WO2015129547A1 - Dual-fuel engine, ship provided with same, and method for controlling dual-fuel engine - Google Patents

Dual-fuel engine, ship provided with same, and method for controlling dual-fuel engine Download PDF

Info

Publication number
WO2015129547A1
WO2015129547A1 PCT/JP2015/054659 JP2015054659W WO2015129547A1 WO 2015129547 A1 WO2015129547 A1 WO 2015129547A1 JP 2015054659 W JP2015054659 W JP 2015054659W WO 2015129547 A1 WO2015129547 A1 WO 2015129547A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
amount
gas
injection amount
fuel gas
Prior art date
Application number
PCT/JP2015/054659
Other languages
French (fr)
Japanese (ja)
Inventor
壮太 渡邉
平岡 直大
耕之 駒田
石田 裕幸
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN201580003440.5A priority Critical patent/CN106030076B/en
Priority to KR1020167017131A priority patent/KR101854056B1/en
Publication of WO2015129547A1 publication Critical patent/WO2015129547A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0602Control of components of the fuel supply system
    • F02D19/0607Control of components of the fuel supply system to adjust the fuel mass or volume flow
    • F02D19/061Control of components of the fuel supply system to adjust the fuel mass or volume flow by controlling fuel injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0642Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions
    • F02D19/0647Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions the gaseous fuel being liquefied petroleum gas [LPG], liquefied natural gas [LNG], compressed natural gas [CNG] or dimethyl ether [DME]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0686Injectors
    • F02D19/0689Injectors for in-cylinder direct injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0686Injectors
    • F02D19/0692Arrangement of multiple injectors per combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/081Adjusting the fuel composition or mixing ratio; Transitioning from one fuel to the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0027Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a dual fuel engine, a ship equipped with the dual fuel engine, and a control method of the dual fuel engine.
  • Patent Document 1 discloses that a fuel is switched and used in a dual fuel engine using gas and oil as fuel.
  • gas and oil As fuel, deposits are generated in the combustion chamber, which can interfere with the combustion process when gas is used as fuel. It is said that the deposit will be burned out by using 50% gas and 50% oil.
  • oil is pilot-injected and ignited.
  • FIG. 3 shows a graph showing the elapsed time of the rotational speed of the dual fuel engine and the maximum in-cylinder pressure when the gas is excessively supplied as described above.
  • the horizontal axis represents time
  • the vertical axis represents the rotational speed and maximum in-cylinder pressure of the dual fuel engine.
  • the maximum in-cylinder pressure is the maximum value of the in-cylinder pressure in a certain operating state, and is an allowable pressure (a value of the in-cylinder maximum pressure) that is unique to each engine determined in the design stage regardless of the operating state. Different from the upper limit).
  • the present invention has been made in view of such circumstances, and is a dual fuel engine capable of suppressing supply of an excessive amount of heat at the time of fuel switching, a ship equipped with the same, and a control of the dual fuel engine It aims to provide a method.
  • the dual fuel engine of the present invention a ship equipped with the dual fuel engine, and the control method of the dual fuel engine employ the following means.
  • the first aspect of the present invention switches between a first operation mode operated only by petroleum fuel and a second operation mode operated by the petroleum fuel and fuel gas, and the petroleum fuel and fuel gas.
  • the control unit increases the fuel gas injection amount by a predetermined amount when switching from the first operation mode to the second operation mode.
  • the fuel gas injection amount is gradually increased and the petroleum fuel injection amount is gradually decreased. It is a dual fuel engine that performs control as described above.
  • the dual fuel engine includes a first operation mode that is operated only by petroleum fuel, and a second operation mode that is operated by petroleum fuel and fuel gas.
  • the fuel gas injection amount is increased by a predetermined amount so that the total heat amount does not change, and at the same time, the petroleum fuel injection amount corresponding to the predetermined heat amount of the fuel gas is increased. Then, the fuel gas injection amount is gradually increased and the fuel fuel injection amount is controlled to gradually decrease. If the fuel gas injection valve is limited to the minimum value of the minimum injection period, such as an electromagnetic valve, and it is difficult to finely control the minimum fuel injection amount, the fuel gas is injected at the same time as switching.
  • the fuel gas injection amount is increased by a predetermined amount so that the total amount of heat in the cylinder does not change when switching from the first operation mode to the second operation mode.
  • control unit gradually decreases the injection amount of the petroleum fuel to the pilot injection amount and gradually increases the fuel gas to an injection amount corresponding to a heat amount obtained by removing the heat amount of the pilot injection amount from the total heat amount. It is good also as a structure which increases to.
  • the fuel fuel injection amount is gradually decreased to the pilot injection amount, and the fuel gas is gradually increased to the injection amount corresponding to the heat amount obtained by removing the heat amount of the pilot injection amount from the total heat amount.
  • Petroleum fuel can be used as the pilot fuel necessary for the combustion of the fuel gas, and since the total heat quantity does not change, fluctuations in the quantity of heat supplied into the cylinder can be suppressed. As a result, it is possible to perform stable switching control while suppressing fluctuations in the in-cylinder pressure of the dual fuel engine, and to minimize fluctuations in NOx and fuel consumption as much as possible.
  • the second aspect of the present invention switches between a first operation mode operated by only petroleum fuel and a second operation mode operated by the petroleum fuel and fuel gas, and the petroleum fuel and fuel gas.
  • the control unit gradually decreases the fuel gas injection amount when switching from the second operation mode to the first operation mode.
  • the fuel fuel injection amount is gradually increased and then the fuel gas injection amount is decreased by a predetermined amount upon completion of switching, and at the same time, the petroleum fuel injection amount corresponding to a predetermined amount of heat of the fuel gas is reduced. It is a dual fuel engine that performs control so as to increase.
  • the ratio of the fuel gas injection amount is gradually decreased and the ratio of the petroleum fuel injection amount is gradually increased.
  • Control is performed such that the fuel gas injection amount is decreased by a predetermined amount so that the total heat amount does not change when the switching is completed, and at the same time, the fuel fuel injection amount corresponding to the predetermined amount of heat of the fuel gas is increased.
  • the fuel gas injection valve has a restriction on the minimum value of the minimum injection period, such as an electromagnetic valve, and it is difficult to finely control the minimum fuel injection amount, the fuel gas injection is gradually reduced at the time of switching.
  • the switching is completed, the fuel gas injection amount is temporarily greatly reduced, and the amount of heat supplied into the cylinder is greatly reduced from the control command value.
  • the fuel gas injection amount is decreased by a predetermined amount so that the total heat amount in the cylinder does not change when the switching from the second operation mode to the first operation mode is completed, and at the same time,
  • a predetermined amount of heat By increasing the injection amount of petroleum fuel corresponding to a predetermined amount of heat, fluctuations in the amount of heat supplied into the cylinder can be suppressed.
  • the predetermined amount of the fuel gas may be greater than or equal to a minimum injection amount of the minimum injection period of the fuel gas injection valve.
  • the predetermined amount of the fuel gas is equal to or greater than the minimum injection amount of the minimum injection period of the fuel gas injection valve, a controllable value can be set and the specification of the fuel gas injection valve is limited.
  • the fluctuation of the amount of heat supplied into the cylinder is suppressed so that the total heat quantity in the cylinder does not change. Can do.
  • control unit includes a supply pressure of the fuel gas, the predetermined amount of the fuel gas corresponding thereto, and an injection amount of the petroleum fuel corresponding to the predetermined amount of heat of the fuel gas.
  • the supply pressure of the fuel gas, the predetermined amount of the fuel gas injection amount corresponding thereto, and the fuel fuel injection amount corresponding to the heat amount are stored in the table in advance in association with each other, and the detected supply
  • the fuel gas injection heat amount varies depending on the supply pressure, but an appropriate amount of fuel gas injection amount and petroleum fuel injection amount can be determined,
  • the total amount of heat in the cylinder does not change, and stable switching control can be performed while suppressing fluctuations in the cylinder pressure.
  • a third aspect of the present invention is a ship including the dual fuel engine according to any one of the above and a hull on which the dual fuel engine is mounted.
  • any one of the dual fuel engines described above is mounted on a ship, stable switching control can be performed while suppressing fluctuations in the in-cylinder pressure of the engine. As a result, it is possible to operate the ship in consideration of the environment while minimizing fluctuations in NOx and fuel consumption as much as possible.
  • a control method for a dual fuel engine comprising: a first operation mode that is operated only by petroleum fuel; and a second operation mode that is operated by the petroleum fuel and fuel gas.
  • the fuel gas injection amount is increased by a predetermined amount, and at the same time, the petroleum fuel injection amount corresponding to a predetermined amount of heat of the fuel gas is decreased.
  • the dual fuel engine includes a first operation mode that is operated only by petroleum fuel, and a second operation mode that is operated by petroleum fuel and fuel gas.
  • the fuel gas injection amount is increased by a predetermined amount so that the total heat amount does not change, and at the same time, the petroleum fuel injection amount corresponding to the predetermined heat amount of the fuel gas is increased. Then, the fuel gas injection amount is gradually increased and the fuel fuel injection amount is controlled to gradually decrease. If the fuel gas injection valve is limited to the minimum value of the minimum injection period, such as an electromagnetic valve, and it is difficult to finely control the minimum fuel injection amount, the fuel gas is injected at the same time as switching.
  • the fuel gas injection amount is increased by a predetermined amount so that the total heat amount in the cylinder does not change at the time of switching, and at the same time the petroleum fuel injection amount corresponding to the predetermined amount of heat of the fuel gas is decreased.
  • heat amount supplied in a cylinder can be suppressed.
  • the present invention it is possible to suppress fluctuations in the supply of heat quantity of the fuel gas, so it is possible to suppress supply of excessive heat quantity into the cylinder, and to reduce fluctuations in the in-cylinder pressure and rotation speed of the dual fuel engine. Suppressing and stable switching control can be performed.
  • FIG. 1 shows a schematic configuration and a process of injecting each fuel of a dual fuel engine, a ship equipped with the dual fuel engine, and a control method of the dual fuel engine according to the present embodiment.
  • the dual fuel engine 1 includes a cylinder portion 10, a piston 20, a fuel gas injection valve 101, and a fuel injection valve 103 as main components.
  • the dual fuel engine 1 is provided with a cylinder portion 10 including a cylinder liner (not shown), a cylinder cover (not shown), and the like, and a piston 20 is disposed inside the cylinder portion 10. Power is taken out by a connecting rod, a crankshaft, etc.
  • the dual fuel engine 1 is mounted on a ship, for example, and the power extracted outside is transmitted to a propeller and output as a propulsion force of the ship.
  • the fuel gas injection valve 101 is controlled by an electromagnetic valve, and a gas (fuel gas) whose pressure is increased to, for example, about 150 to 250 bar according to a period during which the electromagnetic valve is opened is injected into the cylinder.
  • the fuel injection valve 103 is, for example, a fuel injection valve used in a low-speed two-stroke cycle diesel engine, and oil (petroleum fuel) boosted by a fuel injection pump according to the opening of the fuel injection valve is in the cylinder. Be injected.
  • the fuel gas injection valve 101 and the fuel injection valve 103 are controlled by a control unit (not shown). Further, each fuel gas injection valve 101 and each fuel injection valve 103 are disposed at positions that are symmetric about the central axis of the cylinder portion 10 above the cylinder portion 10.
  • any of compressed natural gas (CNG), liquefied propane gas (LPG), or the like obtained by gasifying and increasing the pressure of liquefied natural gas (LNG) may be used.
  • any oil such as heavy oil or light oil may be used.
  • the dual fuel engine 1 is switched by the control unit between a diesel mode (first operation mode) using only oil as a main fuel and a gas mode (second operation mode) using gas as a main fuel, Driving is performed according to the mode.
  • first operation mode a diesel mode
  • second operation mode a gas mode
  • pilot ignition fuel for pilot ignition is required.
  • oil is used as the pilot injection fuel.
  • the period which switches diesel mode and gas mode be a switching period.
  • FIGS. 1A to 1C show the process of fuel injection in the gas mode in which gas is the main fuel and oil is the pilot fuel.
  • FIG. 1A shows the compression stroke, fuel is not injected from the fuel gas injection valve 101 and the fuel injection valve 103, and only air is supplied above the piston 20 inside the cylinder portion 10. As the piston 20 moves upward, the air inside the cylinder portion 10 is compressed.
  • FIG. 1B of the next stroke shows the ignition stroke, and the piston 20 has moved to the vicinity of the top dead center.
  • pilot oil necessary for gas ignition is injected from the fuel injection valve 103, and gas is injected from the fuel gas injection valve 101.
  • the fuel injection valve 103 is used as a pilot valve for igniting the gas.
  • FIG. 1A shows the compression stroke, fuel is not injected from the fuel gas injection valve 101 and the fuel injection valve 103, and only air is supplied above the piston 20 inside the cylinder portion 10. As the piston 20 moves upward, the air inside the cylinder portion 10 is compressed.
  • 1C of the next stroke shows the combustion / expansion stroke, and the gas and pilot oil injected in FIG.
  • the burned gas expands and pushes the piston 20 back downward.
  • the piston 20 moves up and down, and power is taken out by a connected crankshaft (not shown) or the like.
  • FIG. 2 shows a graph showing the passage of time between the amount of heat of oil injected from the fuel injection valve 103 into the cylinder and the amount of heat of gas injected from the fuel gas injection valve 101 into the cylinder.
  • the horizontal axis is time
  • the vertical axis is a coefficient corresponding to the amount of heat of oil and gas.
  • the desired value of the total in-cylinder heat in the operation before and after fuel switching is set to 1.
  • the thick line and the thick broken line are a control value (a ratio of the control heat quantity to the total heat quantity) and a conventional control value (a control value of the conventional example, a ratio of the conventional control heat quantity to the total heat quantity) controlled by the gas control unit
  • the thin line and the thin broken line are the control value of petroleum and the conventional control value.
  • FIG. 2 the control values of oil and gas and the conventional control values of oil and gas when switching to the gas mode after switching from the operation in the diesel mode are shown over time.
  • the time t at the start of the switching period is set to zero.
  • the control unit controls the fuel gas injection valve 101 to open, but since the supplied gas is a high-pressure gas, the control of the fuel gas injection valve 101 is performed by an electromagnetic valve. It is known that there is a restriction on the minimum value of the minimum injection period (for example, 3 to 4 ms). Therefore, since the fuel gas injection valve 101 cannot perform fine control below the minimum injection period and cannot gradually increase the injection amount according to the control command value, the minimum injection amount larger than the control command value is injected. Will do.
  • the amount of oil injected from the fuel injection valve 103 is gradually reduced, the amount of increase in the amount of injected gas exceeds the amount of decrease in the amount of injected oil, and the cylinder 10 Is supplied with an amount of heat that is more than the desired total amount of heat.
  • the control unit when switching from the diesel mode to the gas mode, sets the first predetermined amount (heat amount) to the fuel gas injection valve 101 at the time of switching.
  • the first predetermined amount is an injection amount equal to or greater than the minimum injection amount of the minimum injection period of the fuel gas injection valve 101.
  • the oil rapidly decreases discontinuously from the injection amount corresponding to the total heat amount by the injection amount corresponding to the first predetermined amount of heat Fs of the gas.
  • An instruction to decrease the injection amount of oil and an instruction to increase the injection amount of gas are directed to decrease and increase in a linear function, respectively, so as to suppress fluctuations in the total heat amount.
  • the tendency of the decrease and increase is not limited to the example shown in FIG. 2, and if the control is to suppress the fluctuation of the total heat amount, for example, the decrease instruction and the increase instruction that are changed in a curve shape in a quadratic function. There may be.
  • the heat quantity of gas is F2
  • the heat quantity of oil is F1
  • t2 may be the same value as t3, or a value that can be set as appropriate.
  • the control unit first gives an instruction to gradually increase the injection amount so that the amount of heat of petroleum becomes the total amount of heat, and an instruction to gradually decrease the injection amount so that the amount of heat of gas becomes zero.
  • the fuel gas injection valve 101 is instructed to decrease the second predetermined amount, and the fuel injection valve 103 is instructed to increase the injection amount corresponding to the second predetermined amount of heat.
  • the second predetermined amount is assumed to be an injection amount equal to or greater than the minimum injection amount of the minimum injection period of the fuel gas injection valve 101.
  • the dual fuel engine 1 includes a diesel mode that is operated only by oil and a gas mode that is operated by oil and gas.
  • the gas injection amount is increased by a first predetermined amount so that the total heat amount in the cylinder does not change, and at the same time, the oil injection amount corresponding to the first predetermined amount of heat of the gas is decreased. Thereafter, control is performed such that the gas injection amount is gradually increased and the oil injection amount is gradually decreased.
  • the fuel gas injection valve 101 has a restriction on the minimum value of the minimum injection period and it is difficult to finely control the minimum injection amount, the gas and oil injection amounts in FIG. If the control to switch is performed and gas is injected at the same time as the switch start command, fine control below the minimum injection period cannot be performed, and the gas injection amount immediately after the switch start becomes temporarily larger than the control command value for the gas A large amount of heat is supplied into the cylinder. At this time, since the oil injection amount is gradually decreased according to the control command value, the increase amount of the gas injection amount exceeds the decrease amount of the oil injection amount, and the cylinder portion 10 has a desired amount in the cylinder. An excessive amount of heat is supplied than the total amount of heat.
  • the maximum pressure in the cylinder of the dual fuel engine shows a suddenly high value from the previously stable value. That state continues for a while.
  • the rotational speed of the dual fuel engine also increases from a stable state to a high speed. Further, when the rotational speed of the dual fuel engine increases, an instruction to lower the fuel amount is issued, so that an increase in the gas injection amount is suppressed and the oil injection amount is greatly reduced.
  • the gas injection amount is increased by the first predetermined amount so that the total heat amount in the cylinder does not change when switching from the diesel mode to the gas mode, and at the same time, it corresponds to the first predetermined amount of heat of the gas.
  • the oil injection amount is gradually reduced to the pilot injection amount, and the gas is gradually increased to the injection amount corresponding to the heat amount obtained by excluding the heat amount of the pilot injection amount from the total heat amount.
  • Petroleum can be used as the pilot fuel, and since the total amount of heat does not change, fluctuations in the amount of heat supplied into the cylinder can be suppressed. As a result, it is possible to perform stable switching control while suppressing fluctuations in the in-cylinder pressure of the dual fuel engine 1, and to minimize fluctuations in NOx and fuel consumption as much as possible.
  • the gas injection amount is decreased by a second predetermined amount so that the total heat amount in the cylinder does not change, and at the same time, the oil injection amount corresponding to the second predetermined amount of heat of the gas
  • the gas injection amount is decreased by a second predetermined amount so that the total heat amount in the cylinder does not change, and at the same time, the oil injection amount corresponding to the second predetermined amount of heat of the gas
  • first predetermined amount and the second predetermined amount of gas are equal to or greater than the minimum injection amount of the minimum injection period of the fuel gas injection valve 101, a controllable value equal to or greater than the minimum injection amount is set in advance.
  • Variation in the amount of heat supplied to the cylinder can be suppressed so that the total amount of heat in the cylinder does not change.
  • the injection amount of each fuel to be increased or decreased at the time of switching of each fuel is determined as one value, but in this embodiment, the injection amount of each fuel is set according to the gas pressure. is there. Since the other points are the same as in the first embodiment, the same components are denoted by the same reference numerals and the description thereof is omitted.
  • FIG. 4 shows a graph showing the fuel gas injection valve injection period and the fuel gas injection valve injection amount according to the present embodiment.
  • the horizontal axis represents the injection period of the fuel gas injection valve 101
  • the vertical axis represents the injection amount of the fuel gas injection valve 101 for each cycle.
  • tn indicates the minimum injection period, which is the lower limit of the injection period determined by the solenoid valve. As shown in FIG. 4, as the injection period becomes longer, the injection amount also increases. Further, when the gas pressure is increased to, for example, 20 MPa, 25 MPa, and 30 MPa, not only the minimum injection amount in the minimum injection period tn but also the injection amount in the same injection period increases.
  • the minimum injection period tn is determined by the electromagnetic valve used for the fuel gas injection valve 101, and therefore shows the same value regardless of the gas pressure.
  • the gas supply pressure, the first predetermined amount of gas and the first predetermined amount of gas corresponding thereto are changed.
  • the control unit is provided with a table that stores the oil injection amount corresponding to the heat amount in association with each other.
  • the gas supply pressure and the first predetermined amount of gas corresponding thereto are expressed by the following equation (1). [Equation 1] Q' ⁇ Hu 1 ⁇ ⁇ f 1/2 ⁇ ⁇ P 1/2 ⁇ do 2 (1)
  • the control unit refers to the table based on the gas pressure detected by a sensor (not shown) for detecting the gas pressure at the start of switching from the diesel mode to the gas mode, and the first location of the gas corresponding to the gas pressure from the table.
  • the fixed quantity and the amount of oil injection corresponding to the first predetermined amount of heat of gas are acquired.
  • the control unit corresponds to an instruction to increase the first predetermined amount of gas acquired from the table to the fuel gas injection valve 101 and a first predetermined amount of heat of the gas acquired from the table to the fuel injection valve 103. An instruction to reduce the amount of oil injection is given at the same time.
  • control unit includes a table that stores the gas supply pressure in association with the second predetermined amount of gas and the amount of oil injection corresponding to the heat amount of the second predetermined amount of gas.
  • the control unit refers to the table based on the gas pressure detected by a sensor (not shown) that detects the gas pressure at the start of switching from the gas mode to the diesel mode, and the second location of the gas corresponding to the gas pressure from the table. The fixed amount and the amount of oil injection corresponding to the second predetermined amount of heat of gas are acquired.
  • the control unit instructs the fuel gas injection valve 101 to decrease the second predetermined amount of gas acquired from the table, and instructs the fuel injection valve 103 to set the second predetermined amount of gas acquired from the table. An instruction to increase the amount of oil injection corresponding to the amount of heat is simultaneously given.
  • the dual fuel engine the ship including the dual fuel engine, and the control method of the dual fuel engine according to the present embodiment, the following operational effects can be obtained.
  • the gas supply pressure, the first or second predetermined amount of gas injection corresponding thereto, and the oil injection amount corresponding to the heat amount are associated with each other in advance and stored in a table in accordance with the detected supply pressure.
  • the gas injection heat amount varies depending on the supply pressure, but an appropriate amount of gas injection amount and oil injection amount are determined.
  • the total amount of heat in the cylinder does not change, and stable switching control can be performed while suppressing fluctuations in the cylinder pressure.
  • the gas pressure, the first or second predetermined amount of gas corresponding to the gas pressure, and the oil injection amount corresponding to the heat amount are associated with each other and stored in the table.
  • the amount of heat (corresponding to the injection amount) set and calculated in the above equation (1) may be set.

Abstract

A dual-fuel engine capable of minimizing the supply of excessive amounts of heat when fuel is switched, and a method for controlling a dual-fuel engine. A dual-fuel engine (1) provided with a diesel mode in which the dual-fuel engine (1) is driven by petroleum alone and a gas mode in which the dual-fuel engine (1) is driven by petroleum and gas, and also provided with a control unit for switching between diesel mode and gas mode and controlling the amounts of both petroleum and gas injected into a cylinder, wherein when the control unit switches from diesel mode to gas mode, the control unit increases the amount of gas injected to a first prescribed amount in the case of a switch start command, and simultaneously reduces the amount of petroleum injected to an equivalent of the amount of heat in the first prescribed amount of gas, after which the control unit performs a control so as to gradually increase the amount of gas injected and gradually reduce the amount of petroleum injected.

Description

二元燃料機関およびこれを備えた船舶、ならびに二元燃料機関の制御方法Dual fuel engine, ship equipped with the same, and control method of dual fuel engine
 本発明は、二元燃料機関およびこれを備えた船舶、ならびに二元燃料機関の制御方法に関するものである。 The present invention relates to a dual fuel engine, a ship equipped with the dual fuel engine, and a control method of the dual fuel engine.
 内燃機関として、従来石油を燃料とするディーゼル機関が用いられてきた。しかし、環境への配慮などから、ガス及び石油を燃料とし、これらを切り替えて用いる二元燃料機関が検討されている。
 例えば、特許文献1には、ガス及び石油を燃料とする二元燃料機関において、燃料を切り替えて用いることが開示されている。石油のみを燃料として運転すると、燃焼室内にデポジットが生じ、これがガスを燃料として用いた際に燃焼プロセスの障害となり得ることから、石油からガスに燃料を切り替える途中で一定期間過渡的燃料比(例えばガス50%、石油50%)とすることでデポジットを焼き切るとしている。
 また、ガスを主燃料として用いる場合は、石油をパイロット噴射し点火させることが開示されている。
Conventionally, diesel engines using petroleum as fuel have been used as internal combustion engines. However, in consideration of the environment, a dual fuel engine using gas and oil as fuel and switching between them is being studied.
For example, Patent Document 1 discloses that a fuel is switched and used in a dual fuel engine using gas and oil as fuel. When only oil is used as fuel, deposits are generated in the combustion chamber, which can interfere with the combustion process when gas is used as fuel. It is said that the deposit will be burned out by using 50% gas and 50% oil.
In addition, when gas is used as the main fuel, it is disclosed that oil is pilot-injected and ignited.
特開2010-14112号公報JP 2010-14112 A
 しかしながら、上記特許文献1に開示された発明では、ガスを噴射する噴射弁の制御が例えば電磁弁で行われる場合、電磁弁の最小噴射期間の最小値の制約により最小燃料噴射量を細かく制御することができないということが考慮されておらず、石油からガスへの切替直後に相当量のガスが噴射され一時的に筒内に供給される熱量が過剰になるという問題があった。 However, in the invention disclosed in Patent Document 1, when the control of the injection valve for injecting gas is performed by, for example, an electromagnetic valve, the minimum fuel injection amount is finely controlled by the restriction on the minimum value of the minimum injection period of the electromagnetic valve. There is a problem that a considerable amount of gas is injected immediately after switching from oil to gas and the amount of heat temporarily supplied into the cylinder becomes excessive.
 図3には、上述のようにガスが過剰に供給された場合の二元燃料機関の回転数と筒内最高圧力の時間経過を示したグラフが示されている。同図において、横軸は時間であり、縦軸は二元燃料機関の回転数および筒内最高圧力である。ここで、筒内最高圧力とは、ある運転状態における筒内の内圧の最高値であり、運転状態によらず設計段階で決まる個々の機関に固有の値である許容圧力(筒内最高圧力の上限値)とは異なる。
 時間t=0において石油のみを主燃料とするディーゼルモードからガスを主燃料とし石油をパイロット燃料とするガスモードへの切替が行われた場合に、一時的にガスが過剰に供給されると、図3に示されるように、二元燃料機関の筒内最高圧力はそれまで安定していた値から急激に高い値を示し、その状態がしばらく継続され、その後徐々に低くなり再度安定する。筒内最高圧力が高くなると、仕事量が増えることから二元燃料機関の回転数も安定状態から高回転となる。また二元燃料機関の回転数が上がると、燃料量を下げる指示が出るため、ガスの噴射量の増加が抑えられるとともに石油の噴射量は大きく減少されることとなる。
 このように、燃料の切換時にガスが一時的に過剰に供給されることで、二元燃料機関の筒内圧力、回転数および総熱量(各燃料の噴射量)のそれぞれの変動が大きくなり、安定した燃焼による運転を行うことができない。
FIG. 3 shows a graph showing the elapsed time of the rotational speed of the dual fuel engine and the maximum in-cylinder pressure when the gas is excessively supplied as described above. In the figure, the horizontal axis represents time, and the vertical axis represents the rotational speed and maximum in-cylinder pressure of the dual fuel engine. Here, the maximum in-cylinder pressure is the maximum value of the in-cylinder pressure in a certain operating state, and is an allowable pressure (a value of the in-cylinder maximum pressure) that is unique to each engine determined in the design stage regardless of the operating state. Different from the upper limit).
When switching from a diesel mode in which only oil is the main fuel at time t = 0 to a gas mode in which the gas is the main fuel and the oil is the pilot fuel, when the gas is temporarily supplied excessively, As shown in FIG. 3, the in-cylinder maximum pressure of the dual fuel engine shows a suddenly high value from the previously stable value, and this state is continued for a while and then gradually decreases and becomes stable again. When the in-cylinder maximum pressure increases, the amount of work increases, so the rotational speed of the dual fuel engine also increases from a stable state to a high speed. Further, when the rotational speed of the dual fuel engine increases, an instruction to lower the fuel amount is issued, so that an increase in the gas injection amount is suppressed and the oil injection amount is greatly reduced.
In this way, when the fuel is switched, the gas is temporarily excessively supplied, so that fluctuations in the in-cylinder pressure, the rotational speed, and the total heat amount (injection amount of each fuel) of the dual fuel engine increase. Unable to operate with stable combustion.
 本発明は、このような事情に鑑みてなされたものであって、燃料の切替時における過剰な熱量の供給を抑制可能な二元燃料機関およびこれを備えた船舶、ならびに二元燃料機関の制御方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and is a dual fuel engine capable of suppressing supply of an excessive amount of heat at the time of fuel switching, a ship equipped with the same, and a control of the dual fuel engine It aims to provide a method.
 上記課題を解決するために、本発明の二元燃料機関およびこれを備えた船舶、ならびに二元燃料機関の制御方法は以下の手段を採用する。
 本発明の第1の態様は、石油燃料のみによって運転される第1の運転モードと、前記石油燃料および燃料ガスによって運転される第2の運転モードとを切り替えるとともに、前記石油燃料および前記燃料ガスの噴射量を制御する制御部を備えた二元燃料機関において、前記制御部は、前記第1の運転モードから前記第2の運転モードへ切り替える時に前記燃料ガスの噴射量を所定量増大させると同時に、前記燃料ガスの前記所定量の熱量に相当する前記石油燃料の噴射量を減少させた後に、前記燃料ガスの噴射量を徐々に増加させるとともに、前記石油燃料の噴射量を徐々に減少させるように制御を行う二元燃料機関である。
In order to solve the above-described problems, the dual fuel engine of the present invention, a ship equipped with the dual fuel engine, and the control method of the dual fuel engine employ the following means.
The first aspect of the present invention switches between a first operation mode operated only by petroleum fuel and a second operation mode operated by the petroleum fuel and fuel gas, and the petroleum fuel and fuel gas. In the dual fuel engine having a control unit for controlling the injection amount of the fuel gas, the control unit increases the fuel gas injection amount by a predetermined amount when switching from the first operation mode to the second operation mode. At the same time, after the fuel gas injection amount corresponding to the predetermined amount of heat of the fuel gas is decreased, the fuel gas injection amount is gradually increased and the petroleum fuel injection amount is gradually decreased. It is a dual fuel engine that performs control as described above.
 上記第1の態様によれば、二元燃料機関は、石油燃料のみによって運転される第1の運転モードと、石油燃料と燃料ガスとによって運転される第2の運転モードとを備えている。この第1の運転モードから第2の運転モードへ切り替える時に総熱量が変化しないように燃料ガスの噴射量を所定量増大させると同時に燃料ガスの所定量の熱量に相当する石油燃料の噴射量を減少させ、その後燃料ガスの噴射量を徐々に増加させるとともに石油燃料の噴射量を徐々に減少させるように制御する。
 燃料ガスの噴射弁が例えば電磁弁のように最小噴射期間の最小値の制約があり、最小燃料噴射量を細かく制御することが困難な場合、切替と同時に燃料ガスを噴射することとすると、切替直後の燃料ガスの噴射量が一時的に大きくなり制御指令値よりも過剰な熱量を筒内に供給してしまうことになる。そこで、上記第1の態様では、第1の運転モードから第2の運転モードへの切り替え時に筒内の総熱量が変化しないように燃料ガスの噴射量を所定量増大させると同時に燃料ガスの所定量の熱量に相当する石油燃料の噴射量を減少させることで、筒内に供給する熱量の変動を抑制することができる。これにより、二元燃料機関の筒内圧の変動を抑えて安定した切替制御を実施することができ、NOxや燃費の変動を可能な限り最小限に抑えることができる。
According to the first aspect, the dual fuel engine includes a first operation mode that is operated only by petroleum fuel, and a second operation mode that is operated by petroleum fuel and fuel gas. When switching from the first operation mode to the second operation mode, the fuel gas injection amount is increased by a predetermined amount so that the total heat amount does not change, and at the same time, the petroleum fuel injection amount corresponding to the predetermined heat amount of the fuel gas is increased. Then, the fuel gas injection amount is gradually increased and the fuel fuel injection amount is controlled to gradually decrease.
If the fuel gas injection valve is limited to the minimum value of the minimum injection period, such as an electromagnetic valve, and it is difficult to finely control the minimum fuel injection amount, the fuel gas is injected at the same time as switching. Immediately after the injection amount of the fuel gas is temporarily increased, an excessive amount of heat is supplied into the cylinder beyond the control command value. Therefore, in the first aspect, the fuel gas injection amount is increased by a predetermined amount so that the total amount of heat in the cylinder does not change when switching from the first operation mode to the second operation mode. By reducing the amount of petroleum fuel injection corresponding to a certain amount of heat, fluctuations in the amount of heat supplied into the cylinder can be suppressed. As a result, it is possible to perform stable switching control while suppressing fluctuations in the in-cylinder pressure of the dual fuel engine, and to minimize fluctuations in NOx and fuel consumption as much as possible.
 上記態様において、前記制御部は、前記石油燃料の噴射量をパイロット噴射量まで徐々に減少させるとともに、前記燃料ガスを総熱量から前記パイロット噴射量の熱量を除いた熱量に相当する噴射量まで徐々に増加させる構成としてもよい。 In the above aspect, the control unit gradually decreases the injection amount of the petroleum fuel to the pilot injection amount and gradually increases the fuel gas to an injection amount corresponding to a heat amount obtained by removing the heat amount of the pilot injection amount from the total heat amount. It is good also as a structure which increases to.
 上記構成によれば、石油燃料の噴射量をパイロット噴射量まで徐々に減少させるとともに、燃料ガスを総熱量からパイロット噴射量の熱量を除いた熱量に相当する噴射量まで徐々に増加させることから、燃料ガスの燃焼に必要なパイロット燃料として石油燃料を使用でき、また全体の総熱量が変わらないため筒内に供給する熱量の変動を抑制することができる。これにより、二元燃料機関の筒内圧の変動を抑えて安定した切替制御を実施することができ、NOxや燃費の変動を可能な限り最小限に抑えることができる。 According to the above configuration, the fuel fuel injection amount is gradually decreased to the pilot injection amount, and the fuel gas is gradually increased to the injection amount corresponding to the heat amount obtained by removing the heat amount of the pilot injection amount from the total heat amount. Petroleum fuel can be used as the pilot fuel necessary for the combustion of the fuel gas, and since the total heat quantity does not change, fluctuations in the quantity of heat supplied into the cylinder can be suppressed. As a result, it is possible to perform stable switching control while suppressing fluctuations in the in-cylinder pressure of the dual fuel engine, and to minimize fluctuations in NOx and fuel consumption as much as possible.
 本発明の第2の態様は、石油燃料のみによって運転される第1の運転モードと、前記石油燃料および燃料ガスによって運転される第2の運転モードとを切り替えるとともに、前記石油燃料および前記燃料ガスの噴射量を制御する制御部を備えた二元燃料機関において、前記制御部は、前記第2の運転モードから前記第1の運転モードへ切り替える時に前記燃料ガスの噴射量を徐々に減少させるとともに、前記石油燃料の噴射量を徐々に増加させた後に、切替完了時に前記燃料ガスの噴射量を所定量減少させると同時に、前記燃料ガスの所定量の熱量に相当する前記石油燃料の噴射量を増大させるように制御を行う二元燃料機関である。 The second aspect of the present invention switches between a first operation mode operated by only petroleum fuel and a second operation mode operated by the petroleum fuel and fuel gas, and the petroleum fuel and fuel gas. In the dual fuel engine having a control unit for controlling the injection amount of the fuel gas, the control unit gradually decreases the fuel gas injection amount when switching from the second operation mode to the first operation mode. The fuel fuel injection amount is gradually increased and then the fuel gas injection amount is decreased by a predetermined amount upon completion of switching, and at the same time, the petroleum fuel injection amount corresponding to a predetermined amount of heat of the fuel gas is reduced. It is a dual fuel engine that performs control so as to increase.
 上記第2の態様によれば、第2の運転モードから第1の運転モードへ切り替える時に燃料ガスの噴射量の割合を徐々に減少させるとともに石油燃料の噴射量の割合を徐々に増加させ、その後切替完了時に総熱量が変化しないように燃料ガスの噴射量を所定量減少させると同時に燃料ガスの所定量の熱量に相当する石油燃料の噴射量を増大させるように制御する。
 燃料ガスの噴射弁が例えば電磁弁のように最小噴射期間の最小値の制約があり、最小燃料噴射量を細かく制御することが困難な場合、切替時に燃料ガスの噴射を徐々に減らすこととすると、切替完了時に燃料ガスの噴射量が一時的に大きく減少され、筒内に供給される熱量は制御指令値よりも大幅に削減されてしまうことになる。
 そこで、上記第2の態様では、第2の運転モードから第1の運転モードへの切替完了時に筒内の総熱量が変化しないように燃料ガスの噴射量を所定量減少させると同時に燃料ガスの所定量の熱量に相当する石油燃料の噴射量を増加させることで、筒内に供給する熱量の変動を抑制することができる。これにより、二元燃料機関の筒内圧の変動を抑えて安定した切替制御を実施することができ、NOxや燃費の変動を可能な限り最小限に抑えることができる。
According to the second aspect, when switching from the second operation mode to the first operation mode, the ratio of the fuel gas injection amount is gradually decreased and the ratio of the petroleum fuel injection amount is gradually increased. Control is performed such that the fuel gas injection amount is decreased by a predetermined amount so that the total heat amount does not change when the switching is completed, and at the same time, the fuel fuel injection amount corresponding to the predetermined amount of heat of the fuel gas is increased.
When the fuel gas injection valve has a restriction on the minimum value of the minimum injection period, such as an electromagnetic valve, and it is difficult to finely control the minimum fuel injection amount, the fuel gas injection is gradually reduced at the time of switching. When the switching is completed, the fuel gas injection amount is temporarily greatly reduced, and the amount of heat supplied into the cylinder is greatly reduced from the control command value.
Therefore, in the second aspect, the fuel gas injection amount is decreased by a predetermined amount so that the total heat amount in the cylinder does not change when the switching from the second operation mode to the first operation mode is completed, and at the same time, By increasing the injection amount of petroleum fuel corresponding to a predetermined amount of heat, fluctuations in the amount of heat supplied into the cylinder can be suppressed. As a result, it is possible to perform stable switching control while suppressing fluctuations in the in-cylinder pressure of the dual fuel engine, and to minimize fluctuations in NOx and fuel consumption as much as possible.
 上記いずれかの態様において、前記燃料ガスの前記所定量は、前記燃料ガス噴射弁の前記最小噴射期間の最小噴射量以上である構成としてもよい。 In any one of the above aspects, the predetermined amount of the fuel gas may be greater than or equal to a minimum injection amount of the minimum injection period of the fuel gas injection valve.
 上記構成によれば、燃料ガスの所定量が、燃料ガス噴射弁の最小噴射期間の最小噴射量以上であることから、制御可能な値を設定することができ、燃料ガス噴射弁の仕様の制約によって第1の運転モードと第2の運転モードとの切替時に燃料ガスの熱量が変動するのを抑えるため、筒内の総熱量が変化しないように筒内に供給する熱量の変動を抑制することができる。 According to the above configuration, since the predetermined amount of the fuel gas is equal to or greater than the minimum injection amount of the minimum injection period of the fuel gas injection valve, a controllable value can be set and the specification of the fuel gas injection valve is limited. In order to prevent the heat amount of the fuel gas from fluctuating when switching between the first operation mode and the second operation mode, the fluctuation of the amount of heat supplied into the cylinder is suppressed so that the total heat quantity in the cylinder does not change. Can do.
 上記いずれかの態様において、前記制御部は、前記燃料ガスの供給圧力とそれに応じた前記燃料ガスの前記所定量及び前記燃料ガスの前記所定量の熱量に相当する前記石油燃料の噴射量とを関連付けて記憶するテーブルを備え、前記第1の運転モードと前記第2の運転モードとの切替開始時の前記燃料ガスの前記供給圧力を検知し、検知した該供給圧力に基づき前記テーブルから前記燃料ガスの前記所定量とそれに対応する前記石油燃料の噴射量とを取得する構成としてもよい。 In any one of the above aspects, the control unit includes a supply pressure of the fuel gas, the predetermined amount of the fuel gas corresponding thereto, and an injection amount of the petroleum fuel corresponding to the predetermined amount of heat of the fuel gas. A table for storing in association with each other, detecting the supply pressure of the fuel gas at the start of switching between the first operation mode and the second operation mode, and based on the detected supply pressure, the fuel from the table The predetermined amount of gas and the corresponding fuel fuel injection amount may be acquired.
 上記構成によれば、燃料ガスの供給圧力とそれに応じた燃料ガスの噴射量の所定量とその熱量に相当する石油燃料の噴射量とを各々関連付けて予めテーブルに保存しておき、検知した供給圧力に応じた所定量および噴射量を供給することで、燃料ガスの噴射熱量は供給圧力によって変化するが、適切な量の燃料ガスの噴射量および石油燃料の噴射量を決定することができ、筒内の総熱量が変化せず、筒内圧の変動を抑えて安定した切替制御を実施することができる。 According to the above configuration, the supply pressure of the fuel gas, the predetermined amount of the fuel gas injection amount corresponding thereto, and the fuel fuel injection amount corresponding to the heat amount are stored in the table in advance in association with each other, and the detected supply By supplying a predetermined amount and an injection amount corresponding to the pressure, the fuel gas injection heat amount varies depending on the supply pressure, but an appropriate amount of fuel gas injection amount and petroleum fuel injection amount can be determined, The total amount of heat in the cylinder does not change, and stable switching control can be performed while suppressing fluctuations in the cylinder pressure.
 本発明の第3の態様は、上述のいずれかに記載の二元燃料機関と、前記二元燃料機関を搭載する船体と、を備える船舶である。 A third aspect of the present invention is a ship including the dual fuel engine according to any one of the above and a hull on which the dual fuel engine is mounted.
 上記第3の態様によれば、上述したいずれかの二元燃料機関を船舶に搭載したことから、機関の筒内圧の変動を抑えて安定した切替制御を実施することができる。これにより、NOxや燃費の変動を可能な限り最小限に抑えて環境に配慮した船舶の運行が行える。 According to the third aspect, since any one of the dual fuel engines described above is mounted on a ship, stable switching control can be performed while suppressing fluctuations in the in-cylinder pressure of the engine. As a result, it is possible to operate the ship in consideration of the environment while minimizing fluctuations in NOx and fuel consumption as much as possible.
 本発明の第4の態様は、石油燃料のみによって運転される第1の運転モードと、前記石油燃料および燃料ガスによって運転される第2の運転モードとを備える二元燃料機関の制御方法において、前記第1の運転モードから前記第2の運転モードへ切り替える時に前記燃料ガスの噴射量を所定量増大させると同時に、前記燃料ガスの所定量の熱量に相当する前記石油燃料の噴射量を減少させるステップと、前記燃料ガスの噴射量を徐々に増加させるとともに、前記石油燃料の噴射量を徐々に減少させるステップとを備える二元燃料機関の制御方法である。 According to a fourth aspect of the present invention, there is provided a control method for a dual fuel engine comprising: a first operation mode that is operated only by petroleum fuel; and a second operation mode that is operated by the petroleum fuel and fuel gas. When switching from the first operation mode to the second operation mode, the fuel gas injection amount is increased by a predetermined amount, and at the same time, the petroleum fuel injection amount corresponding to a predetermined amount of heat of the fuel gas is decreased. And a step of gradually increasing the injection amount of the fuel gas and gradually decreasing the injection amount of the petroleum fuel.
 上記第4の態様によれば、二元燃料機関は、石油燃料のみによって運転される第1の運転モードと、石油燃料と燃料ガスとによって運転される第2の運転モードとを備えている。この第1の運転モードから第2の運転モードへ切り替える時に総熱量が変化しないように燃料ガスの噴射量を所定量増大させると同時に燃料ガスの所定量の熱量に相当する石油燃料の噴射量を減少させ、その後燃料ガスの噴射量を徐々に増加させるとともに石油燃料の噴射量を徐々に減少させるように制御する。
 燃料ガスの噴射弁が例えば電磁弁のように最小噴射期間の最小値の制約があり、最小燃料噴射量を細かく制御することが困難な場合、切替と同時に燃料ガスを噴射することとすると、切替直後の燃料ガスの噴射量が一時的に大きくなり制御指令値よりも過剰な熱量を筒内に供給してしまうことになる。そこで、上記第4の態様では、切替時に筒内の総熱量が変化しないように燃料ガスの噴射量を所定量増大させると同時に燃料ガスの所定量の熱量に相当する石油燃料の噴射量を減少させることで、筒内に供給する熱量の変動を抑制することができる。これにより、二元燃料機関の筒内圧の変動を抑えて安定した切替制御を実施することができ、NOxや燃費の変動を可能な限り最小限に抑えることができる。
According to the fourth aspect, the dual fuel engine includes a first operation mode that is operated only by petroleum fuel, and a second operation mode that is operated by petroleum fuel and fuel gas. When switching from the first operation mode to the second operation mode, the fuel gas injection amount is increased by a predetermined amount so that the total heat amount does not change, and at the same time, the petroleum fuel injection amount corresponding to the predetermined heat amount of the fuel gas is increased. Then, the fuel gas injection amount is gradually increased and the fuel fuel injection amount is controlled to gradually decrease.
If the fuel gas injection valve is limited to the minimum value of the minimum injection period, such as an electromagnetic valve, and it is difficult to finely control the minimum fuel injection amount, the fuel gas is injected at the same time as switching. Immediately after the injection amount of the fuel gas is temporarily increased, an excessive amount of heat is supplied into the cylinder beyond the control command value. Therefore, in the fourth aspect, the fuel gas injection amount is increased by a predetermined amount so that the total heat amount in the cylinder does not change at the time of switching, and at the same time the petroleum fuel injection amount corresponding to the predetermined amount of heat of the fuel gas is decreased. By doing so, the fluctuation | variation of the calorie | heat amount supplied in a cylinder can be suppressed. As a result, it is possible to perform stable switching control while suppressing fluctuations in the in-cylinder pressure of the dual fuel engine, and to minimize fluctuations in NOx and fuel consumption as much as possible.
 本発明によれば、燃料ガスの熱量の供給の変動を抑えることができるので、筒内への過剰な熱量の供給を抑制することができ、二元燃料機関の筒内圧および回転数の変動を抑えて安定した切替制御を実施することができる。 According to the present invention, it is possible to suppress fluctuations in the supply of heat quantity of the fuel gas, so it is possible to suppress supply of excessive heat quantity into the cylinder, and to reduce fluctuations in the in-cylinder pressure and rotation speed of the dual fuel engine. Suppressing and stable switching control can be performed.
本発明の第1実施形態に係る二元燃料機関の各燃料の噴射の過程を示した横断面図と縦断面図である。It is the cross-sectional view and longitudinal cross-sectional view which showed the process of each fuel injection of the dual fuel engine which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る二元燃料機関の石油燃料および燃料ガスの熱量の時間経過を示したグラフである。It is the graph which showed the time passage of the calorie | heat amount of the petroleum fuel and fuel gas of the dual fuel engine which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る二元燃料機関の回転数と筒内最高圧力の時間経過を示したグラフである。It is the graph which showed the time passage of the rotation speed of the dual fuel engine concerning a 1st embodiment of the present invention, and the maximum in-cylinder pressure. 本発明の第2実施形態に係る燃料ガスの燃料ガス噴射弁噴射期間と燃料ガス噴射弁噴射量を示したグラフである。It is the graph which showed the fuel gas injection valve injection period and fuel gas injection valve injection quantity of the fuel gas which concern on 2nd Embodiment of this invention.
 以下に、本発明に係る二元燃料機関およびこれを備えた船舶、ならびに二元燃料機関の制御方法の一実施形態について、図面を参照して説明する。 Hereinafter, an embodiment of a dual fuel engine according to the present invention, a ship equipped with the dual fuel engine, and a control method of the dual fuel engine will be described with reference to the drawings.
〔第1実施形態〕
 以下、本発明の第1実施形態について、図1を用いて説明する。
 図1には、本実施形態に係る二元燃料機関およびこれを備えた船舶、ならびに二元燃料機関の制御方法の、概略構成および各燃料の噴射の過程が示されている。
 図1に示されるように、二元燃料機関1は、シリンダ部10、ピストン20、燃料ガス噴射弁101、燃料噴射弁103を主な構成として備えている。
 二元燃料機関1には、シリンダライナ(図示せず)、シリンダカバー(図示せず)等からなるシリンダ部10が設けられており、シリンダ部10内部には、ピストン20が配置されており、ピストン20に連結された連接棒やクランク軸等(図示せず)によって、外部に動力が取り出される。
 二元燃料機関1には、燃料ガス噴射弁101及び燃料噴射弁103から各燃料が噴射、供給され、シリンダ部10内部で燃料が燃焼される。
 二元燃料機関1は、例えば船舶に搭載され、外部に取り出された動力がプロペラに伝達され船舶の推進力として出力される。
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to FIG.
FIG. 1 shows a schematic configuration and a process of injecting each fuel of a dual fuel engine, a ship equipped with the dual fuel engine, and a control method of the dual fuel engine according to the present embodiment.
As shown in FIG. 1, the dual fuel engine 1 includes a cylinder portion 10, a piston 20, a fuel gas injection valve 101, and a fuel injection valve 103 as main components.
The dual fuel engine 1 is provided with a cylinder portion 10 including a cylinder liner (not shown), a cylinder cover (not shown), and the like, and a piston 20 is disposed inside the cylinder portion 10. Power is taken out by a connecting rod, a crankshaft, etc. (not shown) connected to the piston 20.
Each fuel is injected and supplied to the dual fuel engine 1 from the fuel gas injection valve 101 and the fuel injection valve 103, and the fuel is combusted inside the cylinder portion 10.
The dual fuel engine 1 is mounted on a ship, for example, and the power extracted outside is transmitted to a propeller and output as a propulsion force of the ship.
 燃料ガス噴射弁101は、その制御が電磁弁によって行われ、電磁弁が開とされた期間に応じて例えば150~250bar程度まで昇圧されたガス(燃料ガス)が筒内に噴射される。また、燃料噴射弁103は、例えば低速2ストロークサイクルディーゼル機関に用いられる燃料噴射弁が用いられ、燃料噴射弁の開度に応じて燃料噴射ポンプによって昇圧された石油(石油燃料)が筒内に噴射される。燃料ガス噴射弁101及び燃料噴射弁103は、図示しない制御部によって制御される。また、各燃料ガス噴射弁101及び各燃料噴射弁103は、シリンダ部10上方のシリンダ部10の中心軸を中心として対称となる位置にそれぞれ配置されている。
 ここで、ガスは、液化天然ガス(LNG)をガス化して昇圧した圧縮天然ガス(CNG)、液化プロパンガス(LPG)など、いずれを用いてもよい。また、石油は、重油、軽油など、いずれを用いてもよい。
The fuel gas injection valve 101 is controlled by an electromagnetic valve, and a gas (fuel gas) whose pressure is increased to, for example, about 150 to 250 bar according to a period during which the electromagnetic valve is opened is injected into the cylinder. The fuel injection valve 103 is, for example, a fuel injection valve used in a low-speed two-stroke cycle diesel engine, and oil (petroleum fuel) boosted by a fuel injection pump according to the opening of the fuel injection valve is in the cylinder. Be injected. The fuel gas injection valve 101 and the fuel injection valve 103 are controlled by a control unit (not shown). Further, each fuel gas injection valve 101 and each fuel injection valve 103 are disposed at positions that are symmetric about the central axis of the cylinder portion 10 above the cylinder portion 10.
Here, as the gas, any of compressed natural gas (CNG), liquefied propane gas (LPG), or the like obtained by gasifying and increasing the pressure of liquefied natural gas (LNG) may be used. Moreover, any oil such as heavy oil or light oil may be used.
 二元燃料機関1は、制御部によって、石油のみを主燃料とするディーゼルモード(第1の運転モード)とガスを主燃料とするガスモード(第2の運転モード)とが切り替えられ、いずれかのモードによって運転が行われる。ガスモードで運転される場合、パイロット着火のパイロット噴射用燃料が必要であるが、本実施形態では石油をパイロット噴射用燃料として用いる。また、以下では、ディーゼルモードとガスモードとを切り替える期間を切替期間とする。 The dual fuel engine 1 is switched by the control unit between a diesel mode (first operation mode) using only oil as a main fuel and a gas mode (second operation mode) using gas as a main fuel, Driving is performed according to the mode. When operating in the gas mode, pilot ignition fuel for pilot ignition is required. In this embodiment, oil is used as the pilot injection fuel. Moreover, below, let the period which switches diesel mode and gas mode be a switching period.
 図1の(a)乃至(c)には、ガスを主燃料とするとともに石油をパイロット燃料とするガスモードの場合の各燃料の噴射の過程が示されている。
 図1の(a)は圧縮行程を示し、燃料ガス噴射弁101及び燃料噴射弁103からの燃料噴射は行われず、シリンダ部10内部でピストン20の上方には空気のみが供給されている。ピストン20が上方へ移動するにしたがい、シリンダ部10内部の空気が圧縮される。
 次の行程の図1の(b)は着火行程を示し、ピストン20は上死点付近へ移動している。この時、燃料噴射弁103からはガスの点火に必要なパイロット油が噴射され、燃料ガス噴射弁101からはガスが噴射される。この時、燃料噴射弁103は、ガスに着火させるためのパイロット弁として用いられていることになる。
 次の行程の図1の(c)は燃焼・膨張行程を示し、図1(b)で噴射されたガス及びパイロット油が拡散燃焼している。燃焼したガスは膨張し、ピストン20を下方へ押し戻す。
 これらの行程を繰り返すことにより、ピストン20が上下動し、連結されたクランク軸(図示せず)などにより外部へ動力が取り出される。
FIGS. 1A to 1C show the process of fuel injection in the gas mode in which gas is the main fuel and oil is the pilot fuel.
FIG. 1A shows the compression stroke, fuel is not injected from the fuel gas injection valve 101 and the fuel injection valve 103, and only air is supplied above the piston 20 inside the cylinder portion 10. As the piston 20 moves upward, the air inside the cylinder portion 10 is compressed.
FIG. 1B of the next stroke shows the ignition stroke, and the piston 20 has moved to the vicinity of the top dead center. At this time, pilot oil necessary for gas ignition is injected from the fuel injection valve 103, and gas is injected from the fuel gas injection valve 101. At this time, the fuel injection valve 103 is used as a pilot valve for igniting the gas.
FIG. 1C of the next stroke shows the combustion / expansion stroke, and the gas and pilot oil injected in FIG. The burned gas expands and pushes the piston 20 back downward.
By repeating these strokes, the piston 20 moves up and down, and power is taken out by a connected crankshaft (not shown) or the like.
 図2には、燃料噴射弁103から筒内に噴射される石油の熱量と、燃料ガス噴射弁101から筒内に噴射されるガスの熱量との時間経過を示したグラフが示されている。
 図2において、横軸は時間であり、縦軸は石油およびガスの熱量に相当する係数である。縦軸の係数は、燃料切替前後の運転における筒内総熱量の所望値が1とされる。また、太線および太破線はガスの制御部により制御される制御値(総熱量に対する制御熱量の割合)および従来制御値(従来例の制御値であり、総熱量に対する従来の制御熱量の割合)、細線および細破線は石油の制御値および従来制御値である。
 図2では、ディーゼルモードでの運転から切替期間を経てガスモードに切り替える場合の石油およびガスの制御値、また石油およびガスの従来制御値が時間の経過とともに示されている。ここで、切替期間の開始時点の時間tを0としている。
FIG. 2 shows a graph showing the passage of time between the amount of heat of oil injected from the fuel injection valve 103 into the cylinder and the amount of heat of gas injected from the fuel gas injection valve 101 into the cylinder.
In FIG. 2, the horizontal axis is time, and the vertical axis is a coefficient corresponding to the amount of heat of oil and gas. For the coefficient on the vertical axis, the desired value of the total in-cylinder heat in the operation before and after fuel switching is set to 1. In addition, the thick line and the thick broken line are a control value (a ratio of the control heat quantity to the total heat quantity) and a conventional control value (a control value of the conventional example, a ratio of the conventional control heat quantity to the total heat quantity) controlled by the gas control unit, The thin line and the thin broken line are the control value of petroleum and the conventional control value.
In FIG. 2, the control values of oil and gas and the conventional control values of oil and gas when switching to the gas mode after switching from the operation in the diesel mode are shown over time. Here, the time t at the start of the switching period is set to zero.
 ディーゼルモードからガスモードへ切替を行う場合、制御部は燃料ガス噴射弁101へ開制御を行うが、供給されるガスは高圧ガスであることから燃料ガス噴射弁101の制御が電磁弁によって行われており、最小噴射期間の最小値(例えば3~4ms)の制約があることがわかっている。よって、燃料ガス噴射弁101は、最小噴射期間以下の細かい制御を行うことができず、制御指令値に従って徐々に噴射量を増加させることができないため、制御指令値よりも大きな最小噴射量を噴射することになる。
 これに対して、燃料噴射弁103から噴射される石油は徐々に噴射量が減少されるため、石油の噴射量の減少量よりもガスの噴射量の増加量が上回り、シリンダ部10の筒内には所望の総熱量よりも過剰な熱量が供給されることになる。
When switching from the diesel mode to the gas mode, the control unit controls the fuel gas injection valve 101 to open, but since the supplied gas is a high-pressure gas, the control of the fuel gas injection valve 101 is performed by an electromagnetic valve. It is known that there is a restriction on the minimum value of the minimum injection period (for example, 3 to 4 ms). Therefore, since the fuel gas injection valve 101 cannot perform fine control below the minimum injection period and cannot gradually increase the injection amount according to the control command value, the minimum injection amount larger than the control command value is injected. Will do.
On the other hand, since the amount of oil injected from the fuel injection valve 103 is gradually reduced, the amount of increase in the amount of injected gas exceeds the amount of decrease in the amount of injected oil, and the cylinder 10 Is supplied with an amount of heat that is more than the desired total amount of heat.
 そこで、図2のガス及び石油の制御値のグラフに示されるように、ディーゼルモードからガスモードへ切替を行う場合、制御部は切替時に、燃料ガス噴射弁101に対して第1所定量(熱量Fsに相当する)を増加させる指示と、燃料噴射弁103に対してガスの第1所定量の熱量Fsに相当する噴射量を減少させる指示とを同時に行う。ここで、第1所定量は、燃料ガス噴射弁101の最小噴射期間の最小噴射量以上の噴射量であるとする。この指示により、図2の時間t=0において、ガスの噴射量は0から第1所定量へ不連続に急激に立ち上がる。また石油は、図2の時間t=0において、総熱量に相当する噴射量からガスの第1所定量の熱量Fsに相当する噴射量分だけ不連続に急激に減少する。
 第1所定量のガスを噴射し、総熱量からガスの第1所定量の熱量Fsを除いた熱量(1-Fs)に相当する噴射量の石油を噴射した後、制御部は、石油が時間t2にパイロット噴射量に相当する熱量であるF1になるように噴射量を連続的に徐々に減少させる指示と、ガスが時間t2に総熱量からパイロット噴射量に相当する熱量を除いた熱量F2=1-F1になるように噴射量を連続的に徐々に増加させる指示とを行う。石油の噴射量の減少指示およびガスの噴射量の増加指示は、総熱量の変動を抑えるようにそれぞれ一次関数的に減少および増加の指示を行っている。ただし、その減少および増加の傾向については図2に示した例に限定されず、総熱量の変動を抑える制御であれば、例えば二次関数的に曲線状に変化させた減少指示および増加指示であってもよい。
Therefore, as shown in the graph of gas and oil control values in FIG. 2, when switching from the diesel mode to the gas mode, the control unit sets the first predetermined amount (heat amount) to the fuel gas injection valve 101 at the time of switching. An instruction to increase (corresponding to Fs) and an instruction to decrease the injection amount corresponding to the first predetermined amount of heat Fs of gas to the fuel injection valve 103 at the same time. Here, it is assumed that the first predetermined amount is an injection amount equal to or greater than the minimum injection amount of the minimum injection period of the fuel gas injection valve 101. By this instruction, at time t = 0 in FIG. 2, the gas injection amount suddenly rises discontinuously from 0 to the first predetermined amount. Also, at time t = 0 in FIG. 2, the oil rapidly decreases discontinuously from the injection amount corresponding to the total heat amount by the injection amount corresponding to the first predetermined amount of heat Fs of the gas.
After injecting the first predetermined amount of gas and injecting the amount of oil corresponding to the heat quantity (1-Fs) obtained by removing the first predetermined amount of heat Fs from the total heat quantity, the control unit An instruction to continuously and gradually decrease the injection amount so as to become F1 corresponding to the pilot injection amount at t2, and a heat amount F2 obtained by subtracting the heat amount corresponding to the pilot injection amount from the total heat amount at time t2 = An instruction is given to gradually and gradually increase the injection amount so as to be 1-F1. An instruction to decrease the injection amount of oil and an instruction to increase the injection amount of gas are directed to decrease and increase in a linear function, respectively, so as to suppress fluctuations in the total heat amount. However, the tendency of the decrease and increase is not limited to the example shown in FIG. 2, and if the control is to suppress the fluctuation of the total heat amount, for example, the decrease instruction and the increase instruction that are changed in a curve shape in a quadratic function. There may be.
 時間t2において、ガスの熱量はF2、石油の熱量はF1となり、時間t2以降、二元燃料機関1はガスモードで運転される。ここで、t2は、t3と同一の値であってもよく、適宜設定可能な値である。
 以上のように制御されることで、時間t=0からt2の間の切替期間においても筒内に供給される総熱量の変動が抑えられる。
At time t2, the heat quantity of gas is F2, and the heat quantity of oil is F1, and after time t2, the dual fuel engine 1 is operated in the gas mode. Here, t2 may be the same value as t3, or a value that can be set as appropriate.
By controlling as described above, fluctuations in the total amount of heat supplied into the cylinder can be suppressed even during the switching period between time t = 0 and t2.
 また、ガスモードからディーゼルモードへ切替を行う場合は、同様に燃料ガス噴射弁101の最小噴射期間の最小値の制約により、最小噴射量を細かく制御することが困難であり、制御指令値に従って徐々に噴射量を減少させることができないため、切替完了時にガスの噴射量が一時的に大きく減少され、筒内に供給される総熱量が制御指令値よりも大幅に削減されてしまう。
 そこで、制御部は、まず石油の熱量が総熱量になるように噴射量を徐々に増加させる指示と、ガスの熱量が0になるように噴射量を徐々に減少させる指示とを行う。そして、切替完了時に、燃料ガス噴射弁101に対し第2所定量を減少させる指示と、燃料噴射弁103に対し第2所定量の熱量に相当する噴射量を増加させる指示とを行う。ここで、第2所定量は、燃料ガス噴射弁101の最小噴射期間の最小噴射量以上の噴射量であるとする。この指示により、切替完了時において、石油の噴射量は、パイロット噴射量から第2所定量の熱量に相当する噴射量分だけ不連続に急激に立ち上がり、同時にガスは、第2所定量分だけ不連続に急激に減少する。
Further, when switching from the gas mode to the diesel mode, it is difficult to finely control the minimum injection amount due to the restriction on the minimum value of the minimum injection period of the fuel gas injection valve 101, and gradually according to the control command value. Therefore, when the switching is completed, the gas injection amount is temporarily greatly reduced, and the total amount of heat supplied into the cylinder is greatly reduced from the control command value.
Therefore, the control unit first gives an instruction to gradually increase the injection amount so that the amount of heat of petroleum becomes the total amount of heat, and an instruction to gradually decrease the injection amount so that the amount of heat of gas becomes zero. When the switching is completed, the fuel gas injection valve 101 is instructed to decrease the second predetermined amount, and the fuel injection valve 103 is instructed to increase the injection amount corresponding to the second predetermined amount of heat. Here, the second predetermined amount is assumed to be an injection amount equal to or greater than the minimum injection amount of the minimum injection period of the fuel gas injection valve 101. By this instruction, when the switching is completed, the oil injection amount suddenly rises discontinuously from the pilot injection amount by the injection amount corresponding to the second predetermined amount of heat, and at the same time, the gas is inactivated by the second predetermined amount. It decreases rapidly continuously.
 以上、説明してきたように、本実施形態に係る二元燃料機関およびこれを備えた船舶、ならびに二元燃料機関の制御方法によれば、以下の作用効果を奏する。
 二元燃料機関1は、石油のみによって運転されるディーゼルモードと、石油とガスとによって運転されるガスモードとを備えている。このディーゼルモードからガスモードへ切り替える時に筒内の総熱量が変化しないようにガスの噴射量を第1所定量増大させると同時にガスの第1所定量の熱量に相当する石油の噴射量を減少させ、その後ガスの噴射量を徐々に増加させるとともに石油の噴射量を徐々に減少させるように制御する。
 燃料ガス噴射弁101に最小噴射期間の最小値の制約があり、最小噴射量を細かく制御することが困難である場合、図2のガス及び石油の噴射量を従来制御値のように連続的に切り替える制御を行い切替開始指令と同時にガスを噴射することとすると、最小噴射期間以下の細かい制御が行えず切替開始直後のガスの噴射量が一時的に大きくなり、ガスに対する制御指令値よりも過剰な熱量を筒内に供給してしまうことになる。この時、石油の噴射量は制御指令値に応じて徐々に減少されているため、石油の噴射量の減少量よりもガスの噴射量の増加量が上回り、シリンダ部10の筒内には所望の総熱量よりも過剰な熱量が供給されることになる。筒内に所望の総熱量よりも過剰な熱量が供給されると、図3に示されるように、二元燃料機関の筒内最高圧力はそれまで安定していた値から急激に高い値を示し、その状態がしばらく継続される。筒内最高圧力が高くなると、仕事量が増えることから二元燃料機関の回転数も安定状態から高回転となる。また二元燃料機関の回転数が上がると、燃料量を下げる指示が出るため、ガスの噴射量の増加が抑えられるとともに石油の噴射量は大きく減少されることとなる。
 このように、ガスが一時的に過剰に供給されることで、二元燃料機関の筒内圧力、回転数および総熱量(各燃料の噴射量)のそれぞれの変動が大きくなり、安定した燃焼による運転を行うことができない。
 本実施形態によれば、ディーゼルモードからガスモードへの切替時に筒内の総熱量が変化しないようにガスの噴射量を第1所定量増大させると同時にガスの第1所定量の熱量に相当する石油の噴射量を減少させることで、筒内に供給する熱量の変動を抑制することができる。これにより、二元燃料機関1の筒内圧および回転数の変動を抑えて安定した切替制御を実施することができ、NOxや燃費の変動を可能な限り最小限に抑えることができる。
As described above, according to the dual fuel engine, the ship including the dual fuel engine, and the control method of the dual fuel engine according to the present embodiment, the following operational effects can be obtained.
The dual fuel engine 1 includes a diesel mode that is operated only by oil and a gas mode that is operated by oil and gas. When changing from the diesel mode to the gas mode, the gas injection amount is increased by a first predetermined amount so that the total heat amount in the cylinder does not change, and at the same time, the oil injection amount corresponding to the first predetermined amount of heat of the gas is decreased. Thereafter, control is performed such that the gas injection amount is gradually increased and the oil injection amount is gradually decreased.
If the fuel gas injection valve 101 has a restriction on the minimum value of the minimum injection period and it is difficult to finely control the minimum injection amount, the gas and oil injection amounts in FIG. If the control to switch is performed and gas is injected at the same time as the switch start command, fine control below the minimum injection period cannot be performed, and the gas injection amount immediately after the switch start becomes temporarily larger than the control command value for the gas A large amount of heat is supplied into the cylinder. At this time, since the oil injection amount is gradually decreased according to the control command value, the increase amount of the gas injection amount exceeds the decrease amount of the oil injection amount, and the cylinder portion 10 has a desired amount in the cylinder. An excessive amount of heat is supplied than the total amount of heat. When the amount of heat exceeding the desired total amount of heat is supplied into the cylinder, as shown in FIG. 3, the maximum pressure in the cylinder of the dual fuel engine shows a suddenly high value from the previously stable value. That state continues for a while. When the in-cylinder maximum pressure increases, the amount of work increases, so the rotational speed of the dual fuel engine also increases from a stable state to a high speed. Further, when the rotational speed of the dual fuel engine increases, an instruction to lower the fuel amount is issued, so that an increase in the gas injection amount is suppressed and the oil injection amount is greatly reduced.
As described above, when the gas is temporarily excessively supplied, fluctuations in the in-cylinder pressure, the rotational speed, and the total heat amount (injection amount of each fuel) of the dual fuel engine become large, and stable combustion results. I can't drive.
According to the present embodiment, the gas injection amount is increased by the first predetermined amount so that the total heat amount in the cylinder does not change when switching from the diesel mode to the gas mode, and at the same time, it corresponds to the first predetermined amount of heat of the gas. By reducing the amount of oil injected, fluctuations in the amount of heat supplied into the cylinder can be suppressed. Thus, stable switching control can be performed while suppressing fluctuations in the in-cylinder pressure and rotation speed of the dual fuel engine 1, and fluctuations in NOx and fuel consumption can be minimized as much as possible.
 また、石油の噴射量をパイロット噴射量まで徐々に減少させるとともに、ガスを総熱量からパイロット噴射量の熱量を除いた熱量に相当する噴射量まで徐々に増加させることから、ガスの燃焼に必要なパイロット燃料として石油を使用でき、また全体の総熱量が変わらないため筒内に供給する熱量の変動を抑制することができる。これにより、二元燃料機関1の筒内圧の変動を抑えて安定した切替制御を実施することができ、NOxや燃費の変動を可能な限り最小限に抑えることができる。 In addition, the oil injection amount is gradually reduced to the pilot injection amount, and the gas is gradually increased to the injection amount corresponding to the heat amount obtained by excluding the heat amount of the pilot injection amount from the total heat amount. Petroleum can be used as the pilot fuel, and since the total amount of heat does not change, fluctuations in the amount of heat supplied into the cylinder can be suppressed. As a result, it is possible to perform stable switching control while suppressing fluctuations in the in-cylinder pressure of the dual fuel engine 1, and to minimize fluctuations in NOx and fuel consumption as much as possible.
 また、ガスモードからディーゼルモードへの切替完了時に筒内の総熱量が変化しないようにガスの噴射量を第2所定量減少させると同時にガスの第2所定量の熱量に相当する石油の噴射量を増加させることで、ガスモードからディーゼルモードへの切替において筒内に供給する熱量の変動を抑制することができる。これにより、二元燃料機関1の筒内圧の変動を抑えて安定した切替制御を実施することができ、NOxや燃費の変動を可能な限り最小限に抑えることができる。 In addition, when the switching from the gas mode to the diesel mode is completed, the gas injection amount is decreased by a second predetermined amount so that the total heat amount in the cylinder does not change, and at the same time, the oil injection amount corresponding to the second predetermined amount of heat of the gas By increasing the value, fluctuation in the amount of heat supplied into the cylinder in switching from the gas mode to the diesel mode can be suppressed. As a result, it is possible to perform stable switching control while suppressing fluctuations in the in-cylinder pressure of the dual fuel engine 1, and to minimize fluctuations in NOx and fuel consumption as much as possible.
 また、ガスの第1所定量および第2所定量が、燃料ガス噴射弁101の最小噴射期間の最小噴射量以上であることから、予め最小噴射量以上の制御可能な値を設定し、これに相当する熱量の石油の噴射量を設定することで熱量を相殺することで、燃料ガス噴射弁101の仕様の制約によってディーゼルモードとガスモードとの切替時にガスの熱量が変動するのを抑えるため、筒内の総熱量が変化しないように筒内に供給する熱量の変動を抑制することができる。 Further, since the first predetermined amount and the second predetermined amount of gas are equal to or greater than the minimum injection amount of the minimum injection period of the fuel gas injection valve 101, a controllable value equal to or greater than the minimum injection amount is set in advance. In order to suppress fluctuations in the amount of heat of the gas when switching between the diesel mode and the gas mode due to the restriction of the specifications of the fuel gas injection valve 101 by offsetting the amount of heat by setting the amount of oil injection of the corresponding amount of heat, Variation in the amount of heat supplied to the cylinder can be suppressed so that the total amount of heat in the cylinder does not change.
〔第2実施形態〕
 以下、本発明の第2実施形態について、図4を用いて説明する。
 上記した第1実施形態では、各燃料の切替時に増減させる各燃料の噴射量を一つの値に決定したが、本実施形態では、ガスの圧力に応じて各燃料の噴射量を設定するものである。その他の点については第1実施形態と同様であるので、同様の構成については同一符号を付しその説明は省略する。
[Second Embodiment]
Hereinafter, a second embodiment of the present invention will be described with reference to FIG.
In the first embodiment described above, the injection amount of each fuel to be increased or decreased at the time of switching of each fuel is determined as one value, but in this embodiment, the injection amount of each fuel is set according to the gas pressure. is there. Since the other points are the same as in the first embodiment, the same components are denoted by the same reference numerals and the description thereof is omitted.
 図4には、本実施形態に係る燃料ガス噴射弁噴射期間と燃料ガス噴射弁噴射量を示したグラフが示されている。同図において横軸は燃料ガス噴射弁101の噴射期間であり、縦軸は1サイクルごとの燃料ガス噴射弁101の噴射量である。tnは最小噴射期間を示し、電磁弁によって決まる噴射期間の下限界となる。
 図4に示されるように、噴射期間が長くなると、噴射量も増えている。また、ガス圧力が例えば20MPa、25MPa、30MPaと大きくなると、最小噴射期間tnにおける最小噴射量だけでなく、同一の噴射期間における噴射量は増加する。また最小噴射期間tnは、燃料ガス噴射弁101に用いられる電磁弁によって決まるので、ガス圧力にかかわらず同一の値を示す。
 このように、ガス圧力に応じて最小噴射期間tnにおける最小噴射量が変化することから、本実施形態では、ガスの供給圧力とそれに応じたガスの第1所定量およびガスの第1所定量の熱量に相当する石油の噴射量とを関連付けて記憶するテーブルを制御部に備えている。
 ガスの供給圧力と、それに応じたガスの第1所定量は、以下の式(1)で表される。
[数1]
  Q´∝Hu×ρ 1/2×ΔP1/2×do2・・・(1)
FIG. 4 shows a graph showing the fuel gas injection valve injection period and the fuel gas injection valve injection amount according to the present embodiment. In the figure, the horizontal axis represents the injection period of the fuel gas injection valve 101, and the vertical axis represents the injection amount of the fuel gas injection valve 101 for each cycle. tn indicates the minimum injection period, which is the lower limit of the injection period determined by the solenoid valve.
As shown in FIG. 4, as the injection period becomes longer, the injection amount also increases. Further, when the gas pressure is increased to, for example, 20 MPa, 25 MPa, and 30 MPa, not only the minimum injection amount in the minimum injection period tn but also the injection amount in the same injection period increases. The minimum injection period tn is determined by the electromagnetic valve used for the fuel gas injection valve 101, and therefore shows the same value regardless of the gas pressure.
As described above, since the minimum injection amount in the minimum injection period tn changes according to the gas pressure, in the present embodiment, the gas supply pressure, the first predetermined amount of gas and the first predetermined amount of gas corresponding thereto are changed. The control unit is provided with a table that stores the oil injection amount corresponding to the heat amount in association with each other.
The gas supply pressure and the first predetermined amount of gas corresponding thereto are expressed by the following equation (1).
[Equation 1]
Q'∝ Hu 1 × ρ f 1/2 × ΔP 1/2 × do 2 (1)
 (1)式において、Q´は、単位時間当たりの投入ガス発熱量[kJ/s]、Huは、ガスの低位発熱量[kJ/kg]、ρは、燃料ガス噴射弁101の噴孔出口のガス密度[kg/m]、ΔPは、燃料ガス噴射弁101の有効噴射圧[Pa]、doは、燃料ガス噴射弁101の噴孔径[m]である。
 ΔPは、(燃料ガス噴射弁101の噴射圧)-(シリンダ部10内圧)である。
 なお、チョーク条件では、ΔPは(燃料ガス噴射弁101の噴射圧)-(チョーク圧)、ρはチョーク時の密度とする。
(1) In the equation, Q'is input gas heating value per unit time [kJ / s], Hu is the lower heating value of gas [kJ / kg], ρ f is the nozzle hole of the fuel gas injector 101 The gas density [kg / m 3 ] at the outlet, ΔP is the effective injection pressure [Pa] of the fuel gas injection valve 101, and do is the nozzle diameter [m] of the fuel gas injection valve 101.
ΔP is (injection pressure of the fuel gas injection valve 101) − (internal pressure of the cylinder part 10).
In the choke condition, [Delta] P is (injection pressure of the fuel gas injector 101) - (chalk pressure), [rho f is the density at the choke.
 制御部は、ディーゼルモードからガスモードへの切替開始時に、ガス圧力を検知するセンサ(図示せず)が検知したガス圧力に基づきテーブルを参照し、テーブルからガス圧力に応じたガスの第1所定量およびガスの第1所定量の熱量に相当する石油の噴射量とを取得する。制御部は、燃料ガス噴射弁101に対してテーブルから取得したガスの第1所定量を増加させる指示と、燃料噴射弁103に対してテーブルから取得したガスの第1所定量の熱量に相当する石油の噴射量を減少させる指示とを同時に行う。 The control unit refers to the table based on the gas pressure detected by a sensor (not shown) for detecting the gas pressure at the start of switching from the diesel mode to the gas mode, and the first location of the gas corresponding to the gas pressure from the table. The fixed quantity and the amount of oil injection corresponding to the first predetermined amount of heat of gas are acquired. The control unit corresponds to an instruction to increase the first predetermined amount of gas acquired from the table to the fuel gas injection valve 101 and a first predetermined amount of heat of the gas acquired from the table to the fuel injection valve 103. An instruction to reduce the amount of oil injection is given at the same time.
 また、制御部は、ガスの供給圧力とそれに応じたガスの第2所定量およびガスの第2所定量の熱量に相当する石油の噴射量とを関連付けて記憶するテーブルを備えている。
 制御部は、ガスモードからディーゼルモードへの切替開始時に、ガス圧力を検知するセンサ(図示せず)が検知したガス圧力に基づきテーブルを参照し、テーブルからガス圧力に応じたガスの第2所定量およびガスの第2所定量の熱量に相当する石油の噴射量とを取得する。制御部は、切替完了時に、燃料ガス噴射弁101に対してテーブルから取得したガスの第2所定量を減少させる指示と、燃料噴射弁103に対してテーブルから取得したガスの第2所定量の熱量に相当する石油の噴射量を増加させる指示とを同時に行う。
In addition, the control unit includes a table that stores the gas supply pressure in association with the second predetermined amount of gas and the amount of oil injection corresponding to the heat amount of the second predetermined amount of gas.
The control unit refers to the table based on the gas pressure detected by a sensor (not shown) that detects the gas pressure at the start of switching from the gas mode to the diesel mode, and the second location of the gas corresponding to the gas pressure from the table. The fixed amount and the amount of oil injection corresponding to the second predetermined amount of heat of gas are acquired. When the switching is completed, the control unit instructs the fuel gas injection valve 101 to decrease the second predetermined amount of gas acquired from the table, and instructs the fuel injection valve 103 to set the second predetermined amount of gas acquired from the table. An instruction to increase the amount of oil injection corresponding to the amount of heat is simultaneously given.
 以上、説明してきたように、本実施形態に係る二元燃料機関およびこれを備えた船舶、ならびに二元燃料機関の制御方法によれば、以下の作用効果を奏する。
 ガスの供給圧力とそれに応じたガスの噴射量の第1または第2所定量とその熱量に相当する石油の噴射量とを各々関連付けて予めテーブルに保存しておき、検知した供給圧力に応じたガス及び石油の噴射量を取得しシリンダ部10の筒内に供給することで、ガスの噴射熱量は供給圧力によって変化するが、適切な量のガスの噴射量および石油の噴射量を決定することができ、筒内の総熱量が変化せず、筒内圧の変動を抑えて安定した切替制御を実施することができる。
As described above, according to the dual fuel engine, the ship including the dual fuel engine, and the control method of the dual fuel engine according to the present embodiment, the following operational effects can be obtained.
The gas supply pressure, the first or second predetermined amount of gas injection corresponding thereto, and the oil injection amount corresponding to the heat amount are associated with each other in advance and stored in a table in accordance with the detected supply pressure. By acquiring the gas and oil injection amounts and supplying them into the cylinder of the cylinder unit 10, the gas injection heat amount varies depending on the supply pressure, but an appropriate amount of gas injection amount and oil injection amount are determined. Thus, the total amount of heat in the cylinder does not change, and stable switching control can be performed while suppressing fluctuations in the cylinder pressure.
 以上、本発明の各実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更なども含まれる。 As mentioned above, although each embodiment of the present invention has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and includes design changes and the like within a scope not departing from the gist of the present invention. .
 たとえば、上述した実施形態においてはガス圧力とそれに応じたガスの第1または第2所定量とその熱量に相当する石油の噴射量とを各々関連付けてテーブルに記憶するとしたが、検知したガス圧力を上述の(1)式に設定し算出した熱量(に相当する噴射量)を設定するとしてもよい。 For example, in the above-described embodiment, the gas pressure, the first or second predetermined amount of gas corresponding to the gas pressure, and the oil injection amount corresponding to the heat amount are associated with each other and stored in the table. The amount of heat (corresponding to the injection amount) set and calculated in the above equation (1) may be set.
1 二元燃料機関
10 シリンダ部
20 ピストン
101 燃料ガス噴射弁
103 燃料噴射弁
1 Dual Fuel Engine 10 Cylinder 20 Piston 101 Fuel Gas Injection Valve 103 Fuel Injection Valve

Claims (7)

  1.  石油燃料のみによって運転される第1の運転モードと、前記石油燃料および燃料ガスによって運転される第2の運転モードとを切り替えるとともに、前記石油燃料および前記燃料ガスの噴射量を制御する制御部を備えた二元燃料機関において、
     前記制御部は、前記第1の運転モードから前記第2の運転モードへ切り替える時に前記燃料ガスの噴射量を所定量増大させると同時に、前記燃料ガスの前記所定量の熱量に相当する前記石油燃料の噴射量を減少させた後に、
     前記燃料ガスの噴射量を徐々に増加させるとともに、前記石油燃料の噴射量を徐々に減少させるように制御を行う二元燃料機関。
    A control unit that switches between a first operation mode that is operated only by petroleum fuel and a second operation mode that is operated by the petroleum fuel and fuel gas, and that controls an injection amount of the petroleum fuel and the fuel gas. In the dual fuel engine provided,
    The control unit increases the fuel gas injection amount by a predetermined amount when switching from the first operation mode to the second operation mode, and at the same time, the petroleum fuel corresponding to the predetermined amount of heat of the fuel gas. After reducing the injection amount of
    A dual fuel engine that performs control so as to gradually increase the fuel gas injection amount and gradually decrease the petroleum fuel injection amount.
  2.  前記制御部は、前記石油燃料の噴射量をパイロット噴射量まで徐々に減少させるとともに、前記燃料ガスを総熱量から前記パイロット噴射量の熱量を除いた熱量に相当する噴射量まで徐々に増加させる請求項1に記載の二元燃料機関。 The control unit gradually decreases the injection amount of the petroleum fuel to a pilot injection amount, and gradually increases the fuel gas to an injection amount corresponding to a heat amount obtained by subtracting the heat amount of the pilot injection amount from the total heat amount. Item 2. The dual fuel engine according to Item 1.
  3.  石油燃料のみによって運転される第1の運転モードと、前記石油燃料および燃料ガスによって運転される第2の運転モードとを切り替えるとともに、前記石油燃料および前記燃料ガスの噴射量を制御する制御部を備えた二元燃料機関において、
     前記制御部は、前記第2の運転モードから前記第1の運転モードへ切り替える時に前記燃料ガスの噴射量を徐々に減少させるとともに、前記石油燃料の噴射量を徐々に増加させた後に、切替完了時に前記燃料ガスの噴射量を所定量減少させると同時に、前記燃料ガスの所定量の熱量に相当する前記石油燃料の噴射量を増大させるように制御を行う二元燃料機関。
    A control unit that switches between a first operation mode that is operated only by petroleum fuel and a second operation mode that is operated by the petroleum fuel and fuel gas, and that controls an injection amount of the petroleum fuel and the fuel gas. In the dual fuel engine provided,
    The control unit gradually decreases the fuel gas injection amount when switching from the second operation mode to the first operation mode and gradually increases the petroleum fuel injection amount, and then completes the switching. A dual fuel engine that performs control so as to reduce the fuel gas injection amount by a predetermined amount and at the same time increase the petroleum fuel injection amount corresponding to a predetermined amount of heat of the fuel gas.
  4.  前記燃料ガスの前記所定量は、前記燃料ガス噴射弁の前記最小噴射期間の最小噴射量以上である請求項1から請求項3のいずれかに記載の二元燃料機関。 The dual fuel engine according to any one of claims 1 to 3, wherein the predetermined amount of the fuel gas is equal to or greater than a minimum injection amount of the minimum injection period of the fuel gas injection valve.
  5.  前記制御部は、前記燃料ガスの供給圧力とそれに応じた前記燃料ガスの前記所定量及び前記燃料ガスの前記所定量の熱量に相当する前記石油燃料の噴射量とを関連付けて記憶するテーブルを備え、前記第1の運転モードと前記第2の運転モードとの切替開始時の前記燃料ガスの前記供給圧力を検知し、検知した該供給圧力に基づき前記テーブルから前記燃料ガスの前記所定量とそれに対応する前記石油燃料の噴射量とを取得する請求項1から請求項4のいずれかに記載の二元燃料機関。 The control unit includes a table that associates and stores the supply pressure of the fuel gas, the predetermined amount of the fuel gas corresponding thereto, and an injection amount of the petroleum fuel corresponding to the predetermined amount of heat of the fuel gas. Detecting the supply pressure of the fuel gas at the start of switching between the first operation mode and the second operation mode, and based on the detected supply pressure, the predetermined amount of the fuel gas from the table and The dual fuel engine according to any one of claims 1 to 4, wherein a corresponding injection amount of the petroleum fuel is acquired.
  6.  請求項1から5のいずれかに記載の二元燃料機関と、
     前記二元燃料機関を搭載する船体と、を備える船舶。
    A dual fuel engine according to any one of claims 1 to 5;
    A ship equipped with a hull carrying the dual fuel engine.
  7.  石油燃料のみによって運転される第1の運転モードと、前記石油燃料および燃料ガスによって運転される第2の運転モードとを備える二元燃料機関の制御方法において、
     前記第1の運転モードから前記第2の運転モードへ切り替える時に前記燃料ガスの噴射量を所定量増大させると同時に、前記燃料ガスの所定量の熱量に相当する前記石油燃料の噴射量を減少させるステップと、
     前記燃料ガスの噴射量を徐々に増加させるとともに、前記石油燃料の噴射量を徐々に減少させるステップと
    を備える二元燃料機関の制御方法。
    In a control method for a dual fuel engine, comprising: a first operation mode operated only by petroleum fuel; and a second operation mode operated by the petroleum fuel and fuel gas.
    When switching from the first operation mode to the second operation mode, the fuel gas injection amount is increased by a predetermined amount, and at the same time, the petroleum fuel injection amount corresponding to a predetermined amount of heat of the fuel gas is decreased. Steps,
    And a step of gradually increasing the fuel gas injection amount and gradually decreasing the oil fuel injection amount.
PCT/JP2015/054659 2014-02-28 2015-02-19 Dual-fuel engine, ship provided with same, and method for controlling dual-fuel engine WO2015129547A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580003440.5A CN106030076B (en) 2014-02-28 2015-02-19 The control method of double fuel machine, the ship for having the double fuel machine and double fuel machine
KR1020167017131A KR101854056B1 (en) 2014-02-28 2015-02-19 Dual-fuel engine, ship provided with same, and method for controlling dual-fuel engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-039906 2014-02-28
JP2014039906A JP6297363B2 (en) 2014-02-28 2014-02-28 Dual fuel engine, ship equipped with the same, and control method of dual fuel engine

Publications (1)

Publication Number Publication Date
WO2015129547A1 true WO2015129547A1 (en) 2015-09-03

Family

ID=54008868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054659 WO2015129547A1 (en) 2014-02-28 2015-02-19 Dual-fuel engine, ship provided with same, and method for controlling dual-fuel engine

Country Status (4)

Country Link
JP (1) JP6297363B2 (en)
KR (1) KR101854056B1 (en)
CN (1) CN106030076B (en)
WO (1) WO2015129547A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047162A1 (en) * 2015-09-16 2017-03-23 ヤンマー株式会社 Engine device
WO2017047161A1 (en) * 2015-09-16 2017-03-23 ヤンマー株式会社 Engine device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6134041B1 (en) 2016-09-14 2017-05-24 三菱重工業株式会社 Engine and engine control method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740651U (en) * 1980-08-18 1982-03-04
JP2003065112A (en) * 2001-08-22 2003-03-05 Aisan Ind Co Ltd Fuel supply controller for engine
JP2003239776A (en) * 2002-02-13 2003-08-27 Toyota Motor Corp Fuel supply control device of internal combustion engine
JP2005171975A (en) * 2003-12-15 2005-06-30 Mitsubishi Heavy Ind Ltd Combustion control method and combustion control device in gas engine
JP2005226622A (en) * 2004-02-16 2005-08-25 Toyota Motor Corp Internal combustion engine and operating method thereof
JP2008051121A (en) * 2007-12-04 2008-03-06 Akio Ishida Binary operation mode engine system
JP2010144571A (en) * 2008-12-17 2010-07-01 Honda Motor Co Ltd Method for controlling operation of internal combustion engine
WO2012111114A1 (en) * 2011-02-16 2012-08-23 トヨタ自動車株式会社 Multifuel internal combustion engine, and method of controlling same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6814032B2 (en) * 2001-12-25 2004-11-09 Niigata Power Systems Co., Ltd. Dual fuel engine
DE102008031597B4 (en) 2008-07-03 2021-10-07 Man Energy Solutions Se Switchable multi-fuel engine and method for switching fuel in such a multi-fuel engine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740651U (en) * 1980-08-18 1982-03-04
JP2003065112A (en) * 2001-08-22 2003-03-05 Aisan Ind Co Ltd Fuel supply controller for engine
JP2003239776A (en) * 2002-02-13 2003-08-27 Toyota Motor Corp Fuel supply control device of internal combustion engine
JP2005171975A (en) * 2003-12-15 2005-06-30 Mitsubishi Heavy Ind Ltd Combustion control method and combustion control device in gas engine
JP2005226622A (en) * 2004-02-16 2005-08-25 Toyota Motor Corp Internal combustion engine and operating method thereof
JP2008051121A (en) * 2007-12-04 2008-03-06 Akio Ishida Binary operation mode engine system
JP2010144571A (en) * 2008-12-17 2010-07-01 Honda Motor Co Ltd Method for controlling operation of internal combustion engine
WO2012111114A1 (en) * 2011-02-16 2012-08-23 トヨタ自動車株式会社 Multifuel internal combustion engine, and method of controlling same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047162A1 (en) * 2015-09-16 2017-03-23 ヤンマー株式会社 Engine device
JP2017057775A (en) * 2015-09-16 2017-03-23 ヤンマー株式会社 Engine device
WO2017047161A1 (en) * 2015-09-16 2017-03-23 ヤンマー株式会社 Engine device
JP2017057774A (en) * 2015-09-16 2017-03-23 ヤンマー株式会社 Engine device
KR20180030215A (en) * 2015-09-16 2018-03-21 얀마 가부시키가이샤 Engine device
KR20180034657A (en) * 2015-09-16 2018-04-04 얀마 가부시키가이샤 Engine device
CN108026844A (en) * 2015-09-16 2018-05-11 洋马株式会社 Engine device
EP3351777A4 (en) * 2015-09-16 2018-09-19 Yanmar Co., Ltd. Engine device
EP3351778A4 (en) * 2015-09-16 2018-10-10 Yanmar Co., Ltd. Engine device
KR101967591B1 (en) 2015-09-16 2019-04-09 얀마 가부시키가이샤 Engine device
KR102010714B1 (en) 2015-09-16 2019-08-13 얀마 가부시키가이샤 Engine gear
US10378461B2 (en) 2015-09-16 2019-08-13 Yanmar Co., Ltd. Engine device
US10393035B2 (en) 2015-09-16 2019-08-27 Yanmar Co., Ltd. Engine device
CN108026844B (en) * 2015-09-16 2021-02-12 洋马动力科技有限公司 Engine device
CN112855361A (en) * 2015-09-16 2021-05-28 洋马动力科技有限公司 Engine device
CN112855361B (en) * 2015-09-16 2022-12-27 洋马动力科技有限公司 Engine device

Also Published As

Publication number Publication date
CN106030076B (en) 2019-06-07
KR20160085899A (en) 2016-07-18
JP6297363B2 (en) 2018-03-20
KR101854056B1 (en) 2018-05-02
CN106030076A (en) 2016-10-12
JP2015165106A (en) 2015-09-17

Similar Documents

Publication Publication Date Title
JP5583825B2 (en) Internal combustion engine with variable fuel injection profile
KR101931840B1 (en) A two-stroke internal combustion engine, method operating a two-stroke internal combustion engine and method of converting a two-stroke engine
KR101698113B1 (en) Gas engine driving system and ship
KR100756281B1 (en) Dual fuel engine
KR20150092331A (en) Skip-fire fuel injection system and method
CN101427019A (en) Low emission high performance engines, multiple cylinder engines and operating methods
JP2008202545A (en) Dual fuel engine
WO2014054732A1 (en) Uniflow scavenging 2-cycle engine
JP2002004899A (en) Dual fuel engine
CN104110314A (en) Dual Fuel Common Rail Transient Pressure Control And Engine Using Same
JP5204042B2 (en) Switchable multi-fuel engine and fuel switching method in multi-fuel engine
JP5503059B2 (en) Internal combustion engine with variable pressure and duration of fuel gas injection
JP6285699B2 (en) Ship engine system and ship using pilot fuel
WO2015129547A1 (en) Dual-fuel engine, ship provided with same, and method for controlling dual-fuel engine
US20150000630A1 (en) Rapid LNG Engine Warm-Up Utilizing Engine Compression Brakes
CN104769260A (en) Diesel engine control device, diesel engine, and diesel engine control method
JP2021102961A (en) Method of operating large type diesel engine, usage of the same, and large type diesel engine
WO2015098578A1 (en) Gas fuel supply system and method for detecting abnormality of gas fuel supply system
WO2014077002A1 (en) Diesel engine control device, diesel engine, and diesel engine control method
JP2017015072A (en) Low-load operation method for operating reciprocating piston internal combustion engine, computer program product, and reciprocating piston internal combustion engine
US11719173B2 (en) Method and gas fuel injection unit for operating an internal combustion engine
CN106168175B (en) Large diesel engine, method for operating a large diesel engine, and use of a method
CN110700954A (en) Liquid dual-fuel medium-speed diesel engine system and speed regulation control method thereof
JP6280763B2 (en) Liquid fuel supply system
CN211343148U (en) Liquid dual-fuel medium-speed diesel engine system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15754746

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167017131

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15754746

Country of ref document: EP

Kind code of ref document: A1