglement is preferably given at a punch density of 100 / cm 2 or more, and more preferably pre-entanglement is given at a punch density of 300 / cm 2 to 1300 / cm 2 .
 予備絡合が20本/cm未満のパンチ密度では、不織布の幅が、織物や編物との絡合時およびそれ以降のニードルパンチ処理により、狭少化する余地を残しているため、幅の変化に伴い、織物や編物にシワが生じ平滑な繊維質基材を得ることができなくなることがあるからである。また、予備絡合のパンチ密度が1300本/cmより多くなると、一般的に不織布自身の絡合が進みすぎて、織物や編物を構成する繊維との絡合を十分に形成するだけの移動余地が少なくなるので、不織布と織物や編物が強固に絡合した不離一体構造を実現するには不利となるからである。 With a punch density of less than 20 pre-entanglements / cm 2 , the width of the nonwoven fabric leaves room for narrowing due to the needle punch process during and after entanglement with the woven fabric or knitted fabric. This is because wrinkles may occur in the woven fabric or knitted fabric with the change, and a smooth fibrous base material may not be obtained. Further, when the punch density of the preliminary entanglement is higher than 1300 / cm 2 , generally the entanglement of the nonwoven fabric itself proceeds so much that the entanglement with the fibers constituting the woven fabric or the knitted fabric is sufficiently formed. This is because there is less room, which is disadvantageous for realizing a non-separated integrated structure in which the nonwoven fabric and the woven or knitted fabric are intertwined firmly.
 本発明において、織物や編物の有無に関わらず、ニードルパンチ処理により繊維を絡合させるに際しては、パンチ密度の範囲を300本/cm~6000本/cmとすることが好ましく、1000本/cm~3000本/cmとすることがより好ましい態様である。 In the present invention, regardless of the presence or absence of woven fabric or knitted fabric, when the fibers are entangled by the needle punching process, the punch density range is preferably 300 / cm 2 to 6000 / cm 2, and 1000 / It is a more preferable aspect to set it to cm 2 to 3000 pieces / cm 2 .
 不織布と織物や編物の絡み合わせには、不織布の片面もしくは両面に織物や編物を積層するか、あるいは複数枚の不織布の間に織物や編物を挟んで、ニードルパンチ処理によって繊維同士を絡ませ、繊維質基材とすることができる。 For entanglement of nonwoven fabric and woven fabric or knitted fabric, fabric or knitted fabric is laminated on one or both sides of the nonwoven fabric, or woven fabric or knitted fabric is sandwiched between multiple nonwoven fabrics, and fibers are entangled by needle punching. It can be a quality substrate.
 また、ウォータージェットパンチ処理を行う場合には、水は柱状流の状態で行うことが好ましい態様である。具体的には、直径0.05~1.0mmのノズルから圧力1~60MPaで水を噴出させることが好ましい。 In addition, when the water jet punching process is performed, it is a preferable aspect that water is performed in a columnar flow state. Specifically, water is preferably ejected from a nozzle having a diameter of 0.05 to 1.0 mm at a pressure of 1 to 60 MPa.
 ニードルパンチ処理あるいはウォータージェットパンチ処理後の極細繊維発生型繊維からなる不織布の見掛け密度は、0.13~0.45g/cmであることが好ましく、より好ましくは0.15~0.30g/cmである。見掛け密度を0.13g/cm以上とすることにより、十分な形態安定性と寸法安定性を有する人工皮革が得られる。一方、見掛け密度を0.45g/cm以下とすることにより、高分子弾性体を付与するための十分な空間を維持することができる。 The apparent density of the nonwoven fabric composed of ultrafine fiber generating fibers after needle punching or water jet punching is preferably 0.13 to 0.45 g / cm 3 , more preferably 0.15 to 0.30 g / cm 3 . By setting the apparent density to 0.13 g / cm 3 or more, an artificial leather having sufficient form stability and dimensional stability can be obtained. On the other hand, when the apparent density is 0.45 g / cm 3 or less, a sufficient space for applying the polymer elastic body can be maintained.
 繊維質基材の厚みは、好ましくは0.3mm以上6.0mm以下であり、より好ましくは1.0mm以上3.0mm以下である。繊維質基材の厚みが0.3mmより小さくなるとシート状物の形態安定性が乏しくなることがある。また、厚みが6.0mmより大きくなると、ニードルパンチ工程でのニードル折れが多発する傾向がある。 The thickness of the fibrous base material is preferably 0.3 mm or more and 6.0 mm or less, and more preferably 1.0 mm or more and 3.0 mm or less. If the thickness of the fibrous base material is smaller than 0.3 mm, the form stability of the sheet-like material may be poor. On the other hand, when the thickness is larger than 6.0 mm, needle breakage tends to occur frequently in the needle punching process.
 このようにして得られた極細繊維発生型繊維からなる不織布は、緻密化の観点から、乾熱もしくは湿熱またはその両者によって収縮させ、さらに高密度化させることができる。 The nonwoven fabric composed of the ultrafine fiber-generating fibers thus obtained can be shrunk by dry heat or wet heat or both from the viewpoint of densification and further densified.
 海島型複合繊維を用いた場合の当該繊維の海成分を除去するための脱海処理は、繊維質基材への水分散型ポリウレタンを含む水分散型ポリウレタン分散液の付与前または/および付与後に行うことができる。水分散型ポリウレタン分散液付与前に脱海処理を行うと、極細繊維に直接ポリウレタンが密着する構造となりやすく、極細繊維を強く把持できることから、シート状物の耐摩耗性が良好となる。 When sea-island type composite fibers are used, the sea removal treatment for removing the sea components of the fibers is performed before and / or after the application of the water-dispersed polyurethane dispersion containing the water-dispersed polyurethane to the fibrous base material. It can be carried out. When sea removal treatment is performed before application of the water-dispersed polyurethane dispersion, the polyurethane tends to be in direct contact with the ultrafine fibers, and the ultrafine fibers can be strongly held, so that the wear resistance of the sheet-like material is improved.
 一方、水分散型ポリウレタン分散液付与前に極細繊維とセルロース誘導体やポリビニルアルコール(以下、PVAと略記することがある。)等の阻害剤を付与した後に水分散型ポリウレタン分散液を付与することにより、極細繊維とポリウレタン樹脂の密着性を下げることができ、さらに柔軟な風合いを達成することもできる。 On the other hand, by applying an aqueous dispersion type polyurethane dispersion liquid after adding an inhibitor such as ultrafine fibers and cellulose derivatives or polyvinyl alcohol (hereinafter sometimes abbreviated as PVA) before applying the water dispersion type polyurethane dispersion liquid. In addition, the adhesion between the ultrafine fiber and the polyurethane resin can be lowered, and a softer texture can also be achieved.
 前記の阻害剤付与は、海島構造の繊維の脱海処理前または後のいずれでも行うことができる。脱海処理前に阻害剤を付与することにより、繊維の目付が下がりシートの抗張力が低下した場合においても、繊維質基材の形態保持力を高めることができる。このため、薄物のシートも安定して加工できる他に、脱海処理工程での繊維質基材の厚み保持率を高めることができ、繊維質基材の高密度化を抑制することができる。一方、前記の阻害剤付与を脱海処理後に行うことにより、繊維質基材の高密度化を実現することができるため、目的に応じ適宜調整することが好ましい態様である。 The aforementioned inhibitor application can be performed either before or after the sea-sealing treatment of the sea-island structure fibers. By applying an inhibitor before the sea removal treatment, even when the fabric weight is lowered and the tensile strength of the sheet is lowered, the shape retention of the fibrous base material can be increased. For this reason, in addition to being able to process a thin sheet stably, the thickness retention of the fibrous base material in the sea removal treatment step can be increased, and densification of the fibrous base material can be suppressed. On the other hand, since the densification of the fibrous base material can be realized by applying the inhibitor after the sea removal treatment, it is preferable to appropriately adjust according to the purpose.
 前記の阻害剤としては、繊維質基材の補強効果が高く、水に溶出にしにくいことから、PVAが好ましく用いられる。PVAの中でも、水分散型ポリウレタン分散液付与時に阻害剤を溶出しにくくでき、かつより極細繊維とポリウレタンの密着を阻害できるという観点から、より水難性である高ケン化度PVAを適用することが、より好ましい態様である。 As the inhibitor, PVA is preferably used because it has a high reinforcing effect on the fibrous base material and is difficult to dissolve in water. Among PVA, it is difficult to elute an inhibitor at the time of applying a water-dispersed polyurethane dispersion, and it is possible to apply a high water saponification degree PVA, which is more difficult to water, from the viewpoint of being able to inhibit adhesion between ultrafine fibers and polyurethane. This is a more preferable embodiment.
 高ケン化度PVAは、ケン化度が95%以上100%以下であることが好ましく、より好ましくは98%以上100%以下である。ケン化度を95%以上にすることにより、水分散型ポリウレタン分散液付与時の溶出を抑制することができる。 The saponification degree of the high saponification degree PVA is preferably 95% or more and 100% or less, more preferably 98% or more and 100% or less. By setting the saponification degree to 95% or more, elution at the time of applying the water-dispersed polyurethane dispersion can be suppressed.
 PVAの重合度は、500以上3500以下であることが好ましく、さらに好ましくは500以上2000以下である。PVAの重合度を500以上にすることにより、ポリウレタン分散液付与時の高ケン化度PVAの溶出を抑制することができる。また、PVAの重合度を3500以下にすることにより、高ケン化度PVA液の粘度が高くなりすぎず、安定して繊維質基材に高ケン化度PVAを付与することができる。 The polymerization degree of PVA is preferably 500 or more and 3500 or less, and more preferably 500 or more and 2000 or less. By setting the polymerization degree of PVA to 500 or more, elution of the high saponification degree PVA at the time of applying the polyurethane dispersion can be suppressed. Moreover, by setting the polymerization degree of PVA to 3500 or less, the viscosity of the high saponification degree PVA liquid does not become too high, and the high saponification degree PVA can be stably imparted to the fibrous base material.
 PVAの付与量は、製品に残る繊維質基材に対し、0.1質量%~80質量%付与することが好ましく、付与量はより好ましくは5質量%以上60質量%以下である。高ケン化度PVAを0.1質量%以上付与することにより、脱海処理工程での形態安定性効果および極細繊維とポリウレタンの未着性を抑制することができる。また、高ケン化度PVAを80質量%以下付与することにより、極細繊維とポリウレタンの密着性が下がりすぎず、起毛した繊維が均一となり、表面品位が均一な製品を仕上げることができる。 The amount of PVA applied is preferably 0.1% by mass to 80% by mass with respect to the fibrous base material remaining in the product, and the amount applied is more preferably 5% by mass to 60% by mass. By applying 0.1% by mass or more of the high saponification degree PVA, it is possible to suppress the shape stability effect in the sea removal treatment process and the non-attachment property between the ultrafine fibers and the polyurethane. Moreover, by giving 80% by mass or less of the high saponification degree PVA, the adhesion between the ultrafine fibers and the polyurethane is not lowered too much, and the raised fibers become uniform and a product having a uniform surface quality can be finished.
 繊維質基材に前記の阻害剤を付与する方法としては、阻害剤を均一に付与することができるという観点で、前記の阻害剤を水に溶解させて繊維質基材に含浸し、加熱乾燥する方法が好ましく用いられる。乾燥温度は、温度が低すぎると乾燥時間が長時間必要となり、温度が高すぎると阻害剤が完全に不溶化して、後で溶解除去できなくなる。このため、80℃以上180℃以下の温度で乾燥することが好ましく、さらに好ましくは110℃以上160℃以下である。また、乾燥時間は、加工性の観点から1分以上30分以下であることが好ましい。 As a method of applying the inhibitor to the fibrous base material, from the viewpoint that the inhibitor can be uniformly applied, the inhibitor is dissolved in water, impregnated into the fibrous base material, and dried by heating. Is preferably used. If the drying temperature is too low, drying time is required for a long time. If the temperature is too high, the inhibitor is completely insolubilized and cannot be dissolved and removed later. For this reason, it is preferable to dry at the temperature of 80 degreeC or more and 180 degrees C or less, More preferably, it is 110 degreeC or more and 160 degrees C or less. Moreover, it is preferable that drying time is 1 minute or more and 30 minutes or less from a viewpoint of workability.
 阻害剤の溶解除去処理は、100℃以上の温度の蒸気および60℃以上100℃以下の温度の熱水中に当該阻害剤を付与した繊維質基材を浸漬し、必要に応じてマングル等で搾液することによって溶解除去することが好ましい様態である。 Dissolving and removing the inhibitor is performed by immersing the fibrous base material to which the inhibitor is applied in steam having a temperature of 100 ° C. or higher and hot water having a temperature of 60 ° C. or higher and 100 ° C. or lower. It is a preferred embodiment to dissolve and remove by squeezing.
 脱海処理は、液中に海島型複合繊維を含む繊維質基材を浸漬し、窄液することによって行うことができる。海成分を溶解する溶剤としては、海成分がポリエチレン、ポリプロピレンおよびポリスチレンの場合には、トルエンやトリクロロエチレンなどの有機溶剤を用い、海成分が共重合ポリエステルやポリ乳酸の場合には、水酸化ナトリウム水溶液などのアルカリ溶液を用い、海成分がポリビニルアルコールの場合には熱水を用いることができる。 The sea removal treatment can be performed by immersing a fibrous base material containing sea-island type composite fibers in the liquid and squeezing it. As the solvent for dissolving the sea component, when the sea component is polyethylene, polypropylene and polystyrene, an organic solvent such as toluene or trichloroethylene is used. When the sea component is a copolyester or polylactic acid, a sodium hydroxide aqueous solution is used. When the sea component is polyvinyl alcohol, hot water can be used.
 次に、本発明において、高分子弾性体として用いられるポリウレタンについて説明する。 Next, the polyurethane used as the polymer elastic body in the present invention will be described.
 ポリウレタンを粒子として水性媒体に分散させる場合、ポリウレタンの分散安定性の観点から、ポリウレタンの構成成分として前述の親水性基含有活性水素成分を用いることが好ましく、中和塩を用いることが更に好ましい態様である。 When the polyurethane is dispersed in an aqueous medium as particles, from the viewpoint of dispersion stability of the polyurethane, it is preferable to use the above-mentioned hydrophilic group-containing active hydrogen component as a constituent component of the polyurethane, and it is more preferable to use a neutralized salt. It is.
 親水性基と活性水素を有する化合物の中和塩に用いられる中和剤としては、トリメチルアミン、トリエチルアミン、トリエタノールアミンのアミン系化合物や水酸化ナトリウム、および水酸化カリウム等の水酸化物等が挙げられる。 Examples of the neutralizing agent used in the neutralized salt of the compound having a hydrophilic group and active hydrogen include trimethylamine, triethylamine, amine compounds of triethanolamine, hydroxides such as sodium hydroxide and potassium hydroxide, and the like. It is done.
 親水性基含有活性水素成分に用いられる中和剤の添加時期は、ポリウレタン重合工程前後、または水性媒体への分散工程前後等特に特定されないが、ポリウレタンの水性分散体中の安定性の観点から、水性媒体への分散工程前または水性媒体への分散工程中に添加することが好ましい。 The addition time of the neutralizing agent used for the hydrophilic group-containing active hydrogen component is not particularly specified before and after the polyurethane polymerization step or before and after the dispersion step in an aqueous medium, but from the viewpoint of stability in the aqueous dispersion of polyurethane, It is preferably added before the dispersion step in the aqueous medium or during the dispersion step in the aqueous medium.
 ポリウレタンの質量に基づく親水性基含有活性水素成分および/またはその塩の含有量は、ポリウレタンの分散安定性および耐水性の観点から、0.005~30質量%であることが好ましく、より好ましくは0.01~15質量%である。 The content of the hydrophilic group-containing active hydrogen component and / or salt thereof based on the mass of the polyurethane is preferably 0.005 to 30% by mass, more preferably from the viewpoint of dispersion stability and water resistance of the polyurethane. 0.01 to 15% by mass.
 ポリウレタンを粒子として水性媒体に分散させる場合、前記の親水性基含有活性水素成分を用いることに加え、ポリウレタンの外部乳化剤として界面活性剤を用いてポリウレタンを水性媒体に分散させることができる。 When the polyurethane is dispersed in the aqueous medium as particles, in addition to using the hydrophilic group-containing active hydrogen component, the polyurethane can be dispersed in the aqueous medium using a surfactant as an external emulsifier of the polyurethane.
 このような界面活性剤としては、ノニオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤、および両性界面活性剤が挙げられる。界面活性剤は、単独で使用してもよく、2種以上を併用することもできる。 Examples of such surfactants include nonionic surfactants, anionic surfactants, cationic surfactants, and amphoteric surfactants. Surfactant may be used independently and can also use 2 or more types together.
 ノニオン性界面活性剤としては、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンジノニルフェニルエーテル、ポリオキシエチレンラウレルエーテルおよびポリオキシエチレンステアリルエーテル等のアルキレンオキサイド付加型やグリセリンモノステアレート等の多価アルコール型等が挙げられる。 Nonionic surfactants include polyoxyethylene nonyl phenyl ether, polyoxyethylene dinonyl phenyl ether, polyoxyethylene laurel ether, polyoxyethylene stearyl ether and other alkylene oxide addition types, and glycerin monostearate and other polyhydric alcohols. Examples include molds.
 アニオン性界面活性剤としては、ラウリン酸ナトリウム、ラウレル硫酸ナトリウム、ラウリル硫酸アンモニウム、ドデシルベンゼンスルホン酸ナトリウム、高級アルコールリン酸ジエステルナトリウム塩等のカルボン酸塩、硫酸エステル塩、スルホン酸塩、およびリン酸エステル塩が挙げられる。 Examples of the anionic surfactant include sodium laurate, sodium laurel sulfate, ammonium lauryl sulfate, sodium dodecylbenzenesulfonate, sodium salt of higher alcohol phosphate diester, sulfate ester salt, sulfonate salt, and phosphate ester Salt.
 カチオン性界面活性剤としては、塩化ジステアリルジメチルアンモニウム等の4級アンモニウム塩等が挙げられる。両性界面活性剤としては、ラウリルアミノプロピオン酸メチル、ラウリルジメチルベタインおよびヤシ油脂肪酸アミドプロピルジメチルアミノ酢酸ベタイン等が挙げられる。 Examples of the cationic surfactant include quaternary ammonium salts such as distearyldimethylammonium chloride. Examples of amphoteric surfactants include methyl laurylaminopropionate, lauryldimethylbetaine, and palm oil fatty acid amidopropyldimethylaminoacetic acid betaine.
 本発明で用いられるポリウレタンの分散液は、従来のポリウレタン分散液の製造する方法を適用することができる。例えば、前述のポリイソシアネート、ポリオール、鎖伸長剤および/または親水性基含有ポリオールを反応させた液体状のポリマーを乳化剤の存在下で水中に乳化させる方法や、前述のポリイソシアネート、ポリオールおよび/または鎖伸長剤および/または親水性基含有ポリオールを反応させた分子末端にイソシアネート基を有するプレポリマーを製造し、そのプレポリマーを乳化剤の存在下で水中に乳化させると同時/または後に鎖伸長剤で伸長反応を完結させる方法や、前述のポリイソシアネート、ポリオールおよび/または鎖伸長剤および/または親水性基含有ポリオールを反応させた後に乳化剤を用いないでそのまま水中に乳化させる方法が挙げられる。前記のプレポリマーを形成せずに重合する場合およびプレポリマーを重合する場合は、無溶媒下で実施しても、メチルエチルケトン、トルエンおよびアセトン等の有機溶媒下で実施することもできる。 A conventional polyurethane dispersion manufacturing method can be applied to the polyurethane dispersion used in the present invention. For example, a method of emulsifying a liquid polymer obtained by reacting the aforementioned polyisocyanate, polyol, chain extender and / or hydrophilic group-containing polyol in water in the presence of an emulsifier, the aforementioned polyisocyanate, polyol and / or When a prepolymer having an isocyanate group at the molecular end reacted with a chain extender and / or a hydrophilic group-containing polyol is prepared, and the prepolymer is emulsified in water in the presence of an emulsifier, the chain extender is used at the same time or later. Examples thereof include a method of completing the elongation reaction and a method of emulsifying in water as it is without using an emulsifier after reacting the aforementioned polyisocyanate, polyol and / or chain extender and / or hydrophilic group-containing polyol. When polymerizing without forming the prepolymer and when polymerizing the prepolymer, the polymerization may be performed in the absence of a solvent or in an organic solvent such as methyl ethyl ketone, toluene, and acetone.
 前述の合成された水分散型ポリウレタンを含む水分散型ポリウレタン分散液を繊維質基材に浸漬する等して、ポリウレタンを繊維質基材に付与し、その後加熱乾燥させることにより凝固し、固化させる。 The polyurethane is applied to the fibrous base material by, for example, immersing the aqueous dispersed polyurethane dispersion containing the synthesized water-dispersible polyurethane in the fibrous base material, and then coagulated and solidified by heating and drying. .
 本発明においては、前記の増粘剤を添加した水分散型ポリウレタン分散液を繊維質基材に付与し、好ましくは50℃~100℃の温度、より好ましくは60℃~97℃の温度の熱水中で、水分散型ポリウレタンを凝固させることにより、ポリウレタンの多孔構造化を達成させることができる。 In the present invention, the water-dispersed polyurethane dispersion added with the above-mentioned thickener is applied to the fibrous base material, and the heat is preferably 50 ° C. to 100 ° C., more preferably 60 ° C. to 97 ° C. A porous structure of polyurethane can be achieved by coagulating water-dispersed polyurethane in water.
 熱水中への浸漬時間は、10秒以上5分以下であることが好ましく、より好ましくは30秒以上3分以下である。浸漬時間をこのようにすることにより、ポリウレタンを十分に凝固させることができる。 The immersion time in hot water is preferably from 10 seconds to 5 minutes, more preferably from 30 seconds to 3 minutes. By setting the immersion time in this way, the polyurethane can be sufficiently solidified.
 このようにポリウレタンの凝固方法を熱水凝固とすることにより、ポリウレタンにかかる時間当たりの熱量が増加するため、凝固速度が上がり、水分散型ポリウレタン分散液の繊維質基材への偏りが少なくなるがゆえに、繊維とポリウレタンの接着が少なくなり、風合いが柔軟化する。 Thus, by setting the polyurethane coagulation method to hydrothermal coagulation, the amount of heat per hour required for polyurethane increases, so the coagulation rate increases and the bias of the water-dispersed polyurethane dispersion to the fibrous base material decreases. Therefore, the adhesion between the fiber and the polyurethane is reduced, and the texture is softened.
 さらに、水分散型ポリウレタン分散液に増粘剤を併用することにより、繊維質基材に含浸された水分散型ポリウレタン分散液中のポリウレタンエマルジョンは、その液の粘度の影響で、エマルジョンのブラウン運動が抑制される。そのためエマルジョン同士の接触回数が少なくなり、凝固時のポリウレタンの塊を小さくすることができ、柔軟な風合いを達成できる。加えて分散液が熱水中に拡散せず、ポリウレタンの凝固工程時の脱落を抑制でき、生産性にも非常に優れた凝固プロセスを達成することができる。 Furthermore, by using a thickener together with the water-dispersed polyurethane dispersion, the polyurethane emulsion in the water-dispersed polyurethane dispersion impregnated in the fibrous base material is affected by the viscosity of the liquid, and the Brownian motion of the emulsion Is suppressed. Therefore, the number of times of contact between emulsions is reduced, the polyurethane lump at the time of coagulation can be reduced, and a soft texture can be achieved. In addition, the dispersion does not diffuse into the hot water, so that the dropping of the polyurethane during the coagulation step can be suppressed, and a coagulation process with excellent productivity can be achieved.
 水分散型ポリウレタン等の水分散液に増粘剤を併用した分散液を、熱水中で凝固させることにより、水分散型ポリウレタン(弾性重合体)の被膜が小さくなり、柔軟な風合いとなる。さらに繊維質基材を覆うポリウレタン被膜が少なくなり、柔軟な風合いとなる。 When a dispersion using a thickener in combination with an aqueous dispersion such as water-dispersed polyurethane is coagulated in hot water, the coating film of the water-dispersed polyurethane (elastic polymer) becomes small and a soft texture is obtained. Furthermore, the polyurethane film covering the fibrous base material is reduced, and a soft texture is obtained.
 水分散型ポリウレタン分散液に添加する増粘剤は、ノニオン系、アニオン系、カチオン系および両イオン系の増粘剤を適用することができる。中でも、ノニオン系の増粘剤が好ましく用いられる。 As the thickener added to the water-dispersed polyurethane dispersion, nonionic, anionic, cationic and amphoteric thickeners can be applied. Among these, nonionic thickeners are preferably used.
 増粘剤の種類としては、会合型増粘剤と水溶性高分子型増粘剤の中から選択することができる。会合型増粘剤としては、ウレタン変性化合物、アクリル変性化合物およびそれらの共重合化合物等で公知である会合型増粘剤を適用することができる。例えば、特開2003-292937号公報、特開2001-254068号公報、特開昭60-49022号号公報、特開2008-231421号公報、特開2002-069430号公報、および特開平9-71766号公報等に記載されたウレタン系の会合型増粘剤や、特開昭62-292879号公報および特開平10-121030号公報等に記載されている、ウレタンモノマーと他のアクリル性モノマーと共重合して得られる会合型増粘剤等が挙げられる。 The type of thickener can be selected from associative thickeners and water-soluble polymer thickeners. As the associative thickener, associative thickeners known for urethane-modified compounds, acrylic-modified compounds and their copolymer compounds can be applied. For example, JP 2003-292937 A, JP 2001-254068 A, JP 60-49022 A, JP 2008-231421 A, JP 2002-069430 A, and JP 9-71766 A. Urethane-based associative thickeners described in JP-A No. 62-292879, and urethane monomers and other acrylic monomers described in JP-A Nos. 62-292879 and 10-112030. Examples include associative thickeners obtained by polymerization.
 水溶性高分子化合物としては、天然高分子化合物、半合成高分子化合物および合成高分子化合物等が挙げられる。 Examples of water-soluble polymer compounds include natural polymer compounds, semi-synthetic polymer compounds, and synthetic polymer compounds.
 天然高分子化合物としては、タマリンドガム、グァーガム、ローストビーンガム、トラガントガム、デンプン、デキストリン、ゼラチン、アガロース、カゼインおよびカードラン等のノニオン性の化合物や、キサンタンガム、カラギーナン、アラビアガム、ペクチン、コラーゲン、コンドロイチン硫酸ソーダ、ヒアルロン酸ソーダ、カルボキシメチルデンプンおよびリン酸デンプン等のアニオン性の化合物や、カチオンデンプンおよびキトサン等のカチオン性の化合物が挙げられる。 Non-natural compounds such as tamarind gum, guar gum, roast bean gum, tragacanth gum, starch, dextrin, gelatin, agarose, casein and curdlan, xanthan gum, carrageenan, gum arabic, pectin, collagen, chondroitin Examples include anionic compounds such as sodium sulfate, sodium hyaluronate, carboxymethyl starch, and phosphate starch, and cationic compounds such as cationic starch and chitosan.
 半合成高分子化合物としては、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、エチルヒドロキシエチルセルロース、メチルヒドロキシプロピルセルロース、可溶性デンプンおよびメチルデンプン等のノニオン性の化合物や、カルボキシメチルセルロース、カルボキシメチルデンプンおよびアルギン酸塩等のアニオン性の化合物が挙げられる。 Semi-synthetic polymer compounds include nonionic compounds such as methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, ethyl hydroxyethyl cellulose, methyl hydroxypropyl cellulose, soluble starch and methyl starch, and anionic compounds such as carboxymethyl cellulose, carboxymethyl starch and alginate The compound of this is mentioned.
 また、合成高分子化合物としては、ポリビニルアルコール、ポリアクリルアミド、ポリビニルピロリドン、ポリメチルビニルエーテル、ポリエチレングリコールおよびポリイソプロピルアクリルアミド等のノニオン性の化合物や、カルボキシビニルポリマ-、ポリアクリル酸ナトリウムおよびポリスチレンスルホン酸ソーダ等のアニオン性の化合物や、ジメチルアミノエチル(メタ)アクリレート4級塩、ジメチルジアリルアンモニウムクロライド、ポリアミジン、ポリビニルイミダゾリン、およびポリエチレンイミン等のカチオン性の化合物が挙げられる。 Synthetic polymer compounds include nonionic compounds such as polyvinyl alcohol, polyacrylamide, polyvinyl pyrrolidone, polymethyl vinyl ether, polyethylene glycol and polyisopropyl acrylamide, carboxyvinyl polymer, sodium polyacrylate and sodium polystyrene sulfonate. And anionic compounds such as dimethylaminoethyl (meth) acrylate quaternary salt, dimethyldiallylammonium chloride, polyamidine, polyvinylimidazoline, and polyethyleneimine.
 本発明において、増粘剤としては、水分散型ポリウレタン分散液の安定性に影響を及ぼしにくいノニオン性の増粘剤を適用することが好ましい。 In the present invention, as the thickener, it is preferable to apply a nonionic thickener that hardly affects the stability of the water-dispersed polyurethane dispersion.
 また、増粘剤を添加した水分散型ポリウレタン分散液は、非ニュートン性を示すことが好ましい。水分散型ポリウレタン分散液が非ニュートン性の中でも力を加えることで粘性が低下する性質であれば、撹拌等により力を加えることにより粘度が低下するため、前記の分散液を繊維質基材内に均一に含浸させることができ、さらに含浸後は、静置しておくことにより粘度が元に戻るため、繊維質基材内に含浸された前記分散液が繊維質基材から脱落しにくくなる。 Moreover, it is preferable that the water-dispersed polyurethane dispersion added with a thickener exhibits non-Newtonian properties. If the water-dispersed polyurethane dispersion is non-Newtonian and its viscosity is lowered by applying force, the viscosity is lowered by applying force by stirring or the like. In addition, after the impregnation, the viscosity returns to its original value by leaving it stationary, so that the dispersion impregnated in the fibrous base material is less likely to fall off the fibrous base material. .
 また、増粘剤を添加した水分散型ポリウレタン分散液は、チキソトロピー性を示すことがより好ましい。水分散型ポリウレタン分散液がチキソトロピー性であれば、撹拌等により力を加えることにより粘度が低下し、前記分散液を繊維質基材内に均一に含浸させることができ、さらに力を加えた後に静置しておくことにより、粘度が元に戻るため、繊維質基材内に含浸された前記分散液が繊維質基材から脱落しにくくなる。 Further, it is more preferable that the water-dispersed polyurethane dispersion added with the thickener exhibits thixotropic properties. If the water-dispersed polyurethane dispersion is thixotropic, the viscosity can be lowered by applying force by stirring or the like, and the dispersion can be uniformly impregnated into the fibrous base material. By leaving it at rest, the viscosity returns to the original, so that the dispersion liquid impregnated in the fibrous base material is less likely to fall off from the fibrous base material.
 チキソトロピー性を示す増粘剤としては、前記の増粘剤から適宜選定することができるが、少ない添加量で大きな増粘効果が見込まれる天然高分子化合物(多糖類)が好ましく用いられる。増粘剤としては、さらに、水溶性に優れ水分散型ポリウレタン液との相溶性にも優れ、低濃度においてチキソトロピー性が高いことから、グァーガムがより好ましい。 The thickener exhibiting thixotropy can be appropriately selected from the above-mentioned thickeners. Natural polymer compounds (polysaccharides) that are expected to have a large thickening effect with a small addition amount are preferably used. As the thickener, guar gum is more preferable because it is excellent in water solubility, excellent in compatibility with water-dispersed polyurethane liquid, and has high thixotropic properties at low concentrations.
 増粘剤を含む水系樹脂分散液の粘度は、200mPa・s~100000mPa・sであることが好ましく、より好ましくは200mPa・s~10000mPa・sであり、さらに好ましくは200mPa・s~5000mPa・sである。前記の水系樹脂分散液の粘度を200mPa・s以上にすることにより、熱水凝固工程でのポリウレタンの脱落を抑制することができ、また、粘度を100000mPa・s以下とすることにより、水分散型ポリウレタン分散液を繊維質基材内に均一に含浸させることができる。 The viscosity of the aqueous resin dispersion containing a thickener is preferably 200 mPa · s to 100,000 mPa · s, more preferably 200 mPa · s to 10,000 mPa · s, and still more preferably 200 mPa · s to 5000 mPa · s. is there. By setting the viscosity of the aqueous resin dispersion to 200 mPa · s or more, dropping of polyurethane in the hot water coagulation step can be suppressed, and by setting the viscosity to 100000 mPa · s or less, the water dispersion type The polyurethane dispersion can be uniformly impregnated into the fibrous base material.
 繊維質基材に付与する水分散型ポリウレタン分散液には、ポリウレタン凝固時のポリウレタンのマイグレーションを抑制し繊維質基材にポリウレタンを均一に含浸させることができるという観点から、感熱凝固剤が含まれていることが好ましい。 The water-dispersed polyurethane dispersion applied to the fibrous base material contains a heat-sensitive coagulant from the viewpoint that the migration of polyurethane during polyurethane coagulation can be suppressed and the fibrous base material can be uniformly impregnated with polyurethane. It is preferable.
 感熱凝固剤としては、硫酸ナトリウム、硫酸マグネシウム、硫酸カルシウム、塩化カルシウム、塩化マグネシウムおよび塩化カルシウム等の無機塩や、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウムおよび硫酸アンモニウム等のアンモニウム塩等が挙げられる。それらを単独または2種以上併用して、適宜添加量を調整することにより、水分散型ポリウレタンの凝固温度を調整した後に、水分散型ポリウレタン分散液を加熱し不安定化することにより、凝固させることができる。 Examples of the heat-sensitive coagulant include inorganic salts such as sodium sulfate, magnesium sulfate, calcium sulfate, calcium chloride, magnesium chloride and calcium chloride, and ammonium salts such as sodium persulfate, potassium persulfate, ammonium persulfate and ammonium sulfate. After adjusting the coagulation temperature of the water-dispersed polyurethane by adjusting the addition amount as appropriate, either alone or in combination of two or more, the water-dispersed polyurethane dispersion is heated and destabilized to solidify. be able to.
 前記の水分散型ポリウレタン分散液の感熱凝固温度は、保存安定性および加工後の繊維製品の風合いの観点から、好ましくは40~90℃であり、更に好ましくは50~80℃である。 The heat-sensitive coagulation temperature of the water-dispersed polyurethane dispersion is preferably 40 to 90 ° C., more preferably 50 to 80 ° C., from the viewpoint of storage stability and texture of the processed fiber product.
 ポリウレタン分散液に、前述の架橋剤や感熱凝固剤に加え、これに更に次の各種の添加剤等を添加することができる。 In addition to the above-mentioned crosslinking agent and heat-sensitive coagulant, the following various additives can be further added to the polyurethane dispersion.
 例えば、カーボンブラックなどの顔料、酸化防止剤(ヒンダードフェノール系および硫黄系、リン系等の酸化防止剤)、紫外線吸収剤(ベンゾトリアゾール系、トリアジン系、ベンゾフェノン系およびベンゾエート系の紫外線吸収剤等)、ヒンダードアミン系光安定剤等の耐候安定化剤、柔軟撥水剤(ポリシロキサン、変性シリコーンオイル等のシリコーン化合物およびアクリル酸のフロロアルキルエステル系重合体等のフッ素化合物等の柔軟撥水剤)、湿潤剤(エチレングリコール、ジエチレングリコール、プロピレングリコールおよびグリセリン等の湿潤剤)、消泡剤(オクチルアルコール、ソルビタンモノオレート、ポリジメチルシロキサン、ポリエーテル変性シリコーンおよび弗素変性シリコーン等の消泡剤)、充填剤(炭酸カルシウム、酸化チタン、シリカ、タルク、セラミックス、樹脂等の微粒子および中空ビーズ等の充填剤)、難燃剤(ハロゲン系、リン系、アンチモン系、メラミン系、グアニジン系、グアニル尿素系等、シリコーン系および無機系の難燃剤)、マイクロバルーン(例:松本油脂製:“マツモトマイクロスフェアー”(登録商標))、発泡剤[例えば、ジニトロソペンタメチレンテトラミン(例:三協化成製“セルマイクA”(登録商標))、アゾジカルボンアミド(例:三協化成製“セルマイクCAP” (登録商標))、p,p’-オキシビスベンゼンスルホニルヒドラジド(例:三協化成製“セルマイクS”(登録商標))、N,N’-ジニトロソペンタメチレンテトラミン(例:、永和化成製“セルラーGX”(登録商標))等の有機系発泡剤および炭酸水素ナトリウム(例:三協化成製“セルマイク266”(登録商標))等の無機系発泡剤等]、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド](例:和光純薬工業製“VA-086”)、粘度調整剤、可塑剤(フタル酸エステル、アジピン酸エステル等)、および離型剤(ワックス系、金属石鹸系およびこれらの混合系の離型剤等)等の添加剤を含有させることができる。 For example, pigments such as carbon black, antioxidants (hindered phenol-based and sulfur-based, phosphorus-based antioxidants), ultraviolet absorbers (benzotriazole-based, triazine-based, benzophenone-based and benzoate-based ultraviolet absorbers, etc.) ), Weathering stabilizers such as hindered amine light stabilizers, soft water repellents (soft water repellents such as polysiloxanes, silicone compounds such as modified silicone oils, and fluorine compounds such as fluoroalkyl ester polymers of acrylic acid) , Wetting agents (wetting agents such as ethylene glycol, diethylene glycol, propylene glycol and glycerin), antifoaming agents (foaming agents such as octyl alcohol, sorbitan monooleate, polydimethylsiloxane, polyether-modified silicone and fluorine-modified silicone), filling Agent (carbonic acid cal , Titanium oxide, silica, talc, ceramics, fine particles such as resin, and fillers such as hollow beads), flame retardants (halogen, phosphorus, antimony, melamine, guanidine, guanylurea, silicone, Inorganic flame retardant), microballoon (eg: Matsumoto Yushi: “Matsumoto Microsphere” (registered trademark)), foaming agent [eg, dinitrosopentamethylenetetramine (eg, “Cermic A” manufactured by Sankyo Kasei) Registered trademark)), azodicarbonamide (example: “Cermic CAP” AP (registered trademark) manufactured by Sankyo Kasei), p, p′-oxybisbenzenesulfonylhydrazide (example: “Cermic S” (registered trademark) manufactured by Sankyo Chemical) ), N, N′-dinitrosopentamethylenetetramine (eg, “Cellular GX” (registered trademark) manufactured by Eiwa Kasei), etc. Foaming agents and inorganic foaming agents such as sodium hydrogen carbonate (eg “Cermic 266” (registered trademark) manufactured by Sankyo Kasei) and the like], 2,2′-azobis [2-methyl-N- (2-hydroxyethyl) Propionamide] (Example: “VA-086” manufactured by Wako Pure Chemical Industries, Ltd.), viscosity modifier, plasticizer (phthalate ester, adipic acid ester, etc.), and mold release agent (wax, metal soap, and mixtures thereof) Additives such as system release agents and the like may be included.
 水分散型ポリウレタン分散液を繊維質基材に含浸し凝固した後に、水分散型ポリウレタンエマルジョンの融着を促進し、ポリウレタンの分子構造を適正化して、耐湿熱性を向上させるために、追加加熱(キュア)することが好ましい様態である。キュアは、水分散型ポリウレタン分散液を繊維質基材に含浸した後、凝固させる工程と連続して行うことができ、また、水分散型ポリウレタン分散液を繊維質基材に含浸し凝固処理した後に、別工程で実施することもできる。 After impregnating the fiber-dispersed polyurethane dispersion into a fibrous base material and solidifying it, additional heating (in order to promote fusion of the water-dispersed polyurethane emulsion, optimize the molecular structure of the polyurethane, and improve the heat and moisture resistance ( Curing) is a preferred mode. Cure can be performed continuously with the step of solidifying the fibrous base material after impregnating the water-dispersed polyurethane dispersion, and the fibrous base material is impregnated with the water-dispersed polyurethane dispersion and solidified. Later, it can also be carried out in a separate process.
 乾燥温度は、温度が低すぎると乾燥時間が長時間必要となり、温度が高すぎるとポリウレタンの熱分解が促進されるため、80℃以上200℃以下の温度で乾燥することが好ましく、より好ましくは120℃以上190℃以下であり、さらに好ましくは150℃以上180℃以下である。 When the temperature is too low, the drying time is required for a long time, and when the temperature is too high, the thermal decomposition of polyurethane is promoted. Therefore, it is preferable to dry at a temperature of 80 ° C. or higher and 200 ° C. or lower, more preferably It is 120 degreeC or more and 190 degrees C or less, More preferably, they are 150 degreeC or more and 180 degrees C or less.
 さらに、乾燥時間は、加工性の観点から、1分以上60分以下が好ましく、より好ましくは1分以上30分以下である。本発明においては、キュア温度を高温でかつ短時間で処理することにより、ポリウレタン分子の流動性を高め、主にウレタン基とウレア基から形成されるハードセグメント(HS)部と主にポリオールから形成されるソフトセグメント(SS)部からなる分子構造において、HS部の凝集をより高め、HSとSS部のミクロ相分離構造を明瞭化することができ、耐湿熱性を向上させることができる。 Furthermore, the drying time is preferably 1 minute or more and 60 minutes or less, more preferably 1 minute or more and 30 minutes or less from the viewpoint of workability. In the present invention, by treating the curing temperature at a high temperature for a short time, the fluidity of the polyurethane molecules is increased, and the hard segment (HS) portion formed mainly from urethane groups and urea groups and mainly formed from polyols. In the molecular structure composed of the soft segment (SS) portion, the aggregation of the HS portion can be further enhanced, the microphase separation structure of the HS and SS portion can be clarified, and the heat and moisture resistance can be improved.
 ポリウレタン付与後、得られたポリウレタンが付与されたシート状物を、シート厚み方向に半裁ないしは数枚に分割することは、生産効率に優れており好ましい態様である。 After the polyurethane is applied, dividing the obtained sheet-like material provided with the polyurethane into half or several sheets in the sheet thickness direction is excellent in production efficiency and is a preferable embodiment.
 後述する起毛処理の前に、ポリウレタン付与シート状物に、シリコーンエマルジョンなどの滑剤を付与することができる。また、起毛処理の前に帯電防止剤を付与することは、研削によってシート状物から発生した研削粉がサンドペーパー上に堆積しにくくする上で、好ましい態様である。 Before the raising treatment described later, a lubricant such as a silicone emulsion can be applied to the polyurethane-applied sheet. In addition, applying an antistatic agent before the raising treatment is a preferable mode in order to make it difficult for the grinding powder generated from the sheet-like material to be deposited on the sandpaper by grinding.
 シート状物の表面に立毛を形成するために、起毛処理を行うことができる。起毛処理は、サンドペーパーやロールサンダーなどを用いて研削する方法などにより施すことができる。 In order to form napping on the surface of the sheet-like material, raising treatment can be performed. The raising treatment can be performed by a method of grinding using sandpaper, roll sander or the like.
 シート状物の厚みは、薄すぎるとシート状物の引張強力や引裂強力等の物理特性が弱くなり、厚すぎるとシート状物の風合いは硬くなることから、0.1~5.0mm程度であることが好ましい。 If the thickness of the sheet material is too thin, physical properties such as tensile strength and tear strength of the sheet material will be weak, and if it is too thick, the texture of the sheet material will be hard. Preferably there is.
 シート状物は、染色することができる。染色方法としては、シート状物を染色すると同時に揉み効果を与えてシート状物を柔軟化することができることから、液流染色機を用いることが好ましい。染色温度は、高すぎるとポリウレタンが劣化する場合があり、逆に低すぎると染料の繊維への染着が不十分となるため、繊維の種類により設定することができる。染色温度は、一般に80℃以上150℃以下であることが好ましく、より好ましくは110℃以上130℃以下である。 The sheet-like material can be dyed. As a dyeing method, it is preferable to use a liquid dyeing machine because the sheet-like material can be softened by dyeing the sheet-like material and at the same time giving a stagnation effect. If the dyeing temperature is too high, the polyurethane may be deteriorated. Conversely, if the dyeing temperature is too low, dyeing of the dye onto the fiber becomes insufficient, and therefore the dyeing temperature can be set depending on the type of the fiber. In general, the dyeing temperature is preferably 80 ° C. or higher and 150 ° C. or lower, more preferably 110 ° C. or higher and 130 ° C. or lower.
 用いられる染料は、繊維質基材を構成する繊維の種類にあわせて選択される。例えば、ポリエステル系繊維であれば分散染料を用い、ポリアミド系繊維であれば酸性染料や含金染料を用い、更にそれらの組み合わせを用いることができる。シート状物を分散染料で染色した場合は、染色後に還元洗浄を行うことができる。 The dye used is selected according to the type of fiber constituting the fibrous base material. For example, disperse dyes can be used for polyester fibers, acidic dyes or metal-containing dyes can be used for polyamide fibers, and combinations thereof can be used. When the sheet-like material is dyed with a disperse dye, reduction washing can be performed after dyeing.
 また、染色時に染色助剤を使用することも好ましい態様である。染色助剤を用いることにより、染色の均一性や再現性を向上させることができる。また、染色と同浴または染色後に、シリコーン等の柔軟剤、帯電防止剤、撥水剤、難燃剤、耐光剤および抗菌剤等を用いた仕上げ剤処理を施すことができる。 In addition, it is also a preferable aspect to use a dyeing assistant during dyeing. By using a dyeing assistant, the uniformity and reproducibility of dyeing can be improved. In addition, a finishing treatment using a softening agent such as silicone, an antistatic agent, a water repellent, a flame retardant, a light proofing agent, and an antibacterial agent can be performed in the same bath or after dyeing.
 本発明により得られるシート状物は、主に人工皮革として用いられ、例えば、家具、椅子および壁材や、自動車、電車および航空機などの車輛室内における座席、天井および内装などの表皮材として非常に優美な外観を有する内装材、シャツ、ジャケット、カジュアルシューズ、スポーツシューズ、紳士靴および婦人靴等の靴のアッパー、トリム等、鞄、ベルト、財布等、およびそれらの一部に使用した衣料用資材、ワイピングクロス、研磨布およびCDカーテン等の工業用資材として好適に用いることができる。 The sheet-like material obtained by the present invention is mainly used as artificial leather, for example, as a skin material for furniture, chairs and wall materials, and seats, ceilings and interiors in vehicles such as automobiles, trains and aircraft. Interior materials with elegant appearance, shirts, jackets, casual shoes, sports shoes, upper shoes for men's shoes and women's shoes, trims, bags, belts, wallets, etc., and clothing materials used for some of them It can be suitably used as industrial materials such as wiping cloth, polishing cloth and CD curtain.
 次に、実施例により、本発明のシート状物とその製造方法について、更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。 Next, the sheet-like material of the present invention and the manufacturing method thereof will be described in more detail by way of examples, but the present invention is not limited to these examples.
 [評価方法]
 (1)ポリウレタンの凝固時の脱落率:
 繊維質基材の質量とその繊維質基材に水分散型ポリウレタン分散液を含浸した後の質量を測定し、その差分中に含まれるポリウレタン固形分量をポリウレタン付着量Aとした。次に、前記の水分散型ポリウレタン分散液を含浸した繊維質基材を熱水またはスチームで凝固し、乾燥した後の質量を測定し、繊維質基材との差分をポリウレタン付着量Bとした。凝固時のポリウレタン脱落率は、次式により算出し、10点測定した結果の平均で評価した。
・ポリウレタン脱落率(%)=ポリウレタン付着量B/ポリウレタン付着量×100。
[Evaluation methods]
(1) Dropping rate during solidification of polyurethane:
The mass of the fibrous base material and the mass after impregnating the fibrous base material with the water-dispersed polyurethane dispersion were measured, and the polyurethane solid content contained in the difference was defined as the polyurethane adhesion amount A. Next, the fibrous base material impregnated with the water-dispersed polyurethane dispersion was coagulated with hot water or steam, and the mass after drying was measured. The difference from the fibrous base material was defined as polyurethane adhesion amount B. . The polyurethane drop-off rate at the time of coagulation was calculated by the following formula and evaluated by the average of the results of 10 points measurement.
Polyurethane drop-off rate (%) = Polyurethane adhesion amount B / Polyurethane adhesion amount × 100.
 (2)水分散型ポリウレタン分散液の粘度測定:
 調製した水分散型ポリウレタン分散液の粘度を、回転粘度計(B形粘度計:東京計器製造所)を用いて、25℃の温度の雰囲気下で0.5回転/分の回転速度条件および10回転/分の回転速度条件で測定した。
(2) Viscosity measurement of water-dispersed polyurethane dispersion:
The viscosity of the prepared water-dispersed polyurethane dispersion was measured using a rotational viscometer (B-type viscometer: Tokyo Keiki Seisakusho) under an atmosphere at a temperature of 25 ° C. and a rotational speed condition of 0.5 rpm. The measurement was performed under a rotation speed condition of rotation / min.
 (3)シート状物の外観品位:
 シート状物の外観品位は、健康な成人男性と成人女性各10名ずつ、計20名を評価者として、目視と官能評価で下記のように5段階で評価し、最も多かった評価を外観品位とした。外観品位は、4級~5級を良好とした。
5級:均一な繊維の立毛があり、繊維の分散状態は良好で外観は良好である。
4級:5級と3級の間の評価である。
3級:繊維の分散状態はやや良くない部分があるが、繊維の立毛はあり外観はまずまず良好である。
2級:3級と1級の間の評価である。
1級:全体的に繊維の分散状態は非常に悪く、外観は不良である。
(3) Appearance quality of sheet-like material:
The appearance quality of the sheet-like material was evaluated on the basis of visual and sensory evaluations in the following five stages, with 10 healthy adult males and 10 adult females each, with a total of 20 evaluators. It was. Appearance quality was rated as 4th to 5th grades.
Grade 5: There is uniform fiber napping, the fiber dispersion state is good, and the appearance is good.
Grade 4: Evaluation between grade 5 and grade 3.
Third grade: The dispersion state of the fibers is somewhat poor, but there are fiber nappings and the appearance is reasonably good.
Second grade: An evaluation between the third grade and the first grade.
First grade: Overall, the fiber dispersion is very poor and the appearance is poor.
 (4)シート状物の風合:
 シート状物の風合は、健康な成人男性と成人女性各10名ずつ、計20名を評価者として、触感での官能評価で下記のように3段階で評価し、最も多かった評価を風合の評価とした。風合は、◎を良好(ゴム弾性に優れる)とした。
◎:同程度の目付の有機溶剤系ポリウレタンを適用した人工皮革より柔軟で、折れシワ回復性に優れる。
○:同程度の目付の有機溶剤系ポリウレタンを適用した人工皮革と同等の柔軟さおよび折れシワ回復性。
×:シートが硬く、ペーパーライク感の触感。
(4) Texture of sheet:
The texture of the sheet is evaluated by the following three sensory evaluations using tactile sensation, with 10 healthy adult males and 10 adult females each. It was a good evaluation. The texture was good (excellent rubber elasticity).
(Double-circle): It is softer than the artificial leather which applied the organic solvent type polyurethane of the same basis weight, and is excellent in crease wrinkle recovery.
○: The same softness and crease recovery properties as artificial leather using organic solvent-based polyurethane with the same basis weight.
X: The sheet is hard and has a paper-like feel.
 (5)50μm以上の無孔状の塊の占有比率の算出方法(パラメータA):
 人工皮革の長さ方向または幅方向において人工皮革の厚み方向に切断した断面を走査型電子顕微鏡(SEM)で500倍の倍率で、観察したSEM画像10枚について、アメリカ国立衛生研究所により開発された画像解析ソフトのImageJ(バージョン:1.44p)によって切断面に観測されるポリウレタン断面の内50μm以上の塊がSEM画像領域の観察視野(4.3×10μm)内の人工皮革断面の面積に対する割合を算出し、算出した計10画像の数値の平均値で評価した。図3に、パラメータA算出方法の概略図を示す。図3は、パラメータAのポリウレタンの塊1を示す概略図であり、ポリウレタンの塊1とは人工皮革を断面内に観測されるポリウレタン断面(断面より奥の部分は含まない)を説明した図である。
(5) Calculation method of occupancy ratio of non-porous lumps of 50 μm 2 or more (parameter A):
Developed by the US National Institutes of Health for 10 SEM images of a cross section cut in the thickness direction of the artificial leather in the length direction or width direction of the artificial leather at a magnification of 500 times with a scanning electron microscope (SEM). A mass of 50 μm 2 or more of the polyurethane cross section observed on the cut surface by ImageJ (version: 1.44p) of the image analysis software is an artificial leather in the observation field (4.3 × 10 4 μm 2 ) of the SEM image area. The ratio with respect to the area of a cross section was computed, and it evaluated by the average value of the numerical value of the total 10 images computed. FIG. 3 shows a schematic diagram of the parameter A calculation method. FIG. 3 is a schematic view showing a polyurethane lump 1 of parameter A, and is a diagram illustrating a polyurethane cross-section (not including the back part of the cross-section) in which the artificial leather is observed in the cross-section with the polyurethane lump 1. is there.
 (6)極細繊維断面の高分子弾性体被膜率の算出方法(パラメータB):
 人工皮革の長さ方向または幅方向において人工皮革の厚み方向に切断した断面を走査型電子顕微鏡(SEM)で500倍の倍率で、観察したSEM画像10枚について、アメリカ国立衛生研究所により開発された画像解析ソフトのImageJ(バージョン:1.44p)によって極細繊維束が繊維の長さ方向に垂直に切断された状態で観測される極細繊維束5本について、その外周長内、厚みが1μm以上の樹脂皮膜と接している部分の比率を算出した。算出した5本×10画像の計50本の極細繊維断面の高分子弾性体被膜率の平均値で評価した。図4に、パラメータB算出方法の概略図を示す。図4は、パラメータBの極細繊維および/または極細繊維束の外周2と高分子弾性体皮膜で覆われている外周3を示す概略図であり、実線部は極細繊維束の外周2、点線部は高分子弾性体皮膜で覆われている外周3を説明した図である。
(6) Calculation method of polymer elastic body coverage ratio of ultrafine fiber cross section (parameter B):
Developed by the US National Institutes of Health for 10 SEM images of a cross section cut in the thickness direction of the artificial leather in the length direction or width direction of the artificial leather at a magnification of 500 times with a scanning electron microscope (SEM). 5 microfiber bundles observed with the image analysis software ImageJ (version: 1.44p) being cut perpendicular to the length direction of the fibers, the thickness is 1 μm or more in the outer circumference. The ratio of the portion in contact with the resin film was calculated. Evaluation was made based on the average value of the polymer elastic body covering ratios of a total of 50 ultrafine fiber cross-sections of the calculated 5 × 10 images. FIG. 4 shows a schematic diagram of the parameter B calculation method. FIG. 4 is a schematic diagram showing the outer periphery 2 of the ultrafine fiber and / or ultrafine fiber bundle of parameter B and the outer periphery 3 covered with the polymer elastic film, and the solid line portion indicates the outer periphery 2 of the ultrafine fiber bundle and the dotted line portion. These are the figures explaining the outer periphery 3 covered with the polymeric elastic body membrane | film | coat.
 [ポリウレタン液Aの調製]
 ポリオールにMnが2,000のポリカーボネートジオール[旭化成ケミカルズ(株)製「“デュラノール”(登録商標)T5652」]、イソシアネートにMDI、分子内親水性基として、2,2-ジメチロールプロピオン酸を用い、トルエン溶媒中でプレポリマーを作成した後に、鎖伸長剤としてエチレングリコールとエチレンジアミン、外部乳化剤としてポリオキシエチレンノニルフェニルエーテルと水を添加して、攪拌した後、減圧化でトルエンを除去して水分散型ポリウレタン分散液Aを得た。
[Preparation of polyurethane liquid A]
Polycarbonate diol with Mn of 2,000 [“Duranol” (registered trademark) T5652 ”manufactured by Asahi Kasei Chemicals Co., Ltd.] as the polyol, MDI as the isocyanate, and 2,2-dimethylolpropionic acid as the intramolecular hydrophilic group After preparing a prepolymer in a toluene solvent, ethylene glycol and ethylenediamine as chain extenders and polyoxyethylene nonylphenyl ether and water as external emulsifiers are added and stirred, and then toluene is removed by decompression to remove water. A dispersion type polyurethane dispersion A was obtained.
 [ポリウレタン液Bの調製]
 ポリオールにMnが2,000のポリカーボネートジオール[旭化成ケミカルズ(株)製「“デュラノール”(登録商標)T6002」]、イソシアネートにIPDI、分子内親水性基として、側鎖にポリエチレングリコールを有するジオール化合物および2,2-ジメチロールプロピオン酸を用い、アセトン溶媒中でプレポリマーを作成した後に、鎖伸長剤としてエチレングリコールとエチレンジアミンと水を添加して、攪拌した後、減圧化でアセトンを除去して水分散型ポリウレタン分散液Bを得た。
[Preparation of polyurethane liquid B]
Polycarbonate diol with Mn of 2,000 [“Duranol” (registered trademark) T6002 ”manufactured by Asahi Kasei Chemicals Co., Ltd.] as the polyol, IPDI as the isocyanate, a diol compound having polyethylene glycol in the side chain as an intramolecular hydrophilic group, and A 2,2-dimethylolpropionic acid is used to prepare a prepolymer in an acetone solvent, and then ethylene glycol, ethylenediamine and water are added as chain extenders and stirred, and then the acetone is removed under reduced pressure to remove water. A dispersion type polyurethane dispersion B was obtained.
 [ポリウレタン液Cの調製]
 ポリオールにMnが2,000のポリカーボネートジオール[旭化成ケミカルズ(株)製「“デュラノール”(登録商標)T5652」]、イソシアネートにIPDI、分子内親水性基として、トリメチロールプロパンを用い、メチルエチルケトン溶媒中でプレポリマーを作成した後に、鎖伸長剤としてエチレングリコールとエチレンジアミン、外部乳化剤としてポリオキシエチレンノニルフェニルエーテルと水を添加して、攪拌した後、減圧化でメチルエチルケトンを除去して水分散型ポリウレタン分散液Dを得た。
[Preparation of polyurethane liquid C]
Polycarbonate diol with Mn of 2,000 [“Duranol” (registered trademark) T5652 ”manufactured by Asahi Kasei Chemicals Co., Ltd.] as the polyol, IPDI as the isocyanate, trimethylolpropane as the intramolecular hydrophilic group, in a methyl ethyl ketone solvent After preparing the prepolymer, ethylene glycol and ethylenediamine as chain extenders, polyoxyethylene nonylphenyl ether and water as external emulsifiers are added and stirred, and then methyl ethyl ketone is removed by decompression to remove water dispersion type polyurethane dispersion D was obtained.
 [実施例1]
 海成分として、5-スルホイソフタル酸ナトリウムを8モル%共重合したポリエチレンテレフタレートを用い、島成分として、ポリエチレンテレフタレートを用い、海成分が20質量%で島成分が80質量%の複合比率で、島数16島/1フィラメント、平均繊維直径が20μmの海島型複合繊維を得た。得られた海島型複合繊維を、繊維長51mmにカットしてステープルとし、カードおよびクロスラッパーを通して繊維ウェブを形成し、ニードルパンチ処理により不織布とした。
[Example 1]
As the sea component, polyethylene terephthalate copolymerized with 8 mol% of sodium 5-sulfoisophthalate is used, and as the island component, polyethylene terephthalate is used. The sea component is 20% by mass and the island component is 80% by mass. A sea-island type composite fiber having several 16 islands / 1 filament and an average fiber diameter of 20 μm was obtained. The obtained sea-island type composite fiber was cut into a fiber length of 51 mm to form a staple, a fiber web was formed through a card and a cross wrapper, and a nonwoven fabric was formed by needle punching.
 このようにして得られた不織布を、97℃の温度の湯中に2分間浸漬させて収縮させ、100℃の温度で5分間乾燥させた。次いで、得られた不織布に、ポリウレタン固形分濃度を20%に調製した水分散型ポリウレタン分散液Aに、会合型増粘剤[サンノプコ(株)製「シックナー627N」]の有効成分をポリウレタン固形分対比4質量%、硫酸マグネシウムをポリウレタン固形分対比1.2質量%添加した分散液を含浸し、温度95℃の熱水中で1分間処理後、乾燥温度100℃で15分間熱風乾燥させ、その後、さらに得られたシートを160℃の温度で20分間追加加熱した。
不織布の島成分質量に対するポリウレタン質量が35質量%となるように水分散型ポリウレタンを付与したシートを得た。ポリウレタンの熱水凝固時のポリウレタンの脱落は、0.1%とほとんど無かった。
The nonwoven fabric obtained in this manner was immersed in hot water at a temperature of 97 ° C. for 2 minutes to shrink and dried at a temperature of 100 ° C. for 5 minutes. Next, an active ingredient of an associative thickener [“Sickner 627N” manufactured by San Nopco Co., Ltd.] is added to the water-dispersible polyurethane dispersion A having a polyurethane solid content concentration of 20%. After impregnating a dispersion containing 4% by mass of magnesium sulfate and 1.2% by mass of magnesium sulfate with respect to the solid content of polyurethane, treated in hot water at a temperature of 95 ° C. for 1 minute, and then dried in hot air at a drying temperature of 100 ° C. for 15 minutes, Further, the obtained sheet was further heated at a temperature of 160 ° C. for 20 minutes.
A sheet provided with water-dispersed polyurethane was obtained so that the polyurethane mass relative to the island component mass of the nonwoven fabric was 35 mass%. There was almost no dropping of the polyurethane at 0.1% during the hot water coagulation of the polyurethane.
 次に、このようにして得られたシートを、95℃の温度に加熱した濃度10g/Lの水酸化ナトリウム水溶液に浸漬して25分間処理を行い、海島型複合繊維の海成分を除去した脱海シートを得た。得られた脱海シート表面の単繊維の平均単維直径は、4.2μmであった。その後、エンドレスのバンドナイフを有する半裁機を用いて、脱海シートを厚み方向に垂直に半裁し、半裁してない側の面を120メッシュと240メッシュのサンドペーパーを用いて研削して、起毛処理を施した。その後、サーキュラー染色機を用いて、分散染料により染色し還元洗浄を行い、目付が221g/mの人工皮革を得た。得られた人工皮革の外観品位は良好であり、風合いもペーパーライク感がない良好なものとなった。パラメータAは4.0%であり、パラメータBは27.1%であった。 Next, the sheet thus obtained was immersed in a 10 g / L sodium hydroxide aqueous solution heated to a temperature of 95 ° C. and treated for 25 minutes to remove the sea components of the sea-island composite fibers. I got a sea sheet. The average monofilament diameter of the monofilament on the surface of the obtained sea removal sheet was 4.2 μm. Then, using a half-cutting machine having an endless band knife, the sea removal sheet is cut in half in the direction perpendicular to the thickness direction, and the non-half-cut side is ground using 120 mesh and 240 mesh sandpaper, Treated. Then, using a circular dyeing machine, it was dyed with a disperse dye and subjected to reduction washing to obtain an artificial leather having a basis weight of 221 g / m 2 . The appearance quality of the obtained artificial leather was good, and the texture was good with no paper-like feeling. Parameter A was 4.0% and parameter B was 27.1%.
 [実施例2]
 固形分濃度を20%に調整した前記の水分散型ポリウレタン分散液Aに、エポキシ系架橋剤[DIC(株)製「CR-5L」]の有効成分をポリウレタン固形分対比で5質量%、会合型増粘剤[サンノプコ(株)製「シックナー627N」]の有効成分をポリウレタン固形分対比で4質量%、および硫酸マグネシウムをポリウレタン固形分対比で1.2質量%添加した分散液を、実施例1と同じ不織布に含浸したこと以外は、実施例1と同様にして、目付が223g/mの人工皮革を得た。水分散型ポリウレタンの熱水凝固時のポリウレタンの脱落は、0.1%とほとんど無かった。得られた人工皮革の外観品位は良好であり、風合いもペーパーライク感がない良好なものとなった。パラメータAは4.1%であり、パラメータBは25.4%であった。
[Example 2]
The water-dispersed polyurethane dispersion A having a solid content adjusted to 20% is associated with an active ingredient of an epoxy-based crosslinking agent [“CR-5L” manufactured by DIC Corporation] in an amount of 5% by mass relative to the polyurethane solid content. Example 4 A dispersion in which an active ingredient of a type thickener [Sickner 627N manufactured by San Nopco Co., Ltd.] was added in an amount of 4% by mass with respect to the polyurethane solid content and 1.2% by mass of magnesium sulfate with respect to the polyurethane solid content An artificial leather having a basis weight of 223 g / m 2 was obtained in the same manner as in Example 1 except that the same nonwoven fabric as 1 was impregnated. When the water-dispersed polyurethane was coagulated with hot water, the polyurethane did not fall off at 0.1%. The appearance quality of the obtained artificial leather was good, and the texture was good with no paper-like feeling. Parameter A was 4.1% and parameter B was 25.4%.
 [実施例3]
 海成分として、5-スルホイソフタル酸ナトリウムを8モル%共重合したポリエチレンテレフタレートを用い、島成分として、ポリエチレンテレフタレートを用い、海成分が20質量%で島成分が80質量%の複合質量比率で、島数16島/1フィラメント、平均繊維直径が20μmの海島型複合繊維を得た。得られた海島型複合繊維を、繊維長51mmにカットしてステープルとし、カードおよびクロスラッパーを通して繊維ウェブを形成し、ニードルパンチ処理により不織布とした。
[Example 3]
As the sea component, polyethylene terephthalate copolymerized with 8 mol% of sodium 5-sulfoisophthalate is used, and as the island component, polyethylene terephthalate is used. The sea component is 20% by mass, and the island component is 80% by mass. A sea-island type composite fiber having 16 islands / 1 filament and an average fiber diameter of 20 μm was obtained. The obtained sea-island type composite fiber was cut into a fiber length of 51 mm to form a staple, a fiber web was formed through a card and a cross wrapper, and a nonwoven fabric was formed by needle punching.
 このようにして得られた不織布を、97℃の温度の熱水中に5分間浸漬させて収縮させ、100℃の温度で10分間乾燥させた。次いで、得られた不織布に、ケン化度が99%で重合度が1400のPVA[日本合成化学(株)製「NM-14」]を固形分10質量%の水溶液に調整した水溶液を付与し、100℃の温度で10分間乾燥した後に150℃の温度で20分間追加加熱を実施してシートを得た。次に、このようにして得られたシートを、50℃の温度に加熱した濃度100g/Lの水酸化ナトリウム水溶液に浸漬して20分間処理を行い、海島型複合繊維の海成分を除去した脱海シートを得た。得られた脱海シートの表面の単繊維の平均繊維直径は、4.2μmであった。その後、脱海シートに、実施例2と同様に調整した水分散型ポリウレタン分散液Aを含浸し、温度95℃の熱水中で1分間処理後、乾燥温度100℃で15分間熱風乾燥させ、不織布の島成分質量に対するポリウレタン質量が35質量%となるように水分散型ポリウレタンを付与したシートを得た。前記の水分散型ポリウレタンを付与したシートを、98℃の温度の熱水中に10分間浸漬させ、付与したPVAを除去した後、100℃の温度で10分間乾燥した。その後、さらに得られたシートを160℃の温度で20分間追加加熱した。 The nonwoven fabric thus obtained was immersed in hot water at a temperature of 97 ° C. for 5 minutes to shrink and dried at a temperature of 100 ° C. for 10 minutes. Next, an aqueous solution in which PVA having a degree of saponification of 99% and a degree of polymerization of 1400 [“NM-14” manufactured by Nippon Synthetic Chemical Co., Ltd.] was adjusted to an aqueous solution having a solid content of 10% by mass was applied to the obtained nonwoven fabric. After drying at a temperature of 100 ° C. for 10 minutes, additional heating was performed at a temperature of 150 ° C. for 20 minutes to obtain a sheet. Next, the sheet thus obtained was immersed in a 100 g / L sodium hydroxide aqueous solution heated to a temperature of 50 ° C. and treated for 20 minutes to remove the sea components of the sea-island composite fibers. I got a sea sheet. The average fiber diameter of single fibers on the surface of the obtained sea removal sheet was 4.2 μm. Thereafter, the seawater-removed sheet was impregnated with water-dispersed polyurethane dispersion A prepared in the same manner as in Example 2, treated in hot water at a temperature of 95 ° C. for 1 minute, and then dried in hot air at a drying temperature of 100 ° C. for 15 minutes. A sheet provided with water-dispersed polyurethane was obtained so that the polyurethane mass relative to the island component mass of the nonwoven fabric was 35 mass%. The sheet provided with the water-dispersible polyurethane was immersed in hot water at a temperature of 98 ° C. for 10 minutes to remove the applied PVA, and then dried at a temperature of 100 ° C. for 10 minutes. Thereafter, the obtained sheet was further heated at a temperature of 160 ° C. for 20 minutes.
 その後、エンドレスのバンドナイフを有する半裁機を用いて、脱海シートを厚み方
向に垂直に半裁し、半裁してない側の面を120メッシュと240メッシュのサンドペーパーを用いて研削し、起毛処理した後、サーキュラー染色機を用いて分散染料により染色し還元洗浄を行い、目付が230g/mの人工皮革を得た。水分散型ポリウレタンの熱水凝固時のポリウレタンの脱落は、0.2%とほとんど無かった。得られた人工皮革の外観品位は良好であり、風合いもペーパーライク感がない良好なものとなった。パラメータAは3.8%であり、パラメータBは20.3%であった。
Then, using a half-cutting machine with an endless band knife, the sea removal sheet is cut in half perpendicular to the thickness direction, and the non-half cut side is ground using 120 mesh and 240 mesh sandpaper, and raised. Then, it was dyed with a disperse dye using a circular dyeing machine and subjected to reduction washing to obtain an artificial leather having a basis weight of 230 g / m 2 . When the water-dispersed polyurethane was coagulated with hot water, the polyurethane did not fall off at 0.2%. The appearance quality of the obtained artificial leather was good, and the texture was good with no paper-like feeling. Parameter A was 3.8% and parameter B was 20.3%.
 [実施例4]
 固形分濃度を20%に調整した前記の水分散型ポリウレタン分散液Bに、会合型増粘剤[サンノプコ(株)製「シックナー623N」]の有効成分をポリウレタン固形分対比で3質量%を添加した分散液を、実施例1と同じ不織布に含浸したこと以外は、実施例1と同様にして、目付が218g/mの人工皮革を得た。
[Example 4]
3% by mass of the active ingredient of the associative thickener [Sannoco Co., Ltd. “Thickner 623N”] is added to the water-dispersed polyurethane dispersion B adjusted to a solid content concentration of 20% relative to the polyurethane solid content. An artificial leather having a basis weight of 218 g / m 2 was obtained in the same manner as in Example 1, except that the same nonwoven fabric as in Example 1 was impregnated with the dispersion.
 水分散型ポリウレタンの熱水凝固時のポリウレタンの脱落は、0.1%とほとんど無かった。得られた人工皮革の外観品位は良好であり、風合いもペーパーライク感がない良好なものとなった。パラメータAは4.0%であり、パラメータBは26.8%であった。 The drop-out of polyurethane during hot water coagulation of water-dispersed polyurethane was almost 0.1%. The appearance quality of the obtained artificial leather was good, and the texture was good with no paper-like feeling. Parameter A was 4.0% and parameter B was 26.8%.
 [実施例5]
 固形分濃度を20%に調整した前記の水分散型ポリウレタン分散液Bに、水性イソシアネート[バイエルマテリアルサイエンス(株)製「“デスモジュール”(登録商標)N3900」」]の有効成分をポリウレタン固形分対比で3質量%、カルボジイミド系架橋剤[日清紡ケミカルズ(株)製「“カルボジライト”(登録商標)V-02-L2」]の有効成分をポリウレタン固形分対比で3質量%、および会合型増粘剤[サンノプコ(株)製「シックナー623N」]の有効成分をポリウレタン固形分対比で3質量%添加した分散液を、実施例1と同じ不織布に含浸したこと以外は、実施例1と同様にして、目付が220g/mの人工皮革を得た。
[Example 5]
In the water-dispersed polyurethane dispersion B having a solid content adjusted to 20%, an active component of aqueous isocyanate [“Desmodur (registered trademark) N3900” manufactured by Bayer MaterialScience) is added to the polyurethane solid content. 3% by mass by weight, carbodiimide-based cross-linking agent [“Carbodilite” (registered trademark) V-02-L2 ”manufactured by Nisshinbo Chemicals Co., Ltd.) 3% by mass with respect to polyurethane solid content, and associative thickening Example 1 except that the same non-woven fabric as Example 1 was impregnated with a dispersion obtained by adding 3% by mass of the active ingredient of the agent [Sannoco Co., Ltd. “Thickner 623N”] to the polyurethane solid content. An artificial leather having a basis weight of 220 g / m 2 was obtained.
 水分散型ポリウレタンの熱水凝固時のポリウレタンの脱落は0.2%とほとんど無かった。得られた人工皮革の外観品位は良好であり、風合いもペーパーライク感がない良好なものとなった。パラメータAは4.3%であり、パラメータBは30.3%であった。 The drop-out of polyurethane during hot water coagulation of water-dispersed polyurethane was almost 0.2%. The appearance quality of the obtained artificial leather was good, and the texture was good with no paper-like feeling. Parameter A was 4.3% and parameter B was 30.3%.
 [実施例6]
 固形分濃度を20%に調整した前記の水分散型ポリウレタン分散液Bに、水性イソシアネート[バイエルマテリアルサイエンス(株)製「“デスモジュール”(登録商標)N3900」」]の有効成分をポリウレタン固形分対比で3質量%、カルボジイミド系架橋剤[日清紡ケミカルズ(株)製「“カルボジライト”(登録商標)V-02-L2」]の有効成分をポリウレタン固形分対比で3質量%、および会合型増粘剤[サンノプコ(株)製「シックナー623N」]の有効成分をポリウレタン固形分対比で3質量%添加した分散液を、実施例3と同じ不織布に含浸したこと以外は、実施例3と同様にして、目付が220g/mの人工皮革を得た。
[Example 6]
In the water-dispersed polyurethane dispersion B having a solid content adjusted to 20%, an active component of aqueous isocyanate [“Desmodur (registered trademark) N3900” manufactured by Bayer MaterialScience) is added to the polyurethane solid content. 3% by mass by weight, carbodiimide-based cross-linking agent [“Carbodilite” (registered trademark) V-02-L2 ”manufactured by Nisshinbo Chemicals Co., Ltd.) 3% by mass with respect to polyurethane solid content, and associative thickening Example 3 except that the same non-woven fabric as Example 3 was impregnated with a dispersion liquid in which 3% by mass of an active ingredient of the agent [Sannopco Co., Ltd. “Thickener 623N”] was added to the polyurethane solid content. An artificial leather having a basis weight of 220 g / m 2 was obtained.
 水分散型ポリウレタンの熱水凝固時のポリウレタンの脱落は、0.2%とほとんど無かった。得られた人工皮革の外観品位は良好であり、風合いもペーパーライク感がない良好なものとなった。パラメータAは4.2%であり、パラメータBは20.4%であった。 The drop-off of polyurethane during hot water coagulation of water-dispersed polyurethane was almost 0.2%. The appearance quality of the obtained artificial leather was good, and the texture was good with no paper-like feeling. Parameter A was 4.2% and parameter B was 20.4%.
 [実施例7]
 実施例1の海島複合繊維を用いて、カードおよびクロスラッパーを通して繊維ウェ
ブを形成し、得られた繊維ウェブを積層した後に、撚糸が経緯共に84dtex-72フィラメントからなり、織密度が1インチ当たり96×76(経×緯)の織物を、前記の積層繊維ウェブの表裏に重ね合わせた後に、ニードルパンチ処理により積層不織布としたこと、および不織布の島成分質量に対するポリウレタン質量が28質量%となるように水分散型ポリウレタンを付与したこと、エンドレスのバンドナイフを有する半裁機を用いて、脱海シートを厚み方向に垂直に半裁し、半裁した側の面を120メッシュと240メッシュのサンドペーパーを用いて研削して、起毛処理を施したこと以外は、実施例6と同様にして、目付が393g/mの人工皮革を得た。水分散型ポリウレタンの熱水凝固時のポリウレタンの脱落は、0.2%とほとんど無かった。得られた人工皮革の外観品位は良好であり、風合いもペーパーライク感がない良好なものとなった。パラメータAは3.6%であり、パラメータBは20.1%であった。
[Example 7]
Using the sea-island composite fiber of Example 1, a fiber web was formed through a card and a cross wrapper, and the resulting fiber web was laminated. After that, the twisted yarn was composed of 84 dtex-72 filaments with a weaving density of 96 per inch. After a woven fabric of x76 (longitudinal x weft) was superimposed on the front and back of the laminated fiber web, a laminated nonwoven fabric was formed by needle punching, and the polyurethane mass relative to the island component mass of the nonwoven fabric was 28 mass%. Water-dispersed polyurethane was applied to the sheet, and the sea removal sheet was cut in half perpendicular to the thickness direction using a half-cutting machine having an endless band knife, and the half-cut side was used with 120-mesh and 240-mesh sandpaper by grinding Te, except that subjected to raising treatment, in the same manner as in example 6, having a basis weight of 393 g / m 2 artificial To give the leather. When the water-dispersed polyurethane was coagulated with hot water, the polyurethane did not fall off at 0.2%. The appearance quality of the obtained artificial leather was good, and the texture was good with no paper-like feeling. Parameter A was 3.6% and parameter B was 20.1%.
 [実施例8]
 固形分濃度を20%に調整した前記の水分散型ポリウレタン分散液Aに、水性イソシアネート[バイエルマテリアルサイエンス(株)製「デスモジュール(登録商標)N3900」」]の有効成分をポリウレタン固形分対比で3質量%、カルボジイミド系架橋剤[日清紡ケミカルズ(株)製「“カルボジライト”(登録商標)V-02-L2」]の有効成分をポリウレタン固形分対比で3質量%、増粘多糖類のグァーガム[太陽化学(株)製「ネオソフトG」]の有効成分をポリウレタン固形分対比で2質量%、および硫酸マグネシウムをポリウレタン固形分対比で1.2質量%添加した分散液を、実施例3と同じ不織布に含浸したこと、ポリウレタン分散液含浸後に温度95℃の熱水中で3分間処理したこと以外は、実施例3と同様にして、目付が221g/mの人工皮革を得た。
[Example 8]
In the water-dispersed polyurethane dispersion A adjusted to a solid content concentration of 20%, an active ingredient of aqueous isocyanate [“Desmodur (registered trademark) N3900” manufactured by Bayer MaterialScience Co., Ltd.]] is compared with polyurethane solid content. 3% by mass, 3% by mass of an active ingredient of a carbodiimide-based cross-linking agent [“Carbodilite” (registered trademark) V-02-L2 ”manufactured by Nisshinbo Chemicals Co., Ltd.) relative to the solid content of polyurethane, The same dispersion as in Example 3 was prepared by adding 2% by mass of an active ingredient of “Neosoft G” manufactured by Taiyo Kagaku Co., Ltd. to the polyurethane solid content and 1.2% by mass of magnesium sulfate relative to the polyurethane solid content. Except that it was impregnated into a nonwoven fabric and treated in hot water at a temperature of 95 ° C. for 3 minutes after impregnation with a polyurethane dispersion, the same as in Example 3. Basis weight was obtained artificial leather 221 g / m 2.
 水分散型ポリウレタンの熱水凝固時のポリウレタンの脱落は、0.1%とほとんど無かった。また、半裁機で半裁した面はポリウレタンの付ムラがなく、繊維質基材に均一ポリウレタンが含浸されていた。得られた人工皮革の外観品位は良好であり、風合いもペーパーライク感がない良好なものとなった。パラメータAは3.3%であり、パラメータBは18.9%であった。 The drop-out of polyurethane during hot water coagulation of water-dispersed polyurethane was almost 0.1%. In addition, the half-cut surface of the half-cutting machine had no polyurethane unevenness, and the fibrous base material was impregnated with uniform polyurethane. The appearance quality of the obtained artificial leather was good, and the texture was good with no paper-like feeling. Parameter A was 3.3% and parameter B was 18.9%.
 [実施例9]
 実施例1の海島複合繊維を用いて、カードおよびクロスラッパーを通して繊維ウェブを形成し、得られた繊維ウェブを積層した後に、撚糸が経緯共に84dtex-72フィラメントからなり、織密度が1インチ当たり96×76(経×緯)の織物を、前記の積層繊維ウェブの表裏に重ね合わせた後に、ニードルパンチ処理により積層不織布としたこと、および不織布の島成分質量に対するポリウレタン質量が28質量%となるように水分散型ポリウレタンを付与したこと、エンドレスのバンドナイフを有する半裁機を用いて、脱海シートを厚み方向に垂直に半裁し、半裁した側の面を120メッシュと240メッシュのサンドペーパーを用いて研削して、起毛処理を施したこと以外は、実施例8と同様にして、目付が390g/mの人工皮革を得た。水分散型ポリウレタンの熱水凝固時のポリウレタンの脱落は、0.1%とほとんど無かった。また、半裁機で半裁した面はポリウレタンの付ムラがなく、繊維質基材に均一ポリウレタンが含浸されていた。得られた人工皮革の外観品位は良好であり、風合いもペーパーライク感がない良好なものとなった。パラメータAは2.9%であり、パラメータBは19.2%であった。
[Example 9]
Using the sea-island composite fiber of Example 1, a fiber web was formed through a card and a cross wrapper, and the resulting fiber web was laminated. After that, the twisted yarn was composed of 84 dtex-72 filaments with a weaving density of 96 per inch. After a woven fabric of x76 (longitudinal x weft) was superimposed on the front and back of the laminated fiber web, a laminated nonwoven fabric was formed by needle punching, and the polyurethane mass relative to the island component mass of the nonwoven fabric was 28 mass%. Water-dispersed polyurethane was applied to the sheet, and the sea removal sheet was cut in half perpendicular to the thickness direction using a half-cutting machine having an endless band knife, and the half-cut side was used with 120-mesh and 240-mesh sandpaper by grinding Te, except that subjected to raising treatment, in the same manner as in example 8, basis weight of 390 g / m 2 artificial To give the leather. When the water-dispersed polyurethane was coagulated with hot water, the polyurethane did not fall off at 0.1%. In addition, the half-cut surface of the half-cutting machine had no polyurethane unevenness, and the fibrous base material was impregnated with uniform polyurethane. The appearance quality of the obtained artificial leather was good, and the texture was good with no paper-like feeling. Parameter A was 2.9% and parameter B was 19.2%.
 [実施例10]
 不織布に、ケン化度が99%で重合度が1400のPVA[日本合成化学(株)製「NM-14」]の付与と乾燥を行わなかったこと以外は、実施例9と同様にして、目付が388g/mの人工皮革を得た。水分散型ポリウレタンの熱水凝固時のポリウレタンの脱落は、0.1%とほとんど無かった。また、半裁機で半裁した面はポリウレタンの付ムラがなく、繊維質基材に均一ポリウレタンが含浸されていた。得られた人工皮革の外観品位は良好であり、風合いもペーパーライク感がない良好なものとなった。パラメータAは1.1%であり、パラメータBは4.9%であった。
[Example 10]
Except that the non-woven fabric was not applied with PVA with a degree of saponification of 99% and a degree of polymerization of 1400 [“NM-14” manufactured by Nippon Synthetic Chemical Co., Ltd.] and dried, the same as in Example 9, An artificial leather having a basis weight of 388 g / m 2 was obtained. When the water-dispersed polyurethane was coagulated with hot water, the polyurethane did not fall off at 0.1%. In addition, the half-cut surface of the half-cutting machine had no polyurethane unevenness, and the fibrous base material was impregnated with uniform polyurethane. The appearance quality of the obtained artificial leather was good, and the texture was good with no paper-like feeling. Parameter A was 1.1% and parameter B was 4.9%.
 [実施例11]
 固形分濃度を20%に調整した前記の水分散型ポリウレタン分散液Bに、水性イソシアネート[バイエルマテリアルサイエンス(株)製「デスモジュール(登録商標)N3900」」]の有効成分をポリウレタン固形分対比で4質量%と、増粘多糖類のグァーガム[太陽化学(株)製「ネオソフトG」]の有効成分をポリウレタン固形分対比で2.5質量%添加した分散液を不織布に含浸したこと以外は、実施例9と同様にして、目付が388g/mの人工皮革を得た。
[Example 11]
In the water-dispersed polyurethane dispersion B adjusted to a solid content concentration of 20%, an active component of aqueous isocyanate [“Desmodur (registered trademark) N3900” manufactured by Bayer MaterialScience Co., Ltd.] is compared with polyurethane solid content. Except for impregnating the nonwoven fabric with 4% by mass and a dispersion obtained by adding 2.5% by mass of the active ingredient of guar gum of thickening polysaccharide [“Neosoft G” manufactured by Taiyo Kagaku Co., Ltd.] in terms of polyurethane solid content. In the same manner as in Example 9, an artificial leather having a basis weight of 388 g / m 2 was obtained.
 水分散型ポリウレタンの熱水凝固時のポリウレタンの脱落は、0.1%とほとんど無かった。また、半裁機で半裁した面はポリウレタンの付ムラがなく、繊維質基材に均一ポリウレタンが含浸されていた。得られた人工皮革の外観品位は良好であり、風合いもペーパーライク感がない良好なものとなった。パラメータAは2.5%であり、パラメータBは14.3%であった。 The drop-out of polyurethane during hot water coagulation of water-dispersed polyurethane was almost 0.1%. In addition, the half-cut surface of the half-cutting machine had no polyurethane unevenness, and the fibrous base material was impregnated with uniform polyurethane. The appearance quality of the obtained artificial leather was good, and the texture was good with no paper-like feeling. Parameter A was 2.5% and parameter B was 14.3%.
 [実施例12]
 固形分濃度を20%に調整した前記の水分散型ポリウレタン分散液Cに、カルボジイミド系架橋剤[日清紡ケミカルズ(株)製「“カルボジライト”(登録商標)V-02-L2」]の有効成分をポリウレタン固形分対比で4質量%、増粘多糖類のグァーガム[太陽化学(株)製「ネオソフトG」]の有効成分をポリウレタン固形分対比で2質量%、および硫酸マグネシウムをポリウレタン固形分対比で3.0質量%添加した添加した分散液を不織布に含浸したこと以外は、実施例9と同様にして、目付が386g/mの人工皮革を得た。
[Example 12]
An active ingredient of a carbodiimide-based cross-linking agent [“Carbodilite” (registered trademark) V-02-L2 ”manufactured by Nisshinbo Chemicals Co., Ltd.] was added to the water-dispersed polyurethane dispersion C having a solid content adjusted to 20%. 4% by mass relative to polyurethane solid content, 2% by mass of polyurethane thickener compared to polyurethane solid content, and 2% by mass of active ingredient of guar gum (“Neosoft G” manufactured by Taiyo Kagaku Co., Ltd.) An artificial leather with a basis weight of 386 g / m 2 was obtained in the same manner as in Example 9 except that the nonwoven fabric was impregnated with the added dispersion added with 3.0% by mass.
 水分散型ポリウレタンの熱水凝固時のポリウレタンの脱落は、0.1%とほとんど無かった。また、半裁機で半裁した面はポリウレタンの付ムラがなく、繊維質基材に均一ポリウレタンが含浸されていた。得られた人工皮革の外観品位は良好であり、風合いもペーパーライク感がない良好なものとなった。パラメータAは1.2%であり、パラメータBは5.2%であった。 The drop-out of polyurethane during hot water coagulation of water-dispersed polyurethane was almost 0.1%. In addition, the half-cut surface of the half-cutting machine had no polyurethane unevenness, and the fibrous base material was impregnated with uniform polyurethane. The appearance quality of the obtained artificial leather was good, and the texture was good with no paper-like feeling. Parameter A was 1.2% and parameter B was 5.2%.
 [実施例13]
 不織布に、ケン化度が99%で重合度が1400のPVA[日本合成化学(株)製「NM-14」]の付与と乾燥を行わなかったこと以外は、実施例12と同様にして、目付が388g/mの人工皮革を得た。水分散型ポリウレタンの熱水凝固時のポリウレタンの脱落は、0.1%とほとんど無かった。また、半裁機で半裁した面はポリウレタンの付ムラがなく、繊維質基材に均一ポリウレタンが含浸されていた。得られた人工皮革の外観品位は良好であり、風合いもペーパーライク感がない良好なものとなった。パラメータAは0.7%であり、パラメータBは4.0%であった。
[Example 13]
Except that the non-woven fabric was not applied with PVA having a saponification degree of 99% and a polymerization degree of 1400 [“NM-14” manufactured by Nippon Synthetic Chemical Co., Ltd.] and drying, in the same manner as in Example 12, An artificial leather having a basis weight of 388 g / m 2 was obtained. When the water-dispersed polyurethane was coagulated with hot water, the polyurethane did not fall off at 0.1%. In addition, the half-cut surface of the half-cutting machine had no polyurethane unevenness, and the fibrous base material was impregnated with uniform polyurethane. The appearance quality of the obtained artificial leather was good, and the texture was good with no paper-like feeling. Parameter A was 0.7% and parameter B was 4.0%.
 図1に、実施例13で得られた人工皮革の断面を示す。図1の断面に観測されるポリウレタンと極細繊維束の状態は、ポリウレタン断面が少なく(ポリウレタンの固まりが小さく)、さらに極細繊維束とポリウレタンの接着が少ない状態であった。 FIG. 1 shows a cross section of the artificial leather obtained in Example 13. The state of the polyurethane and the ultrafine fiber bundle observed in the cross section of FIG. 1 was a state in which the polyurethane cross section was small (polyurethane lump was small), and the adhesion between the ultrafine fiber bundle and the polyurethane was small.
 [比較例1]
 固形分濃度を20%に調整した前記の水分散型ポリウレタン分散液Aに、硫酸マグネシウムをポリウレタン固形分に対し1.2質量%添加した分散液を、実施例1と同じ不織布に含浸したこと以外は、実施例1と同様にして、目付が223g/mの人工皮革を得た。水分散型ポリウレタンの熱水凝固時のポリウレタンの脱落は、22.1%となり、ポリウレタンの繊維質基材への付着ムラが発生した。
[Comparative Example 1]
Except that the same non-woven fabric as in Example 1 was impregnated with a dispersion obtained by adding 1.2% by mass of magnesium sulfate to the water-dispersed polyurethane dispersion A adjusted to a solid content concentration of 20% with respect to the polyurethane solid content. Produced artificial leather having a basis weight of 223 g / m 2 in the same manner as in Example 1. When the water-dispersed polyurethane was solidified by hot water, the dropping of the polyurethane was 22.1%, and uneven adhesion of the polyurethane to the fibrous base material occurred.
 [比較例2]
固形分濃度を20%に調整した前記の水分散型ポリウレタン分散液Bを、実施例1と同じ不織布に含浸したこと以外は、実施例1と同様にして、目付が223g/mの人工皮革を得た。ポリウレタンの熱水凝固時のポリウレタンの脱落は15.1%となり、ポリウレタンの繊維質基材への付着ムラが発生した。
[Comparative Example 2]
Artificial leather having a basis weight of 223 g / m 2 in the same manner as in Example 1 except that the same non-woven fabric as in Example 1 was impregnated with the water-dispersed polyurethane dispersion B having a solid content adjusted to 20%. Got. When the polyurethane was hot-water coagulated, the dropping of the polyurethane was 15.1%, and uneven adhesion of the polyurethane to the fibrous base material occurred.
 [比較例3]
 固形分濃度を20%に調整した前記の水分散型ポリウレタン分散液Bを、実施例1と同じ不織布に含浸し、温度97℃、湿度100%の湿熱雰囲気下で5分間処理後、110℃の温度で15分間乾燥させ、不織布の島成分質量に対するポリウレタン質量が35質量%となるように、水分散型ポリウレタン樹脂を付与したこと以外は、実施例1と同様にして、目付が223g/mの人工皮革を得た。水分散型ポリウレタンの熱水凝固時のポリウレタンの脱落は、0.0%であったが、得られた人工皮革の風合いはペーパーライク感が強いものとなった。パラメータAは7.9%であり、パラメータBは42.2%であった。
[比較例4]
 固形分濃度を20%に調整した前記の水分散型ポリウレタン分散液Bを、実施例13と同じ不織布に含浸し、温度97℃、湿度100%の湿熱雰囲気下で5分間処理後、110℃の温度で15分間乾燥させ、不織布の島成分質量に対するポリウレタン質量が28質量%となるように、水分散型ポリウレタン樹脂を付与したこと以外は、実施例13と同様にして、目付が389g/mの人工皮革を得た。水分散型ポリウレタンの熱水凝固時のポリウレタンの脱落は、0.0%であったが、得られた人工皮革の風合いはペーパーライク感が強いものとなった。パラメータAは8.1%であり、パラメータBは43.1%であった。
[Comparative Example 3]
The same non-woven fabric as in Example 1 was impregnated with the water-dispersed polyurethane dispersion B adjusted to a solid content concentration of 20%, treated in a moist heat atmosphere at a temperature of 97 ° C. and a humidity of 100% for 5 minutes, and then at 110 ° C. The weight per unit area is 223 g / m 2 in the same manner as in Example 1 except that it is dried at a temperature for 15 minutes and a water-dispersed polyurethane resin is applied so that the polyurethane mass relative to the island component mass of the nonwoven fabric is 35 mass%. Of artificial leather. The drop-out of the polyurethane during hot water coagulation of the water-dispersed polyurethane was 0.0%, but the texture of the obtained artificial leather had a strong paper-like feeling. Parameter A was 7.9% and parameter B was 42.2%.
[Comparative Example 4]
The water-dispersed polyurethane dispersion B having a solid content adjusted to 20% was impregnated into the same nonwoven fabric as in Example 13, treated at a temperature of 97 ° C. and a humidity of 100% for 5 minutes, and then 110 ° C. The weight per unit area is 389 g / m 2 in the same manner as in Example 13, except that the polyurethane is mass-dried at a temperature for 15 minutes, and the water-dispersible polyurethane resin is applied so that the mass of polyurethane with respect to the mass of island components of the nonwoven fabric is 28 mass%. Of artificial leather. The drop-out of the polyurethane during hot water coagulation of the water-dispersed polyurethane was 0.0%, but the texture of the obtained artificial leather had a strong paper-like feeling. Parameter A was 8.1% and parameter B was 43.1%.
 
 図2に、比較例4で得られた人工皮革の断面を示す。図2の断面に観測されるポリウレタンと極細繊維束の状態は、ポリウレタン断面が多く(ポリウレタンの固まり大きい)、さらに極細繊維束とポリウレタンの接着が多いい状態であった。

FIG. 2 shows a cross section of the artificial leather obtained in Comparative Example 4. The state of the polyurethane and the ultrafine fiber bundle observed in the cross section of FIG. 2 was a state where there were many polyurethane cross sections (polyurethane mass was large) and there was much adhesion between the ultrafine fiber bundle and the polyurethane.
 上記の実施例1~7および比較例1~4の結果を、表1、2にまとめて示す。 The results of Examples 1 to 7 and Comparative Examples 1 to 4 are summarized in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例はパラメータAの数値が比較例より小さいことからポリウレタンの塊が小さく、ポリウレタンが人工皮革内部に均一に分散され、柔軟な風合いをなっている。さらに実施例はパラメータBも比較例より小さいことから極細繊維束とポリウレタンの接着が少なく、柔軟な風合いとなっている。 In the example, since the value of parameter A is smaller than that of the comparative example, the polyurethane lump is small, and the polyurethane is uniformly dispersed inside the artificial leather, giving a soft texture. Furthermore, since the parameter B is smaller than that of the comparative example, the embodiment has less adhesion between the ultrafine fiber bundle and the polyurethane, and has a soft texture.
1:ポリウレタンの塊
2:極細繊維束の外周
3:高分子弾性体被膜で覆われている外周
1: polyurethane lump 2: outer periphery of ultrafine fiber bundle 3: outer periphery covered with polymer elastic body coating

Claims (12)

  1.  極細繊維および/または極細繊維束からなる繊維質基材に、親水性基を有する高分子弾性体がバインダーとして付与されてなるシート状物であって、前記シート状物の厚み方向に切断した断面において、切断面内に観察される前記高分子弾性体のうち、独立して50μm以上の断面積を有する部分の占有比率が観察視野内の人工皮革断面の面積に対し0.1%以上5.0%以下であることを特徴とするシート状物。 A cross-section cut in the thickness direction of the sheet-like material, wherein the fibrous base material comprising ultrafine fibers and / or bundles of ultrafine fibers is provided with a polymer elastic body having a hydrophilic group as a binder. In the polymer elastic body observed in the cut surface, the occupation ratio of the portion having a cross-sectional area of 50 μm 2 or more independently is 0.1% or more to the area of the artificial leather cross-section in the observation field of view 5 A sheet-like material characterized by being not more than 0%.
  2.  シート状物の厚み方向に切断した断面において、極細繊維および/または極細繊維束断面の外周の1%以上35%以下が高分子弾性体被膜で覆われていることを特徴とする請求項1記載のシート状物。 2. The cross section cut in the thickness direction of the sheet-like material, wherein 1% or more and 35% or less of the outer periphery of the cross section of the ultrafine fiber and / or ultrafine fiber bundle is covered with the polymer elastic film. Sheet-like material.
  3.  高分子弾性体が架橋剤により架橋された構造を持つことを特徴とする請求項1または2記載のシート状物。 3. The sheet-like material according to claim 1 or 2, wherein the polymer elastic body has a structure crosslinked by a crosslinking agent.
  4.  極細繊維からなる繊維質基材に、親水性基を有する高分子弾性体がバインダーとして付与されてなるシート状物の製造方法において、水に分散された高分子弾性体と増粘剤を含む水系樹脂分散液を繊維質基材に付与し、50~100℃の温度の熱水中で前記高分子弾性体を凝固させることを特徴とするシート状物の製造方法。 In a method for producing a sheet-like material, in which a polymeric elastic body having a hydrophilic group is applied as a binder to a fibrous base material made of ultrafine fibers, an aqueous system containing a polymeric elastic body and a thickener dispersed in water A method for producing a sheet-like material, comprising applying a resin dispersion to a fibrous base material and coagulating the polymer elastic body in hot water at a temperature of 50 to 100 ° C.
  5.  水系樹脂分散液が、非ニュートン性を示すことを特徴とする請求項4記載のシート状物の製造方法。 The method for producing a sheet-like product according to claim 4, wherein the aqueous resin dispersion exhibits non-Newtonian properties.
  6.  増粘剤が、ノニオン系増粘剤であることを特徴とする請求項4または5記載のシート状物の製造方法。 The method for producing a sheet-like product according to claim 4 or 5, wherein the thickener is a nonionic thickener.
  7.  水系樹脂分散液が、チキソトロピー性を示すことを特徴とする請求項4~6のいずれかに記載のシート状物の製造方法。 The method for producing a sheet-like material according to any one of claims 4 to 6, wherein the aqueous resin dispersion exhibits thixotropic properties.
  8.  増粘剤が、増粘多糖類であることを特徴とする請求項4~7のいずれかに記載のシート状物の製造方法。 The method for producing a sheet-like product according to any one of claims 4 to 7, wherein the thickening agent is a thickening polysaccharide.
  9.  増粘剤が、グァーガムであることを特徴とする請求項4~8のいずれかに記載のシート状物の製造方法。 The method for producing a sheet-like product according to any one of claims 4 to 8, wherein the thickener is guar gum.
  10.  水系樹脂分散液が感熱凝固剤を含むことを特徴とする請求項4~9のいずれかに記載のシート状物の製造方法。 The method for producing a sheet-like material according to any one of claims 4 to 9, wherein the aqueous resin dispersion contains a heat-sensitive coagulant.
  11.  水系樹脂分散液が架橋剤を含むことを特徴とする請求項4~10のいずれかに記載のシート状物の製造方法。 The method for producing a sheet-like material according to any one of claims 4 to 10, wherein the aqueous resin dispersion contains a crosslinking agent.
  12.  高分子弾性体が、水分散型ポリウレタンであることを特徴とする請求項4~11のいずれかに記載のシート状物の製造方法。 The method for producing a sheet-like material according to any one of claims 4 to 11, wherein the polymer elastic body is water-dispersed polyurethane.
PCT/JP2015/054941 2014-02-27 2015-02-23 Sheet-like material and method for producing same WO2015129602A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2015525673A JP6551227B2 (en) 2014-02-27 2015-02-23 Sheet-like material and method for producing the same
EP15755868.5A EP3112530B1 (en) 2014-02-27 2015-02-23 A sheet-like article and a production method thereof
KR1020167024554A KR102297654B1 (en) 2014-02-27 2015-02-23 Sheet-like material and method for producing same
CN201580010454.XA CN106029976B (en) 2014-02-27 2015-02-23 Tablet and its manufacturing method
US15/119,025 US20160362832A1 (en) 2014-02-27 2015-02-23 A sheet-like article and a production method therefor (as amended)
US16/741,890 US20200149216A1 (en) 2014-02-27 2020-01-14 Sheet-like article and a production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014036516 2014-02-27
JP2014-036516 2014-02-27

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/119,025 A-371-Of-International US20160362832A1 (en) 2014-02-27 2015-02-23 A sheet-like article and a production method therefor (as amended)
US16/741,890 Continuation US20200149216A1 (en) 2014-02-27 2020-01-14 Sheet-like article and a production method therefor

Publications (1)

Publication Number Publication Date
WO2015129602A1 true WO2015129602A1 (en) 2015-09-03

Family

ID=54008922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054941 WO2015129602A1 (en) 2014-02-27 2015-02-23 Sheet-like material and method for producing same

Country Status (7)

Country Link
US (2) US20160362832A1 (en)
EP (1) EP3112530B1 (en)
JP (1) JP6551227B2 (en)
KR (1) KR102297654B1 (en)
CN (1) CN106029976B (en)
TW (1) TWI711660B (en)
WO (1) WO2015129602A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105568700A (en) * 2015-12-21 2016-05-11 福建宝利特科技股份有限公司 Energy-saving artificial leather and preparation method thereof
EP3333309A4 (en) * 2015-09-07 2019-01-02 Seiren Co., Ltd Nubuck-like artificial leather, and method for producing nubuck-like artificial leather
JP2019112742A (en) * 2017-12-25 2019-07-11 東レ株式会社 Sheet-like article, and production method of the same
WO2020054256A1 (en) 2018-09-14 2020-03-19 旭化成株式会社 Artificial leather and method for manufacturing same
JP2020100914A (en) * 2018-12-21 2020-07-02 日華化学株式会社 Method for producing leather material
WO2020203356A1 (en) 2019-03-29 2020-10-08 東レ株式会社 Sheet-shaped article and manufacturing method therefor
JP2021021172A (en) * 2019-07-30 2021-02-18 東レ株式会社 Sheet-like material and method for producing the same
WO2021085427A1 (en) 2019-10-30 2021-05-06 旭化成株式会社 Artificial leather and production method therefor
WO2021084923A1 (en) * 2019-10-28 2021-05-06 Dic株式会社 Urethane resin composition, synthetic leather, and method for manufacturing synthetic leather
JP2021075602A (en) * 2019-11-07 2021-05-20 株式会社Adeka Aqueous polyurethane resin composition, leather-like material and method for producing the same
WO2021125032A1 (en) 2019-12-20 2021-06-24 東レ株式会社 Sheet-like article and method for producing same
WO2022114041A1 (en) 2020-11-30 2022-06-02 東レ株式会社 Artificial leather and method for manufacturing same
KR20220111272A (en) 2019-12-20 2022-08-09 도레이 카부시키가이샤 Sheet-like article and manufacturing method thereof

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190368124A1 (en) * 2017-01-23 2019-12-05 Toray Industries, Inc. Sheet-like material
DE102018101661A1 (en) * 2017-02-01 2018-08-02 Nishikawa Rubber Co., Ltd. weatherstrip
WO2018144125A1 (en) 2017-02-03 2018-08-09 Nike Innovate C.V. Fiber-bound engineered materials formed using element scrims
CN110431000A (en) 2017-02-03 2019-11-08 耐克创新有限合伙公司 The fiber incorporation engineering material that using area padding is formed
WO2018144118A1 (en) * 2017-02-03 2018-08-09 Nike Innovate C.V. Fiber-bound engineered materials formed as a synthetic leather
WO2018144123A1 (en) * 2017-02-03 2018-08-09 Nike Innovate C.V. Fiber-bound engineered materials formed using partial scrims
US11832681B2 (en) 2017-02-03 2023-12-05 Nike, Inc. Fiber-bound engineered materials formed using engineered scrims
WO2018144122A1 (en) * 2017-02-03 2018-08-09 Nike Innovate C.V. Fiber-bound engineered materials formed using continuous scrims
IT201700089038A1 (en) * 2017-08-02 2019-02-02 Alcantara Spa NEW PROCESS FOR THE PREPARATION OF A NON-FABRIC SYNTHETIC MICRO-FIBROUS SUEDE FABRIC
CN115316751A (en) 2017-08-16 2022-11-11 耐克创新有限合伙公司 Non-woven textile for footwear with tangled folded edges
US20210080397A1 (en) * 2018-01-23 2021-03-18 Tdk Corporation Gas detection sheet and electrochemical element comprising gas detection sheet
CN112575586A (en) * 2019-09-30 2021-03-30 科思创德国股份有限公司 Acid and alkali resistant composition
KR20220045190A (en) * 2019-10-28 2022-04-12 디아이씨 가부시끼가이샤 A urethane resin composition, and a leather sheet
KR20210131017A (en) * 2020-04-23 2021-11-02 현대자동차주식회사 Laminated sheet for automotive interior material and method for manufacturing the same
KR102612442B1 (en) * 2021-04-12 2023-12-11 주식회사 디케이앤디 Method of manufacturing artificial leather using water-borne polyurethane resin for car interiors

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5551076B2 (en) * 1975-08-27 1980-12-22
JPS6233884A (en) * 1985-07-31 1987-02-13 Toray Ind Inc Composite sheet
JPH0442016B2 (en) * 1983-03-28 1992-07-10 Johnson & Johnson Prod Inc
JP2011162908A (en) * 2010-02-09 2011-08-25 Asahi Kasei Chemicals Corp Polyurethane emulsion for artificial leather, and artificial leather
JP2013234409A (en) * 2012-05-10 2013-11-21 Toray Ind Inc Sheet-like article and method for producing the same
JP2014025165A (en) * 2012-07-26 2014-02-06 Toray Ind Inc Method for producing sheet-shaped material
WO2014084253A1 (en) * 2012-11-30 2014-06-05 東レ株式会社 Sheet-shaped object and process for producing said sheet-shaped object

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6322851B1 (en) * 1998-06-30 2001-11-27 Kuraray Co., Ltd. Manufacturing process for leather-like sheet
JP4042016B2 (en) 1999-02-01 2008-02-06 大日本インキ化学工業株式会社 Method for producing fiber sheet composite and artificial leather
TWI256340B (en) * 1999-02-01 2006-06-11 Dainippon Ink & Chemicals Aqueous urethane resin composition for forming pores, process for producing fiber sheet-shape composite
JP2006307000A (en) * 2005-04-28 2006-11-09 Toray Ind Inc Polyurethane composition, sheet-like product using the same and interior material
JP4788551B2 (en) * 2005-11-30 2011-10-05 東レ株式会社 Leather-like sheet, manufacturing method thereof, interior material using the same, clothing material, and industrial material
KR101892303B1 (en) 2010-03-16 2018-08-27 도레이 카부시키가이샤 Sheet-like material and method for producing same
CN102382278B (en) * 2011-08-29 2013-08-28 旭川化学(苏州)有限公司 Waterborne polyurethane resin and preparation method and application thereof
JP2014029043A (en) 2012-07-31 2014-02-13 Kuraray Co Ltd Leather-like sheet and method for producing leather-like sheet
EP3101172B1 (en) * 2014-01-30 2024-01-17 Toray Industries, Inc. Sheet-like artificial leather, and method for producing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5551076B2 (en) * 1975-08-27 1980-12-22
JPH0442016B2 (en) * 1983-03-28 1992-07-10 Johnson & Johnson Prod Inc
JPS6233884A (en) * 1985-07-31 1987-02-13 Toray Ind Inc Composite sheet
JP2011162908A (en) * 2010-02-09 2011-08-25 Asahi Kasei Chemicals Corp Polyurethane emulsion for artificial leather, and artificial leather
JP2013234409A (en) * 2012-05-10 2013-11-21 Toray Ind Inc Sheet-like article and method for producing the same
JP2014025165A (en) * 2012-07-26 2014-02-06 Toray Ind Inc Method for producing sheet-shaped material
WO2014084253A1 (en) * 2012-11-30 2014-06-05 東レ株式会社 Sheet-shaped object and process for producing said sheet-shaped object

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3112530A4 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3333309A4 (en) * 2015-09-07 2019-01-02 Seiren Co., Ltd Nubuck-like artificial leather, and method for producing nubuck-like artificial leather
CN105568700A (en) * 2015-12-21 2016-05-11 福建宝利特科技股份有限公司 Energy-saving artificial leather and preparation method thereof
JP2019112742A (en) * 2017-12-25 2019-07-11 東レ株式会社 Sheet-like article, and production method of the same
WO2020054256A1 (en) 2018-09-14 2020-03-19 旭化成株式会社 Artificial leather and method for manufacturing same
JP7165199B2 (en) 2018-09-14 2022-11-02 旭化成株式会社 Artificial leather and its manufacturing method
JPWO2020054256A1 (en) * 2018-09-14 2021-03-11 旭化成株式会社 Artificial leather and its manufacturing method
JP2020100914A (en) * 2018-12-21 2020-07-02 日華化学株式会社 Method for producing leather material
JP7242287B2 (en) 2018-12-21 2023-03-20 日華化学株式会社 Manufacturing method for leather materials
WO2020203356A1 (en) 2019-03-29 2020-10-08 東レ株式会社 Sheet-shaped article and manufacturing method therefor
KR20210141506A (en) 2019-03-29 2021-11-23 도레이 카부시키가이샤 Sheet-like article and manufacturing method thereof
JP2021021172A (en) * 2019-07-30 2021-02-18 東レ株式会社 Sheet-like material and method for producing the same
JP7322573B2 (en) 2019-07-30 2023-08-08 東レ株式会社 Sheet-shaped article and method for producing the same
WO2021084923A1 (en) * 2019-10-28 2021-05-06 Dic株式会社 Urethane resin composition, synthetic leather, and method for manufacturing synthetic leather
JPWO2021084923A1 (en) * 2019-10-28 2021-12-09 Dic株式会社 Urethane resin composition, synthetic leather, and method for manufacturing synthetic leather
WO2021085427A1 (en) 2019-10-30 2021-05-06 旭化成株式会社 Artificial leather and production method therefor
JP2021075602A (en) * 2019-11-07 2021-05-20 株式会社Adeka Aqueous polyurethane resin composition, leather-like material and method for producing the same
KR20220113689A (en) 2019-12-20 2022-08-16 도레이 카부시키가이샤 Sheet-like article and manufacturing method thereof
KR20220111272A (en) 2019-12-20 2022-08-09 도레이 카부시키가이샤 Sheet-like article and manufacturing method thereof
WO2021125032A1 (en) 2019-12-20 2021-06-24 東レ株式会社 Sheet-like article and method for producing same
WO2022114041A1 (en) 2020-11-30 2022-06-02 東レ株式会社 Artificial leather and method for manufacturing same
KR20230108271A (en) 2020-11-30 2023-07-18 도레이 카부시키가이샤 Artificial leather and its manufacturing method

Also Published As

Publication number Publication date
JP6551227B2 (en) 2019-07-31
KR102297654B1 (en) 2021-09-06
TWI711660B (en) 2020-12-01
EP3112530B1 (en) 2023-11-22
US20160362832A1 (en) 2016-12-15
EP3112530A4 (en) 2017-10-11
EP3112530A1 (en) 2017-01-04
JPWO2015129602A1 (en) 2017-03-30
CN106029976A (en) 2016-10-12
CN106029976B (en) 2018-08-31
TW201542635A (en) 2015-11-16
KR20160127019A (en) 2016-11-02
US20200149216A1 (en) 2020-05-14

Similar Documents

Publication Publication Date Title
JP6551227B2 (en) Sheet-like material and method for producing the same
WO2015115290A1 (en) Sheet-like article, and method for producing same
JP6786800B2 (en) Manufacturing method of sheet
JP2014025165A (en) Method for producing sheet-shaped material
JP2013112905A (en) Sheet-like material
KR20150058268A (en) Method for manufacturing sheet-shaped object and sheet-shaped object obtained via said method
JP2017172074A (en) Sheet-like article and manufacturing method therefor
JP2021021172A (en) Sheet-like material and method for producing the same
JP4983470B2 (en) Sheet material, manufacturing method thereof, interior material using the same, clothing material, and industrial material
JP5035117B2 (en) Sheet material and method for producing the same
JP2007046183A (en) Leather-like sheet-shaped article, method for producing the same, and interior material and clothing material using the same
JP2019112742A (en) Sheet-like article, and production method of the same
JP2022101943A (en) Artificial leather
JP5223661B2 (en) Method for producing fiber sheet with polyurethane
JP4867398B2 (en) Manufacturing method of sheet-like material
JP2014019983A (en) Sheet-like object and production method of the same
JP2007119936A (en) Substrate for leather-like sheet material and method for producing the same
JP2022027451A (en) Artificial leather and production method thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015525673

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15755868

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015755868

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015755868

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15119025

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167024554

Country of ref document: KR

Kind code of ref document: A