WO2014084253A1 - Sheet-shaped object and process for producing said sheet-shaped object - Google Patents

Sheet-shaped object and process for producing said sheet-shaped object Download PDF

Info

Publication number
WO2014084253A1
WO2014084253A1 PCT/JP2013/081891 JP2013081891W WO2014084253A1 WO 2014084253 A1 WO2014084253 A1 WO 2014084253A1 JP 2013081891 W JP2013081891 W JP 2013081891W WO 2014084253 A1 WO2014084253 A1 WO 2014084253A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
pva
fibrous base
fiber
polyurethane
Prior art date
Application number
PCT/JP2013/081891
Other languages
French (fr)
Japanese (ja)
Inventor
現 小出
西村 誠
貴大 土本
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201380062155.1A priority Critical patent/CN104838063B/en
Priority to JP2014549860A priority patent/JP6225917B2/en
Priority to US14/647,923 priority patent/US20150315741A1/en
Priority to EP13859092.2A priority patent/EP2927368B1/en
Priority to KR1020157015928A priority patent/KR102090355B1/en
Publication of WO2014084253A1 publication Critical patent/WO2014084253A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/327Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated alcohols or esters thereof
    • D06M15/333Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated alcohols or esters thereof of vinyl acetate; Polyvinylalcohol
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0004Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using ultra-fine two-component fibres, e.g. island/sea, or ultra-fine one component fibres (< 1 denier)
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/14Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2201/00Chemical constitution of the fibres, threads or yarns
    • D06N2201/10Conjugate fibres, e.g. core-sheath, side-by-side
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2209/00Properties of the materials
    • D06N2209/10Properties of the materials having mechanical properties
    • D06N2209/103Resistant to mechanical forces, e.g. shock, impact, puncture, flexion, shear, compression, tear
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2209/00Properties of the materials
    • D06N2209/10Properties of the materials having mechanical properties
    • D06N2209/105Resistant to abrasion, scratch
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses
    • D06N2211/10Clothing
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses
    • D06N2211/12Decorative or sun protection articles
    • D06N2211/14Furniture, upholstery
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses
    • D06N2211/12Decorative or sun protection articles
    • D06N2211/26Vehicles, transportation
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses
    • D06N2211/12Decorative or sun protection articles
    • D06N2211/28Artificial leather
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/268Monolayer with structurally defined element

Definitions

  • the present invention reduces the amount of organic solvent used in the manufacturing process by using water-dispersed polyurethane as the binder resin, and in an environmentally friendly sheet-like material, achieves both good flexibility and high-grade appearance quality,
  • the present invention also relates to a sheet-like material having good wear resistance and a method for producing the sheet-like material.
  • a sheet-like material mainly composed of a fibrous base material and polyurethane has excellent characteristics not found in natural leather and is widely used for various applications.
  • a leather-like sheet-like material using a polyester-based fibrous base material is excellent in light resistance, and therefore its use has been expanded year by year for clothing, chair upholstery, automobile interior materials, and the like.
  • the obtained fibrous base material is mixed with water which is a non-solvent of polyurethane or an organic solvent / water mixed solution.
  • water which is a non-solvent of polyurethane or an organic solvent / water mixed solution.
  • a process in which the polyurethane is wet-solidified by dipping in it is generally employed.
  • a water-miscible organic solvent such as N, N-dimethylformamide (hereinafter also referred to as “DMF”) is used.
  • PVA "is also obtained.)
  • a fiber sheet is obtained by impregnating with an aqueous solution, the fiber sheet is immersed in a polyurethane impregnating solution, and the polyurethane is wet coagulated in a 45% DMF aqueous solution at 20 ° C.
  • a method for producing a sheet by removing DMF and polyvinyl alcohol with hot water at 85 ° C. see Patent Document 1.
  • organic solvents are generally highly harmful to the human body and the environment, there is a strong demand for methods that do not use organic solvents in the production of sheet-like materials.
  • dropping of the former fiber in the ultrafine process is suppressed by adding borax to the alkaline aqueous solution, while the latter water-dispersed polyurethane impregnation process has a saponification degree of 98% and By using PVA having a polymerization degree of 500, dropping of PVA into water is suppressed.
  • PVA having a polymerization degree of 500
  • the PVA having a saponification degree of 90% or more is given to the nonwoven fabric sheet, and the PVA is dissolved in water by heating at 150 to 195 ° C.
  • a method of reducing the property has been proposed (see Patent Document 3). By heating at a high temperature, the intermolecular hydrogen bond of PVA is strengthened and the solubility in water is lowered. However, if the temperature is too high or the heating time is too long, PVA becomes insoluble and dissolves in water. Since re-dissolution is difficult, there is a problem that it is difficult to stabilize appropriate conditions.
  • the present invention relates to an environmentally friendly sheet-like manufacturing method that reduces the use of organic solvents in the manufacturing process, and provides a sheet that has both an elegant appearance with napping and a soft texture and has good wear resistance.
  • the present invention provides a method for producing a sheet and a sheet obtained by the production method.
  • the sheet-like material manufacturing method of the present invention is characterized in that the following steps 1 to 5 are sequentially performed.
  • the polyvinyl alcohol solution is added in an amount of 0.1 to 50% by mass with respect to the fiber mass contained in the fibrous base material.
  • the production method includes a step of obtaining an aqueous polyvinyl alcohol solution having methyl acetate, acetic acid, and methanol concentrations of 0.1 to 50 ppm, respectively.
  • the process of expressing an ultrafine fiber is a process processed with alkaline aqueous solution.
  • the production method includes a step of applying the polyvinyl alcohol and heating at 80 to 170 ° C.
  • the fibrous base material containing the ultrafine fiber-expressing fiber as a main constituent component is intertwined with the woven fabric and / or the knitted fabric. Further, the density of the obtained sheet-like material is preferably 0.2 to 0.7 g / cm 3 .
  • the sheet-like material manufacturing method of the present invention is characterized in that the following steps 1 to 5 are performed in this order.
  • the polyvinyl alcohol solution is added in an amount of 0.1 to 50% by mass with respect to the fiber mass contained in the fibrous base material.
  • the step of applying 3.
  • Methyl acetate, acetic acid, and methanol are substances that are produced in the process of increasing the degree of saponification from polyvinyl acetate, which is a precursor of PVA synthesis, and also due to decomposition of residual polyvinyl acetate that has not been sufficiently saponified It is a substance to be generated. Since methyl acetate, acetic acid, and methanol each have a concentration of 50 ppm or less of methyl acetate, acetic acid, and methanol in the PVA aqueous solution, PVA intermolecular hydrogen bonds are easily formed during heating and drying, and water (including hot water), acid, The solubility of PVA in the aqueous alkali solution can be suppressed.
  • the heat drying temperature can be set to a relatively low temperature of 80 to 140 ° C., so that the thermal decomposition of PVA can be suppressed.
  • the concentration of methyl acetate, acetic acid, and methanol in the PVA aqueous solution is more preferably 0.1 to 50 ppm, respectively, and the presence of trace amounts of methyl acetate, acetic acid, and methanol makes them weakly hydrogen bond with the PVA molecule. Thus, the distance between PVA molecules is reduced, and hydrogen bonds between PVA molecules are easily formed.
  • the concentrations of methyl acetate, acetic acid, and methanol are too high, the formation of PVA intermolecular hydrogen bonds is inhibited, so that the more preferable concentration is 0.3 to 40 ppm, and further preferably 5 to 40 ppm.
  • the concentration of methyl acetate, acetic acid, and methanol in the PVA aqueous solution is analyzed as follows. 1 g of PVA aqueous solution is put into a 24 mL heating tube and heated at 90 ° C. for 1 hour. From the heating tube, 0.1 mL of the generated gas is collected with a gas tight syringe and introduced into GC / MS (mass spectrometer directly connected to a gas chromatograph) for analysis.
  • GC / MS mass spectrometer directly connected to a gas chromatograph
  • the heating time for raising the temperature for dissolving PVA in water may be lengthened.
  • the higher the degree of saponification the lower the generation amount of methyl acetate, acetic acid and methanol. Therefore, it is preferable to use 98% or higher high saponification degree PVA. In the latter case, if the temperature rise is too low, methyl acetate, acetic acid and methanol cannot be sufficiently removed.
  • the temperature is preferably 80 to 100 ° C. If the heating time is too short, methyl acetate, acetic acid and methanol cannot be sufficiently removed. Therefore, one hour or more is preferable. Note that methyl acetate, acetic acid, and methanol may be completely removed from the PVA aqueous solution.
  • the PVA applied to the fibrous base material has a saponification degree of 98% or more and a polymerization degree of 800 to 3500.
  • saponification degree of PVA 98% or more
  • PVA is dissolved in the water-dispersed polyurethane liquid, not only is the effect sufficient to protect the surface of the ultrafine fibers constituting napped fibers, but also the water-dispersed polyurethane liquid in which PVA is dissolved is used as a fibrous base.
  • PVA is taken into the polyurethane and it becomes difficult to remove the PVA later. Therefore, the adhesive state between the polyurethane and the fibers cannot be stably controlled, and the texture becomes hard.
  • the solubility of PVA in water varies depending on the degree of polymerization.
  • the smaller the degree of polymerization of PVA the more PVA dissolves in the water-dispersed polyurethane liquid when the water-dispersed polyurethane is applied.
  • the higher the degree of polymerization of PVA the higher the viscosity of the PVA aqueous solution, and when impregnating the fibrous base material with the PVA aqueous solution, PVA cannot penetrate into the fibrous base material. Is from 1000 to 3000, more preferably from 1200 to 2500.
  • PVA preferably has a viscosity of 10 to 70 mPa ⁇ s at 20 ° C. in a 4% by mass aqueous solution.
  • a viscosity of PVA is within this range, an appropriate migration structure can be obtained inside the fibrous base material during drying, and a balance of physical properties such as flexibility, surface appearance, and abrasion resistance of the sheet-like material is obtained. It is done.
  • the viscosity By setting the viscosity to 10 mPa ⁇ s or more, more preferably 15 mPa ⁇ s or more, an extreme migration structure can be suppressed.
  • the fibrous base material can be easily impregnated with PVA.
  • the glass transition temperature (Tg) of PVA is preferably 70 to 100 ° C.
  • Tg glass transition temperature
  • the glass transition temperature of PVA is preferably 70 to 100 ° C.
  • the melting point of PVA is preferably 200 to 250 ° C.
  • the melting point of PVA is preferably 200 to 250 ° C.
  • the melting point of PVA By setting the melting point of PVA to 200 ° C. or more, more preferably 210 ° C. or more, softening in the drying process can be prevented, dimensional stability of the fibrous base material can be obtained, and the surface appearance of the sheet-like material is deteriorated. Can be suppressed.
  • the melting point of PVA to 250 ° C. or lower, more preferably 240 ° C. or lower, it is possible to prevent the handling property from deteriorating due to the fibrous base material becoming too hard.
  • the tensile strength of the PVA film is preferably 400 to 800 kg / cm 2 .
  • the tensile strength of the PVA film is preferably 400 kg / cm 2 or more, more preferably 450 kg / cm 2 or more, it is possible to suppress dimensional changes during handling and suppress deterioration of the surface appearance of the sheet-like material.
  • the tensile strength of the PVA film is a value obtained by measuring a 100 ⁇ m thick PVA film in an atmosphere at a temperature of 20 ° C. and a humidity of 65%.
  • the fibrous base material of the present invention is mainly composed of ultrafine fiber expression type fibers.
  • the fiber By using the ultrafine fiber expression type fiber, the fiber can be made ultrafine by passing through the subsequent ultrafine fiber process, and an elegant surface appearance can be obtained.
  • the average single fiber diameter of the ultrafine fiber obtained from the ultrafine fiber expression type fiber through the fiber ultrafine process is 0.3 to 7 ⁇ m.
  • the average single fiber diameter is set to 7 ⁇ m or less, more preferably 6 ⁇ m or less, and even more preferably 5 ⁇ m or less, it is possible to obtain a sheet-like product having excellent flexibility and napping quality.
  • the average single fiber diameter is set to 0.3 ⁇ m or more, more preferably 0.7 ⁇ m or more, and even more preferably 1 ⁇ m or more, the bundle of fibers at the time of napping such as coloring after dyeing or grinding with sandpaper is used. Excellent dispersibility and ease of handling.
  • the ultrafine fiber-expressing type fiber As the ultrafine fiber-expressing type fiber, (a) a two-component thermoplastic resin having different solvent solubility is used as a sea component and an island component, and the sea component is dissolved and removed using a solvent or the like to remove the island component from the ultrafine fiber. Adopting sea-island type fibers and (b) peelable composite fibers that split two components of thermoplastic resin radially or in multiple layers on the fiber cross section and split each component into ultrafine fibers. can do.
  • the sea-island type fibers can be preferably used also from the viewpoint of the flexibility and texture of the sheet-like material because an appropriate void can be imparted between the island components, that is, between the ultrafine fibers, by removing the sea components. .
  • sea-island type fiber for example, a sea-island type composite base is used, and a sea-island type composite fiber in which two components of the sea component and the island component are arranged and spun together; There are mixed spinning fibers.
  • Sea-island type composite fibers are preferably used from the viewpoint that ultrafine fibers having a uniform fineness can be obtained, and that a sufficiently long ultrafine fiber is obtained and contributes to the strength of the sheet-like material.
  • the island component of the sea-island fiber is not particularly limited.
  • polyesters such as polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate and polylactic acid; polyamides such as 6-nylon and 66-nylon; acrylics; polyethylenes; polypropylenes And fibers made of melt-spinnable thermoplastic resin such as thermoplastic cellulose can be used.
  • polyester fibers are preferably used from the viewpoints of strength, dimensional stability, and light resistance. Further, from the viewpoint of environmental consideration, fibers obtained from recycled raw materials and plant-derived raw materials are preferable.
  • the fibrous base material may be configured by mixing fibers of different materials.
  • the sea component of the sea-island fiber is not particularly limited, and for example, polyethylene; polypropylene; polystyrene; copolymer polyester obtained by copolymerization with sodium sulfoisophthalate or polyethylene glycol, and polylactic acid; PVA can be used.
  • polyethylene polypropylene
  • polystyrene polystyrene
  • copolymer polyester obtained by copolymerization with sodium sulfoisophthalate or polyethylene glycol
  • polylactic acid PVA
  • a copolyester or polylactic acid obtained by copolymerizing alkali-decomposable sodium sulfoisophthalate or polyethylene glycol that can be decomposed without using an organic solvent, and hot water-soluble PVA are preferable. .
  • the cross-sectional shape of the fiber constituting the fibrous base material is not particularly limited, and may be a round cross-section, but adopts a polygonal shape such as an ellipse, a flat shape, and a triangular shape, or a deformed cross-section shape such as a sector shape and a cross shape. Also good.
  • the average single fiber diameter of the fibers constituting the fibrous base material is preferably 0.3 to 20 ⁇ m.
  • the thickness is more preferably 0.7 to 15 ⁇ m, particularly preferably 1 to 7 ⁇ m.
  • the woven fabric, knitted fabric, non-woven fabric and the like can be adopted as the form of the fibrous base material of the present invention. Especially, since the surface appearance of the sheet-like material at the time of surface raising treatment is favorable, a nonwoven fabric is preferably used.
  • the non-woven fabric may be either a short-fiber non-woven fabric or a long-fiber non-woven fabric, but the long-fiber non-woven fabric has fewer fibers facing the thickness direction of the sheet-like material when raised, than the short-fiber non-woven fabric. Is low and the surface appearance tends to be inferior, short fiber nonwoven fabrics are preferably used.
  • the fiber length of the short fiber in the short fiber nonwoven fabric is preferably 25 to 90 mm. By setting the fiber length to 25 mm or more, a sheet-like material having excellent abrasion resistance can be obtained by entanglement. In addition, when the fiber length is 90 mm or less, a sheet-like material having excellent texture and quality can be obtained.
  • the fiber length is more preferably 30 to 80 mm.
  • Needle punch or water jet punch can be employed as a method of entanglement of non-woven fibers or fiber bundles.
  • the non-woven fabric has a structure in which bundles of ultrafine fibers (ultrafine fiber bundles) are intertwined. Since the ultrafine fibers are entangled in a bundle state, the strength of the sheet-like material is improved.
  • the nonwoven fabric of such an embodiment can be obtained by causing the ultrafine fibers to develop after entanglement of the ultrafine fiber-expressing fibers in advance.
  • the ultrafine fiber or the ultrafine fiber bundle constitutes a non-woven fabric
  • it may be intertwined with the woven fabric or the knitted fabric for the purpose of improving the strength.
  • plain weave, twill weave, satin weave, etc. are mentioned, and plain weave is preferably used from the viewpoint of cost.
  • plain weave is preferably used from the viewpoint of cost.
  • circular knitting, tricot, Russell and the like can be mentioned.
  • the average single fiber diameter of the fibers constituting the woven or knitted fabric is preferably 0.3 to 20 ⁇ m.
  • a woven fabric and / or a knitted fabric are intertwined and integrated inside a fibrous base material containing an ultrafine fiber-expressing fiber as a main component, it is applied thereafter by applying PVA.
  • the water-dispersible polyurethane reduces the area for directly holding the woven fabric and / or knitted fabric, and the texture of the sheet-like material can be softened.
  • the woven fabric and / or knitted fabric is composed of fibers that are not very fine fiber expression type fibers. A significant softening effect is obtained.
  • the amount of PVA applied to the fibrous base material is 0.1 to 50% by mass, preferably 1 to 45% by mass, based on the fiber mass of the fibrous base material.
  • the method for imparting PVA to the fibrous base material is not particularly limited, and various methods commonly used in this field can be adopted.
  • PVA is dissolved in water, impregnated into the fibrous base material, and dried by heating.
  • the method to do is preferable from a viewpoint which can provide uniformly. If the drying temperature is too low, a long drying time is required. If the drying temperature is too high, the PVA is insolubilized and cannot be dissolved and removed later.
  • the temperature is more preferably 110 to 130 ° C.
  • the drying time is usually 1 to 20 minutes, preferably 1 to 10 minutes, more preferably 1 to 5 minutes from the viewpoint of processability.
  • a preferable temperature for the heat treatment is 80 to 170 ° C. By heat treatment, insolubilization of PVA and thermal degradation of PVA proceed at the same time, so a more preferable temperature is 80 to 140 ° C.
  • the fiber ultrafine treatment (desealing treatment) of the fibrous base material containing the ultrafine fiber expression type fiber as the main constituent can be performed by immersing the fibrous base material in a solvent and squeezing.
  • the ultrafine fiber-expressing fiber is a sea-island fiber
  • the sea component is polyethylene, polypropylene, or polystyrene
  • an organic solvent such as toluene or trichlorethylene
  • An alkaline aqueous solution such as sodium hydroxide
  • the sea component is PVA
  • hot water can be used. From the viewpoint of environmental considerations of the process, a sea removal treatment with an aqueous alkali solution such as sodium hydroxide or hot water is preferable.
  • the water-dispersed polyurethane includes (I) a forced emulsification type polyurethane forcibly dispersed and stabilized in water using a surfactant, and (II) a surfactant having a hydrophilic structure in the molecular structure. Although it is classified as a self-emulsifying type polyurethane that can be dispersed and stabilized in water even if it is not present, any of them may be used in the present invention.
  • the method for applying the water-dispersible polyurethane to the fibrous base material is not particularly limited, but a method of impregnating and applying the water-dispersible polyurethane liquid to the fibrous base material, solidifying, and heating and drying can be uniformly applied. Therefore, it is preferable.
  • the concentration of the water-dispersible polyurethane liquid is preferably 10 to 50% by mass, more preferably 15 to 40% by mass, from the viewpoint of storage stability of the water-dispersible polyurethane liquid. It is.
  • the water-dispersed polyurethane liquid used in the present invention may contain a water-soluble organic solvent in an amount of 40% by mass or less based on the polyurethane liquid in order to improve storage stability and film-forming property.
  • the content of the organic solvent is preferably 1% by mass or less.
  • water-dispersed polyurethane liquid used in the present invention those having heat-sensitive coagulation properties are preferable.
  • polyurethane can be uniformly applied in the thickness direction of the fibrous base material.
  • heat-sensitive coagulation refers to the property that when a polyurethane liquid is heated, the fluidity of the polyurethane liquid decreases and solidifies when it reaches a certain temperature (thermal coagulation temperature).
  • a polyurethane liquid is applied to a fibrous base material, and then solidified by dry coagulation, wet heat coagulation, wet coagulation, or a combination thereof, and dried to give polyurethane to the fibrous base material.
  • the heat-sensitive coagulation temperature of the water-dispersed polyurethane liquid is preferably 40 to 90 ° C.
  • the heat-sensitive coagulation temperature is preferably 40 to 90 ° C.
  • a thermal coagulant may be added as appropriate in order to set the thermal coagulation temperature as described above.
  • heat-sensitive coagulants include inorganic salts such as sodium sulfate, magnesium sulfate, calcium sulfate, and calcium chloride; radical reactions such as sodium persulfate, potassium persulfate, ammonium persulfate, azobisisobutyronitrile, and benzoyl peroxide are initiated. Agents and the like.
  • the polyurethane liquid can be coagulated by dry coagulation, wet heat coagulation, wet coagulation, or a combination thereof by impregnating and applying a polyurethane liquid to a fibrous base material.
  • the wet heat coagulation temperature is preferably equal to or higher than the heat sensitive coagulation temperature of polyurethane, and is preferably 40 to 200 ° C.
  • the wet heat solidification temperature is preferably 40 ° C. or higher, more preferably 80 ° C. or higher, the time to solidification of the polyurethane can be shortened to further suppress the migration phenomenon.
  • the wet heat coagulation temperature is set to 200 ° C. or lower, more preferably 160 ° C. or lower, it is possible to prevent thermal degradation of polyurethane and PVA.
  • the wet coagulation temperature is not less than the heat-sensitive coagulation temperature of polyurethane and is preferably 40 to 100 ° C.
  • the dry coagulation temperature and the drying temperature are preferably 80 to 140 ° C.
  • the dry coagulation temperature and the drying temperature are preferably 80 to 140 ° C.
  • the productivity is excellent.
  • the dry coagulation temperature and the drying temperature is set to 140 ° C. or lower, more preferably 130 ° C. or lower, it is possible to prevent thermal degradation of polyurethane and PVA.
  • heat treatment may be performed after the polyurethane is solidified. By performing the heat treatment, the interface between the polyurethane molecules decreases, and the polyurethane becomes stronger. In a more preferred embodiment, it is preferable to perform heat treatment after removing PVA from the sheet provided with water-dispersed polyurethane.
  • the temperature of the heat treatment is preferably 80 to 170 ° C.
  • polyurethane used in the present invention a polyurethane obtained by a reaction of a polymer diol, an organic diisocyanate and a chain extender is preferable.
  • the polymer diol is not particularly limited.
  • polycarbonate-based, polyester-based, polyether-based, silicone-based, and fluorine-based diols can be used, and a copolymer obtained by combining these may be used.
  • polycarbonate-based and polyether-based diols are preferably used.
  • polycarbonate and polyester are preferably used.
  • polycarbonate-based and polyester-based diols are more preferable, and polycarbonate-based diols are particularly preferably used.
  • the polycarbonate diol can be produced by a transesterification reaction between an alkylene glycol and a carbonate ester, or a reaction between phosgene or chloroformate ester and an alkylene glycol.
  • the alkylene glycol is not particularly limited.
  • ethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,9-nonanediol, 1,10 -Linear alkylene glycol such as decanediol, neopentyl glycol, 3-methyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol, 2-methyl-1,8-octanediol, etc.
  • Branched alkylene glycols alicyclic diols such as 1,4-cyclohexanediol, aromatic diols such as bisphenol A, glycerin, trimethylolpropane, and pentaerythritol.
  • alicyclic diols such as 1,4-cyclohexanediol
  • aromatic diols such as bisphenol A, glycerin, trimethylolpropane, and pentaerythritol.
  • Either a polycarbonate diol obtained from a single alkylene glycol or a copolymerized polycarbonate diol obtained from two or more types of alkylene glycols may be used.
  • polyester-based diol examples include polyester diols obtained by condensing various low molecular weight polyols and polybasic acids.
  • the low molecular weight polyol is not particularly limited, and examples thereof include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-butanediol, 1,4-butanediol, and 2,2-dimethyl.
  • -1,3-propanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,8-octanediol, diethylene glycol, triethylene glycol, dipropylene glycol, tripropylene glycol, cyclohexane-1 , 4-diol, and cyclohexane-1,4-dimethanol can be used.
  • addition products obtained by adding various alkylene oxides to bisphenol A can also be used.
  • the polybasic acid is not particularly limited, for example, succinic acid, maleic acid, adipic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, phthalic acid, isophthalic acid, One type or two or more types selected from terephthalic acid and hexahydroisophthalic acid may be mentioned.
  • the polyether diol is not particularly limited, and examples thereof include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and copolymer diols obtained by combining them.
  • the number average molecular weight of the polymer diol used in the present invention is preferably 500 to 4000.
  • strength as a polyurethane is maintainable by making a number average molecular weight into 4000 or less, More preferably, 3000 or less.
  • the organic diisocyanate is not particularly limited. These may be used, and these may be used in combination. Among these, aliphatic diisocyanates such as hexamethylene diisocyanate, dicyclohexylmethane diisocyanate and isophorone diisocyanate are preferably used from the viewpoint of light resistance.
  • the chain extender is not particularly limited, and amine chain extenders such as ethylenediamine and methylenebisaniline, and diol chain extenders such as ethylene glycol can be used. Moreover, the polyamine obtained by making polyisocyanate and water react can also be used as a chain extender.
  • a crosslinking agent may be used in combination for the purpose of improving water resistance, abrasion resistance, hydrolysis resistance and the like.
  • the cross-linking agent may be an external cross-linking agent added as a third component to the polyurethane, or may be an internal cross-linking agent that introduces a reaction point that becomes a cross-linked structure in advance in the polyurethane molecular structure.
  • an internal cross-linking agent it is preferable to use an internal cross-linking agent from the viewpoint that the cross-linking points can be formed more uniformly in the polyurethane molecular structure and the reduction in flexibility can be reduced.
  • crosslinking agent a compound having an isocyanate group, an oxazoline group, a carbodiimide group, an epoxy group, a melamine resin, a silanol group, or the like can be used.
  • the crosslinking proceeds excessively, the polyurethane tends to harden and the texture of the sheet-like material also tends to harden. Therefore, those having a silanol group are preferably used in terms of the balance between reactivity and flexibility.
  • the polyurethane used in the present invention preferably has a hydrophilic group in the molecular structure.
  • a hydrophilic group in the molecular structure By having a hydrophilic group in the molecular structure, the dispersion / stability of the water-dispersed polyurethane can be improved.
  • hydrophilic group examples include a cation system such as a quaternary amine salt, an anion system such as a sulfonate and carboxylate, a nonionic system such as polyethylene glycol, a combination of a cationic system and a nonionic system, and an anionic system and a nonionic system. Any hydrophilic group of the combination of systems can be employed. Of these, nonionic hydrophilic groups that are free from yellowing caused by light and harmful effects caused by a neutralizing agent are particularly preferably used.
  • a neutralizing agent is required.
  • the neutralizing agent is a tertiary amine such as ammonia, triethylamine, triethanolamine, triisopropanolamine, trimethylamine and dimethylethanolamine.
  • amines are generated and volatilized by heat during film formation and drying, and released outside the system. For this reason, in order to suppress the release of air and the deterioration of the working environment, it is essential to introduce a device for recovering volatile amines.
  • the amine does not volatilize by heating and remains in the final product sheet, it may be discharged to the environment when the product is incinerated.
  • the anionic hydrophilic group neutralizing agent is an alkali metal such as sodium hydroxide, potassium hydroxide or calcium hydroxide, or a hydroxide of an alkaline earth metal
  • the polyurethane part is wetted with water.
  • alkalinity in the case of a nonionic hydrophilic group, since a neutralizing agent is not used, there is no need to worry about deterioration due to hydrolysis of polyurethane.
  • the water-dispersed polyurethane used in the present invention is optionally made of various additives, for example, pigments such as carbon black, flame retardants such as phosphorus, halogen, silicone and inorganic, phenol, sulfur and phosphorus.
  • Antioxidants such as benzotriazoles, benzophenones, salicylates, cyanoacrylates and oxalic acid anilides, light stabilizers such as hindered amines and benzoates, and hydrolysis resistance of polycarbodiimides Stabilizers, plasticizers, antistatic agents, surfactants, softeners, water repellents, coagulation modifiers, viscosity modifiers, dyes, preservatives, antibacterial agents, deodorants, cellulose particles, fillers such as microballoons , And inorganic particles such as silica and titanium oxide.
  • an inorganic system such as sodium bicarbonate, an organic system such as 2,2′-azobis [2-methyl-N- (2-hydroxyethyl) propionamide], etc.
  • a foaming agent may be contained.
  • the content ratio of polyurethane to the fibrous base material containing the ultrafine fiber of the present invention as a main constituent is preferably 1 to 80% by mass.
  • the ratio of the polyurethane is preferably 1% by mass or more, more preferably 5% by mass or more, it is possible to obtain sheet strength and prevent the fibers from falling off.
  • the blending ratio of polyurethane is set to 80% by mass or less, more preferably 70% by mass or less, it is possible to prevent the texture from becoming hard and to obtain good napped quality.
  • a flexible sheet-like material is obtained by removing PVA from the fibrous base material after application of polyurethane.
  • the method for removing PVA is not particularly limited, but for example, it is preferable to dissolve and remove the sheet by immersing the sheet in hot water at 60 to 100 ° C. and squeezing with a mangle if necessary.
  • the method for producing a sheet-like product of the present invention may include a step of half-cutting in the thickness direction after applying water-dispersed polyurethane to at least a fibrous base material provided with PVA.
  • a large amount of PVA adheres to the surface layer of the fibrous base material due to migration, and the amount of PVA attached to the inner layer is small.
  • a small amount of water-dispersed polyurethane adheres to the side with a large amount of PVA, and a large amount of water-dispersed polyurethane to a side with a small amount of PVA.
  • a sheet-like material having an attached structure is obtained.
  • the surface on which a large amount of PVA is adhered (the surface on which less water-dispersed polyurethane adheres) is used as the napped surface of the sheet-like material, there is a gap between the polyurethane and the ultrafine fibers constituting the napped by the addition of PVA. Is generated, the degree of freedom is given to the fibers constituting the nap, the surface texture becomes flexible, and a good appearance quality and soft touch can be obtained.
  • the raised hair is short because the fibers constituting the raised hair are strongly held by the polyurethane.
  • a good appearance quality with a dense feeling is obtained, and the wear resistance is also good.
  • production efficiency can be improved by including the process of half-cutting in the sheet thickness direction.
  • the sheet-like material may be raised to form napped on the surface.
  • the method for forming napping is not particularly limited, and various methods that are usually performed in this field, such as buffing with sandpaper or the like, can be used.
  • the napped length is preferably 0.2 to 1 mm.
  • silicone or the like may be applied to the sheet-like material as a lubricant before the raising treatment.
  • a lubricant By applying a lubricant, raising by surface grinding becomes possible easily, and the surface quality becomes very good, which is preferable.
  • an antistatic agent may be applied before the raising treatment, which is a preferred embodiment because the application of the antistatic agent makes it difficult for grinding powder generated from the sheet-like material to be deposited on the sandpaper by grinding.
  • the sheet can be dyed.
  • a dyeing method various methods commonly used in this field can be adopted. However, since the sheet-like material can be softened by giving a stagnation effect simultaneously with the dyeing of the sheet-like material, a liquid dyeing machine is used. The method used is preferred.
  • the dyeing temperature is preferably 80 to 150 ° C., although it depends on the type of fiber. By setting the dyeing temperature to 80 ° C. or higher, more preferably 110 ° C. or higher, it is possible to efficiently dye the fibers. On the other hand, the deterioration of the polyurethane can be prevented by setting the dyeing temperature to 150 ° C. or lower, more preferably 130 ° C. or lower.
  • the dye used in the present invention may be selected in accordance with the type of fiber constituting the fibrous base material, and is not particularly limited.
  • a disperse dye can be used for a polyester fiber, and a polyamide fiber. If so, an acid dye or a metal-containing dye can be used, and further a combination thereof can be used. When dyed with disperse dyes, reduction washing may be performed after dyeing.
  • a dyeing assistant during dyeing.
  • a dyeing assistant By using a dyeing assistant, the uniformity and reproducibility of dyeing can be improved.
  • a finishing agent treatment using, for example, a softener such as silicone, an antistatic agent, a water repellent, a flame retardant, a light proofing agent, and an antibacterial agent can be performed.
  • the density of the sheet-like material of the present invention is preferably 0.2 to 0.7 g / cm 3 .
  • the density is preferably 0.2 to 0.7 g / cm 3 .
  • Viscosity of PVA aqueous solution The viscosity at 20 ° C. of a 4% by mass PVA aqueous solution was measured by the rotational viscometer method described in 3.11.1 of JIS K6726 (1994) polyvinyl alcohol test method.
  • the average single fiber diameter was obtained by taking a scanning electron microscope (SEM) photograph of the surface of the fibrous base material or sheet-like material at a magnification of 2000 times, selecting 100 fibers at random, and the single fiber diameter. was calculated by calculating the average value.
  • the outer circumference circle diameter of the irregular cross section was calculated as the single fiber diameter.
  • the number of samplings corresponding to each existing number ratio is selected and calculated to be a total of 100. did.
  • the fibers of the reinforcing woven fabric or knitted fabric are excluded from the sampling target in the measurement of the average single fiber diameter.
  • the surface appearance of the sheet-like material is determined by visual and sensory evaluation as follows, with 10 adult males and 10 adult females each in good health, and a total of 20 evaluators. A stepped evaluation was performed, and the highest evaluation was defined as the surface appearance. As for the surface appearance, Grade 3 to Grade 5 were good. Grade 5: There is uniform fiber napping, the fiber dispersion state is good, and the appearance is good. Grade 4: Evaluation between grade 5 and grade 3. Third grade: The dispersion state of the fibers is slightly poor, but there are fiber nappings and the appearance is reasonably good. Second grade: An evaluation between the third grade and the first grade. First grade: Overall, the dispersion state of the fibers is very poor, or the fibers are long and the appearance is poor.
  • Abrasion resistance evaluation of sheet-like material Nylon 6 nylon fiber having a diameter of 0.4 mm cut into a length of 11 mm perpendicular to the longitudinal direction of the fiber was made into 100 bundles, and this bundle was made 110 mm in diameter.
  • Example 1 (Preparation of PVA aqueous solution) PVA having a saponification degree of 99% and a polymerization degree of 1400 (NM-14 manufactured by Nippon Synthetic Chemical Co., Ltd.) was added to water at 25 ° C., heated to 90 ° C., maintained at 90 ° C. with stirring for 2 hours, A PVA aqueous solution was obtained by preparing an aqueous solution having a solid content of 10% by mass. The methyl acetate, acetic acid, and methanol concentrations contained in the PVA aqueous solution were 10.2 ppm, 0.8 ppm, and 5.2 ppm, respectively.
  • Nonwoven fabric for fibrous base materials Polyethylene terephthalate copolymerized with 8 mol% of sodium 5-sulfoisophthalate was used as the sea component, and polyethylene terephthalate was used as the island component, with a composite ratio of 45 mass% sea component and 55 mass% island component. / 1 filament, sea island type composite fiber having an average single fiber diameter of 17 ⁇ m was obtained. The obtained sea-island type composite fiber was cut into a fiber length of 51 mm to form a staple, a fiber web was formed through a card and a cross wrapper, and a nonwoven fabric was formed by needle punching. The nonwoven fabric thus obtained was immersed in hot water at a temperature of 98 ° C. for 2 minutes to shrink and dried at a temperature of 100 ° C. for 5 minutes to obtain a nonwoven fabric for a fibrous base material.
  • the above PVA aqueous solution is impregnated into the above-mentioned nonwoven fabric for a fibrous base material, heat-dried at a temperature of 140 ° C. for 10 minutes, and the amount of PVA applied to the fiber mass of the nonwoven fabric for a fibrous base material is 30 mass%. A sheet was obtained.
  • the PVA-applied sheet was immersed in a 10 g / liter sodium hydroxide aqueous solution heated to a temperature of 95 ° C. and treated for 30 minutes to obtain a sea-removed sheet from which sea components of sea-island type composite fibers were removed.
  • the average single fiber diameter on the surface of the sea removal sheet was 3 ⁇ m.
  • the seawater-free sheet provided with the above PVA is impregnated with the above-mentioned polycarbonate-based polyurethane liquid, treated in a moist and hot atmosphere at a temperature of 100 ° C. for 5 minutes, then dried with hot air at a drying temperature of 120 ° C. for 5 minutes, and further 140
  • a dry heat treatment at a temperature of 2 ° C. for 2 minutes, a sheet to which polyurethane was applied was obtained so that the amount of polyurethane attached to the fiber mass of the nonwoven fabric was 30% by mass.
  • the PVA-removed sheet is cut in half in the thickness direction, and the surface opposite to the half-cut surface is brushed by grinding using a 240 mesh endless sandpaper, and then dyed with a disperse dye using a circular dyeing machine and reduced. Washing was performed to obtain a sheet. The surface appearance of the obtained sheet-like material was good, had a soft texture, and had good wear resistance.
  • Example 2 Preparation of PVA aqueous solution
  • a PVA aqueous solution was obtained.
  • Nonwoven fabric for fibrous base materials In the same manner as in Example 1, a nonwoven fabric for fibrous base material was obtained.
  • Game PVA Using the same PVA aqueous solution as in Example 1 and adjusting the squeezing after impregnation to change the amount of PVA attached, the amount of PVA attached to the fiber mass of the nonwoven fabric for fibrous base material was the same as in Example 1. Obtained a 20% by mass PVA-applied sheet.
  • Fiber miniaturization sina removal
  • Example 1 A water-dispersed polyurethane liquid was obtained in the same manner as in Example 1. (Applying polyurethane) In the same manner as in Example 1, a polyurethane-applied sheet was obtained. (Removal of PVA) In the same manner as in Example 1, a PVA removal sheet was obtained. (Half-cut, brushed, dyed, reduced cleaning) A sheet-like material was obtained in the same manner as in Example 1. The surface appearance of the obtained sheet-like material was good, had a soft texture, and had good wear resistance.
  • Example 3 (Preparation of PVA aqueous solution) In the same manner as in Example 1, a PVA aqueous solution was obtained.
  • the sea component polyethylene terephthalate copolymerized with 8 mol% of sodium 5-sulfoisophthalate is used, and as the island component, polyethylene terephthalate is used.
  • the sea component is 20% by mass and the island component is 80% by mass.
  • the obtained sea-island type composite fiber was cut into a fiber length of 51 mm to form a staple, a fiber web was formed through a card and a cross wrapper, and a nonwoven fabric was formed by needle punching.
  • the nonwoven fabric thus obtained was immersed in hot water at a temperature of 98 ° C. for 2 minutes to shrink and dried at a temperature of 100 ° C. for 5 minutes to obtain a nonwoven fabric for a fibrous base material.
  • Example 1 (Applying polyurethane) In the same manner as in Example 1, a polyurethane-applied sheet was obtained. (Removal of PVA) In the same manner as in Example 1, a PVA removal sheet was obtained. (Half-cut, brushed, dyed, reduced cleaning) A sheet-like material was obtained in the same manner as in Example 1. The surface appearance of the obtained sheet-like material was good, had a soft texture, and had good wear resistance.
  • Example 4 (Preparation of PVA aqueous solution) PVA having a saponification degree of 99% and a polymerization degree of 1100 (NM-11 manufactured by Nippon Synthetic Chemical Co., Ltd.) was added to water at 25 ° C., heated to 90 ° C., maintained at 90 ° C. with stirring for 2 hours, A PVA aqueous solution was obtained by preparing an aqueous solution having a solid content of 10% by mass. The concentrations of methyl acetate, acetic acid, and methanol contained in the PVA aqueous solution were 7.2 ppm, 0.4 ppm, and 2.4 ppm, respectively.
  • Nonwoven fabric for fibrous base materials The same nonwoven fabric for a fibrous base material as in Example 1 was used.
  • Game PVA The above PVA aqueous solution is impregnated into the above-mentioned nonwoven fabric for a fibrous base material, heat-dried at a temperature of 140 ° C. for 10 minutes, and the amount of PVA applied to the fiber mass of the nonwoven fabric for a fibrous base material is 30 mass%. A sheet was obtained.
  • Fiber miniaturization (sea removal) In the same manner as in Example 1, a sea removal sheet was obtained from the nonwoven fabric for fibrous base material.
  • Preparation of polyurethane liquid The same water dispersion type polyurethane liquid as in Example 1 was used.
  • Example 1 (Applying polyurethane) In the same manner as in Example 1, a polyurethane-applied sheet was obtained. (Removal of PVA) In the same manner as in Example 1, a PVA removal sheet was obtained. (Half-cut, brushed, dyed, reduced cleaning) A sheet-like material was obtained in the same manner as in Example 1. The surface appearance of the obtained sheet-like material was good, had a soft texture, and had good wear resistance.
  • Example 5 (Preparation of PVA aqueous solution) PVA having a saponification degree of 99% and a polymerization degree of 2600 (NH-26 manufactured by Nippon Synthetic Chemical Co., Ltd.) was added to water at 25 ° C., heated to 90 ° C., maintained at 90 ° C. with stirring for 2 hours, A PVA aqueous solution was obtained by preparing an aqueous solution having a solid content of 10% by mass. The concentrations of methyl acetate, acetic acid and methanol contained in the PVA aqueous solution were 32.2 ppm, 8.3 ppm and 20.1 ppm, respectively.
  • Nonwoven fabric for fibrous base materials The same nonwoven fabric for a fibrous base material as in Example 1 was used.
  • Game PVA The nonwoven fabric for a fibrous base material is impregnated with the above PVA aqueous solution, dried by heating at a temperature of 140 ° C. for 10 minutes, and the amount of PVA applied to the fiber mass of the nonwoven fabric for a fibrous base material is 10 mass%. A sheet was obtained.
  • Fiber miniaturization (sea removal) In the same manner as in Example 1, a sea removal sheet was obtained from the nonwoven fabric for fibrous base material.
  • Preparation of polyurethane liquid The same water dispersion type polyurethane liquid as in Example 1 was used.
  • Example 1 (Applying polyurethane) In the same manner as in Example 1, a polyurethane-applied sheet was obtained. (Removal of PVA) In the same manner as in Example 1, a PVA removal sheet was obtained. (Half-cut, brushed, dyed, reduced cleaning) A sheet-like material was obtained in the same manner as in Example 1. The surface appearance of the obtained sheet-like material was good, had a soft texture, and had good wear resistance.
  • Example 6 Preparation of PVA aqueous solution
  • a PVA aqueous solution was obtained.
  • the sea component polyethylene terephthalate copolymerized with 8 mol% of sodium 5-sulfoisophthalate is used, and as the island component, polyethylene terephthalate is used.
  • the sea component is 20% by mass and the island component is 80% by mass.
  • sea island type composite fiber having an average single fiber diameter of 30 ⁇ m was obtained.
  • the obtained sea-island type composite fiber was cut into a fiber length of 51 mm to form a staple, and a fiber web was formed through a card and a cross wrap.
  • a plain woven fabric using strong twisted yarn was laminated and made into a nonwoven fabric by needle punching.
  • the nonwoven fabric thus obtained was immersed in hot water at a temperature of 98 ° C. for 2 minutes to shrink and dried at a temperature of 100 ° C. for 5 minutes to obtain a nonwoven fabric for a fibrous base material.
  • the above PVA aqueous solution is impregnated into the above-mentioned nonwoven fabric for a fibrous base material, dried by heating at a temperature of 140 ° C. for 10 minutes, and the amount of PVA applied to the fiber mass of the nonwoven fabric for a fibrous base material is 15 mass%. A sheet was obtained.
  • the nonwoven fabric for fibrous base material was treated in the same manner as in Example 1 to obtain a sea removal sheet from which sea components of the sea-island type composite fibers were removed. The average single fiber diameter on the surface of the sea removal sheet was 4.4 ⁇ m.
  • Example 7 Preparation of PVA aqueous solution
  • a PVA aqueous solution was obtained.
  • Nonwoven fabric for fibrous base materials In the same manner as in Example 1, a nonwoven fabric for fibrous base material was obtained.
  • Fiber miniaturization (sea removal) In the same manner as in Example 1, a sea removal sheet was obtained.
  • Example 8 Preparation of PVA aqueous solution
  • a PVA aqueous solution was obtained.
  • the same nonwoven fabric for a fibrous base material as in Example 1 was used.
  • the nonwoven fabric for a fibrous base material is impregnated with the above PVA aqueous solution, dried by heating at a temperature of 140 ° C. for 10 minutes, and the amount of PVA applied to the fiber mass of the nonwoven fabric for a fibrous base material is 10 mass%.
  • a sheet was obtained.
  • (Fiber miniaturization (sea removal) In the same manner as in Example 1, a sea removal sheet was obtained from the nonwoven fabric for fibrous base material.
  • the seawater-free sheet was impregnated with the PVA aqueous solution obtained in Example 1, and heat-dried at a temperature of 140 ° C. for 10 minutes to obtain a PVA-coated sheet having a PVA adhesion amount of 30% by mass on the seawater-free sheet.
  • Preparation of polyurethane liquid The same water dispersion type polyurethane liquid as in Example 1 was used.
  • Applying polyurethane The seawater-free sheet provided with the above PVA is impregnated with the above-mentioned polycarbonate-based polyurethane liquid, treated in a moist and hot atmosphere at a temperature of 100 ° C.
  • Nonwoven fabric for fibrous base materials The same nonwoven fabric for a fibrous base material as in Example 1 was used.
  • Game PVA The non-woven fabric for fibrous base material was impregnated with the above PVA aqueous solution, and the amount of PVA adhered was changed by adjusting the squeezing after the impregnation to change the non-woven fabric for fibrous base material in the same manner as in Example 1.
  • a PVA-applied sheet having an adhesion amount of PVA with respect to mass of 10% by mass was obtained.
  • Fiber miniaturization (sea removal) In the same manner as in Example 1, a sea removal sheet was obtained from the nonwoven fabric for fibrous base material.
  • Example 1 The same water dispersion type polyurethane liquid as in Example 1 was used. (Applying polyurethane) In the same manner as in Example 1, a polyurethane-applied sheet was obtained. (Removal of PVA) In the same manner as in Example 1, a PVA removal sheet was obtained. (Half-cut, brushed, dyed, reduced cleaning) A sheet-like material was obtained in the same manner as in Example 1. The obtained sheet-like material does not have a uniform applied state due to partial dissolution of PVA in an alkaline aqueous solution or a water-dispersed polyurethane liquid, and the surface appearance is poor in the state of fiber dispersion and inferior nap density. And the texture was hard.
  • Nonwoven fabric for fibrous base materials The same nonwoven fabric for a fibrous base material as in Example 1 was used.
  • Game PVA The non-woven fabric for fibrous base material was impregnated with the above PVA aqueous solution, and the amount of PVA adhered was changed by adjusting the squeezing after the impregnation to change the fibers of the non-woven fabric for fibrous base material.
  • a PVA-applied sheet having an adhesion amount of PVA with respect to mass of 10% by mass was obtained.
  • Fiber miniaturization (sea removal) In the same manner as in Example 1, a sea removal sheet was obtained from the nonwoven fabric for fibrous base material.
  • Example 1 Preparation of polyurethane liquid
  • the same water dispersion type polyurethane liquid as in Example 1 was used.
  • (Applying polyurethane) In the same manner as in Example 1, a polyurethane-applied sheet was obtained.
  • (Removal of PVA) In the same manner as in Example 1, a PVA removal sheet was obtained.
  • (Half-cut, brushed, dyed, reduced cleaning) A sheet-like material was obtained in the same manner as in Example 1. The obtained sheet-like material does not have a uniform applied state due to partial dissolution of PVA in an alkaline aqueous solution or water-dispersed polyurethane liquid, and the surface appearance is poor in fiber dispersion state and inferior feeling of raised nail And the texture was hard.
  • Example 5 A sheet-like material was obtained in the same manner as in Example 1 except that the aqueous PVA solution was not prepared and the application and removal of PVA were not performed. The texture of the obtained sheet was hardened. Further, the surface appearance was poor with no raised hairs. Tables 1 and 2 show the test conditions of each Example and Comparative Example and the evaluation results of the sheet-like material.
  • the sheet-like materials obtained in Examples 1 to 8 all had a good surface appearance, a soft texture, and good wear resistance.
  • the abrasion resistance of the sheet-like materials obtained in Comparative Examples 1 and 4 was poor, and the sheet-like materials obtained in Comparative Examples 2 to 5 were all poor in surface appearance.
  • the texture of the sheet-like material obtained in Comparative Examples 2, 3, and 5 was hard.
  • the sheet-like material obtained by the present invention includes furniture, chairs and wall materials, interior materials having a very elegant appearance as a skin material such as seats, ceilings and interiors in vehicle interiors such as automobiles, trains and aircraft, shirts, Jackets, casual shoes, sports shoes, uppers and trims for shoes such as men's shoes and women's shoes, bags, belts, wallets, etc., clothing materials used for some of them, wiping cloth, polishing cloth, CD curtains, etc. It can be suitably used as an industrial material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

The present invention provides a process for producing a sheet-shaped object which has a piled graceful appearance and a soft texture and which has even better wear resistance, the process being characterized in that the following steps (1) to (5) are conducted sucessively. (1) A step in which a polyvinyl alcohol having a degree of saponification of 98% or higher and a degree of polymerization of 800-3,500 is dissolved in water to obtain an aqueous polyvinyl alcohol solution in which the contents of methyl acetate, acetic acid, and methanol are 50 ppm or less each; (2) a step in which the polyvinyl alcohol is imparted to a fibrous base that comprises, as the main constituent component, fibers capable of forming ultrafine fibers, in an amount of 0.1-50 mass% relative to the fibers of the fibrous base; (3) a step in which ultrafine fibers having an average single-fiber diameter of 0.3-7 μm are formed from the fibrous base obtained in the step (2); (4) a step in which a water dispersion type polyurethane is imparted to the fibrous base obtained in the step (3); and (5) a step in which the polyvinyl alcohol is removed from the fibrous base obtained in the step (4).

Description

シート状物及びそのシート状物の製造方法Sheet material and method for producing the sheet material
 本発明は、バインダー樹脂に水分散型ポリウレタンを用いることで、製造工程における有機溶剤の使用量を少なくし、環境に配慮したシート状物において、良好な柔軟性と高級な外観品位を両立し、かつ良好な耐摩耗性を有するシート状物及びそのシート状物の製造方法に関するものである。 The present invention reduces the amount of organic solvent used in the manufacturing process by using water-dispersed polyurethane as the binder resin, and in an environmentally friendly sheet-like material, achieves both good flexibility and high-grade appearance quality, The present invention also relates to a sheet-like material having good wear resistance and a method for producing the sheet-like material.
 主として繊維質基材とポリウレタンからなるシート状物は、天然皮革にない優れた特徴を有しており、種々の用途に広く利用されている。とりわけ、ポリエステル系繊維質基材を用いた皮革様シート状物は、耐光性に優れているため、衣料や椅子張りおよび自動車内装材用途等にその使用が年々広がってきた。 A sheet-like material mainly composed of a fibrous base material and polyurethane has excellent characteristics not found in natural leather and is widely used for various applications. In particular, a leather-like sheet-like material using a polyester-based fibrous base material is excellent in light resistance, and therefore its use has been expanded year by year for clothing, chair upholstery, automobile interior materials, and the like.
 かかるシート状物を製造するにあたっては、繊維質基材にポリウレタンの有機溶剤溶液を含浸せしめた後、得られた繊維質基材を、ポリウレタンの非溶媒である水または有機溶剤/水の混合溶液中に浸漬してポリウレタンを湿式凝固せしめる工程が、一般的に採用されている。かかるポリウレタンの溶媒である有機溶剤としては、N,N-ジメチルホルムアミド(以下、「DMF」とも表す。)等の水混和性有機溶剤が用いられており、例えば、不織布にポリビニルアルコール(以下、「PVA」とも表す。)水溶液を含浸して繊維シート状物を得、この繊維シート状物をポリウレタン含浸液に浸漬し、さらに、20℃の45%DMF水溶液中でポリウレタンを湿式凝固させた後、85℃の熱水でDMFとポリビニルアルコールを除去してシート状物を製造する方法が提案されている(特許文献1参照)。しかしながら、一般的に有機溶剤は、人体や環境への有害性が高いことから、シート状物の製造に際しては有機溶剤を使用しない手法が強く求められている。 In manufacturing such a sheet-like material, after impregnating a fibrous base material with an organic solvent solution of polyurethane, the obtained fibrous base material is mixed with water which is a non-solvent of polyurethane or an organic solvent / water mixed solution. A process in which the polyurethane is wet-solidified by dipping in it is generally employed. As the organic solvent that is a solvent for such polyurethane, a water-miscible organic solvent such as N, N-dimethylformamide (hereinafter also referred to as “DMF”) is used. PVA "is also obtained.) A fiber sheet is obtained by impregnating with an aqueous solution, the fiber sheet is immersed in a polyurethane impregnating solution, and the polyurethane is wet coagulated in a 45% DMF aqueous solution at 20 ° C. There has been proposed a method for producing a sheet by removing DMF and polyvinyl alcohol with hot water at 85 ° C. (see Patent Document 1). However, since organic solvents are generally highly harmful to the human body and the environment, there is a strong demand for methods that do not use organic solvents in the production of sheet-like materials.
 その具体的な解決手段として、例えば、従来の有機溶剤タイプのポリウレタンに代えて、水中にポリウレタンを分散させた水分散型ポリウレタンを用いる方法が検討されている。しかしながら、繊維質基材に水分散型ポリウレタンを含浸し、付与したシート状物は、風合いが硬くなるという課題がある。この課題の主な要因は、ポリウレタンが繊維質基材の繊維と強く接着することである。このような課題を解消するための検討として、従来の有機溶剤タイプのポリウレタンを適用した製造工程と同様に、繊維とポリウレタンの接着を部分的に阻害し、繊維とポリウレタンの間に空隙を作るために、繊維質基材に予めPVAを付与し、その後ポリウレタンを付与し、次いでPVAを除去する方法が提案されている(特許文献2参照)。 As a specific solution, for example, a method using water-dispersed polyurethane in which polyurethane is dispersed in water instead of the conventional organic solvent type polyurethane has been studied. However, the fibrous base material impregnated with water-dispersible polyurethane and imparted has a problem that the texture becomes hard. The main factor of this problem is that polyurethane adheres strongly to the fibers of the fibrous base material. As a study to solve such problems, as in the manufacturing process using conventional organic solvent type polyurethane, in order to partially inhibit the adhesion between the fiber and polyurethane, to create a gap between the fiber and polyurethane. In addition, a method has been proposed in which PVA is applied to a fibrous base material in advance, then polyurethane is applied, and then PVA is removed (see Patent Document 2).
 ここで、PVAは水溶性であるため、繊維質基材にPVAを付与した後に水に濡らすと、PVAは溶解・脱落するので、そのような水に濡らす工程におけるPVAの溶解と脱落を抑制するために特許文献2では、(i)アルカリ水溶液による繊維の極細化工程と、(ii)水分散型ポリウレタンの含浸工程において、以下の手段を採用している。すなわち、前者の繊維の極細化工程での脱落は、アルカリ水溶液中にホウ砂を添加することで抑制しており、他方、後者の水分散型ポリウレタンの含浸工程については、ケン化度98%かつ重合度500のPVAを用いていることにより水へのPVAの脱落を抑制している。しかし、繊維の極細化工程におけるホウ砂の添加効果については、繊維の極細化にはアルカリ水溶液への浸漬時間が長くかかるので、アルカリ水溶液にホウ砂を添加していても完全には水へのPVAの溶解を抑制することはできない。また、水分散型ポリウレタンの含浸工程については、PVAの重合度は低いために水への溶解は完全には抑制できず、水分散型ポリウレタン液への脱落は抑制することはできないので、水分散型ポリウレタン液内にPVAが溶解することで、ポリウレタンと繊維の接着状態を安定して制御することができず、シート状物の風合いは硬くなるという課題があった。 Here, since PVA is water-soluble, when PVA is applied to the fibrous base material and then wetted with water, PVA dissolves and falls off, so that the dissolution and dropping of PVA in the process of soaking in water is suppressed. Therefore, in patent document 2, the following means are employ | adopted in (i) the ultrafine process of the fiber by aqueous alkali solution, and (ii) the impregnation process of water dispersion type polyurethane. That is, dropping of the former fiber in the ultrafine process is suppressed by adding borax to the alkaline aqueous solution, while the latter water-dispersed polyurethane impregnation process has a saponification degree of 98% and By using PVA having a polymerization degree of 500, dropping of PVA into water is suppressed. However, with regard to the effect of adding borax in the fiber ultrafine process, it takes a long time to soak the fiber in the alkaline aqueous solution, so even if borax is added to the alkaline aqueous solution, it is completely added to the water. The dissolution of PVA cannot be suppressed. In addition, regarding the impregnation step of water-dispersed polyurethane, since the degree of polymerization of PVA is low, dissolution in water cannot be completely suppressed, and dropping into water-dispersed polyurethane liquid cannot be suppressed. Due to the dissolution of PVA in the type polyurethane liquid, there was a problem that the adhesive state between the polyurethane and the fiber could not be stably controlled, and the texture of the sheet-like material became hard.
 また、上記(i)(ii)の各工程における課題に対し、不織布シートにケン化度90%以上のPVAを付与し、かつ150~195℃の加熱を行うことで、水へのPVAの溶解性を低下させる方法が提案されている(特許文献3参照)。高温の加熱を行うことで、PVAの分子間水素結合を強固にして水への溶解性を低下させているが、温度が高すぎたり、加熱時間が長すぎるとPVAは不溶化して水への再溶解が困難となるため、適正条件の安定化が難しいという課題があった。 In addition, to solve the problems in the steps (i) and (ii) above, the PVA having a saponification degree of 90% or more is given to the nonwoven fabric sheet, and the PVA is dissolved in water by heating at 150 to 195 ° C. A method of reducing the property has been proposed (see Patent Document 3). By heating at a high temperature, the intermolecular hydrogen bond of PVA is strengthened and the solubility in water is lowered. However, if the temperature is too high or the heating time is too long, PVA becomes insoluble and dissolves in water. Since re-dissolution is difficult, there is a problem that it is difficult to stabilize appropriate conditions.
特開2002-30579号公報JP 2002-30579 A 特開2003-096676号公報JP 2003-096676 A 特許第4644971号公報Japanese Patent No. 4644971
 本発明は、製造工程における有機溶剤の使用を少なくして環境に配慮したシート状物の製造方法において、立毛を有する優美な外観と柔軟な風合いを両立し、かつ良好な耐摩耗性を有するシート状物の製造方法及びその製造方法によって得られるシート状物を提供するものである。 The present invention relates to an environmentally friendly sheet-like manufacturing method that reduces the use of organic solvents in the manufacturing process, and provides a sheet that has both an elegant appearance with napping and a soft texture and has good wear resistance. The present invention provides a method for producing a sheet and a sheet obtained by the production method.
 すなわち、本発明のシート状物の製造方法は、次の1~5の工程を順に行うことを特徴としている。
1.ケン化度が98%以上で、重合度が800~3500であるポリビニルアルコールを水に溶解させて、酢酸メチル、酢酸、メタノールの濃度がそれぞれ50ppm以下であるポリビニルアルコール水溶液を得る工程、
2.極細繊維発現型繊維を主構成成分とする繊維質基材に、該ポリビニルアルコール水溶液を付与することで、繊維質基材に含まれる繊維質量に対して該ポリビニルアルコールを0.1~50質量%付与する工程、
3.極細繊維発現型繊維を主構成成分とする繊維質基材から、平均単繊維直径が0.3~7μmの極細繊維を発現する工程、
4.該ポリビニルアルコールが付与された極細繊維を主構成成分とする繊維質基材に、水分散型ポリウレタンを付与する工程、
5.該水分散型ポリウレタンを付与した極細繊維を主構成成分とする繊維質基材から、ポリビニルアルコールを除去する工程。
 本発明のシート状物の製造方法の好ましい様態によれば、酢酸メチル、酢酸、メタノールの濃度がそれぞれ0.1~50ppmであるポリビニルアルコール水溶液を得る工程を経る製造方法である。
 本発明のシート状物の製造方法の好ましい態様によれば、極細繊維を発現する工程がアルカリ水溶液で処理する工程である。
 本発明のシート状物の製造方法の好ましい様態によれば、前記ポリビニルアルコールを付与し、80~170℃で加熱する工程を含む製造方法である。
 本発明のシート状物の製造方法の好ましい態様によれば、前記極細繊維発現型繊維を主構成成分とする繊維質基材が織物および/または編物と絡合一体化している。
 また、得られるシート状物の密度が0.2~0.7g/cmであることが好ましい。
That is, the sheet-like material manufacturing method of the present invention is characterized in that the following steps 1 to 5 are sequentially performed.
1. A step of dissolving polyvinyl alcohol having a saponification degree of 98% or more and a polymerization degree of 800 to 3500 in water to obtain a polyvinyl alcohol aqueous solution having a concentration of methyl acetate, acetic acid or methanol of 50 ppm or less,
2. By applying the aqueous polyvinyl alcohol solution to a fibrous base material containing an ultrafine fiber-expressing fiber as a main constituent, the polyvinyl alcohol is added in an amount of 0.1 to 50% by mass with respect to the fiber mass contained in the fibrous base material The step of applying,
3. A step of expressing an ultrafine fiber having an average single fiber diameter of 0.3 to 7 μm from a fibrous base material having an ultrafine fiber expression type fiber as a main constituent component;
4). A step of imparting water-dispersible polyurethane to a fibrous base material comprising, as a main constituent, ultrafine fibers to which the polyvinyl alcohol has been imparted,
5. A step of removing polyvinyl alcohol from a fibrous base material comprising, as a main constituent, ultrafine fibers provided with the water-dispersed polyurethane.
According to a preferred embodiment of the method for producing a sheet-like material of the present invention, the production method includes a step of obtaining an aqueous polyvinyl alcohol solution having methyl acetate, acetic acid, and methanol concentrations of 0.1 to 50 ppm, respectively.
According to the preferable aspect of the manufacturing method of the sheet-like material of this invention, the process of expressing an ultrafine fiber is a process processed with alkaline aqueous solution.
According to a preferred aspect of the method for producing a sheet-like material of the present invention, the production method includes a step of applying the polyvinyl alcohol and heating at 80 to 170 ° C.
According to a preferred aspect of the method for producing a sheet-like product of the present invention, the fibrous base material containing the ultrafine fiber-expressing fiber as a main constituent component is intertwined with the woven fabric and / or the knitted fabric.
Further, the density of the obtained sheet-like material is preferably 0.2 to 0.7 g / cm 3 .
 本発明によれば、環境に配慮した製造工程であっても、従来両立することができなかった優美な外観と柔軟な風合いを達成し、さらに良好な耐摩耗性を有するシート状物を得ることができる。 According to the present invention, even in an environmentally-friendly manufacturing process, an elegant appearance and a flexible texture that could not be achieved in the past can be achieved, and a sheet-like product having better wear resistance can be obtained. Can do.
 本発明のシート状物の製造方法は、次の1~5の工程をこの順に行うことを特徴とする。
1.ケン化度が98%以上で、重合度が800~3500であるポリビニルアルコールを水に溶解させて、酢酸メチル、酢酸、メタノールの濃度がそれぞれ50ppm以下であるポリビニルアルコール水溶液を得る工程、
2.極細繊維発現型繊維を主構成成分とする繊維質基材に、該ポリビニルアルコール水溶液を付与することで、繊維質基材に含まれる繊維質量に対して該ポリビニルアルコールを0.1~50質量%付与する工程、
3.極細繊維発現型繊維を主構成成分とする繊維質基材から、平均単繊維直径が0.3~7μmの極細繊維を発現する工程、
4.該ポリビニルアルコールが付与された極細繊維を主構成成分とする繊維質基材に、水分散型ポリウレタンを付与する工程、
5.該水分散型ポリウレタンを付与した極細繊維を主構成成分とする繊維質基材から、ポリビニルアルコールを除去する工程。
The sheet-like material manufacturing method of the present invention is characterized in that the following steps 1 to 5 are performed in this order.
1. A step of dissolving polyvinyl alcohol having a saponification degree of 98% or more and a polymerization degree of 800 to 3500 in water to obtain a polyvinyl alcohol aqueous solution having a concentration of methyl acetate, acetic acid or methanol of 50 ppm or less,
2. By applying the aqueous polyvinyl alcohol solution to a fibrous base material containing an ultrafine fiber-expressing fiber as a main constituent, the polyvinyl alcohol is added in an amount of 0.1 to 50% by mass with respect to the fiber mass contained in the fibrous base material. The step of applying,
3. A step of expressing an ultrafine fiber having an average single fiber diameter of 0.3 to 7 μm from a fibrous base material having an ultrafine fiber expression type fiber as a main constituent component;
4). A step of imparting water-dispersible polyurethane to a fibrous base material comprising, as a main constituent, ultrafine fibers to which the polyvinyl alcohol has been imparted,
5. A step of removing polyvinyl alcohol from a fibrous base material comprising, as a main constituent, ultrafine fibers provided with the water-dispersed polyurethane.
 本発明のシート状物の製造方法では1~5の工程をこの順に行うことが重要である。極細繊維発現型繊維を主構成成分とする繊維質基材にケン化度が98%以上で、重合度が800~3500であるポリビニルアルコール(PVAとも表す)水溶液付与後に、極細繊維発現型繊維から、極細繊維を発現する工程(脱海工程)を行い、次いでPVAが付与された極細繊維を主構成成分とする繊維質基材に水分散型ポリウレタン液を付与し、さらにその繊維質基材からPVAを除去することにより、繊維とポリウレタンの間にPVAと海成分に由来する大きな空隙が生じるとともに、部分的にポリウレタンが極細繊維を直接把持することで、優美な外観および柔軟な風合いとともに、良好な耐摩耗性等の物理特定を発現することができる。 In the method for producing a sheet-like product of the present invention, it is important to perform the steps 1 to 5 in this order. After application of an aqueous solution of polyvinyl alcohol (also referred to as PVA) having a degree of saponification of 98% or more and a degree of polymerization of 800 to 3500 to a fibrous base material containing an ultrafine fiber expression type fiber as a main constituent, Then, a process (desealing process) for expressing ultrafine fibers is performed, and then a water-dispersed polyurethane liquid is applied to a fibrous base material containing the ultrafine fibers provided with PVA as a main constituent, and further from the fibrous base material. By removing PVA, large voids derived from PVA and sea components are generated between the fiber and polyurethane, and the polyurethane directly grips the ultrafine fibers, so that it has good appearance and soft texture It is possible to express physical characteristics such as wear resistance.
 また、PVA水溶液を繊維質基材に付与し、加熱乾燥すると水中のPVAが水の移動に引きつられて繊維質基材の表層に集中的に付着する、いわゆるマイグレーション現象が発生し、繊維質基材の表層に多く付着して内層に少なく付着する状態となる。PVAをマイグレーションさせることによって、その後に付与する水分散型ポリウレタンは繊維質基材の内層に主に付着することとなる。そして、PVAを除去すると、PVAが多く付着していた繊維質基材の表層近傍では、繊維とポリウレタンの間に空隙が大きく生じ、立毛工程を経たシート状物の表面外観は立毛が束にならずに均一にさばけた優美な外観となる。 In addition, when a PVA aqueous solution is applied to a fibrous base material and dried by heating, a so-called migration phenomenon occurs in which the PVA in the water is attracted by the movement of the water and concentrates on the surface layer of the fibrous base material. A large amount adheres to the surface layer of the material and a small amount adheres to the inner layer. By migrating PVA, the water-dispersed polyurethane to be applied thereafter adheres mainly to the inner layer of the fibrous base material. And when PVA is removed, in the vicinity of the surface layer of the fibrous base material to which a large amount of PVA has adhered, a large gap is formed between the fiber and the polyurethane, and the surface appearance of the sheet-like material that has undergone the napping process becomes a bundle. An elegant appearance that is evenly distributed.
 一方、脱海処理をPVA除去後に行うと、ポリウレタンと極細繊維間に、PVAを除去したことに起因する空隙と、脱海された海成分に起因する空隙の両方が生成するため、極細繊維を直接ポリウレタンが把持する面積がさらに少なくなり、シート状物の風合いは柔軟となるが、耐摩耗性等の物理特性は悪化する傾向にある。 On the other hand, when sea removal treatment is performed after PVA removal, both voids resulting from the removal of PVA and voids resulting from sea components removed from seawater are generated between polyurethane and ultrafine fibers. The area directly gripped by the polyurethane is further reduced, and the texture of the sheet-like material becomes flexible, but physical properties such as wear resistance tend to deteriorate.
[第1の工程]
 まず、第1の工程であるケン化度が98%以上で、重合度が800~3500であるPVAを水に溶解させて、酢酸メチル、酢酸、メタノールの濃度がそれぞれ50ppm以下であるPVA水溶液を得る工程について述べる。
[First step]
First, PVA having a saponification degree of 98% or more and a polymerization degree of 800 to 3500 in the first step is dissolved in water, and a PVA aqueous solution having a concentration of methyl acetate, acetic acid, and methanol of 50 ppm or less is obtained. The process to obtain is described.
 酢酸メチル、酢酸、メタノールはPVA合成の前駆体であるポリ酢酸ビニルからケン化度を上げていく過程で生成する物質であり、また十分なケン化がされていない残存ポリ酢酸ビニルの分解によっても生成する物質である。酢酸メチル、酢酸、メタノールは、PVA水溶液における酢酸メチル、酢酸、メタノールの濃度がそれぞれ50ppm以下であることで、加熱乾燥時に容易にPVA分子間水素結合が形成され、水(温水含む)や酸、アルカリ水溶液へのPVAの溶解性を抑制することができる。また、PVA分子間水素結合が容易に形成されることから、加熱乾燥温度は80~140℃と、比較的低温とすることができるので、PVAの熱分解を抑えることができる。PVA水溶液における酢酸メチル、酢酸、メタノールの濃度はそれぞれ0.1~50ppmであることがより好ましく、酢酸メチル、酢酸、メタノールがそれぞれ微量に存在することで、これらがPVA分子と弱く水素結合することで、PVA分子間距離が小さくなり、PVA分子間水素結合が容易に形成される。酢酸メチル、酢酸、メタノールの濃度がそれぞれ高すぎると、逆にPVA分子間水素結合の形成を阻害するため、より好ましい濃度は0.3~40ppm、さらに好ましくは5~40ppmである。 Methyl acetate, acetic acid, and methanol are substances that are produced in the process of increasing the degree of saponification from polyvinyl acetate, which is a precursor of PVA synthesis, and also due to decomposition of residual polyvinyl acetate that has not been sufficiently saponified It is a substance to be generated. Since methyl acetate, acetic acid, and methanol each have a concentration of 50 ppm or less of methyl acetate, acetic acid, and methanol in the PVA aqueous solution, PVA intermolecular hydrogen bonds are easily formed during heating and drying, and water (including hot water), acid, The solubility of PVA in the aqueous alkali solution can be suppressed. In addition, since the PVA intermolecular hydrogen bond is easily formed, the heat drying temperature can be set to a relatively low temperature of 80 to 140 ° C., so that the thermal decomposition of PVA can be suppressed. The concentration of methyl acetate, acetic acid, and methanol in the PVA aqueous solution is more preferably 0.1 to 50 ppm, respectively, and the presence of trace amounts of methyl acetate, acetic acid, and methanol makes them weakly hydrogen bond with the PVA molecule. Thus, the distance between PVA molecules is reduced, and hydrogen bonds between PVA molecules are easily formed. If the concentrations of methyl acetate, acetic acid, and methanol are too high, the formation of PVA intermolecular hydrogen bonds is inhibited, so that the more preferable concentration is 0.3 to 40 ppm, and further preferably 5 to 40 ppm.
 なお、PVA水溶液における酢酸メチル、酢酸、メタノールの濃度は次のようにして分析する。24mL加熱管にPVA水溶液1gを入れ、90℃で1時間加熱する。加熱管からガスタイトシリンジで発生ガス0.1mLを採取し、GC/MS(ガスクロマトグラフを直結した質量分析計)に導入して分析を行う。 The concentration of methyl acetate, acetic acid, and methanol in the PVA aqueous solution is analyzed as follows. 1 g of PVA aqueous solution is put into a 24 mL heating tube and heated at 90 ° C. for 1 hour. From the heating tube, 0.1 mL of the generated gas is collected with a gas tight syringe and introduced into GC / MS (mass spectrometer directly connected to a gas chromatograph) for analysis.
 PVA水溶液における酢酸メチル、酢酸、メタノールの濃度を低下させるためには、水溶液とする前のPVA自体の加熱時の酢酸メチル、酢酸、メタノール発生量が少ないPVAを使用するか、またはPVA水溶液の調製において、PVAを水に溶解するための昇温における加熱時間を長くすればよい。前者については、ケン化度がより高いほど酢酸メチル、酢酸、メタノール発生量は少なくなるため、98%以上の高ケン化度PVAを使用することが好ましい。また、後者については昇温の温度は低すぎると酢酸メチル、酢酸、メタノールを十分除去できないことから、80~100℃が好ましく、加熱時間は短すぎると酢酸メチル、酢酸、メタノールを十分除去できないことから、1時間以上が好ましい。尚、酢酸メチル、酢酸、メタノールは、PVA水溶液から完全に除去されてもよい。 In order to reduce the concentration of methyl acetate, acetic acid, and methanol in the aqueous PVA solution, use PVA that generates little methyl acetate, acetic acid, and methanol during heating of the PVA itself before making the aqueous solution, or prepare the aqueous PVA solution In this case, the heating time for raising the temperature for dissolving PVA in water may be lengthened. As for the former, the higher the degree of saponification, the lower the generation amount of methyl acetate, acetic acid and methanol. Therefore, it is preferable to use 98% or higher high saponification degree PVA. In the latter case, if the temperature rise is too low, methyl acetate, acetic acid and methanol cannot be sufficiently removed. Therefore, the temperature is preferably 80 to 100 ° C. If the heating time is too short, methyl acetate, acetic acid and methanol cannot be sufficiently removed. Therefore, one hour or more is preferable. Note that methyl acetate, acetic acid, and methanol may be completely removed from the PVA aqueous solution.
 本発明の態様において、繊維質基材に付与するPVAは、ケン化度が98%以上でかつ重合度が800~3500である。PVAのケン化度を98%以上とすることで、水分散型ポリウレタンを付与する際に水分散型ポリウレタン液内にPVAが溶解するのを防ぐことができる。水分散型ポリウレタン液内にPVAが溶解すると、立毛を構成する極細繊維の表面を保護するのに十分な効果が得られないだけでなく、さらにPVAが溶解した水分散型ポリウレタン液を繊維質基材に付与する際、ポリウレタン内部にPVAが取り込まれ、後にPVAを除去することが困難となるため、安定的にポリウレタンと繊維の接着状態を制御できず、風合いは硬くなる。 In the embodiment of the present invention, the PVA applied to the fibrous base material has a saponification degree of 98% or more and a polymerization degree of 800 to 3500. By setting the saponification degree of PVA to 98% or more, it is possible to prevent the PVA from being dissolved in the water-dispersed polyurethane liquid when the water-dispersed polyurethane is applied. When PVA is dissolved in the water-dispersed polyurethane liquid, not only is the effect sufficient to protect the surface of the ultrafine fibers constituting napped fibers, but also the water-dispersed polyurethane liquid in which PVA is dissolved is used as a fibrous base. When it is applied to the material, PVA is taken into the polyurethane and it becomes difficult to remove the PVA later. Therefore, the adhesive state between the polyurethane and the fibers cannot be stably controlled, and the texture becomes hard.
 また、PVAは重合度によって水への溶解性が変化し、PVAの重合度は小さいほど、水分散型ポリウレタンを付与する際に、水分散型ポリウレタン液にPVAが溶解する。PVAの重合度は高いほど、PVA水溶液の粘度が高くなり、繊維質基材にPVA水溶液を含浸する際に、繊維質基材内部にPVAを浸透させることができないことから、PVA重合度は好ましくは1000~3000、より好ましくは1200~2500である。 Also, the solubility of PVA in water varies depending on the degree of polymerization. The smaller the degree of polymerization of PVA, the more PVA dissolves in the water-dispersed polyurethane liquid when the water-dispersed polyurethane is applied. The higher the degree of polymerization of PVA, the higher the viscosity of the PVA aqueous solution, and when impregnating the fibrous base material with the PVA aqueous solution, PVA cannot penetrate into the fibrous base material. Is from 1000 to 3000, more preferably from 1200 to 2500.
 本発明において、PVAは4質量%水溶液の20℃における粘度が10~70mPa・sであることが好ましい。PVAの粘度がこの範囲であることで、乾燥時に繊維質基材内部で適度なマイグレーション構造を得ることができ、シート状物の柔軟性と表面外観、耐摩耗性等の物理特性のバランスを得られる。上記粘度を10mPa・s以上、より好ましくは15mPa・s以上とすることで、極端なマイグレーション構造となるのを抑えることができる。一方、粘度を70mPa・s以下、より好ましくは50mPa・s以下、さらに好ましくは40mPa・s以下、とすることで、繊維質基材にPVAを含浸しやすくさせることができる。 In the present invention, PVA preferably has a viscosity of 10 to 70 mPa · s at 20 ° C. in a 4% by mass aqueous solution. When the viscosity of PVA is within this range, an appropriate migration structure can be obtained inside the fibrous base material during drying, and a balance of physical properties such as flexibility, surface appearance, and abrasion resistance of the sheet-like material is obtained. It is done. By setting the viscosity to 10 mPa · s or more, more preferably 15 mPa · s or more, an extreme migration structure can be suppressed. On the other hand, by setting the viscosity to 70 mPa · s or less, more preferably 50 mPa · s or less, and even more preferably 40 mPa · s or less, the fibrous base material can be easily impregnated with PVA.
 本発明において、PVAのガラス転移温度(Tg)は70~100℃であることが好ましい。PVAのガラス転移温度を70℃以上、より好ましくは75℃以上とすることで、乾燥工程での軟化を防ぎ、繊維質基材の寸法安定性を得ることができ、シート状物の表面外観の悪化を抑えることができる。また、ガラス転移温度を100℃以下、より好ましくは95℃以下とすることで、繊維質基材が硬くなりすぎることによってハンドリング性が悪化するのを防ぐことができる。 In the present invention, the glass transition temperature (Tg) of PVA is preferably 70 to 100 ° C. By setting the glass transition temperature of PVA to 70 ° C. or higher, more preferably 75 ° C. or higher, softening in the drying process can be prevented, dimensional stability of the fibrous base material can be obtained, and the surface appearance of the sheet-like product can be improved. Deterioration can be suppressed. Further, by setting the glass transition temperature to 100 ° C. or lower, more preferably 95 ° C. or lower, it is possible to prevent the handling property from deteriorating due to the fibrous base material becoming too hard.
 本発明において、PVAの融点は200~250℃であることが好ましい。PVAの融点を200℃以上、より好ましくは210℃以上とすることで、乾燥工程での軟化を防ぎ、繊維質基材の寸法安定性を得ることができ、シート状物の表面外観の悪化を抑えることができる。また、PVAの融点を250℃以下、より好ましくは240℃以下とすることで、繊維質基材が硬くなりすぎることによってハンドリング性が悪化するのを防ぐことができる。 In the present invention, the melting point of PVA is preferably 200 to 250 ° C. By setting the melting point of PVA to 200 ° C. or more, more preferably 210 ° C. or more, softening in the drying process can be prevented, dimensional stability of the fibrous base material can be obtained, and the surface appearance of the sheet-like material is deteriorated. Can be suppressed. Further, by setting the melting point of PVA to 250 ° C. or lower, more preferably 240 ° C. or lower, it is possible to prevent the handling property from deteriorating due to the fibrous base material becoming too hard.
 本発明において、PVAのフィルムの抗張力は400~800kg/cmであることが好ましい。PVAフィルムの抗張力を400kg/cm以上、より好ましくは450kg/cm以上とすることで、ハンドリング時の寸法変化を抑え、シート状物の表面外観の悪化を抑えることができる。PVAフィルムの抗張力を800kg/cm以下、より好ましくは750kg/cm以下とすることで、PVA付与シートが硬くなりすぎず、ハンドリング時の挫屈シワ等の発生を抑えることができる。なお、ここでいう抗張力とは、PVAの100μm厚フィルムを温度20℃、湿度65%の雰囲気下で測定した値である。 In the present invention, the tensile strength of the PVA film is preferably 400 to 800 kg / cm 2 . By setting the tensile strength of the PVA film to 400 kg / cm 2 or more, more preferably 450 kg / cm 2 or more, it is possible to suppress dimensional changes during handling and suppress deterioration of the surface appearance of the sheet-like material. By setting the tensile strength of the PVA film to 800 kg / cm 2 or less, more preferably 750 kg / cm 2 or less, the PVA-applied sheet does not become too hard, and the occurrence of creasing and the like during handling can be suppressed. Here, the tensile strength is a value obtained by measuring a 100 μm thick PVA film in an atmosphere at a temperature of 20 ° C. and a humidity of 65%.
[第2の工程]
 次に第2の工程である極細繊維発現型繊維を主構成成分とする繊維質基材に、PVA水溶液を付与することで、繊維質基材に含まれる繊維質量に対して該PVAを0.1~50質量%付与する工程について述べる。
[Second step]
Next, by applying a PVA aqueous solution to a fibrous base material having an ultrafine fiber-expressing fiber as a main component, which is the second step, the PVA is reduced to 0. 0 relative to the fiber mass contained in the fibrous base material. The step of applying 1 to 50% by mass will be described.
 本発明の繊維質基材は極細繊維発現型繊維を主な構成成分とする。極細繊維発現型繊維を用いることにより、その後の繊維極細化工程を経ることで、繊維を極細化でき、優美な表面外観を得ることができる。 The fibrous base material of the present invention is mainly composed of ultrafine fiber expression type fibers. By using the ultrafine fiber expression type fiber, the fiber can be made ultrafine by passing through the subsequent ultrafine fiber process, and an elegant surface appearance can be obtained.
 本発明の好ましい態様において、極細繊維発現型繊維から繊維極細化工程を経て得られる極細繊維の平均単繊維直径は、0.3~7μmである。平均単繊維直径を7μm以下、より好ましくは6μm以下、更に好ましくは5μm以下とすることにより、優れた柔軟性や立毛品位のシート状物を得ることができる。一方、平均単繊維直径を0.3μm以上、より好ましくは0.7μm以上、更に好ましくは1μm以上とすることにより、染色後の発色性やサンドペーパーなどによる研削など立毛処理時の束状繊維の分散性に優れ、さばけ易さにも優れる。 In a preferred embodiment of the present invention, the average single fiber diameter of the ultrafine fiber obtained from the ultrafine fiber expression type fiber through the fiber ultrafine process is 0.3 to 7 μm. By setting the average single fiber diameter to 7 μm or less, more preferably 6 μm or less, and even more preferably 5 μm or less, it is possible to obtain a sheet-like product having excellent flexibility and napping quality. On the other hand, by setting the average single fiber diameter to 0.3 μm or more, more preferably 0.7 μm or more, and even more preferably 1 μm or more, the bundle of fibers at the time of napping such as coloring after dyeing or grinding with sandpaper is used. Excellent dispersibility and ease of handling.
 前記極細繊維発現型繊維としては、(a)溶剤溶解性の異なる2成分の熱可塑性樹脂を海成分と島成分とし、海成分を溶剤などを用いて溶解除去することによって島成分を極細繊維とする海島型繊維や、(b)2成分の熱可塑性樹脂を繊維断面に放射状または多層状に交互に配置し、各成分を剥離分割することによって極細繊維に割繊する剥離型複合繊維などを採用することができる。なかでも、海島型繊維は、海成分を除去することによって島成分間、すなわち極細繊維間に適度な空隙を付与することができるので、シート状物の柔軟性や風合いの観点からも好ましく用いられる。 As the ultrafine fiber-expressing type fiber, (a) a two-component thermoplastic resin having different solvent solubility is used as a sea component and an island component, and the sea component is dissolved and removed using a solvent or the like to remove the island component from the ultrafine fiber. Adopting sea-island type fibers and (b) peelable composite fibers that split two components of thermoplastic resin radially or in multiple layers on the fiber cross section and split each component into ultrafine fibers. can do. Among these, the sea-island type fibers can be preferably used also from the viewpoint of the flexibility and texture of the sheet-like material because an appropriate void can be imparted between the island components, that is, between the ultrafine fibers, by removing the sea components. .
 前記海島型繊維には、例えば、海島型複合用口金を用い、海成分と島成分の2成分を相互配列して紡糸する海島型複合繊維;海成分と島成分の2成分を混合して紡糸する混合紡糸繊維などがある。均一な繊度の極細繊維が得られる点、また十分な長さの極細繊維が得られシート状物の強度にも資する点からは、海島型複合繊維が好ましく用いられる。 As the sea-island type fiber, for example, a sea-island type composite base is used, and a sea-island type composite fiber in which two components of the sea component and the island component are arranged and spun together; There are mixed spinning fibers. Sea-island type composite fibers are preferably used from the viewpoint that ultrafine fibers having a uniform fineness can be obtained, and that a sufficiently long ultrafine fiber is obtained and contributes to the strength of the sheet-like material.
 海島型繊維の島成分としては、特に限定されないが、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレートおよびポリ乳酸などのポリエステル;6-ナイロンや66-ナイロンなどのポリアミド;アクリル;ポリエチレン;ポリプロピレン;および熱可塑性セルロースなどの溶融紡糸可能な熱可塑性樹脂などからなる繊維を用いることができる。中でも、強度、寸法安定性および耐光性の観点から、ポリエステル繊維を用いることが好ましい。また、環境配慮の観点から、リサイクル原料、植物由来原料から得られる繊維であることが好ましい。さらに、繊維質基材は異なる素材の繊維が混合して構成されていてもよい。 The island component of the sea-island fiber is not particularly limited. For example, polyesters such as polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate and polylactic acid; polyamides such as 6-nylon and 66-nylon; acrylics; polyethylenes; polypropylenes And fibers made of melt-spinnable thermoplastic resin such as thermoplastic cellulose can be used. Among these, polyester fibers are preferably used from the viewpoints of strength, dimensional stability, and light resistance. Further, from the viewpoint of environmental consideration, fibers obtained from recycled raw materials and plant-derived raw materials are preferable. Furthermore, the fibrous base material may be configured by mixing fibers of different materials.
 海島型繊維の海成分としては、特に限定されないが、例えば、ポリエチレン;ポリプロピレン;ポリスチレン;スルホイソフタル酸ナトリウムやポリエチレングリコールなどを共重合した共重合ポリエステルおよびポリ乳酸;PVAなどを用いることができる。なかでも、環境配慮の観点から、有機溶剤を使用せずに分解可能なアルカリ分解性のスルホイソフタル酸ナトリウムやポリエチレングリコールなどを共重合した共重合ポリエステルまたはポリ乳酸、熱水溶解性のPVAが好ましい。 The sea component of the sea-island fiber is not particularly limited, and for example, polyethylene; polypropylene; polystyrene; copolymer polyester obtained by copolymerization with sodium sulfoisophthalate or polyethylene glycol, and polylactic acid; PVA can be used. Of these, from the viewpoint of environmental considerations, a copolyester or polylactic acid obtained by copolymerizing alkali-decomposable sodium sulfoisophthalate or polyethylene glycol that can be decomposed without using an organic solvent, and hot water-soluble PVA are preferable. .
 繊維質基材を構成する繊維の横断面形状は、特に限定されず、丸断面でもよいが、楕円、扁平および三角などの多角形や、扇形および十字型などの異形断面のものを採用してもよい。 The cross-sectional shape of the fiber constituting the fibrous base material is not particularly limited, and may be a round cross-section, but adopts a polygonal shape such as an ellipse, a flat shape, and a triangular shape, or a deformed cross-section shape such as a sector shape and a cross shape. Also good.
 本発明において、繊維質基材を構成する繊維の平均単繊維直径は、0.3~20μmであることが好ましい。平均単繊維直径は細いほど優れた柔軟性や立毛品位のシート状物を得ることができ、一方、平均単繊維直径は太いほど染色後の発色性やサンドペーパーなどによる研削など立毛処理時の束状繊維の分散性とさばけ易さに優れることから、より好ましくは0.7~15μm、特に好ましくは1~7μmである。 In the present invention, the average single fiber diameter of the fibers constituting the fibrous base material is preferably 0.3 to 20 μm. The thinner the average single fiber diameter is, the better the flexibility and napping quality of the sheet can be obtained.On the other hand, the thicker the average single fiber diameter is, the thicker the bundle is at the time of napping treatment such as coloring after dyeing or grinding with sandpaper. From the viewpoint of excellent dispersibility and ease of spreading of the fibrous fibers, the thickness is more preferably 0.7 to 15 μm, particularly preferably 1 to 7 μm.
 本発明の繊維質基材の形態は、織物、編物および不織布等を採用することができる。中でも、表面起毛処理した際のシート状物の表面外観が良好であることから、不織布が好ましく用いられる。 The woven fabric, knitted fabric, non-woven fabric and the like can be adopted as the form of the fibrous base material of the present invention. Especially, since the surface appearance of the sheet-like material at the time of surface raising treatment is favorable, a nonwoven fabric is preferably used.
 不織布は、短繊維不織布および長繊維不織布のいずれでもよいが、長繊維不織布は起毛した際の立毛となるシート状物の厚さ方向を向く繊維が短繊維不織布よりも少なくなり、立毛の緻密感が低くなって表面外観が劣る傾向にあることから、短繊維不織布が好ましく用いられる。 The non-woven fabric may be either a short-fiber non-woven fabric or a long-fiber non-woven fabric, but the long-fiber non-woven fabric has fewer fibers facing the thickness direction of the sheet-like material when raised, than the short-fiber non-woven fabric. Is low and the surface appearance tends to be inferior, short fiber nonwoven fabrics are preferably used.
 前記短繊維不織布における短繊維の繊維長は、25~90mmであることが好ましい。繊維長を25mm以上とすることにより、絡合により耐摩耗性に優れたシート状物を得ることができる。また、繊維長を90mm以下とすることにより、風合いや品位に優れたシート状物を得ることができる。繊維長は、より好ましくは30~80mmである。 The fiber length of the short fiber in the short fiber nonwoven fabric is preferably 25 to 90 mm. By setting the fiber length to 25 mm or more, a sheet-like material having excellent abrasion resistance can be obtained by entanglement. In addition, when the fiber length is 90 mm or less, a sheet-like material having excellent texture and quality can be obtained. The fiber length is more preferably 30 to 80 mm.
 不織布の繊維あるいは繊維束を絡合させる方法としては、ニードルパンチやウォータージェットパンチを採用することができる。 Needle punch or water jet punch can be employed as a method of entanglement of non-woven fibers or fiber bundles.
 本発明において、極細繊維からなる繊維質基材が不織布の場合、その不織布は極細繊維の束(極細繊維束)が絡合してなる構造を有するものであることが好ましい態様である。極細繊維が束の状態で絡合していることによって、シート状物の強度が向上する。かかる態様の不織布は、極細繊維発現型繊維同士をあらかじめ絡合した後に極細繊維を発現させることによって得ることができる。 In the present invention, when the fibrous base material made of ultrafine fibers is a non-woven fabric, it is a preferred embodiment that the non-woven fabric has a structure in which bundles of ultrafine fibers (ultrafine fiber bundles) are intertwined. Since the ultrafine fibers are entangled in a bundle state, the strength of the sheet-like material is improved. The nonwoven fabric of such an embodiment can be obtained by causing the ultrafine fibers to develop after entanglement of the ultrafine fiber-expressing fibers in advance.
 極細繊維あるいはその極細繊維束が不織布を構成する場合、その内部に強度を向上させるなどの目的で、織物や編物と絡合一体化していてもよい。例えば、織物の場合、平織、綾織および朱子織等が挙げられ、コスト面から平織が好ましく用いられる。また、編物の場合は、丸編、トリコットおよびラッセル等が挙げられる。かかる織物や編物を構成する繊維の平均単繊維直径としては、0.3~20μmが好ましい。 When the ultrafine fiber or the ultrafine fiber bundle constitutes a non-woven fabric, it may be intertwined with the woven fabric or the knitted fabric for the purpose of improving the strength. For example, in the case of a woven fabric, plain weave, twill weave, satin weave, etc. are mentioned, and plain weave is preferably used from the viewpoint of cost. In the case of a knitted fabric, circular knitting, tricot, Russell and the like can be mentioned. The average single fiber diameter of the fibers constituting the woven or knitted fabric is preferably 0.3 to 20 μm.
 本発明の好ましい態様としては、極細繊維発現型繊維を主構成成分とする繊維質基材の内部に織物および/または編物が絡合一体化している場合、PVAを付与することで、その後付与する水分散型ポリウレタンが織物および/または編物を直接把持する面積が少なくなり、シート状物の風合いは柔軟となる効果が得られ、特に織物および/または編物が極細繊維発現型繊維ではない繊維から構成される場合に顕著な柔軟化効果が得られる。 As a preferable aspect of the present invention, when a woven fabric and / or a knitted fabric are intertwined and integrated inside a fibrous base material containing an ultrafine fiber-expressing fiber as a main component, it is applied thereafter by applying PVA. The water-dispersible polyurethane reduces the area for directly holding the woven fabric and / or knitted fabric, and the texture of the sheet-like material can be softened. In particular, the woven fabric and / or knitted fabric is composed of fibers that are not very fine fiber expression type fibers. A significant softening effect is obtained.
 繊維質基材へのPVAの付与量は、繊維質基材の繊維質量に対し、0.1~50質量%であり、好ましくは1~45質量%である。PVAの付与量を0.1質量%以上とすることにより、柔軟性と風合いの良好なシート状物が得られ、PVAの付与量を50質量%以下とすることにより、加工性が良く、耐摩耗性等の物理特性が良好なシート状物が得られる。 The amount of PVA applied to the fibrous base material is 0.1 to 50% by mass, preferably 1 to 45% by mass, based on the fiber mass of the fibrous base material. By making the application amount of PVA 0.1% by mass or more, a sheet-like material having good flexibility and texture can be obtained, and by making the application amount of PVA 50% by mass or less, workability is good and resistance is improved. A sheet-like material having good physical properties such as wear is obtained.
 本発明において、繊維質基材にPVAを付与する方法としては、特に限定はなく、当分野で通常用いる各種方法を採用できるが、PVAを水に溶解させ、繊維質基材に含浸し加熱乾燥する方法が、均一に付与できる観点から好ましい。乾燥温度は、温度が低すぎると乾燥時間が長く必要となり、温度が高すぎるとPVAが不溶化して、後で溶解除去することができなくなるため、80~140℃で乾燥することが好ましく、乾燥温度はさらに好ましくは110~130℃である。乾燥時間は、通常1~20分、加工性の観点から、好ましくは1~10分、より好ましくは1~5分である。また、PVAをより不溶化するために、乾燥後に加熱処理を行ってもよい。加熱処理の好ましい温度は80~170℃である。加熱処理することで、PVAの不溶化とPVAの熱劣化が同時に進行するため、より好ましい温度は80~140℃である。 In the present invention, the method for imparting PVA to the fibrous base material is not particularly limited, and various methods commonly used in this field can be adopted. However, PVA is dissolved in water, impregnated into the fibrous base material, and dried by heating. The method to do is preferable from a viewpoint which can provide uniformly. If the drying temperature is too low, a long drying time is required. If the drying temperature is too high, the PVA is insolubilized and cannot be dissolved and removed later. The temperature is more preferably 110 to 130 ° C. The drying time is usually 1 to 20 minutes, preferably 1 to 10 minutes, more preferably 1 to 5 minutes from the viewpoint of processability. Moreover, in order to insolubilize PVA more, you may heat-process after drying. A preferable temperature for the heat treatment is 80 to 170 ° C. By heat treatment, insolubilization of PVA and thermal degradation of PVA proceed at the same time, so a more preferable temperature is 80 to 140 ° C.
[第3の工程]
 次に第3の工程である極細繊維発現型繊維を主構成成分とする繊維質基材から、平均単繊維直径が0.3~7μmの極細繊維を発現する工程について述べる。
[Third step]
Next, the third step of expressing ultrafine fibers having an average single fiber diameter of 0.3 to 7 μm from a fibrous base material containing ultrafine fiber expression type fibers as the main constituent components will be described.
 極細繊維発現型繊維を主構成成分とする繊維質基材の繊維極細化処理(脱海処理)は、溶剤中に繊維質基材を浸漬し、搾液することによって行うことができる。極細繊維発現型繊維が海島型繊維である場合、溶剤としては、海成分がポリエチレン、ポリプロピレンまたはポリスチレンの場合にはトルエンやトリクロロエチレンなどの有機溶剤を用い、海成分が共重合ポリエステルまたはポリ乳酸の場合には水酸化ナトリウムなどのアルカリ水溶液を用いることができる。また、海成分がPVAの場合は熱水を用いることができる。工程の環境配慮の観点からは、水酸化ナトリウムなどのアルカリ水溶液や、熱水での脱海処理が好ましい。 The fiber ultrafine treatment (desealing treatment) of the fibrous base material containing the ultrafine fiber expression type fiber as the main constituent can be performed by immersing the fibrous base material in a solvent and squeezing. When the ultrafine fiber-expressing fiber is a sea-island fiber, when the sea component is polyethylene, polypropylene, or polystyrene, an organic solvent such as toluene or trichlorethylene is used, and when the sea component is a copolyester or polylactic acid An alkaline aqueous solution such as sodium hydroxide can be used. Further, when the sea component is PVA, hot water can be used. From the viewpoint of environmental considerations of the process, a sea removal treatment with an aqueous alkali solution such as sodium hydroxide or hot water is preferable.
[第4の工程]
 次に第4の工程であるPVAが付与された極細繊維を主構成成分とする繊維質基材に水分散型ポリウレタンを付与する工程について述べる。
[Fourth step]
Next, a step of applying water-dispersed polyurethane to a fibrous base material having a main component of ultrafine fibers provided with PVA, which is a fourth step, will be described.
 前記水分散型ポリウレタンは、(I)界面活性剤を用いて強制的に水中に分散・安定化させる強制乳化型ポリウレタンと、(II)ポリウレタン分子構造中に親水性構造を有し、界面活性剤が存在しなくても水中に分散・安定化する自己乳化型ポリウレタンに分類されるが、本発明ではいずれを用いてもよい。 The water-dispersed polyurethane includes (I) a forced emulsification type polyurethane forcibly dispersed and stabilized in water using a surfactant, and (II) a surfactant having a hydrophilic structure in the molecular structure. Although it is classified as a self-emulsifying type polyurethane that can be dispersed and stabilized in water even if it is not present, any of them may be used in the present invention.
 繊維質基材に水分散型ポリウレタンを付与する方法としては、特に限定はないが、水分散型ポリウレタン液を繊維質基材に含浸・塗布し、凝固後、加熱乾燥する方法が均一に付与できるため、好ましい。 The method for applying the water-dispersible polyurethane to the fibrous base material is not particularly limited, but a method of impregnating and applying the water-dispersible polyurethane liquid to the fibrous base material, solidifying, and heating and drying can be uniformly applied. Therefore, it is preferable.
 水分散型ポリウレタン液の濃度(水分散型ポリウレタン液に対するポリウレタンの含有量)は、水分散型ポリウレタン液の貯蔵安定性の観点から、10~50質量%が好ましく、より好ましくは15~40質量%である。 The concentration of the water-dispersible polyurethane liquid (polyurethane content relative to the water-dispersible polyurethane liquid) is preferably 10 to 50% by mass, more preferably 15 to 40% by mass, from the viewpoint of storage stability of the water-dispersible polyurethane liquid. It is.
 また、本発明に用いる水分散型ポリウレタン液は、貯蔵安定性や製膜性向上のために、水溶性有機溶剤をポリウレタン液に対して40質量%以下含有していてもよいが、製膜環境の保全等の点から、有機溶剤の含有量は1質量%以下とすることが好ましい。 Further, the water-dispersed polyurethane liquid used in the present invention may contain a water-soluble organic solvent in an amount of 40% by mass or less based on the polyurethane liquid in order to improve storage stability and film-forming property. From the standpoint of maintenance and the like, the content of the organic solvent is preferably 1% by mass or less.
 また、本発明で用いられる水分散型ポリウレタン液としては、感熱凝固性を有するものが好ましい。感熱凝固性を有する水分散型ポリウレタン液を用いることにより、繊維質基材の厚み方向に均一にポリウレタンを付与することができる。 Further, as the water-dispersed polyurethane liquid used in the present invention, those having heat-sensitive coagulation properties are preferable. By using a water-dispersed polyurethane liquid having heat-sensitive coagulation properties, polyurethane can be uniformly applied in the thickness direction of the fibrous base material.
 本発明において、感熱凝固性とは、ポリウレタン液を加熱した際に、ある温度(感熱凝固温度)に達するとポリウレタン液の流動性が減少し、凝固する性質のことを言う。ポリウレタン付きシート状物の製造においてはポリウレタン液を繊維質基材に付与後、それを乾式凝固、湿熱凝固、湿式凝固、あるいはこれらの組み合わせにより凝固させ、乾燥することにより繊維質基材にポリウレタンを付与する。感熱凝固性を示さない水分散型ポリウレタン液を凝固させる方法としては乾式凝固が工業的な生産において現実的であるが、その場合、繊維質基材の表層にポリウレタンが集中するマイグレーション現象が発生し、ポリウレタン付きシート状物の風合いは硬化する傾向にある。その場合は、水分散型ポリウレタン液の粘度を増粘剤で調整することで、マイグレーションを防ぐことができる。また、感熱凝固性を示す水分散型ポリウレタン液の場合も、増粘剤を加え乾式凝固することでマイグレーションを防ぐことができる。 In the present invention, heat-sensitive coagulation refers to the property that when a polyurethane liquid is heated, the fluidity of the polyurethane liquid decreases and solidifies when it reaches a certain temperature (thermal coagulation temperature). In the production of a sheet with polyurethane, a polyurethane liquid is applied to a fibrous base material, and then solidified by dry coagulation, wet heat coagulation, wet coagulation, or a combination thereof, and dried to give polyurethane to the fibrous base material. Give. As a method of coagulating water-dispersed polyurethane liquid that does not exhibit heat-sensitive coagulation, dry coagulation is practical in industrial production, but in this case, a migration phenomenon occurs in which polyurethane concentrates on the surface layer of the fibrous base material. The texture of the sheet with polyurethane tends to harden. In that case, migration can be prevented by adjusting the viscosity of the water-dispersed polyurethane liquid with a thickener. Also, in the case of a water-dispersed polyurethane liquid exhibiting heat-sensitive coagulation, migration can be prevented by adding a thickener and dry coagulating.
 水分散型ポリウレタン液の感熱凝固温度は、40~90℃であることが好ましい。感熱凝固温度を40℃以上とすることにより、ポリウレタン液の貯蔵時の安定性が良好となり、操業時のマシンへのポリウレタンの付着等を抑制することができる。また、感熱凝固温度を90℃以下とすることにより、繊維質基材の表層へのポリウレタンのマイグレーション現象を抑制することができる。 The heat-sensitive coagulation temperature of the water-dispersed polyurethane liquid is preferably 40 to 90 ° C. By setting the heat-sensitive coagulation temperature to 40 ° C. or higher, stability during storage of the polyurethane liquid is improved, and adhesion of polyurethane to the machine during operation can be suppressed. Moreover, the migration phenomenon of the polyurethane to the surface layer of a fibrous base material can be suppressed by making thermosensitive coagulation temperature into 90 degrees C or less.
 本発明のひとつの態様において、感熱凝固温度を前記のとおりとするために、適宜感熱凝固剤を添加してもよい。感熱凝固剤としては例えば、硫酸ナトリウム、硫酸マグネシウム、硫酸カルシウムおよび塩化カルシウム等の無機塩;過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム、アゾビスイソブチロニトリル、および過酸化ベンゾイル等のラジカル反応開始剤などが挙げられる。 In one embodiment of the present invention, a thermal coagulant may be added as appropriate in order to set the thermal coagulation temperature as described above. Examples of heat-sensitive coagulants include inorganic salts such as sodium sulfate, magnesium sulfate, calcium sulfate, and calcium chloride; radical reactions such as sodium persulfate, potassium persulfate, ammonium persulfate, azobisisobutyronitrile, and benzoyl peroxide are initiated. Agents and the like.
 本発明の好ましい態様においては、ポリウレタン液を、繊維質基材に含浸、塗布等し、乾式凝固、湿熱凝固、湿式凝固、あるいはこれらの組み合わせによりポリウレタンを凝固させることができる。 In a preferred embodiment of the present invention, the polyurethane liquid can be coagulated by dry coagulation, wet heat coagulation, wet coagulation, or a combination thereof by impregnating and applying a polyurethane liquid to a fibrous base material.
 前記湿熱凝固の温度は、ポリウレタンの感熱凝固温度以上とすることが好ましく、40~200℃であることが好ましい。湿熱凝固の温度を40℃以上、より好ましくは80℃以上とすることにより、ポリウレタンの凝固までの時間を短くしてマイグレーション現象をより抑制することができる。一方、湿熱凝固の温度を200℃以下、より好ましくは160℃以下とすることにより、ポリウレタンやPVAの熱劣化を防ぐことができる。 The wet heat coagulation temperature is preferably equal to or higher than the heat sensitive coagulation temperature of polyurethane, and is preferably 40 to 200 ° C. By setting the wet heat solidification temperature to 40 ° C. or higher, more preferably 80 ° C. or higher, the time to solidification of the polyurethane can be shortened to further suppress the migration phenomenon. On the other hand, by setting the wet heat coagulation temperature to 200 ° C. or lower, more preferably 160 ° C. or lower, it is possible to prevent thermal degradation of polyurethane and PVA.
 前記湿式凝固の温度は、ポリウレタンの感熱凝固温度以上とし、40~100℃とすることが好ましい。熱水中での湿式凝固の温度を40℃以上、より好ましくは80℃以上とすることにより、ポリウレタンの凝固までの時間を短くしてマイグレーション現象をより抑制することができる。 The wet coagulation temperature is not less than the heat-sensitive coagulation temperature of polyurethane and is preferably 40 to 100 ° C. By setting the temperature of wet coagulation in hot water to 40 ° C. or higher, more preferably 80 ° C. or higher, the time to solidification of polyurethane can be shortened to further suppress the migration phenomenon.
 前記乾式凝固の温度および乾燥温度は、80~140℃であることが好ましい。乾式凝固温度および乾燥温度を80℃以上、より好ましくは90℃以上とすることにより、生産性に優れる。一方、乾式凝固温度および乾燥温度を140℃以下、より好ましくは130℃以下とすることにより、ポリウレタンやPVAの熱劣化を防ぐことができる。
 本発明において、ポリウレタンを凝固させた後に、加熱処理をしてもよい。加熱処理をすることでポリウレタン分子間の界面が減少し、より強固なポリウレタンとなる。より好ましい様態においては、水分散ポリウレタンを付与したシートからPVAを除去した後に
加熱処理することが好ましい。加熱処理の温度は、80~170℃とすることが好ましい。
The dry coagulation temperature and the drying temperature are preferably 80 to 140 ° C. By setting the dry solidification temperature and the drying temperature to 80 ° C. or higher, more preferably 90 ° C. or higher, the productivity is excellent. On the other hand, by setting the dry coagulation temperature and the drying temperature to 140 ° C. or lower, more preferably 130 ° C. or lower, it is possible to prevent thermal degradation of polyurethane and PVA.
In the present invention, heat treatment may be performed after the polyurethane is solidified. By performing the heat treatment, the interface between the polyurethane molecules decreases, and the polyurethane becomes stronger. In a more preferred embodiment, it is preferable to perform heat treatment after removing PVA from the sheet provided with water-dispersed polyurethane. The temperature of the heat treatment is preferably 80 to 170 ° C.
 本発明で用いられるポリウレタンとしては、ポリマージオールと有機ジイソシアネートと鎖伸長剤との反応により得られるものが好ましい。 As the polyurethane used in the present invention, a polyurethane obtained by a reaction of a polymer diol, an organic diisocyanate and a chain extender is preferable.
 前記ポリマージオールとしては、特に限定されないが、例えば、ポリカーボネート系、ポリエステル系、ポリエーテル系、シリコーン系およびフッ素系のジオールを採用することができ、これらを組み合わせた共重合体を用いてもよい。耐加水分解性の観点からは、ポリカーボネート系およびポリエーテル系のジオールが好ましく用いられる。また、耐光性と耐熱性の観点からは、ポリカーボネート系およびポリエステル系が好ましく用いられる。さらに、耐加水分解性と耐熱性と耐光性のバランスの観点からは、ポリカーボネート系とポリエステル系のジオールがより好ましく、特に好ましくはポリカーボネート系のジオールが好ましく用いられる。 The polymer diol is not particularly limited. For example, polycarbonate-based, polyester-based, polyether-based, silicone-based, and fluorine-based diols can be used, and a copolymer obtained by combining these may be used. From the viewpoint of hydrolysis resistance, polycarbonate-based and polyether-based diols are preferably used. From the viewpoints of light resistance and heat resistance, polycarbonate and polyester are preferably used. Furthermore, from the viewpoint of the balance between hydrolysis resistance, heat resistance and light resistance, polycarbonate-based and polyester-based diols are more preferable, and polycarbonate-based diols are particularly preferably used.
 前記ポリカーボネート系ジオールは、アルキレングリコールと炭酸エステルのエステル交換反応、あるいはホスゲンまたはクロル蟻酸エステルとアルキレングリコールとの反応などによって製造することができる。 The polycarbonate diol can be produced by a transesterification reaction between an alkylene glycol and a carbonate ester, or a reaction between phosgene or chloroformate ester and an alkylene glycol.
 前記アルキレングリコールとしては、特に限定されないが、例えば、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、1,10-デカンジオールなどの直鎖アルキレングリコールや、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、2,4-ジエチル-1,5-ペンタンジオール、2-メチル-1,8-オクタンジオールなどの分岐アルキレングリコール、1,4-シクロヘキサンジオールなどの脂環族ジオール、ビスフェノールAなどの芳香族ジオール、グリセリン、トリメチロールプロパン、およびペンタエリスリトールなどが挙げられる。それぞれ単独のアルキレングリコールから得られるポリカーボネート系ジオールでも、2種類以上のアルキレングリコールから得られる共重合ポリカーボネート系ジオールのいずれでも良い。 The alkylene glycol is not particularly limited. For example, ethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,9-nonanediol, 1,10 -Linear alkylene glycol such as decanediol, neopentyl glycol, 3-methyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol, 2-methyl-1,8-octanediol, etc. Branched alkylene glycols, alicyclic diols such as 1,4-cyclohexanediol, aromatic diols such as bisphenol A, glycerin, trimethylolpropane, and pentaerythritol. Either a polycarbonate diol obtained from a single alkylene glycol or a copolymerized polycarbonate diol obtained from two or more types of alkylene glycols may be used.
 前記ポリエステル系ジオールとしては、各種低分子量ポリオールと多塩基酸とを縮合させて得られるポリエステルジオールを挙げることができる。 Examples of the polyester-based diol include polyester diols obtained by condensing various low molecular weight polyols and polybasic acids.
 前記低分子量ポリオールとしては、特に限定されないが、例えば、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、2,2-ジメチル-1,3-プロパンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,8-オクタンジオール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、シクロヘキサン-1,4-ジオール、およびシクロヘキサン-1,4-ジメタノールから選ばれる一種または二種以上を使用することができる。また、ビスフェノールAに各種アルキレンオキサイドを付加させた付加物も使用可能である。 The low molecular weight polyol is not particularly limited, and examples thereof include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-butanediol, 1,4-butanediol, and 2,2-dimethyl. -1,3-propanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,8-octanediol, diethylene glycol, triethylene glycol, dipropylene glycol, tripropylene glycol, cyclohexane-1 , 4-diol, and cyclohexane-1,4-dimethanol can be used. Further, addition products obtained by adding various alkylene oxides to bisphenol A can also be used.
 また、前記多塩基酸としては、特に限定されないが、例えば、コハク酸、マレイン酸、アジピン酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、フタル酸、イソフタル酸、テレフタル酸、およびヘキサヒドロイソフタル酸から選ばれる一種または二種以上が挙げられる。 Further, the polybasic acid is not particularly limited, for example, succinic acid, maleic acid, adipic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, phthalic acid, isophthalic acid, One type or two or more types selected from terephthalic acid and hexahydroisophthalic acid may be mentioned.
 前記ポリエーテル系ジオールとしては、特に限定されないが、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、およびそれらを組み合わせた共重合ジオールを挙げることができる。 The polyether diol is not particularly limited, and examples thereof include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and copolymer diols obtained by combining them.
 本発明に用いられるポリマージオールの数平均分子量は、500~4000であることが好ましい。数平均分子量を500以上、より好ましくは1500以上とすることにより、風合いが硬くなるのを防ぐことができる。また、数平均分子量を4000以下、より好ましくは3000以下とすることにより、ポリウレタンとしての強度を維持することができる。 The number average molecular weight of the polymer diol used in the present invention is preferably 500 to 4000. By setting the number average molecular weight to 500 or more, more preferably 1500 or more, it is possible to prevent the texture from becoming hard. Moreover, the intensity | strength as a polyurethane is maintainable by making a number average molecular weight into 4000 or less, More preferably, 3000 or less.
 前記有機ジイソシアネートとしては、特に限定されないが、例えば、ヘキサメチレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、イソフォロンジイソシアネート、キシリレンジイソシアネート等の脂肪族系ジイソシアネートや、ジフェニルメタンジイソシアネート、およびトリレンジイソシアネート等の芳香族系ジイソシアネートが挙げられ、またこれらを組み合わせて用いてもよい。中でも、耐光性の観点から、ヘキサメチレンジイソシアネート、ジシクロヘキシルメタンジイソシアネートおよびイソフォロンジイソシアネート等の脂肪族系ジイソシアネートが好ましく用いられる。 The organic diisocyanate is not particularly limited. These may be used, and these may be used in combination. Among these, aliphatic diisocyanates such as hexamethylene diisocyanate, dicyclohexylmethane diisocyanate and isophorone diisocyanate are preferably used from the viewpoint of light resistance.
 前記鎖伸長剤としては、特に限定されないが、エチレンジアミンおよびメチレンビスアニリン等のアミン系の鎖伸長剤、およびエチレングリコール等のジオール系の鎖伸長剤を用いることができる。また、ポリイソシアネートと水を反応させて得られるポリアミンを鎖伸長剤として用いることもできる。 The chain extender is not particularly limited, and amine chain extenders such as ethylenediamine and methylenebisaniline, and diol chain extenders such as ethylene glycol can be used. Moreover, the polyamine obtained by making polyisocyanate and water react can also be used as a chain extender.
 ポリウレタンには、所望により、耐水性、耐摩耗性および耐加水分解性等を向上する目的で架橋剤を併用してもよい。架橋剤は、ポリウレタンに対し、第3成分として添加する外部架橋剤でもよく、またポリウレタン分子構造内に予め架橋構造となる反応点を導入する内部架橋剤でもよい。本発明においては、ポリウレタン分子構造内により均一に架橋点を形成でき、柔軟性の減少を軽減できる点から、内部架橋剤を用いることが好ましい。 In the polyurethane, if desired, a crosslinking agent may be used in combination for the purpose of improving water resistance, abrasion resistance, hydrolysis resistance and the like. The cross-linking agent may be an external cross-linking agent added as a third component to the polyurethane, or may be an internal cross-linking agent that introduces a reaction point that becomes a cross-linked structure in advance in the polyurethane molecular structure. In the present invention, it is preferable to use an internal cross-linking agent from the viewpoint that the cross-linking points can be formed more uniformly in the polyurethane molecular structure and the reduction in flexibility can be reduced.
 前記架橋剤としては、イソシアネート基、オキサゾリン基、カルボジイミド基、エポキシ基、メラミン樹脂、およびシラノール基などを有する化合物を用いることができる。ただし、架橋が過剰に進むとポリウレタンが硬化してシート状物の風合いも硬くなる傾向にあるため、反応性と柔軟性とのバランスの点ではシラノール基を有するものが好ましく用いられる。 As the crosslinking agent, a compound having an isocyanate group, an oxazoline group, a carbodiimide group, an epoxy group, a melamine resin, a silanol group, or the like can be used. However, when the crosslinking proceeds excessively, the polyurethane tends to harden and the texture of the sheet-like material also tends to harden. Therefore, those having a silanol group are preferably used in terms of the balance between reactivity and flexibility.
 また、本発明で用いられるポリウレタンは、分子構造内に親水性基を有していることが好ましい。分子構造内に親水性基を有することで、水分散型ポリウレタンとしての分散・安定性を向上させることができる。 Also, the polyurethane used in the present invention preferably has a hydrophilic group in the molecular structure. By having a hydrophilic group in the molecular structure, the dispersion / stability of the water-dispersed polyurethane can be improved.
 前記親水性基としては例えば、4級アミン塩等のカチオン系、スルホン酸塩やカルボン酸塩等のアニオン系、ポリエチレングリコール等のノニオン系、およびカチオン系とノニオン系の組み合わせ、およびアニオン系とノニオン系の組み合わせのいずれの親水性基も採用することができる。なかでも、光による黄変や中和剤による弊害の懸念のないノニオン系の親水性基が特に好ましく用いられる。 Examples of the hydrophilic group include a cation system such as a quaternary amine salt, an anion system such as a sulfonate and carboxylate, a nonionic system such as polyethylene glycol, a combination of a cationic system and a nonionic system, and an anionic system and a nonionic system. Any hydrophilic group of the combination of systems can be employed. Of these, nonionic hydrophilic groups that are free from yellowing caused by light and harmful effects caused by a neutralizing agent are particularly preferably used.
 なお、アニオン系の親水性基の場合は、中和剤が必要となり、例えば、前記中和剤がアンモニア、トリエチルアミン、トリエタノールアミン、トリイソプロパノールアミン、トリメチルアミンおよびジメチルエタノールアミン等の第3級アミンである場合は、製膜や乾燥時の熱によってアミンが発生・揮発し、系外へ放出される。そのため、大気放出や作業環境の悪化を抑制するために、揮発するアミンを回収する装置の導入が必須となる。また、アミンは加熱によって揮発せずに最終製品であるシート状物中に残留した場合、製品の焼却時等に環境へ排出されることも考えられる。これに対し、ノニオン系の親水性基の場合は、中和剤を使用しないためアミン回収装置を導入する必要はなく、アミンのシート状物中への残留の心配もないため、好ましく用いることができる。 In the case of an anionic hydrophilic group, a neutralizing agent is required. For example, the neutralizing agent is a tertiary amine such as ammonia, triethylamine, triethanolamine, triisopropanolamine, trimethylamine and dimethylethanolamine. In some cases, amines are generated and volatilized by heat during film formation and drying, and released outside the system. For this reason, in order to suppress the release of air and the deterioration of the working environment, it is essential to introduce a device for recovering volatile amines. In addition, if the amine does not volatilize by heating and remains in the final product sheet, it may be discharged to the environment when the product is incinerated. On the other hand, in the case of a nonionic hydrophilic group, it is not necessary to introduce an amine recovery device because a neutralizing agent is not used, and there is no fear of residual amine in the sheet-like material, so that it is preferably used. it can.
 また、前記アニオン系親水性基の中和剤が水酸化ナトリウム、水酸化カリウムおよび水酸化カルシウム等のアルカリ金属、またはアルカリ土類金属の水酸化物等である場合、ポリウレタン部分が水に濡れるとアルカリ性を示すこととなるが、ノニオン系の親水性基の場合は中和剤を使用しないため、ポリウレタンの加水分解による劣化を心配する必要もない。 Further, when the anionic hydrophilic group neutralizing agent is an alkali metal such as sodium hydroxide, potassium hydroxide or calcium hydroxide, or a hydroxide of an alkaline earth metal, the polyurethane part is wetted with water. Although it shows alkalinity, in the case of a nonionic hydrophilic group, since a neutralizing agent is not used, there is no need to worry about deterioration due to hydrolysis of polyurethane.
 本発明に用いられる水分散型ポリウレタンは、所望により各種の添加剤、例えば、カーボンブラックなどの顔料、リン系、ハロゲン系、シリコーン系および無機系などの難燃剤、フェノール系、イオウ系およびリン系などの酸化防止剤、ベンゾトリアゾール系、ベンゾフェノン系、サリシレート系、シアノアクリレート系およびオキザリックアシッドアニリド系などの紫外線吸収剤、ヒンダードアミン系やベンゾエート系などの光安定剤、ポリカルボジイミドなどの耐加水分解安定剤、可塑剤、帯電防止剤、界面活性剤、柔軟剤、撥水剤、凝固調整剤、粘度調整剤、染料、防腐剤、抗菌剤、消臭剤、セルロース粒子、マイクロバルーン等の充填剤、およびシリカや酸化チタン等の無機粒子などを含有していてもよい。また、繊維とポリウレタンの間の空隙をさらに大きくするために、炭酸水素ナトリウムなどの無機系、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]等の有機系発泡剤を含有してもよい。 The water-dispersed polyurethane used in the present invention is optionally made of various additives, for example, pigments such as carbon black, flame retardants such as phosphorus, halogen, silicone and inorganic, phenol, sulfur and phosphorus. Antioxidants such as benzotriazoles, benzophenones, salicylates, cyanoacrylates and oxalic acid anilides, light stabilizers such as hindered amines and benzoates, and hydrolysis resistance of polycarbodiimides Stabilizers, plasticizers, antistatic agents, surfactants, softeners, water repellents, coagulation modifiers, viscosity modifiers, dyes, preservatives, antibacterial agents, deodorants, cellulose particles, fillers such as microballoons , And inorganic particles such as silica and titanium oxide. In order to further increase the gap between the fiber and the polyurethane, an inorganic system such as sodium bicarbonate, an organic system such as 2,2′-azobis [2-methyl-N- (2-hydroxyethyl) propionamide], etc. A foaming agent may be contained.
 本発明の極細繊維を主構成成分とする繊維質基材に対するポリウレタンの含有比率は、1~80質量%であることが好ましい。ポリウレタンの比率を1質量%以上、より好ましくは5質量%以上とすることにより、シート強度を得るとともに繊維の脱落を防ぐことができる。また、ポリウレタンの配合比率を80質量%以下、より好ましくは70質量%以下とすることにより、風合いが硬くなることを防ぎ、良好な立毛品位を得ることができる。 The content ratio of polyurethane to the fibrous base material containing the ultrafine fiber of the present invention as a main constituent is preferably 1 to 80% by mass. By setting the ratio of the polyurethane to 1% by mass or more, more preferably 5% by mass or more, it is possible to obtain sheet strength and prevent the fibers from falling off. Moreover, by setting the blending ratio of polyurethane to 80% by mass or less, more preferably 70% by mass or less, it is possible to prevent the texture from becoming hard and to obtain good napped quality.
[第5の工程]
 次に第5の工程であるPVAと水分散型ポリウレタンが付与された極細繊維を主構成成分とする繊維質基材からPVAを除去する工程について述べる。
[Fifth step]
Next, the process of removing PVA from the fibrous base material having as main components ultrafine fibers provided with PVA and water-dispersed polyurethane, which is a fifth process, will be described.
 本発明の好ましい態様では、ポリウレタン付与後の繊維質基材から、PVAを除去することにより、柔軟なシート状物を得る。PVAを除去する方法は特に限定されないが、例えば、60~100℃の熱水にシートを浸漬し、必要に応じてマングル等で搾液することにより、溶解除去することが好ましい態様である。 In a preferred embodiment of the present invention, a flexible sheet-like material is obtained by removing PVA from the fibrous base material after application of polyurethane. The method for removing PVA is not particularly limited, but for example, it is preferable to dissolve and remove the sheet by immersing the sheet in hot water at 60 to 100 ° C. and squeezing with a mangle if necessary.
 本発明のシート状物の製造方法においては、少なくともPVAを付与した繊維質基材に水分散型ポリウレタンを付与した後において、厚み方向に半裁する工程を含んでもよい。PVAを付与する工程では、マイグレーションによってPVAが繊維質基材の表層に多く付着し、内層へのPVAの付着量は少ない。その後、水分散型ポリウレタンを付与してから厚み方向に半裁することにより、PVA付着量が多い側には水分散型ポリウレタンは少なく付着し、PVA付着量が少ない側には水分散型ポリウレタンは多く付着する構造のシート状物が得られる。PVAが多く付着していた面(水分散型ポリウレタン付着が少ない面)をシート状物の立毛面とした場合、PVAが付与されていたことによって、ポリウレタンと立毛を構成する極細繊維の間に空隙が大きく生じ、立毛を構成する繊維に自由度が与えられ、表面の風合いが柔軟となり、良好な外観品位と柔らかなタッチが得られる。逆に、PVAが少なく付着していた面(水分散型ポリウレタン付着が多い面)をシート状物の立毛面とした場合、立毛を構成する繊維はポリウレタンに強く把持されることによって立毛長は短いが、緻密感のある良好な外観品位が得られ、さらには耐摩耗性が良好となる。さらに、シート厚み方向に半裁する工程を含むことにより、生産効率を向上させることができる。 The method for producing a sheet-like product of the present invention may include a step of half-cutting in the thickness direction after applying water-dispersed polyurethane to at least a fibrous base material provided with PVA. In the step of applying PVA, a large amount of PVA adheres to the surface layer of the fibrous base material due to migration, and the amount of PVA attached to the inner layer is small. Then, by applying water-dispersed polyurethane and then half-cutting in the thickness direction, a small amount of water-dispersed polyurethane adheres to the side with a large amount of PVA, and a large amount of water-dispersed polyurethane to a side with a small amount of PVA. A sheet-like material having an attached structure is obtained. When the surface on which a large amount of PVA is adhered (the surface on which less water-dispersed polyurethane adheres) is used as the napped surface of the sheet-like material, there is a gap between the polyurethane and the ultrafine fibers constituting the napped by the addition of PVA. Is generated, the degree of freedom is given to the fibers constituting the nap, the surface texture becomes flexible, and a good appearance quality and soft touch can be obtained. On the other hand, when the surface on which the PVA is adhered to a small amount (the surface on which the water-dispersed polyurethane is largely adhered) is used as the raised surface of the sheet-like material, the raised hair is short because the fibers constituting the raised hair are strongly held by the polyurethane. However, a good appearance quality with a dense feeling is obtained, and the wear resistance is also good. Furthermore, production efficiency can be improved by including the process of half-cutting in the sheet thickness direction.
 本発明では、シート状物の少なくとも一面を起毛処理して表面に立毛を形成させてもよい。立毛を形成する方法は、特に限定されず、サンドペーパー等によるバフィング等、当分野で通常行われる各種方法を用いることができる。立毛長は短すぎると優美な外観が得られにくく、長すぎると、ピリングが発生しやすくなる傾向にあることから、立毛長は0.2~1mmであることが好ましい。 In the present invention, at least one surface of the sheet-like material may be raised to form napped on the surface. The method for forming napping is not particularly limited, and various methods that are usually performed in this field, such as buffing with sandpaper or the like, can be used. When the napped length is too short, it is difficult to obtain an elegant appearance, and when it is too long, pilling tends to occur. Therefore, the napped length is preferably 0.2 to 1 mm.
 また、本発明のひとつの態様において、起毛処理の前に、シート状物に滑剤としてシリコーン等を付与してもよい。滑剤を付与することにより、表面研削による起毛が容易に可能となり、表面品位が非常に良好となるため好ましい。また、起毛処理の前に帯電防止剤を付与してもよく、帯電防止剤の付与により、研削によってシート状物から発生した研削粉がサンドペーパー上に堆積しにくくなるため好ましい態様である。 Further, in one embodiment of the present invention, silicone or the like may be applied to the sheet-like material as a lubricant before the raising treatment. By applying a lubricant, raising by surface grinding becomes possible easily, and the surface quality becomes very good, which is preferable. In addition, an antistatic agent may be applied before the raising treatment, which is a preferred embodiment because the application of the antistatic agent makes it difficult for grinding powder generated from the sheet-like material to be deposited on the sandpaper by grinding.
 本発明のひとつの態様において、シート状物は、染色することができる。染色方法としては、当分野で通常用いられる各種方法を採用することができるが、シート状物の染色と同時に揉み効果を与えてシート状物を柔軟化することができることから、液流染色機を用いる方法が好ましい。 In one embodiment of the present invention, the sheet can be dyed. As a dyeing method, various methods commonly used in this field can be adopted. However, since the sheet-like material can be softened by giving a stagnation effect simultaneously with the dyeing of the sheet-like material, a liquid dyeing machine is used. The method used is preferred.
 染色温度は、繊維の種類にもよるが、80~150℃であることが好ましい。染色温度を80℃以上、より好ましくは110℃以上とすることにより、繊維への染着を効率良く行わせることができる。一方、染色温度を150℃以下、より好ましくは130℃以下とすることにより、ポリウレタンの劣化を防ぐことができる。 The dyeing temperature is preferably 80 to 150 ° C., although it depends on the type of fiber. By setting the dyeing temperature to 80 ° C. or higher, more preferably 110 ° C. or higher, it is possible to efficiently dye the fibers. On the other hand, the deterioration of the polyurethane can be prevented by setting the dyeing temperature to 150 ° C. or lower, more preferably 130 ° C. or lower.
 本発明で用いられる染料は、繊維質基材を構成する繊維の種類にあわせて選択すればよく、特に限定されないが、例えば、ポリエステル系繊維であれば分散染料を用いることができ、ポリアミド系繊維であれば酸性染料や含金染料を用いることができ、更にそれらの組み合わせを用いることができる。分散染料で染色した場合は、染色後に還元洗浄を行ってもよい。 The dye used in the present invention may be selected in accordance with the type of fiber constituting the fibrous base material, and is not particularly limited. For example, a disperse dye can be used for a polyester fiber, and a polyamide fiber. If so, an acid dye or a metal-containing dye can be used, and further a combination thereof can be used. When dyed with disperse dyes, reduction washing may be performed after dyeing.
 また、染色時に染色助剤を使用することも好ましい態様である。染色助剤を用いることにより、染色の均一性や再現性を向上させることができる。また、染色と同浴または染色後に、例えば、シリコーン等の柔軟剤、帯電防止剤、撥水剤、難燃剤、耐光剤および抗菌剤等を用いた仕上げ剤処理を施すことができる。 In addition, it is also a preferable aspect to use a dyeing assistant during dyeing. By using a dyeing assistant, the uniformity and reproducibility of dyeing can be improved. Further, after the same bath as the dyeing or after dyeing, a finishing agent treatment using, for example, a softener such as silicone, an antistatic agent, a water repellent, a flame retardant, a light proofing agent, and an antibacterial agent can be performed.
 このようにして得られた本発明のシート状物の密度は0.2~0.7g/cmであることが好ましい。密度が0.2g/cm以上、より好ましくは0.3g/cm以上とすることにより、表面外観が緻密となり高級な品位を発現させることができる。一方、密度を0.7g/cm以下、より好ましくは0.6g/cm以下とすることにより、シート状物の風合いが硬くなるのを防ぐことができる。 The density of the sheet-like material of the present invention thus obtained is preferably 0.2 to 0.7 g / cm 3 . By setting the density to 0.2 g / cm 3 or more, more preferably 0.3 g / cm 3 or more, the surface appearance becomes dense and high-grade quality can be expressed. On the other hand, by setting the density to 0.7 g / cm 3 or less, more preferably 0.6 g / cm 3 or less, it is possible to prevent the texture of the sheet-like material from becoming hard.
 次に、本発明のシート状物の製造方法を、実施例により更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではなく、多くの変形が本発明の技術的思想内で当分野において通常の知識を有する者により可能である。 Next, the production method of the sheet-like product of the present invention will be described in more detail by way of examples. However, the present invention is not limited only to these examples, and many modifications may be applied to the technical idea of the present invention. It is possible by those having ordinary knowledge in the field.
 [評価方法]
(1)PVA水溶液の有機溶剤濃度
 24mL加熱管にPVA水溶液1gを入れ、90℃で1時間加熱した。加熱管からガスタイトシリンジで発生ガス0.1ミリリットルを採取し、GC/MSに導入して、酢酸メチル、酢酸、メタノールの濃度分析を行った。なお、GC/MSの検出限界は0.1ppm未満である。
[Evaluation methods]
(1) Organic solvent concentration of PVA aqueous solution 1 g of PVA aqueous solution was put into a 24 mL heating tube and heated at 90 ° C. for 1 hour. From the heating tube, 0.1 mL of the generated gas was collected with a gas tight syringe, introduced into GC / MS, and analyzed for the concentration of methyl acetate, acetic acid, and methanol. The GC / MS detection limit is less than 0.1 ppm.
(2)PVA水溶液の粘度
 JIS K6726(1994)ポリビニルアルコール試験方法の3.11.1記載の回転粘度計法により、4質量%PVA水溶液の20℃の粘度を測定した。
(2) Viscosity of PVA aqueous solution The viscosity at 20 ° C. of a 4% by mass PVA aqueous solution was measured by the rotational viscometer method described in 3.11.1 of JIS K6726 (1994) polyvinyl alcohol test method.
(3)PVAの抗張力
 10質量%PVA水分散液を縦方向が5cmで横方向が10cmで深さが1cmのポリエチレン製トレーに入れ、8時間25℃で風乾後、120℃の温度の熱風乾燥機で2時間熱処理して厚さ100μmのPVA乾式膜を得た。このPVA乾式膜について、JIS L1096(2010)8.14.1記載のA法(ストリップ法)に従い、引張試験機にて抗張力を測定した。
(3) Tensile strength of PVA A 10% by mass PVA aqueous dispersion was placed in a polyethylene tray having a longitudinal direction of 5 cm, a transverse direction of 10 cm and a depth of 1 cm, air-dried at 25 ° C. for 8 hours, and then dried with hot air at a temperature of 120 ° C. A PVA dry film having a thickness of 100 μm was obtained by heat treatment with a machine for 2 hours. About this PVA dry-type film | membrane, the tensile strength was measured with the tension tester according to A method (strip method) of JISL1096 (2010) 8.14.1.
(4)平均単繊維直径
 平均単繊維直径は、繊維質基材またはシート状物表面の走査型電子顕微鏡(SEM)写真を倍率2000倍で撮影し、繊維をランダムに100本選び、単繊維直径を測定して平均値を計算することで算出した。
 繊維質基材またはシート状物を構成する繊維が異形断面の場合は、異形断面の外周円直径を単繊維直径として算出した。また、円形断面と異形断面が混合している場合、単繊維直径が大きく異なるものが混合している場合等は、それぞれの存在本数比率に応じたサンプリング数を計100本となるように選び算出した。ただし、繊維質基材に補強用の織物や編物が挿入されているような場合には、当該補強用の織物や編物の繊維は、平均単繊維直径の測定においてサンプリング対象からは除外した。
(4) Average single fiber diameter The average single fiber diameter was obtained by taking a scanning electron microscope (SEM) photograph of the surface of the fibrous base material or sheet-like material at a magnification of 2000 times, selecting 100 fibers at random, and the single fiber diameter. Was calculated by calculating the average value.
When the fiber constituting the fibrous base material or the sheet-like material had an irregular cross section, the outer circumference circle diameter of the irregular cross section was calculated as the single fiber diameter. Also, when the circular cross section and the irregular cross section are mixed, or when the single fiber diameters are greatly different, etc., the number of samplings corresponding to each existing number ratio is selected and calculated to be a total of 100. did. However, when a reinforcing woven fabric or knitted fabric is inserted in the fibrous base material, the fibers of the reinforcing woven fabric or knitted fabric are excluded from the sampling target in the measurement of the average single fiber diameter.
(5)シート状物の剛軟度
 JIS L1096(2010)8.21.1記載のA法(45°カンチレバー法)に基づき、タテ方向とヨコ方向へそれぞれ2cm×15cmの試験片を作成し、45°の斜面を有する水平台に置き、試験片を滑らせて試験片の一端の中央点が斜面と接したときの他端の位置をスケールによって読んだ。剛軟度は、試験片が移動した長さ(mm)で表される。試験片5枚でのその移動長さの平均値を求め、剛軟度とした。
(5) Bending softness of sheet-like material Based on A method (45 ° cantilever method) described in JIS L1096 (2010) 8.21.1, test pieces each having a size of 2 cm × 15 cm in the vertical direction and the horizontal direction were prepared. The test piece was placed on a horizontal platform having a 45 ° slope, and the position of the other end when the center point of one end of the test piece was in contact with the slope was read with a scale. The bending resistance is represented by the length (mm) that the test piece has moved. The average value of the moving lengths of the five test pieces was determined and used as the bending resistance.
(6)シート状物の表面外観
 シート状物の表面外観は、健康状態の良好な成人男性と成人女性各10名ずつ、計20名を評価者として、目視と官能評価によって下記のように5段階評価し、最も多かった評価を表面外観とした。表面外観は、3級~5級を良好とした。
5級:均一な繊維の立毛があり、繊維の分散状態は良好で、外観は良好である。
4級:5級と3級の間の評価である。
3級:繊維の分散状態はやや良くない部分があるが、繊維の立毛はあり、外観はまずまず良好である。
2級:3級と1級の間の評価である。
1級:全体的に繊維の分散状態は非常に悪い、または繊維の立毛が長く、外観は不良である。
(6) Surface appearance of sheet-like material The surface appearance of the sheet-like material is determined by visual and sensory evaluation as follows, with 10 adult males and 10 adult females each in good health, and a total of 20 evaluators. A stepped evaluation was performed, and the highest evaluation was defined as the surface appearance. As for the surface appearance, Grade 3 to Grade 5 were good.
Grade 5: There is uniform fiber napping, the fiber dispersion state is good, and the appearance is good.
Grade 4: Evaluation between grade 5 and grade 3.
Third grade: The dispersion state of the fibers is slightly poor, but there are fiber nappings and the appearance is reasonably good.
Second grade: An evaluation between the third grade and the first grade.
First grade: Overall, the dispersion state of the fibers is very poor, or the fibers are long and the appearance is poor.
(7)シート状物の耐摩耗性評価
 ナイロン6からなる直径0.4mmのナイロン繊維を繊維の長手方向に垂直に長さ11mmに切ったものを100本そろえて束とし、この束を直径110mmの円内に6重の同心円状に97個(中心に1個、直径17mmの円に6個、直径37mmの円に13個、直径55mmの円に19個、直径74mmの円に26個、直径90mmの円に32個、それぞれの円において等間隔に)配置した円形ブラシ(ナイロン糸9700本)を用い、荷重8ポンド(約3629g)、回転速度65rpm、回転回数50回の条件で、シート状物の円形サンプル(直径45mm)の表面を摩耗せしめ、その前後のサンプルの質量変化を測定し、5サンプルの質量変化の平均値である摩耗減量(mg)を耐摩耗性とした。
(7) Abrasion resistance evaluation of sheet-like material Nylon 6 nylon fiber having a diameter of 0.4 mm cut into a length of 11 mm perpendicular to the longitudinal direction of the fiber was made into 100 bundles, and this bundle was made 110 mm in diameter. 97 in a 6-fold concentric circle (1 in the center, 6 in the 17 mm diameter circle, 13 in the 37 mm diameter circle, 19 in the 55 mm diameter circle, 26 in the 74 mm diameter circle, Using circular brushes (9700 nylon threads) arranged in 32 circles with a diameter of 90 mm, equally spaced in each circle, under the conditions of a load of 8 pounds (about 3629 g), a rotation speed of 65 rpm, and a rotation speed of 50 times The surface of a round sample (45 mm in diameter) was abraded and the change in mass of the sample before and after that was measured, and the weight loss (mg), which is the average value of the change in mass of 5 samples, was defined as wear resistance.
 [実施例1]
 (PVA水溶液の調製)
 ケン化度99%、重合度1400のPVA(日本合成化学株式会社製NM-14)を25℃の水に添加し、90℃まで昇温後、2時間攪拌しながら90℃を保持して、固形分10質量%の水溶液に調製し、PVA水溶液を得た。PVA水溶液に含有される酢酸メチル、酢酸、メタノール濃度はそれぞれ10.2ppm、0.8ppm、5.2ppmであった。
[Example 1]
(Preparation of PVA aqueous solution)
PVA having a saponification degree of 99% and a polymerization degree of 1400 (NM-14 manufactured by Nippon Synthetic Chemical Co., Ltd.) was added to water at 25 ° C., heated to 90 ° C., maintained at 90 ° C. with stirring for 2 hours, A PVA aqueous solution was obtained by preparing an aqueous solution having a solid content of 10% by mass. The methyl acetate, acetic acid, and methanol concentrations contained in the PVA aqueous solution were 10.2 ppm, 0.8 ppm, and 5.2 ppm, respectively.
 (繊維質基材用不織布)
 海成分として、5-スルホイソフタル酸ナトリウムを8mol%共重合したポリエチレンテレフタレートを用い、島成分として、ポリエチレンテレフタレートを用い、海成分45質量%、島成分55質量%の複合比率で、島数36島/1フィラメント、平均単繊維直径17μmの海島型複合繊維を得た。得られた海島型複合繊維を繊維長51mmにカットしてステープルとし、カードおよびクロスラッパーを通して繊維ウェブを形成し、ニードルパンチ処理により、不織布とした。このようにして得られた不織布を、98℃の温度の湯中に2分間浸漬させて収縮させ、100℃の温度で5分間乾燥させ、繊維質基材用不織布とした。
(Nonwoven fabric for fibrous base materials)
Polyethylene terephthalate copolymerized with 8 mol% of sodium 5-sulfoisophthalate was used as the sea component, and polyethylene terephthalate was used as the island component, with a composite ratio of 45 mass% sea component and 55 mass% island component. / 1 filament, sea island type composite fiber having an average single fiber diameter of 17 μm was obtained. The obtained sea-island type composite fiber was cut into a fiber length of 51 mm to form a staple, a fiber web was formed through a card and a cross wrapper, and a nonwoven fabric was formed by needle punching. The nonwoven fabric thus obtained was immersed in hot water at a temperature of 98 ° C. for 2 minutes to shrink and dried at a temperature of 100 ° C. for 5 minutes to obtain a nonwoven fabric for a fibrous base material.
 (PVAの付与)
 上記の繊維質基材用不織布に上記のPVA水溶液を含浸させ、140℃の温度で10分間加熱乾燥を行い、繊維質基材用不織布の繊維質量に対するPVAの付着量が30質量%のPVA付与シートを得た。
(Granting PVA)
The above PVA aqueous solution is impregnated into the above-mentioned nonwoven fabric for a fibrous base material, heat-dried at a temperature of 140 ° C. for 10 minutes, and the amount of PVA applied to the fiber mass of the nonwoven fabric for a fibrous base material is 30 mass%. A sheet was obtained.
 (繊維極細化(脱海))
 上記のPVA付与シートを95℃の温度に加熱した濃度10g/リットルの水酸化ナトリウム水溶液に浸漬して30分間処理を行い、海島型複合繊維の海成分を除去した脱海シートを得た。脱海シート表面の平均単繊維直径は、3μmであった。
(Fiber miniaturization (sea removal))
The PVA-applied sheet was immersed in a 10 g / liter sodium hydroxide aqueous solution heated to a temperature of 95 ° C. and treated for 30 minutes to obtain a sea-removed sheet from which sea components of sea-island type composite fibers were removed. The average single fiber diameter on the surface of the sea removal sheet was 3 μm.
 (ポリウレタン液の調製)
 ポリオールにポリヘキサメチレンカーボネートを適用し、イソシアネートにジシクロヘキシルメタンジイソシアネートを適用したポリカーボネート系自己乳化型ポリウレタン液の固形分100質量部に対して、感熱凝固剤として過硫酸アンモニウム(APS)2質量部を加え、水によって全体を固形分20質量%に調製し、水分散型ポリウレタン液を得た。感熱凝固温度は、72℃であった。
(Preparation of polyurethane liquid)
To 100 parts by mass of a polycarbonate-based self-emulsifying polyurethane liquid in which polyhexamethylene carbonate is applied to the polyol and dicyclohexylmethane diisocyanate is applied to the isocyanate, 2 parts by mass of ammonium persulfate (APS) is added as a heat-sensitive coagulant, The whole was prepared to a solid content of 20% by mass with water to obtain a water-dispersed polyurethane liquid. The thermal coagulation temperature was 72 ° C.
 (ポリウレタンの付与)
 上記のPVAを付与した脱海シートに、上記のポリカーボネート系ポリウレタン液を含浸させ、100℃の温度の湿熱雰囲気下で5分間処理後、乾燥温度120℃の温度で5分間熱風乾燥させ、さらに140℃の温度で2分間乾熱処理を行うことにより、不織布の繊維質量に対するポリウレタンの付着量が30質量%となるようにポリウレタンを付与したシートを得た。
(Applying polyurethane)
The seawater-free sheet provided with the above PVA is impregnated with the above-mentioned polycarbonate-based polyurethane liquid, treated in a moist and hot atmosphere at a temperature of 100 ° C. for 5 minutes, then dried with hot air at a drying temperature of 120 ° C. for 5 minutes, and further 140 By performing a dry heat treatment at a temperature of 2 ° C. for 2 minutes, a sheet to which polyurethane was applied was obtained so that the amount of polyurethane attached to the fiber mass of the nonwoven fabric was 30% by mass.
 (PVAの除去)
 上記のポリウレタンを付与したシートを、95℃に加熱した水中に浸漬して10分処理を行い、付与したPVAを除去したシートを得た。
(Removal of PVA)
The sheet provided with the polyurethane was immersed in water heated to 95 ° C. and treated for 10 minutes to obtain a sheet from which the applied PVA was removed.
 (半裁・起毛・染色・還元洗浄)
 上記のPVAを除去したシートを厚さ方向に半裁し、半裁面と反対の表面を240メッシュのエンドレスサンドペーパーを用いた研削によって起毛処理した後、サーキュラー染色機を用いて分散染料により染色し還元洗浄を行い、シート状物を得た。得られたシート状物の表面外観は良好で、柔軟な風合いを有し、耐摩耗性も良好であった。
(Half-cut, brushed, dyed, reduced cleaning)
The PVA-removed sheet is cut in half in the thickness direction, and the surface opposite to the half-cut surface is brushed by grinding using a 240 mesh endless sandpaper, and then dyed with a disperse dye using a circular dyeing machine and reduced. Washing was performed to obtain a sheet. The surface appearance of the obtained sheet-like material was good, had a soft texture, and had good wear resistance.
 [実施例2]
 (PVA水溶液の調製)
 実施例1と同様にして、PVA水溶液を得た。
 (繊維質基材用不織布)
 実施例1と同様にして、繊維質基材用不織布を得た。
 (PVAの付与)
 実施例1と同様のPVA水溶液を用い、含浸後の絞りを調節してPVAの付着量を変更した以外は実施例1と同様にして、繊維質基材用不織布の繊維質量に対するPVAの付着量が20質量%のPVA付与シートを得た。
 (繊維極細化(脱海))
 実施例1と同様にして、脱海シートを得た。
 (ポリウレタン液の調製)
 実施例1と同様にして水分散型ポリウレタン液を得た。
 (ポリウレタンの付与)
 実施例1と同様にして、ポリウレタン付与シートを得た。
 (PVAの除去)
 実施例1と同様にして、PVA除去シートを得た。
 (半裁・起毛・染色・還元洗浄)
 実施例1と同様にしてシート状物を得た。得られたシート状物の表面外観は良好で、柔軟な風合いを有し、耐摩耗性も良好であった。
[Example 2]
(Preparation of PVA aqueous solution)
In the same manner as in Example 1, a PVA aqueous solution was obtained.
(Nonwoven fabric for fibrous base materials)
In the same manner as in Example 1, a nonwoven fabric for fibrous base material was obtained.
(Granting PVA)
Using the same PVA aqueous solution as in Example 1 and adjusting the squeezing after impregnation to change the amount of PVA attached, the amount of PVA attached to the fiber mass of the nonwoven fabric for fibrous base material was the same as in Example 1. Obtained a 20% by mass PVA-applied sheet.
(Fiber miniaturization (sea removal))
In the same manner as in Example 1, a sea removal sheet was obtained.
(Preparation of polyurethane liquid)
A water-dispersed polyurethane liquid was obtained in the same manner as in Example 1.
(Applying polyurethane)
In the same manner as in Example 1, a polyurethane-applied sheet was obtained.
(Removal of PVA)
In the same manner as in Example 1, a PVA removal sheet was obtained.
(Half-cut, brushed, dyed, reduced cleaning)
A sheet-like material was obtained in the same manner as in Example 1. The surface appearance of the obtained sheet-like material was good, had a soft texture, and had good wear resistance.
 [実施例3]
 (PVA水溶液の調製)
 実施例1と同様にして、PVA水溶液を得た。
 (繊維質基材用不織布)
 海成分として、5-スルホイソフタル酸ナトリウムを8mol%共重合したポリエチレンテレフタレートを用い、島成分として、ポリエチレンテレフタレートを用い、海成分20質量%、島成分80質量%の複合比率で、島数16島/1フィラメント、平均単繊維直径30μmの海島型複合繊維を得た。得られた海島型複合繊維を繊維長51mmにカットしてステープルとし、カードおよびクロスラッパーを通して繊維ウェブを形成し、ニードルパンチ処理により不織布とした。このようにして得られた不織布を98℃の温度の湯中に2分間浸漬させて収縮させ、100℃の温度で5分間乾燥させ、繊維質基材用不織布とした。
[Example 3]
(Preparation of PVA aqueous solution)
In the same manner as in Example 1, a PVA aqueous solution was obtained.
(Nonwoven fabric for fibrous base materials)
As the sea component, polyethylene terephthalate copolymerized with 8 mol% of sodium 5-sulfoisophthalate is used, and as the island component, polyethylene terephthalate is used. The sea component is 20% by mass and the island component is 80% by mass. / 1 filament, sea island type composite fiber having an average single fiber diameter of 30 μm was obtained. The obtained sea-island type composite fiber was cut into a fiber length of 51 mm to form a staple, a fiber web was formed through a card and a cross wrapper, and a nonwoven fabric was formed by needle punching. The nonwoven fabric thus obtained was immersed in hot water at a temperature of 98 ° C. for 2 minutes to shrink and dried at a temperature of 100 ° C. for 5 minutes to obtain a nonwoven fabric for a fibrous base material.
 (PVAの付与)
 実施例1と同様のPVA水溶液を用い、繊維質基材用不織布の繊維質量に対するPVAの付着量が30質量%のPVA付与シートを得た。
 (繊維極細化(脱海))
 上記の繊維質基材用不織布を実施例1と同様にして処理を行い、海島型複合繊維の海成分を除去した脱海シートを得た。脱海シート表面の平均単繊維直径は、4.4μmであった。
 (ポリウレタン液の調製)
 実施例1と同様の水分散型ポリウレタン液を用いた。
 (ポリウレタンの付与)
 実施例1と同様にして、ポリウレタン付与シートを得た。
 (PVAの除去)
 実施例1と同様にして、PVA除去シートを得た。
 (半裁・起毛・染色・還元洗浄)
 実施例1と同様にしてシート状物を得た。得られたシート状物の表面外観は良好で、柔軟な風合いを有し、耐摩耗性も良好であった。
(Granting PVA)
Using the same PVA aqueous solution as in Example 1, a PVA-attached sheet having an adhesion amount of PVA of 30% by mass with respect to the fiber mass of the nonwoven fabric for fibrous base material was obtained.
(Fiber miniaturization (sea removal))
The nonwoven fabric for fibrous base material was treated in the same manner as in Example 1 to obtain a sea removal sheet from which sea components of the sea-island type composite fibers were removed. The average single fiber diameter on the surface of the sea removal sheet was 4.4 μm.
(Preparation of polyurethane liquid)
The same water dispersion type polyurethane liquid as in Example 1 was used.
(Applying polyurethane)
In the same manner as in Example 1, a polyurethane-applied sheet was obtained.
(Removal of PVA)
In the same manner as in Example 1, a PVA removal sheet was obtained.
(Half-cut, brushed, dyed, reduced cleaning)
A sheet-like material was obtained in the same manner as in Example 1. The surface appearance of the obtained sheet-like material was good, had a soft texture, and had good wear resistance.
 [実施例4]
 (PVA水溶液の調製)
 ケン化度99%、重合度1100のPVA(日本合成化学株式会社製NM-11)を25℃の水に添加し、90℃まで昇温後、2時間攪拌しながら90℃を保持して、固形分10質量%の水溶液に調製し、PVA水溶液を得た。PVA水溶液に含有される酢酸メチル、酢酸、メタノール濃度はそれぞれ7.2ppm、0.4ppm、2.4ppmであった。
 (繊維質基材用不織布)
 実施例1と同様の繊維質基材用不織布を用いた。
 (PVAの付与)
 上記の繊維質基材用不織布に上記のPVA水溶液を含浸させ、140℃の温度で10分間加熱乾燥を行い、繊維質基材用不織布の繊維質量に対するPVAの付着量が30質量%のPVA付与シートを得た。
 (繊維極細化(脱海))
 実施例1と同様にして、上記の繊維質基材用不織布から脱海シートを得た。
 (ポリウレタン液の調製)
 実施例1と同様の水分散型ポリウレタン液を用いた。
 (ポリウレタンの付与)
 実施例1と同様にして、ポリウレタン付与シートを得た。
 (PVAの除去)
 実施例1と同様にして、PVA除去シートを得た。
 (半裁・起毛・染色・還元洗浄)
 実施例1と同様にしてシート状物を得た。得られたシート状物の表面外観は良好で、柔軟な風合いを有し、耐摩耗性も良好であった。
[Example 4]
(Preparation of PVA aqueous solution)
PVA having a saponification degree of 99% and a polymerization degree of 1100 (NM-11 manufactured by Nippon Synthetic Chemical Co., Ltd.) was added to water at 25 ° C., heated to 90 ° C., maintained at 90 ° C. with stirring for 2 hours, A PVA aqueous solution was obtained by preparing an aqueous solution having a solid content of 10% by mass. The concentrations of methyl acetate, acetic acid, and methanol contained in the PVA aqueous solution were 7.2 ppm, 0.4 ppm, and 2.4 ppm, respectively.
(Nonwoven fabric for fibrous base materials)
The same nonwoven fabric for a fibrous base material as in Example 1 was used.
(Granting PVA)
The above PVA aqueous solution is impregnated into the above-mentioned nonwoven fabric for a fibrous base material, heat-dried at a temperature of 140 ° C. for 10 minutes, and the amount of PVA applied to the fiber mass of the nonwoven fabric for a fibrous base material is 30 mass%. A sheet was obtained.
(Fiber miniaturization (sea removal))
In the same manner as in Example 1, a sea removal sheet was obtained from the nonwoven fabric for fibrous base material.
(Preparation of polyurethane liquid)
The same water dispersion type polyurethane liquid as in Example 1 was used.
(Applying polyurethane)
In the same manner as in Example 1, a polyurethane-applied sheet was obtained.
(Removal of PVA)
In the same manner as in Example 1, a PVA removal sheet was obtained.
(Half-cut, brushed, dyed, reduced cleaning)
A sheet-like material was obtained in the same manner as in Example 1. The surface appearance of the obtained sheet-like material was good, had a soft texture, and had good wear resistance.
 [実施例5]
 (PVA水溶液の調製)
 ケン化度99%、重合度2600のPVA(日本合成化学株式会社製NH-26)を25℃の水に添加し、90℃まで昇温後、2時間攪拌しながら90℃を保持して、固形分10質量%の水溶液に調製し、PVA水溶液を得た。PVA水溶液に含有される酢酸メチル、酢酸、メタノール濃度はそれぞれ32.2ppm、8.3ppm、20.1ppmであった。
 (繊維質基材用不織布)
 実施例1と同様の繊維質基材用不織布を用いた。
 (PVAの付与)
 上記の繊維質基材用不織布に上記のPVA水溶液を含浸させ、140℃の温度で10分間加熱乾燥を行い、繊維質基材用不織布の繊維質量に対するPVAの付着量が10質量%のPVA付与シートを得た。
 (繊維極細化(脱海))
 実施例1と同様にして、上記の繊維質基材用不織布から脱海シートを得た。
 (ポリウレタン液の調製)
 実施例1と同様の水分散型ポリウレタン液を用いた。
 (ポリウレタンの付与)
 実施例1と同様にして、ポリウレタン付与シートを得た。
 (PVAの除去)
 実施例1と同様にして、PVA除去シートを得た。
 (半裁・起毛・染色・還元洗浄)
 実施例1と同様にしてシート状物を得た。得られたシート状物の表面外観は良好で、柔軟な風合いを有し、耐摩耗性も良好であった。
[Example 5]
(Preparation of PVA aqueous solution)
PVA having a saponification degree of 99% and a polymerization degree of 2600 (NH-26 manufactured by Nippon Synthetic Chemical Co., Ltd.) was added to water at 25 ° C., heated to 90 ° C., maintained at 90 ° C. with stirring for 2 hours, A PVA aqueous solution was obtained by preparing an aqueous solution having a solid content of 10% by mass. The concentrations of methyl acetate, acetic acid and methanol contained in the PVA aqueous solution were 32.2 ppm, 8.3 ppm and 20.1 ppm, respectively.
(Nonwoven fabric for fibrous base materials)
The same nonwoven fabric for a fibrous base material as in Example 1 was used.
(Granting PVA)
The nonwoven fabric for a fibrous base material is impregnated with the above PVA aqueous solution, dried by heating at a temperature of 140 ° C. for 10 minutes, and the amount of PVA applied to the fiber mass of the nonwoven fabric for a fibrous base material is 10 mass%. A sheet was obtained.
(Fiber miniaturization (sea removal))
In the same manner as in Example 1, a sea removal sheet was obtained from the nonwoven fabric for fibrous base material.
(Preparation of polyurethane liquid)
The same water dispersion type polyurethane liquid as in Example 1 was used.
(Applying polyurethane)
In the same manner as in Example 1, a polyurethane-applied sheet was obtained.
(Removal of PVA)
In the same manner as in Example 1, a PVA removal sheet was obtained.
(Half-cut, brushed, dyed, reduced cleaning)
A sheet-like material was obtained in the same manner as in Example 1. The surface appearance of the obtained sheet-like material was good, had a soft texture, and had good wear resistance.
 [実施例6]
 (PVA水溶液の調製)
 実施例1と同様にして、PVA水溶液を得た。
 (繊維質基材用不織布)
 海成分として、5-スルホイソフタル酸ナトリウムを8mol%共重合したポリエチレンテレフタレートを用い、島成分として、ポリエチレンテレフタレートを用い、海成分20質量%、島成分80質量%の複合比率で、島数16島/1フィラメント、平均単繊維直径30μmの海島型複合繊維を得た。得られた海島型複合繊維を繊維長51mmにカットしてステープルとし、カードおよびクロスラッパーを通して繊維ウェブを形成し、ウェブの両面に、ポリエチレンテレフタレート(PET)の84dtex-72フィラメント、撚り数2000T/mの強撚糸使いの平織物を積層し、ニードルパンチ処理により不織布とした。このようにして得られた不織布を98℃の温度の湯中に2分間浸漬させて収縮させ、100℃の温度で5分間乾燥させ、繊維質基材用不織布とした。
[Example 6]
(Preparation of PVA aqueous solution)
In the same manner as in Example 1, a PVA aqueous solution was obtained.
(Nonwoven fabric for fibrous base materials)
As the sea component, polyethylene terephthalate copolymerized with 8 mol% of sodium 5-sulfoisophthalate is used, and as the island component, polyethylene terephthalate is used. The sea component is 20% by mass and the island component is 80% by mass. / 1 filament, sea island type composite fiber having an average single fiber diameter of 30 μm was obtained. The obtained sea-island type composite fiber was cut into a fiber length of 51 mm to form a staple, and a fiber web was formed through a card and a cross wrap. 84 dtex-72 filaments of polyethylene terephthalate (PET) on both sides of the web and a twist of 2000 T / m A plain woven fabric using strong twisted yarn was laminated and made into a nonwoven fabric by needle punching. The nonwoven fabric thus obtained was immersed in hot water at a temperature of 98 ° C. for 2 minutes to shrink and dried at a temperature of 100 ° C. for 5 minutes to obtain a nonwoven fabric for a fibrous base material.
 (PVAの付与)
 上記の繊維質基材用不織布に上記のPVA水溶液を含浸させ、140℃の温度で10分間加熱乾燥を行い、繊維質基材用不織布の繊維質量に対するPVAの付着量が15質量%のPVA付与シートを得た。
 (繊維極細化(脱海))
 上記の繊維質基材用不織布を実施例1と同様にして処理を行い、海島型複合繊維の海成分を除去した脱海シートを得た。脱海シート表面の平均単繊維直径は、4.4μmであった。
 (ポリウレタン液の調製)
 実施例1と同様の水分散型ポリウレタン液を用いた。
 (ポリウレタンの付与)
 実施例1と同様にして、ポリウレタン付与シートを得た。
 (PVAの除去)
 実施例1と同様にして、PVA除去シートを得た。
 (半裁・起毛・染色・還元洗浄)
 実施例1と同様にしてシート状物を得た。得られたシート状物の表面外観は良好で、柔軟な風合いを有し、耐摩耗性も良好であった。
(Granting PVA)
The above PVA aqueous solution is impregnated into the above-mentioned nonwoven fabric for a fibrous base material, dried by heating at a temperature of 140 ° C. for 10 minutes, and the amount of PVA applied to the fiber mass of the nonwoven fabric for a fibrous base material is 15 mass%. A sheet was obtained.
(Fiber miniaturization (sea removal))
The nonwoven fabric for fibrous base material was treated in the same manner as in Example 1 to obtain a sea removal sheet from which sea components of the sea-island type composite fibers were removed. The average single fiber diameter on the surface of the sea removal sheet was 4.4 μm.
(Preparation of polyurethane liquid)
The same water dispersion type polyurethane liquid as in Example 1 was used.
(Applying polyurethane)
In the same manner as in Example 1, a polyurethane-applied sheet was obtained.
(Removal of PVA)
In the same manner as in Example 1, a PVA removal sheet was obtained.
(Half-cut, brushed, dyed, reduced cleaning)
A sheet-like material was obtained in the same manner as in Example 1. The surface appearance of the obtained sheet-like material was good, had a soft texture, and had good wear resistance.
 [実施例7]
 (PVA水溶液の調製)
 実施例1と同様にして、PVA水溶液を得た。
 (繊維質基材用不織布)
 実施例1と同様にして、繊維質基材用不織布を得た。
 (PVAの付与)
 実施例1と同様にして、繊維質基材用不織布の繊維質量に対するPVAの付着量が30質量%のPVA付与シートを得た。
 (繊維極細化(脱海))
 実施例1と同様にして、脱海シートを得た。
 (ポリウレタン液の調製)
 ポリオールにポリヘキサメチレンカーボネートを適用し、イソシアネートにジシクロヘキシルメタンジイソシアネートを適用したポリカーボネート系自己乳化型ポリウレタン液の固形分100質量部に対して、増粘剤(サンノプコ株式会社製SNシックナー627N)5質量部を加え、水によって全体をポリウレタン固形分20質量%に調製し、水分散型ポリウレタン液を得た。
 (ポリウレタンの付与)
 上記のPVAを付与した脱海シートに、上記のポリウレタン液を含浸させ、乾燥温度100℃の温度で30分間熱風乾燥させることにより、不織布の繊維質量に対するポリウレタンの付着量が30質量%となるようにポリウレタンを付与したシートを得た。
 (PVAの除去)
 実施例1と同様にして、PVA除去シートを得た。
 (半裁・起毛・染色・還元洗浄)
 実施例1と同様にしてシート状物を得た。得られたシート状物の表面外観は良好で、柔軟な風合いを有し、耐摩耗性も良好であった。
[Example 7]
(Preparation of PVA aqueous solution)
In the same manner as in Example 1, a PVA aqueous solution was obtained.
(Nonwoven fabric for fibrous base materials)
In the same manner as in Example 1, a nonwoven fabric for fibrous base material was obtained.
(Granting PVA)
In the same manner as in Example 1, a PVA-applied sheet having a PVA adhesion amount of 30 mass% with respect to the fiber mass of the nonwoven fabric for fibrous base material was obtained.
(Fiber miniaturization (sea removal))
In the same manner as in Example 1, a sea removal sheet was obtained.
(Preparation of polyurethane liquid)
5 parts by mass of a thickener (SN thickener 627N manufactured by San Nopco Co., Ltd.) with respect to 100 parts by mass of the solid content of a polycarbonate-based self-emulsifying polyurethane liquid in which polyhexamethylene carbonate is applied to polyol and dicyclohexylmethane diisocyanate is applied to isocyanate. And the whole was adjusted to 20 mass% polyurethane solids with water to obtain a water-dispersed polyurethane liquid.
(Applying polyurethane)
The seawater-sealed sheet provided with the above PVA is impregnated with the above-mentioned polyurethane liquid and dried with hot air at a drying temperature of 100 ° C. for 30 minutes, so that the amount of polyurethane attached to the nonwoven fabric fiber mass becomes 30% by mass. A sheet with polyurethane added thereto was obtained.
(Removal of PVA)
In the same manner as in Example 1, a PVA removal sheet was obtained.
(Half-cut, brushed, dyed, reduced cleaning)
A sheet-like material was obtained in the same manner as in Example 1. The surface appearance of the obtained sheet-like material was good, had a soft texture, and had good wear resistance.
 [実施例8]
 (PVA水溶液の調製)
 実施例5と同様にして、PVA水溶液を得た。
 (繊維質基材用不織布)
 実施例1と同様の繊維質基材用不織布を用いた。
 (PVAの付与)
 上記の繊維質基材用不織布に上記のPVA水溶液を含浸させ、140℃の温度で10分間加熱乾燥を行い、繊維質基材用不織布の繊維質量に対するPVAの付着量が10質量%のPVA付与シートを得た。
 (繊維極細化(脱海))
 実施例1と同様にして、上記の繊維質基材用不織布から脱海シートを得た。
 (ポリウレタン液の調製)
 ポリオールにポリヘキサメチレンカーボネートを適用し、イソシアネートにジシクロヘキシルメタンジイソシアネートを適用したポリカーボネート系自己乳化型ポリウレタン液の固形分100質量部に対して、感熱凝固剤として過硫酸アンモニウム(APS)2質量部を加え、水によって全体を固形分20質量%に調製し、水分散型ポリウレタン液を得た。感熱凝固温度は、72℃であった。
 (ポリウレタンの付与)
 上記のPVAを付与した脱海シートに、上記のポリウレタン液を含浸させ、80℃の温水中で凝固させ、100℃で15分間熱風乾燥させることにより、不織布の繊維質量に対するポリウレタンの付着量が30質量%となるようにポリウレタンを付与したシートを得た。
 (PVAの除去)
 実施例1と同様にして、PVA除去シートを得た。
 (半裁・起毛・染色・還元洗浄)
 実施例1と同様にしてシート状物を得た。得られたシート状物の表面外観は良好で、柔軟な風合いを有し、耐摩耗性も良好であった。
[Example 8]
(Preparation of PVA aqueous solution)
In the same manner as in Example 5, a PVA aqueous solution was obtained.
(Nonwoven fabric for fibrous base materials)
The same nonwoven fabric for a fibrous base material as in Example 1 was used.
(Granting PVA)
The nonwoven fabric for a fibrous base material is impregnated with the above PVA aqueous solution, dried by heating at a temperature of 140 ° C. for 10 minutes, and the amount of PVA applied to the fiber mass of the nonwoven fabric for a fibrous base material is 10 mass%. A sheet was obtained.
(Fiber miniaturization (sea removal))
In the same manner as in Example 1, a sea removal sheet was obtained from the nonwoven fabric for fibrous base material.
(Preparation of polyurethane liquid)
To 100 parts by mass of a polycarbonate-based self-emulsifying polyurethane liquid in which polyhexamethylene carbonate is applied to the polyol and dicyclohexylmethane diisocyanate is applied to the isocyanate, 2 parts by mass of ammonium persulfate (APS) is added as a heat-sensitive coagulant, The whole was prepared to a solid content of 20% by mass with water to obtain a water-dispersed polyurethane liquid. The thermal coagulation temperature was 72 ° C.
(Applying polyurethane)
The seawater-sealed sheet provided with the above PVA is impregnated with the above-mentioned polyurethane liquid, solidified in warm water at 80 ° C., and dried with hot air at 100 ° C. for 15 minutes, whereby the amount of polyurethane attached to the fiber mass of the nonwoven fabric is 30 The sheet | seat which provided the polyurethane so that it might become mass% was obtained.
(Removal of PVA)
In the same manner as in Example 1, a PVA removal sheet was obtained.
(Half-cut, brushed, dyed, reduced cleaning)
A sheet-like material was obtained in the same manner as in Example 1. The surface appearance of the obtained sheet-like material was good, had a soft texture, and had good wear resistance.
 [比較例1]
 (PVA水溶液の調製)
 実施例1と同様にして、PVA水溶液を得た。
 (繊維質基材用不織布)
 実施例1と同様の繊維質基材用不織布を用いた。
 (繊維極細化(脱海))
 上記で得られた繊維質基材用不織布を95℃の温度に加熱した濃度10g/リットルの水酸化ナトリウム水溶液に浸漬して10分間処理を行い、海島型複合繊維の海成分を除去した脱海シートを得た。脱海シート表面の平均単繊維直径は、3μmであった。
 (PVAの付与)
 上記の脱海シートに実施例1で得たPVA水溶液を含浸させ、140℃の温度で10分間加熱乾燥を行い、脱海シートに対するPVAの付着量が30質量%のPVA付与シートを得た。
 (ポリウレタン液の調製)
 実施例1と同様の水分散型ポリウレタン液を用いた。
 (ポリウレタンの付与)
 上記のPVAを付与した脱海シートに、上記のポリカーボネート系ポリウレタン液を含浸させ、100℃の温度の湿熱雰囲気下で5分間処理後、乾燥温度120℃の温度で5分間熱風乾燥させ、さらに140℃の温度で2分間乾熱処理を行うことにより、極細繊維質量に対するポリウレタンの付着量が30質量%となるようにポリウレタンを付与したシートを得た。
 (PVAの除去)
 実施例1と同様にして、PVA除去シートを得た。
 (半裁・起毛・染色・還元洗浄)
 実施例1と同様にしてシート状物を得た。得られたシート状物の表面外観は良好で、柔軟な風合いを有していたが、摩耗減量は多めであった。
[Comparative Example 1]
(Preparation of PVA aqueous solution)
In the same manner as in Example 1, a PVA aqueous solution was obtained.
(Nonwoven fabric for fibrous base materials)
The same nonwoven fabric for a fibrous base material as in Example 1 was used.
(Fiber miniaturization (sea removal))
The seawater-free nonwoven fabric for fiber base material obtained above is immersed in a 10 g / liter sodium hydroxide aqueous solution heated to a temperature of 95 ° C. and treated for 10 minutes to remove sea components from the sea-island composite fibers. A sheet was obtained. The average single fiber diameter on the surface of the sea removal sheet was 3 μm.
(Granting PVA)
The seawater-free sheet was impregnated with the PVA aqueous solution obtained in Example 1, and heat-dried at a temperature of 140 ° C. for 10 minutes to obtain a PVA-coated sheet having a PVA adhesion amount of 30% by mass on the seawater-free sheet.
(Preparation of polyurethane liquid)
The same water dispersion type polyurethane liquid as in Example 1 was used.
(Applying polyurethane)
The seawater-free sheet provided with the above PVA is impregnated with the above-mentioned polycarbonate-based polyurethane liquid, treated in a moist and hot atmosphere at a temperature of 100 ° C. for 5 minutes, and then dried with hot air at a drying temperature of 120 ° C. for 5 minutes, and further 140 By performing a dry heat treatment at a temperature of 2 ° C. for 2 minutes, a sheet to which polyurethane was applied so that the amount of polyurethane attached to the ultrafine fiber mass was 30% by mass was obtained.
(Removal of PVA)
In the same manner as in Example 1, a PVA removal sheet was obtained.
(Half-cut, brushed, dyed, reduced cleaning)
A sheet-like material was obtained in the same manner as in Example 1. The surface appearance of the obtained sheet-like material was good and had a soft texture, but the wear loss was much.
 [比較例2]
 (PVA水溶液の調製)
 ケン化度87%、重合度500のPVA(日本合成化学株式会社製GL-05)を25℃の水に添加し、90℃まで昇温後、2時間攪拌しながら90℃を保持して、固形分10質量%の水溶液に調製し、PVA水溶液を得た。PVA水溶液に含有される酢酸メチル、酢酸、メタノール濃度はそれぞれ70.1ppm、40.1ppm、100.3ppmであった。
 (繊維質基材用不織布)
 実施例1と同様の繊維質基材用不織布を用いた。
 (PVAの付与)
 上記の繊維質基材用不織布に上記のPVA水溶液を含浸させ、含浸後の絞りを調節してPVAの付着量を変更した以外は実施例1と同様にして、繊維質基材用不織布の繊維質量に対するPVAの付着量が10質量%のPVA付与シートを得た。
 (繊維極細化(脱海))
 実施例1と同様にして、上記の繊維質基材用不織布から脱海シートを得た。
 (ポリウレタン液の調製)
 実施例1と同様の水分散型ポリウレタン液を用いた。
 (ポリウレタンの付与)
 実施例1と同様にして、ポリウレタン付与シートを得た。
 (PVAの除去)
 実施例1と同様にして、PVA除去シートを得た。
 (半裁・起毛・染色・還元洗浄)
 実施例1と同様にしてシート状物を得た。得られたシート状物は、PVAがアルカリ水溶液や水分散型ポリウレタン液に一部溶解したことによって均一な付与状態とならず、表面外観は繊維の分散状態が悪く、立毛の緻密感がない不良であり、風合いは硬いものであった。
[Comparative Example 2]
(Preparation of PVA aqueous solution)
PVA having a saponification degree of 87% and a polymerization degree of 500 (GL-05 manufactured by Nippon Synthetic Chemical Co., Ltd.) was added to water at 25 ° C., heated to 90 ° C., maintained at 90 ° C. with stirring for 2 hours, A PVA aqueous solution was obtained by preparing an aqueous solution having a solid content of 10% by mass. The concentrations of methyl acetate, acetic acid and methanol contained in the PVA aqueous solution were 70.1 ppm, 40.1 ppm and 100.3 ppm, respectively.
(Nonwoven fabric for fibrous base materials)
The same nonwoven fabric for a fibrous base material as in Example 1 was used.
(Granting PVA)
The non-woven fabric for fibrous base material was impregnated with the above PVA aqueous solution, and the amount of PVA adhered was changed by adjusting the squeezing after the impregnation to change the non-woven fabric for fibrous base material in the same manner as in Example 1. A PVA-applied sheet having an adhesion amount of PVA with respect to mass of 10% by mass was obtained.
(Fiber miniaturization (sea removal))
In the same manner as in Example 1, a sea removal sheet was obtained from the nonwoven fabric for fibrous base material.
(Preparation of polyurethane liquid)
The same water dispersion type polyurethane liquid as in Example 1 was used.
(Applying polyurethane)
In the same manner as in Example 1, a polyurethane-applied sheet was obtained.
(Removal of PVA)
In the same manner as in Example 1, a PVA removal sheet was obtained.
(Half-cut, brushed, dyed, reduced cleaning)
A sheet-like material was obtained in the same manner as in Example 1. The obtained sheet-like material does not have a uniform applied state due to partial dissolution of PVA in an alkaline aqueous solution or a water-dispersed polyurethane liquid, and the surface appearance is poor in the state of fiber dispersion and inferior nap density. And the texture was hard.
 [比較例3]
 (PVA水溶液の調製)
 ケン化度99%、重合度500のPVA(日本合成化学株式会社製NL-05)を25℃の水に添加し、90℃まで昇温後、2時間攪拌しながら90℃を保持して、固形分10質量%の水溶液に調製し、PVA水溶液を得た。PVA水溶液に含有される酢酸メチル、酢酸、メタノール濃度はそれぞれ6.1ppm、0.4ppm、1.1ppmであった。
 (繊維質基材用不織布)
 実施例1と同様の繊維質基材用不織布を用いた。
 (PVAの付与)
 上記の繊維質基材用不織布に上記のPVA水溶液を含浸させ、含浸後の絞りを調節してPVAの付着量を変更した以外は実施例1と同様にして、繊維質基材用不織布の繊維質量に対するPVAの付着量が10質量%のPVA付与シートを得た。
 (繊維極細化(脱海))
 実施例1と同様にして、上記の繊維質基材用不織布から脱海シートを得た。
 (ポリウレタン液の調製)
 実施例1と同様の水分散型ポリウレタン液を用いた。
 (ポリウレタンの付与)
 実施例1と同様にして、ポリウレタン付与シートを得た。
 (PVAの除去)
 実施例1と同様にして、PVA除去シートを得た。
 (半裁・起毛・染色・還元洗浄)
 実施例1と同様にしてシート状物を得た。得られたシート状物は、PVAがアルカリ水溶液や水分散型ポリウレタン液に一部溶解したことによって均一な付与状態とならず、表面外観は繊維の分散状態が悪く、立毛の緻密感がない不良であり、風合いは硬いものであった。
[Comparative Example 3]
(Preparation of PVA aqueous solution)
PVA having a saponification degree of 99% and a polymerization degree of 500 (NL-05 manufactured by Nippon Synthetic Chemical Co., Ltd.) was added to water at 25 ° C., heated to 90 ° C., maintained at 90 ° C. with stirring for 2 hours, A PVA aqueous solution was obtained by preparing an aqueous solution having a solid content of 10% by mass. The concentrations of methyl acetate, acetic acid, and methanol contained in the PVA aqueous solution were 6.1 ppm, 0.4 ppm, and 1.1 ppm, respectively.
(Nonwoven fabric for fibrous base materials)
The same nonwoven fabric for a fibrous base material as in Example 1 was used.
(Granting PVA)
The non-woven fabric for fibrous base material was impregnated with the above PVA aqueous solution, and the amount of PVA adhered was changed by adjusting the squeezing after the impregnation to change the fibers of the non-woven fabric for fibrous base material. A PVA-applied sheet having an adhesion amount of PVA with respect to mass of 10% by mass was obtained.
(Fiber miniaturization (sea removal))
In the same manner as in Example 1, a sea removal sheet was obtained from the nonwoven fabric for fibrous base material.
(Preparation of polyurethane liquid)
The same water dispersion type polyurethane liquid as in Example 1 was used.
(Applying polyurethane)
In the same manner as in Example 1, a polyurethane-applied sheet was obtained.
(Removal of PVA)
In the same manner as in Example 1, a PVA removal sheet was obtained.
(Half-cut, brushed, dyed, reduced cleaning)
A sheet-like material was obtained in the same manner as in Example 1. The obtained sheet-like material does not have a uniform applied state due to partial dissolution of PVA in an alkaline aqueous solution or water-dispersed polyurethane liquid, and the surface appearance is poor in fiber dispersion state and inferior feeling of raised nail And the texture was hard.
 [比較例4]
 (PVA水溶液の調製)
 実施例1と同様にして、PVA水溶液を得た。
 (繊維質基材用不織布)
 実施例1と同様の繊維質基材用不織布を用いた。
 (PVAの付与)
 実施例1と同様のPVA水溶液を用い、含浸後の絞りを調節してPVAの付着量を変更した以外は実施例1と同様にして、繊維質基材用不織布の繊維質量に対するPVAの付着量が55質量%のPVA付与シートを得た。
 (繊維極細化(脱海))
 実施例1と同様にして、上記の繊維質基材用不織布から脱海シートを得た。
 (ポリウレタン液の調製)
 実施例1と同様の水分散型ポリウレタン液を用いた。
 (ポリウレタンの付与)
 実施例1と同様にして、ポリウレタン付与シートを得た。
 (PVAの除去)
 実施例1と同様にして、PVA除去シートを得た。
 (半裁・起毛・染色・還元洗浄)
 実施例1と同様にしてシート状物を得た。得られたシート状物は、風合いは柔軟であったが、PVAが多すぎたためにポリウレタンによる繊維の把持が不十分で、表面外観は立毛が長すぎて不良となり、また耐摩耗性は悪いものであった。
[Comparative Example 4]
(Preparation of PVA aqueous solution)
In the same manner as in Example 1, a PVA aqueous solution was obtained.
(Nonwoven fabric for fibrous base materials)
The same nonwoven fabric for a fibrous base material as in Example 1 was used.
(Granting PVA)
Using the same PVA aqueous solution as in Example 1 and adjusting the squeezing after impregnation to change the amount of PVA attached, the amount of PVA attached to the fiber mass of the nonwoven fabric for fibrous base material was the same as in Example 1. Of 55% by mass was obtained.
(Fiber miniaturization (sea removal))
In the same manner as in Example 1, a sea removal sheet was obtained from the nonwoven fabric for fibrous base material.
(Preparation of polyurethane liquid)
The same water dispersion type polyurethane liquid as in Example 1 was used.
(Applying polyurethane)
In the same manner as in Example 1, a polyurethane-applied sheet was obtained.
(Removal of PVA)
In the same manner as in Example 1, a PVA removal sheet was obtained.
(Half-cut, brushed, dyed, reduced cleaning)
A sheet-like material was obtained in the same manner as in Example 1. The obtained sheet-like material was soft in texture, but because of too much PVA, the fiber was not sufficiently gripped by polyurethane, the surface appearance was too long and the wear was poor, and the wear resistance was poor Met.
 [比較例5]
 PVA水溶液の調製、PVAの付与と除去を行わない以外は実施例1と同様にしてシート状物を得た。得られたシート状物の風合いは硬くなった。また、表面外観は立毛がなく、不良であった。
 各実施例および比較例の試験条件およびシート状物の評価結果を、表1と表2に示す。
[Comparative Example 5]
A sheet-like material was obtained in the same manner as in Example 1 except that the aqueous PVA solution was not prepared and the application and removal of PVA were not performed. The texture of the obtained sheet was hardened. Further, the surface appearance was poor with no raised hairs.
Tables 1 and 2 show the test conditions of each Example and Comparative Example and the evaluation results of the sheet-like material.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1~8で得られたシート状物は、いずれも表面外観は良好で、柔軟な風合いを有し、耐摩耗性も良好であった。一方、比較例1と4で得られたシート状物の耐摩耗性は悪く、比較例2~5で得られたシート状物は、いずれも表面外観は不良であった。また、比較例2、3、5で得られたシート状物の風合いは硬かった。 The sheet-like materials obtained in Examples 1 to 8 all had a good surface appearance, a soft texture, and good wear resistance. On the other hand, the abrasion resistance of the sheet-like materials obtained in Comparative Examples 1 and 4 was poor, and the sheet-like materials obtained in Comparative Examples 2 to 5 were all poor in surface appearance. Moreover, the texture of the sheet-like material obtained in Comparative Examples 2, 3, and 5 was hard.
 本発明により得られるシート状物は、家具、椅子および壁材や、自動車、電車および航空機などの車輛室内における座席、天井および内装などの表皮材として非常に優美な外観を有する内装材、シャツ、ジャケット、カジュアルシューズ、スポーツシューズ、紳士靴および婦人靴等の靴のアッパー、トリム等、鞄、ベルト、財布等、およびそれらの一部に使用した衣料用資材、ワイピングクロス、研磨布およびCDカーテン等の工業用資材として好適に用いることができる。 The sheet-like material obtained by the present invention includes furniture, chairs and wall materials, interior materials having a very elegant appearance as a skin material such as seats, ceilings and interiors in vehicle interiors such as automobiles, trains and aircraft, shirts, Jackets, casual shoes, sports shoes, uppers and trims for shoes such as men's shoes and women's shoes, bags, belts, wallets, etc., clothing materials used for some of them, wiping cloth, polishing cloth, CD curtains, etc. It can be suitably used as an industrial material.

Claims (6)

  1.  次の1~5の工程を順に行うことを特徴とするシート状物の製造方法。
    1.ケン化度が98%以上で、重合度が800~3500であるポリビニルアルコールを水に溶解させて、酢酸メチル、酢酸、メタノールの濃度がそれぞれ50ppm以下であるポリビニルアルコール水溶液を得る工程、
    2.極細繊維発現型繊維を主構成成分とする繊維質基材に、該ポリビニルアルコール水溶液を付与することで、繊維質基材に含まれる繊維質量に対して該ポリビニルアルコールを0.1~50質量%付与する工程、
    3.極細繊維発現型繊維を主構成成分とする繊維質基材から、平均単繊維直径が0.3~7μmの極細繊維を発現する工程、
    4.該ポリビニルアルコールが付与された極細繊維を主構成成分とする繊維質基材に、水分散型ポリウレタンを付与する工程、
    5.該水分散型ポリウレタンを付与した極細繊維を主構成成分とする繊維質基材から、ポリビニルアルコールを除去する工程。
    A method for producing a sheet-like material, wherein the following steps 1 to 5 are sequentially performed.
    1. A step of dissolving polyvinyl alcohol having a saponification degree of 98% or more and a polymerization degree of 800 to 3500 in water to obtain a polyvinyl alcohol aqueous solution having a concentration of methyl acetate, acetic acid or methanol of 50 ppm or less,
    2. By applying the aqueous polyvinyl alcohol solution to a fibrous base material containing an ultrafine fiber-expressing fiber as a main constituent, the polyvinyl alcohol is added in an amount of 0.1 to 50% by mass with respect to the fiber mass contained in the fibrous base material. The step of applying,
    3. A step of expressing an ultrafine fiber having an average single fiber diameter of 0.3 to 7 μm from a fibrous base material having an ultrafine fiber expression type fiber as a main constituent component;
    4). A step of imparting water-dispersible polyurethane to a fibrous base material comprising, as a main constituent, ultrafine fibers to which the polyvinyl alcohol has been imparted,
    5. A step of removing polyvinyl alcohol from a fibrous base material comprising, as a main constituent, ultrafine fibers provided with the water-dispersed polyurethane.
  2.  前記ポリビニルアルコール水溶液の酢酸メチル、酢酸、メタノールの濃度がそれぞれ0.1~50ppmであることを特徴とする、請求項1に記載のシート状物の製造方法。 The method for producing a sheet-like product according to claim 1, wherein the concentration of methyl acetate, acetic acid, and methanol in the polyvinyl alcohol aqueous solution is 0.1 to 50 ppm, respectively.
  3.  極細繊維を発現する工程が、アルカリ水溶液で処理する工程であることを特徴とする、請求項1又は2に記載のシート状物の製造方法。 The method for producing a sheet-like product according to claim 1 or 2, wherein the step of developing ultrafine fibers is a step of treating with an alkaline aqueous solution.
  4.  前記ポリビニルアルコールを付与し、80~170℃で加熱する工程を含むことを特徴とする、請求項1~3に記載のシート状物の製造方法。



    The method for producing a sheet-like material according to any one of claims 1 to 3, comprising a step of applying the polyvinyl alcohol and heating at 80 to 170 ° C.



  5.  前記極細繊維発現型繊維を主構成成分とする繊維質基材が織物および/または編物と絡合一体化していることを特徴とする、請求項1~4の何れか1項に記載のシート状物の製造方法。 The sheet-like material according to any one of claims 1 to 4, wherein a fibrous base material comprising the ultrafine fiber-expressing fiber as a main constituent is intertwined with a woven fabric and / or a knitted fabric. Manufacturing method.
  6.  請求項1~5のいずれか1項に記載のシート状物の製造方法によって得られるシート状物の密度が0.2~0.7g/cmであることを特徴とするシート状物。 A sheet material obtained by the method for producing a sheet material according to any one of claims 1 to 5, wherein the density of the sheet material is 0.2 to 0.7 g / cm 3 .
PCT/JP2013/081891 2012-11-30 2013-11-27 Sheet-shaped object and process for producing said sheet-shaped object WO2014084253A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380062155.1A CN104838063B (en) 2012-11-30 2013-11-27 Tablet and the manufacture method of this tablet
JP2014549860A JP6225917B2 (en) 2012-11-30 2013-11-27 Sheet material and method for producing the sheet material
US14/647,923 US20150315741A1 (en) 2012-11-30 2013-11-27 Sheet-shaped material and process for producing said sheet-shaped material (as amended)
EP13859092.2A EP2927368B1 (en) 2012-11-30 2013-11-27 Process for producing a leather-like sheet-shaped object
KR1020157015928A KR102090355B1 (en) 2012-11-30 2013-11-27 Sheet-shaped object and process for producing said sheet-shaped object

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012261805 2012-11-30
JP2012-261805 2012-11-30

Publications (1)

Publication Number Publication Date
WO2014084253A1 true WO2014084253A1 (en) 2014-06-05

Family

ID=50827885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081891 WO2014084253A1 (en) 2012-11-30 2013-11-27 Sheet-shaped object and process for producing said sheet-shaped object

Country Status (7)

Country Link
US (1) US20150315741A1 (en)
EP (1) EP2927368B1 (en)
JP (1) JP6225917B2 (en)
KR (1) KR102090355B1 (en)
CN (1) CN104838063B (en)
TW (1) TWI580840B (en)
WO (1) WO2014084253A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129602A1 (en) * 2014-02-27 2015-09-03 東レ株式会社 Sheet-like material and method for producing same
WO2019198357A1 (en) 2018-04-12 2019-10-17 東レ株式会社 Sheet-shaped article and method for producing same
WO2019244862A1 (en) 2018-06-20 2019-12-26 東レ株式会社 Method of manufacturing sheet article
JP2020530532A (en) * 2017-08-02 2020-10-22 アルカンターラ エス.ピー.エー.Alcantara S.P.A. Methods for the preparation of suede-like microfiber non-woven fabrics
JP2021021172A (en) * 2019-07-30 2021-02-18 東レ株式会社 Sheet-like material and method for producing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113474509B (en) * 2019-03-29 2023-10-31 东丽株式会社 Sheet and method for producing same
CN115075023B (en) * 2022-07-12 2024-02-06 百草边大生物科技(青岛)有限公司 Preparation method of large biological water-based synthetic leather containing tea active ingredients

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533256A (en) * 1991-07-23 1993-02-09 Kuraray Co Ltd Production of fibrous sheet-like material
JP2002030579A (en) 2000-07-17 2002-01-31 Toray Ind Inc Plush leathery sheet-like product and method for producing the same
JP2002030577A (en) * 2000-05-10 2002-01-31 Toray Ind Inc Method for producing leathery sheet-like product
JP2003096676A (en) 2001-09-25 2003-04-03 Toray Ind Inc Method for producing leather-like sheet-like article
JP2009293150A (en) * 2008-06-05 2009-12-17 Toray Ind Inc Sheet-shaped article
JP2010248683A (en) * 2009-03-26 2010-11-04 Toray Ind Inc Leather-like sheet-shaped product and method for producing the same
JP2013234409A (en) * 2012-05-10 2013-11-21 Toray Ind Inc Sheet-like article and method for producing the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04240207A (en) * 1991-01-22 1992-08-27 Unitika Ltd Polyvinyl alcoholic fiber and its production
JP2002242083A (en) * 2001-02-16 2002-08-28 Toray Ind Inc Method for producing artificial leather
ITMI20010516A1 (en) * 2001-03-12 2002-09-12 Alcantara Spa PROCESS FOR THE PRODUCTION OF A MICROFIBROUS SUEDE NONWOVEN FABRIC WITHOUT THE USE OF ORGANIC SOLVENTS
JP4087321B2 (en) * 2003-09-17 2008-05-21 株式会社クラレ POLYVINYL ALCOHOL POLYMER AND PROCESS FOR PRODUCING THE SAME
US20050118394A1 (en) * 2003-11-25 2005-06-02 Kuraray Co., Ltd. Artificial leather sheet substrate and production method thereof
EP1970485A1 (en) * 2005-12-14 2008-09-17 Kuraray Co., Ltd. Process for producing entangled object for artificial leather
US8883662B2 (en) * 2007-03-30 2014-11-11 Kuraray Co., Ltd. Leather-like sheet bearing grain finish and process for producing the same
CN101498106B (en) * 2009-02-14 2011-11-23 烟台万华超纤股份有限公司 Mirror face synthetic leather and production method thereof
CN101725052B (en) * 2009-11-04 2012-06-13 烟台万华超纤股份有限公司 Waterborne polyurethane resin superfiber leather and manufacturing method thereof
CN105155277A (en) * 2010-03-16 2015-12-16 东丽株式会社 Sheet-like material and method for producing same
ITMI20121780A1 (en) * 2012-10-22 2014-04-23 Alcantara Spa NEW PROCESS FOR THE PREPARATION OF A NON-WOVEN FABRIC SYNTHETIC MICRO-FIBROUS SUEDE

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533256A (en) * 1991-07-23 1993-02-09 Kuraray Co Ltd Production of fibrous sheet-like material
JP2002030577A (en) * 2000-05-10 2002-01-31 Toray Ind Inc Method for producing leathery sheet-like product
JP4644971B2 (en) 2000-05-10 2011-03-09 東レ株式会社 Method for producing leather-like sheet
JP2002030579A (en) 2000-07-17 2002-01-31 Toray Ind Inc Plush leathery sheet-like product and method for producing the same
JP2003096676A (en) 2001-09-25 2003-04-03 Toray Ind Inc Method for producing leather-like sheet-like article
JP2009293150A (en) * 2008-06-05 2009-12-17 Toray Ind Inc Sheet-shaped article
JP2010248683A (en) * 2009-03-26 2010-11-04 Toray Ind Inc Leather-like sheet-shaped product and method for producing the same
JP2013234409A (en) * 2012-05-10 2013-11-21 Toray Ind Inc Sheet-like article and method for producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2927368A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106029976A (en) * 2014-02-27 2016-10-12 东丽株式会社 Sheet-like material and method for producing same
JPWO2015129602A1 (en) * 2014-02-27 2017-03-30 東レ株式会社 Sheet material and method for producing the same
WO2015129602A1 (en) * 2014-02-27 2015-09-03 東レ株式会社 Sheet-like material and method for producing same
JP2020530532A (en) * 2017-08-02 2020-10-22 アルカンターラ エス.ピー.エー.Alcantara S.P.A. Methods for the preparation of suede-like microfiber non-woven fabrics
KR20200142502A (en) 2018-04-12 2020-12-22 도레이 카부시키가이샤 Sheet-like material and its manufacturing method
WO2019198357A1 (en) 2018-04-12 2019-10-17 東レ株式会社 Sheet-shaped article and method for producing same
WO2019244862A1 (en) 2018-06-20 2019-12-26 東レ株式会社 Method of manufacturing sheet article
KR20210018998A (en) 2018-06-20 2021-02-19 도레이 카부시키가이샤 Manufacturing method of sheet-shaped article
JPWO2019244862A1 (en) * 2018-06-20 2021-07-08 東レ株式会社 Manufacturing method of sheet-like material
JP7163959B2 (en) 2018-06-20 2022-11-01 東レ株式会社 Method for manufacturing sheet-like material
TWI807050B (en) * 2018-06-20 2023-07-01 日商東麗股份有限公司 Manufacturing method of sheet
KR102708132B1 (en) 2018-06-20 2024-09-19 도레이 카부시키가이샤 Method for manufacturing sheet-shaped articles
JP2021021172A (en) * 2019-07-30 2021-02-18 東レ株式会社 Sheet-like material and method for producing the same
JP7322573B2 (en) 2019-07-30 2023-08-08 東レ株式会社 Sheet-shaped article and method for producing the same

Also Published As

Publication number Publication date
JPWO2014084253A1 (en) 2017-01-05
US20150315741A1 (en) 2015-11-05
EP2927368A4 (en) 2016-06-29
EP2927368A1 (en) 2015-10-07
EP2927368B1 (en) 2017-10-11
JP6225917B2 (en) 2017-11-08
TWI580840B (en) 2017-05-01
CN104838063A (en) 2015-08-12
CN104838063B (en) 2016-09-28
KR102090355B1 (en) 2020-03-17
TW201439398A (en) 2014-10-16
KR20150090122A (en) 2015-08-05

Similar Documents

Publication Publication Date Title
JP5919627B2 (en) Manufacturing method of sheet-like material
JP6225917B2 (en) Sheet material and method for producing the sheet material
JP5958060B2 (en) Sheet material and method for producing the same
JP6007900B2 (en) Sheet material and method for producing the same
JP5880721B2 (en) Manufacturing method of sheet-like material and sheet-like material obtained from this manufacturing method
JP2013112905A (en) Sheet-like material
JP6277591B2 (en) Sheet material and method for producing the same
JP4872687B2 (en) Sheet-like material, method for producing the same, interior material and clothing material using the same, and industrial material
KR102708132B1 (en) Method for manufacturing sheet-shaped articles
JP5070852B2 (en) Manufacturing method of sheet-like material
JP6645432B2 (en) Sheet-like material and method for producing the same
JP2014163026A (en) Production method of sheet-like article, and sheet-like material
JP6221538B2 (en) Sheet material and method for producing the same
JP5223661B2 (en) Method for producing fiber sheet with polyurethane
JP2009052165A (en) Sheet-shaped article and method for producing the same
JP2014019983A (en) Sheet-like object and production method of the same
JPWO2018003666A1 (en) Automotive instrument panel skin and method of manufacturing the same
JP5387653B2 (en) Sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13859092

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014549860

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013859092

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013859092

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14647923

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157015928

Country of ref document: KR

Kind code of ref document: A