WO2015098578A1 - Gas fuel supply system and method for detecting abnormality of gas fuel supply system - Google Patents

Gas fuel supply system and method for detecting abnormality of gas fuel supply system Download PDF

Info

Publication number
WO2015098578A1
WO2015098578A1 PCT/JP2014/083025 JP2014083025W WO2015098578A1 WO 2015098578 A1 WO2015098578 A1 WO 2015098578A1 JP 2014083025 W JP2014083025 W JP 2014083025W WO 2015098578 A1 WO2015098578 A1 WO 2015098578A1
Authority
WO
WIPO (PCT)
Prior art keywords
gaseous fuel
injection valve
pressure
valve
gate valve
Prior art date
Application number
PCT/JP2014/083025
Other languages
French (fr)
Japanese (ja)
Inventor
壮太 渡邉
石田 裕幸
耕之 駒田
平岡 直大
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN201480059078.9A priority Critical patent/CN105849395B/en
Priority to KR1020167010947A priority patent/KR101864971B1/en
Publication of WO2015098578A1 publication Critical patent/WO2015098578A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0686Injectors
    • F02D19/0692Arrangement of multiple injectors per combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0623Failure diagnosis or prevention; Safety measures; Testing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0642Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions
    • F02D19/0647Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions the gaseous fuel being liquefied petroleum gas [LPG], liquefied natural gas [LNG], compressed natural gas [CNG] or dimethyl ether [DME]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0686Injectors
    • F02D19/0689Injectors for in-cylinder direct injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/081Adjusting the fuel composition or mixing ratio; Transitioning from one fuel to the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0027Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/224Diagnosis of the fuel system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a gaseous fuel supply system and an abnormality detection method for the gaseous fuel supply system.
  • a dual fuel engine (binary fuel engine) that generates power using both liquid fuel and gaseous fuel as disclosed in Patent Document 1 is known.
  • the dual fuel engine can operate in a fuel oil dedicated mode using only liquid fuel (fuel oil) and a dual fuel mode using both liquid fuel and gaseous fuel (fuel gas).
  • the fuel oil dedicated mode is a system in which liquid fuel is supplied to the combustion chamber to burn the supplied liquid fuel.
  • a gaseous fuel is supplied to the combustion chamber, a small amount of liquid fuel is supplied to the combustion chamber to generate a pilot flame, and the gaseous fuel is ignited and burned by the pilot flame.
  • the gaseous fuel supply system for supplying the gaseous fuel to the combustion chamber is abnormal, if the condition is left, the performance of the dual fuel engine may be degraded. Therefore, it is required to detect the presence or absence of an abnormality of the gaseous fuel supply system and the occurrence site of the abnormality.
  • An object of the present invention is to provide a gaseous fuel supply system capable of detecting an abnormality and an abnormality detection method for the gaseous fuel supply system.
  • the gaseous fuel supply system is a gaseous fuel supply system for supplying gaseous fuel to a combustion chamber of an engine, and an injection valve for injecting the gaseous fuel to the combustion chamber, and the above supplied for the injection valve
  • a supply flow path through which gaseous fuel flows a gate valve capable of opening and closing the supply flow path
  • a pressure sensor for detecting the pressure of the supply flow path between the injection valve and the gate valve, the injection valve and the injection valve
  • at least one of the injection valve and the gate valve based on the detection result of the pressure sensor and the detection result of the detection device for detecting the crank angle of the crankshaft of the engine.
  • At least one of the injection valve abnormality and the gate valve abnormality based on the detection result of the pressure in the supply flow passage between the injection valve and the gate valve and the detection result of the crank angle of the crankshaft. Can be detected.
  • Abnormalities in the injection valve and the gate valve include malfunction. For example, a state where the valve does not open despite the command signal for valve opening is output from the controller, or a state where the valve does not close despite the command signal for valve closing being output from the controller Including.
  • appropriate measures can be taken to eliminate the abnormalities. Moreover, the inconvenience which continues using the gaseous fuel supply system which abnormality has produced can be prevented.
  • the control device determines the position of a piston of the engine including top dead center and bottom dead center based on the detection result of the detection device, and the piston is top dead to supply the gaseous fuel to the combustion chamber.
  • the injection valve is opened and the injection valve is closed, and then a command signal is output to close the gate valve, and the piston is in the vicinity of bottom dead center
  • the abnormality may be detected based on the detection result of the pressure sensor at the time of positioning.
  • the gate valve functions as a safety valve (interlock mechanism) and operates when the piston is located near the top dead center.
  • the injection valve operates with the gate valve open.
  • the injection valve and the gate valve operate when the piston is located near the top dead center, at least one of the injection valve and the gate valve is detected based on the detection result of the pressure when the piston is located near the bottom dead center. Abnormality can be detected smoothly. Since the position of the piston can be derived from the detection result of the detection device, an abnormality can be detected based on the detection result of the detection device and the detection result of the pressure sensor.
  • the gaseous fuel supply system further includes a pre-injection valve for injecting the gaseous fuel into the combustion chamber before the injection of the gaseous fuel from the injection valve, wherein the control device injects the gaseous fuel.
  • a command signal is output to open the gate valve for injection of the gaseous fuel from the injection valve, and a command for closing the pre-injection valve
  • An abnormality of the pre-injection valve may be detected based on a detection result of the pressure sensor in a period from when a signal is output until a command signal for opening the gate valve is output.
  • a command signal for closing the pre-injection valve is output, and then a command signal for opening the gate valve for injection of the gaseous fuel from the injection valve is output It is possible to detect an abnormality in the pre-injection valve based on the detection result of the pressure sensor in the period up to.
  • the engine includes a dual fuel engine, and a liquid fuel is supplied to the combustion chamber and the gaseous fuel is not supplied based on a detection result of the pressure sensor in a fuel oil dedicated mode.
  • An abnormality of the injection valve may be detected.
  • the fuel oil dedicated mode no gaseous fuel is injected from the injection valve, and the injection valve is controlled to close.
  • the injection valve is open in the fuel oil dedicated mode, the high-temperature and high-pressure gas in the combustion chamber flows from the injection valve into the supply flow path to raise the pressure in the supply flow path. Therefore, it is possible to detect whether or not an abnormality has occurred in the injection valve in the fuel oil dedicated mode.
  • the abnormality detection method for a gaseous fuel supply system is the abnormality detection method for a gaseous fuel supply system for supplying gaseous fuel to a combustion chamber of an engine, wherein the gaseous fuel supply system comprises: An injection valve for injection, a supply flow path through which the gaseous fuel supplied to the injection valve flows, and a gate valve capable of opening and closing the supply flow path, the space between the injection valve and the gate valve Detecting the pressure in the supply flow path, detecting the crank angle of the crankshaft of the engine, and detecting the pressure in the supply flow path and the detection result of the crank angle; Detecting an abnormality of at least one of the gate valves.
  • At least one of the injection valve abnormality and the gate valve abnormality is detected based on the detection result of the pressure in the supply flow passage between the injection valve and the gate valve and the detection result of the crank angle. be able to.
  • an abnormality in the gaseous fuel supply system can be detected smoothly.
  • FIG. 1 is a schematic view showing an example of a dual fuel engine.
  • FIG. 2 is a schematic view showing an example of the operation of the dual fuel engine.
  • FIG. 3 is a plan view schematically showing an example of a state in which fuel is injected into the combustion chamber in the dual fuel mode.
  • FIG. 4 is a view schematically showing an example of a state in which the fuel is burned in the dual fuel mode.
  • FIG. 5 is a plan view schematically showing an example of a state in which the fuel is burned in the dual fuel mode.
  • FIG. 6 is a schematic view showing an example of the gaseous fuel supply system.
  • FIG. 7 is a view showing the relationship between the crank angle and the pressure of the supply flow passage when the gaseous fuel injection valve and the gate valve are operating normally.
  • FIG. 7 is a view showing the relationship between the crank angle and the pressure of the supply flow passage when the gaseous fuel injection valve and the gate valve are operating normally.
  • FIG. 8 is a view showing the relationship between the crank angle and the pressure of the supply passage when the gate valve is abnormally opened.
  • FIG. 9 is a view showing the relationship between the crank angle and the pressure of the supply flow passage when the gate valve is abnormally closed.
  • FIG. 10 is a view showing the relationship between the crank angle and the pressure of the supply passage when the gaseous fuel injection valve is abnormally opened.
  • FIG. 11 is a view showing the relationship between the crank angle and the pressure of the supply passage when the gaseous fuel injection valve is abnormally closed.
  • FIG. 12 is a view showing the relationship between the crank angle and the pressure of the supply passage when the gas fuel injection valve is abnormally opened in the fuel oil dedicated mode.
  • FIG. 13 is a schematic view showing an example of a gaseous fuel supply system.
  • FIG. 13 is a schematic view showing an example of a gaseous fuel supply system.
  • FIG. 14 is a view showing the relationship between the crank angle and the pressure of the supply passage when the pre-injection valve is abnormally opened.
  • FIG. 15 is a view showing the relationship between the crank angle and the pressure of the supply flow passage when the pre-injection valve is abnormally closed.
  • FIG. 1 is a schematic view showing an example of a dual fuel engine 1 according to the present embodiment.
  • the dual fuel engine 1 according to the present embodiment includes a cross-head type diesel engine, and is used, for example, as a propulsion engine for ships and the like.
  • the dual fuel engine 1 includes a base plate 50, a frame (main body) 51 provided on the base plate 50, and a jacket 52 provided on the frame 51.
  • a cylinder 2 provided in a jacket 52, a piston 3 reciprocating in the cylinder 2, a piston rod 41 connected to the piston 3, a connecting rod 43, and a piston rod 41.
  • a crosshead 42 connecting the connecting rod 43 and a crankshaft 4 connected to the connecting rod 43 via a crankpin 44 are provided.
  • the cylinder 2 has a cylinder liner 2A provided on the jacket 52 and a cylinder cover 2B provided on the cylinder liner 2A.
  • the cross head 42 moves along a guide portion 51 G provided on the frame 51 to transmit mechanical power from the piston rod 41 to the connecting rod 43.
  • the crankshaft 4 is disposed on the base plate 50 and outputs mechanical power transmitted from the piston 3.
  • the top surface of the piston 3 and the ceiling surface of the cylinder 2 face each other.
  • An exhaust valve 11 is provided at the center of the ceiling surface of the cylinder 2.
  • a combustion chamber 7 is formed between the piston 3, the cylinder 2 and the exhaust valve 11.
  • the dual fuel engine 1 further includes a gas fuel supply system 15 including a detection device 6 for detecting a rotation angle (crank angle) of the crankshaft 4 and a gas fuel injection valve 8 for supplying the gas fuel PG to the combustion chamber 7.
  • a liquid fuel supply system 20 including a liquid fuel injection valve 9 for supplying liquid fuel FO to the combustion chamber 7, an in-cylinder sensor 16 for detecting the pressure in the combustion chamber 7, and a control device 10 for controlling the dual fuel engine 1 Have.
  • the gaseous fuel injection valve 8 can inject the gaseous fuel PG into the combustion chamber 7.
  • the gaseous fuel PG includes, for example, at least one of CNG (compressed natural gas) and H 2 (hydrogen gas).
  • CNG compressed natural gas
  • H 2 hydrogen gas
  • two gaseous fuel injection valves 8 are disposed in the combustion chamber 7.
  • the number of gaseous fuel injection valves 8 is arbitrary.
  • the liquid fuel injection valve 9 can inject the liquid fuel FO into the combustion chamber 7.
  • the liquid fuel FO includes, for example, at least one of light oil, heavy oil, and heavy oil.
  • two liquid fuel injection valves 9 are disposed in the combustion chamber 7.
  • the number of liquid fuel injection valves 9 is arbitrary.
  • the detection device 6 includes a crank angle sensor, and detects a crank angle of the crankshaft 4.
  • the detection device 6 may detect the crank angle with reference to the top dead center of the piston 3.
  • the crank angle sensor for example, detects a crank angle from the rotational position of a measurement member (disk, detection gear, etc.) mounted on the crankshaft 4 and outputs a crank angle signal.
  • the crank angle sensor may be optical or electromagnetic.
  • the detection device 6 may detect the crank angle from the rotational position of the crankshaft 4 or the position of the piston 3 or the like.
  • the top dead center sensor is used to detect positional information (reference positional information) of the crankshaft 4 when the piston 3 is positioned at the top dead center, and based on the positional information and the rotational speed information of the crankshaft 4 The crank angle may be determined.
  • the detection result of the detection device 6 is output to the control device 10.
  • the crank angle and the position of the piston 3 are associated.
  • the control device 10 can determine the position of the piston 3 including the top dead center and the bottom dead center based on the detection result of the detection device 6. Also, based on the output of the built-in timer and the detection result of the detection device 6, the control device 10, for example, the time when the piston 3 is arranged at the top dead center and the time when the piston 3 is arranged at the bottom dead center You can ask for
  • the control device 10 controls the opening / closing of the exhaust valve 11, the injection of the gaseous fuel PG from the gaseous fuel injection valve 8, and the injection of the liquid fuel FO from the liquid fuel injection valve 9 based on the crank angle.
  • the in-cylinder sensor 16 detects the pressure in the combustion chamber 7.
  • the detection result of the in-cylinder sensor 16 is input to the control device 10.
  • the control device 10 can determine the presence or absence of an abnormality in the combustion chamber 7 based on the detection result of the in-cylinder sensor 16.
  • the control device 10 can obtain the type (content) of the abnormality of the combustion chamber 7 based on the detection result of the in-cylinder sensor 16.
  • the abnormality of the combustion chamber 7 includes at least one of a combustion abnormality, oversupply of gaseous fuel, and undersupply of gaseous fuel.
  • Combustion abnormalities include misfires.
  • the pressure in the combustion chamber 7 differs between the normal state and the abnormal state of the combustion chamber 7. Further, the pressure of the combustion chamber 7 also differs depending on the type of abnormality of the combustion chamber 7.
  • the relationship between the type of abnormality of the combustion chamber 7 and the pressure of the combustion chamber 7 corresponding to the type of abnormality is obtained in advance. The relationship is determined by preliminary experiments or simulations, and stored in a storage device connected to the control device 10.
  • the control device 10 can determine the presence or absence of an abnormality in the combustion chamber 7 based on the detection result of the in-cylinder sensor 16 and the storage information of the storage device, and can determine the type of the abnormality if an abnormality occurs. It is.
  • FIG. 2 is a schematic view showing an example of the operation of the dual fuel engine 1.
  • the dual fuel engine 1 is a two-stroke one-cycle uniflow swept exhaust diesel engine, and new air is introduced from the scavenging port into the combustion chamber 7 when the piston 3 is disposed near the bottom dead center. During the transition from the top dead center to the bottom dead center, the gas in the combustion chamber 7 is exhausted from the exhaust port.
  • the operation of the dual fuel engine 1 includes a suction step (A) for taking in new air and sending it to the combustion chamber 7, a compression step (B) for compressing the air in the combustion chamber 7 by the piston 3, and injecting fuel into the combustion chamber 7. And an exhaust process (D) in which the gas in the combustion chamber 7 after the combustion process is discharged from the exhaust valve 11.
  • the dual fuel engine 1 can operate in a fuel oil dedicated mode using only liquid fuel FO and a dual fuel mode using both liquid fuel FO and gaseous fuel PG.
  • the fuel oil dedicated mode is a mode in which the liquid fuel FO is supplied from the liquid fuel injection valve 9 to the combustion chamber 7 to burn the liquid fuel FO while the gaseous fuel injection valve 8 does not supply the gaseous fuel PG to the combustion chamber 7 .
  • the liquid fuel FO is injected from the liquid fuel injection valve 9 to the combustion chamber 7 in the combustion step.
  • the dual fuel mode is a mode in which both the liquid fuel FO and the gaseous fuel PG are supplied to the combustion chamber 7.
  • a small amount of liquid fuel FO is injected from the liquid fuel injection valve 9 to the fuel chamber 7 to generate a pilot flame.
  • the pilot flame ignites the gaseous fuel PG and burns it.
  • FIG. 3 schematically shows an example in which the gaseous fuel PG is injected from the gaseous fuel valve 8 to the combustion chamber 7 and the liquid fuel FO is injected from the liquid fuel valve 9 to the combustion chamber 7 in the dual fuel mode. It is a top view shown.
  • FIG. 4 is a view schematically showing an example of a state in which each of the liquid fuel FO and the gaseous fuel PG is burning in the dual fuel mode.
  • FIG. 5 is a plan view schematically showing an example of a state in which the liquid fuel FO and the gaseous fuel PG are burning in the dual fuel mode.
  • the air in the combustion chamber 7 is compressed.
  • gaseous fuel PG is injected from the gaseous fuel injection valve 8 to the combustion chamber 7.
  • a small amount of liquid fuel FO is injected from the liquid fuel injection valve 9 into the combustion chamber 7.
  • the main fuel is a gaseous fuel PG.
  • the gaseous fuel injection valve 8 has a plurality of injection ports 8S for injecting the gaseous fuel PG.
  • the liquid fuel injection valve 9 has a plurality of injection ports 9S for injecting the liquid fuel FO.
  • the gaseous fuel injection valve 8 injects gaseous fuel PG outward in the radial direction with respect to the axis of the gaseous fuel injection valve 8.
  • the liquid fuel injection valve 9 injects the liquid fuel FO outward in the radial direction with respect to the axis of the liquid fuel injection valve 9.
  • Each of the gaseous fuel injection valve 8 and the liquid fuel injection valve 9 injects the gaseous fuel PG and the liquid fuel FO so that the gaseous fuel PG and the liquid fuel FO intersect.
  • the gaseous fuel injection valve 8 injects gaseous fuel PG at a pressure P1.
  • diffusion combustion occurs in the combustion chamber 7 by supplying the high-pressure gaseous fuel PG to the combustion chamber 7 in which the high temperature and high pressure air is filled and the pilot flame is generated.
  • the dual fuel mode burns the gaseous fuel PG by the diffusion combustion method.
  • FIG. 6 is a view showing an example of the gaseous fuel supply system 15 according to the present embodiment.
  • the gaseous fuel supply system 15 supplies gaseous fuel PG to the combustion chamber 7 of the dual fuel engine 1.
  • the gaseous fuel supply system 15 is controlled by the controller 10.
  • the gaseous fuel supply system 15 opens and closes the gaseous fuel injection valve 8 for injecting the gaseous fuel PG into the combustion chamber 7, the supply flow path 21 through which the gaseous fuel PG supplied to the gaseous fuel injection valve 8 flows, and the supply flow path 21.
  • a possible gate valve 22 and a pressure sensor 23 for detecting the pressure of the supply flow path 21 between the gaseous fuel injection valve 8 and the gate valve 22 are provided.
  • the gaseous fuel injection valve 8 and the gate valve 22 are controlled by the controller 10.
  • the detection result of the pressure sensor 23 is output to the control device 10.
  • the gate valve 22 is connected to a gaseous fuel source including a pump capable of delivering the gaseous fuel PG.
  • the gaseous fuel supply source supplies gaseous fuel PG to the gate valve 22.
  • the gaseous fuel supply source supplies gaseous fuel PG at pressure P1.
  • the gate valve 22 functions as a safety valve (interlock mechanism). By opening both the gaseous fuel injection valve 8 and the gate valve 22, the gaseous fuel PG from the gaseous fuel supply source is supplied to the combustion chamber 7 through the gate valve 22, the supply flow passage 21 and the gaseous fuel injection valve 8. Supplied.
  • the pressure sensor 23 detects the pressure of the supply flow passage 21 between the gaseous fuel injection valve 8 and the gate valve 22.
  • the pressure sensor 23 can detect the pressure at the inlet of the gaseous fuel injection valve 8.
  • the detection result of the pressure sensor 23 is output to the control device 10.
  • the control device 10 detects an abnormality of at least one of the gas fuel injection valve 8 and the gate valve 22 based on the detection result of the pressure sensor 23 and the detection result of the detection device 6.
  • FIG. 7 is a view showing the relationship between the crank angle when the gaseous fuel injection valve 8 and the gate valve 22 operate normally and the pressure of the supply flow passage 21 (pressure at the inlet of the gaseous fuel injection valve 8). is there.
  • FIG. 7 includes a timing chart of the opening and closing operation of the gaseous fuel injection valve 8 and the opening and closing operation of the gate valve 22.
  • FIG. 7 shows the pressure of the supply flow passage 21 between the gaseous fuel injection valve 8 and the gate valve 22 when the crank angle is in the range of -30 degrees to 90 degrees.
  • the controller 10 outputs a command signal to open the gaseous fuel injection valve 8 after opening the gate valve 22 in order to supply the gaseous fuel PG to the combustion chamber 7.
  • the controller 10 opens the gate valve 22 when the piston 3 is located near the top dead center.
  • the control device 10 outputs a command signal to open the gate valve 22.
  • the control device 10 opens the gaseous fuel injection valve 8 when the piston 3 is located near the top dead center.
  • the control device 10 when the crank angle becomes A2 degrees, the control device 10 outputs a command signal to open the gaseous fuel injection valve 8.
  • T1 from when the crank angle becomes A1 degree to A2 degree, the gate valve 22 is open and the gaseous fuel injection valve 8 is closed.
  • the gaseous fuel PG of pressure P1 is supplied to the gate valve 22 from a gaseous fuel supply source.
  • the gate valve 22 By opening the gate valve 22 in a state where the gaseous fuel injection valve 8 is closed, the pressure of the supply flow passage 21 between the gaseous fuel injection valve 8 and the gate valve 22 becomes the pressure P1 in the period T1.
  • the gaseous fuel injection valve 8 When the crank angle becomes A2 degrees, the gaseous fuel injection valve 8 is opened in a state where the gate valve 22 is open, whereby the gaseous fuel PG is injected from the gaseous fuel injection valve 8 to the combustion chamber 7.
  • the crank angle A2 is 0 degree. That is, when the piston 3 is disposed at the top dead center, the gaseous fuel PG is injected from the gaseous fuel injection valve 8.
  • the crank angle A2 may not be 0 degrees.
  • the control device 10 outputs a command signal to close the gate valve 22 after closing the gaseous fuel injection valve 8.
  • the control device 10 when the crank angle becomes A3 degrees, the control device 10 outputs a command signal to close the gaseous fuel injection valve 8.
  • the control device 10 When the crank angle becomes A4 degrees larger than A3 degrees, the control device 10 outputs a command signal to close the gate valve 22.
  • both the gaseous fuel injection valve 8 and the gate valve 22 are open.
  • the pressure in the supply flow passage 21 between the gaseous fuel injection valve 8 and the gate valve 22 gradually decreases.
  • the controller 10 closes the gaseous fuel injection valve 8 with the gate valve 22 open.
  • the pressure in the supply flow path 21 between the gaseous fuel injection valve 8 and the gate valve 22 gradually increases.
  • the controller 10 closes the gate valve 22 with the gaseous fuel injection valve 8 closed.
  • the pressure of the supply flow path 21 between the gaseous fuel injection valve 8 and the gate valve 22 becomes constant.
  • the gate valve 22 is closed before the pressure of the supply flow passage 21 between the gaseous fuel injection valve 8 and the gate valve 22 rises to the pressure P1.
  • the pressure of the supply flow passage 21 in the period T4 is a pressure P2 lower than the pressure P1.
  • the period T1 includes a period from when a command signal for opening the gate valve 22 is output until a command signal for opening the gaseous fuel injection valve 8 is output.
  • the period T2 includes a period from when a command signal for opening the gaseous fuel injection valve 8 is output to when a command signal for closing the gaseous fuel injection valve 8 is output.
  • a period T3 includes a period from when a command signal for closing the gaseous fuel injection valve 8 is output to when a command signal for closing the gate valve 22 is output.
  • a period T4 includes a period from when a command signal for closing the gate valve 22 is output until a command signal for opening the gate valve 22 is output in the next cycle.
  • the control device 10 determines the timing for outputting the command signal based on the detection result of the detection device 6.
  • FIG. 8 is a diagram showing an abnormality (open abnormality) in which the gate valve 22 is open even though the control device 10 outputs a command signal to close the gate valve 22.
  • the horizontal axis is the crank angle
  • the vertical axis is the pressure of the supply flow path 21 between the gaseous fuel injection valve 8 and the gate valve 22 (pressure at the inlet of the gaseous fuel injection valve 8).
  • the controller 10 outputs a command signal to open the gate valve 22 when the crank angle is A1 degree, and opens the gaseous fuel injection valve 8 when the crank angle is A2 degree.
  • a command signal is output, and when the crank angle is A3 degrees, a command signal for closing the gaseous fuel injection valve 8 is output, and when the crank angle is A4 degrees, a command signal for closing the gate valve 22 is output.
  • the period T4 includes the time when the piston 3 is located near the bottom dead center. That is, the period T4 includes the time when the crank angle is 180 degrees.
  • the pressure of the supply flow passage 21 in the period T4 when the gaseous fuel injection valve 8 and the gate valve 22 operate normally is the pressure P2.
  • the pressure of the supply flow passage 21 in the period T4 differs between when the gate valve 22 is abnormal (open abnormality) and when it is normal. That is, when the gate valve 22 is normal, the pressure of the supply channel 21 in the period Th (period T4) is the pressure P2 as shown by the solid line in FIG.
  • the pressure of the supply flow channel 21 in the period Th is a pressure P1 higher than the pressure P2, as shown by a dotted line in FIG. Therefore, the control device 10 determines whether the gate valve 22 is abnormal or not based on the detection result of the pressure sensor 23 in at least a part of the period Th of the period T4 when the piston 3 is disposed near the bottom dead center. It can be detected.
  • FIG. 9 is a view showing the relationship between the crank angle and the pressure of the supply flow passage 21 (pressure at the inlet of the gaseous fuel injection valve 8) when the gate valve 22 is in abnormal closing.
  • the gate valve 22 does not open, and at the crank angle A2, when the gaseous fuel injection valve 8 opens, the gate With the valve 22 closed, the gaseous fuel PG in the supply passage 21 is injected from the gaseous fuel injection valve 8 into the combustion chamber 7.
  • the pressure of the supply flow passage 21 decreases from the time of the crank angle A2.
  • the pressure of the supply flow path 21 in the period T2, the period T3, and the period T4 differs depending on whether the gate valve 22 is abnormal (closed abnormality) or normal.
  • the control device 10 can detect, for example, whether or not the gate valve 22 is abnormal, based on the detection result of the pressure sensor 23 in the period Th.
  • FIG. 10 is a view showing the relationship between the crank angle and the pressure of the supply flow passage 21 (pressure at the inlet of the gaseous fuel injection valve 8) when the gaseous fuel injection valve 8 is abnormally opened.
  • the gaseous fuel injection valve 8 does not close and at the crank angle A4, the gate valve 22 closes. With the gate valve 22 closed, the gaseous fuel PG in the supply flow passage 21 is injected from the gaseous fuel injection valve 8 into the combustion chamber 7. As a result, as shown in FIG. 10, the pressure of the supply flow passage 21 decreases from the time of the crank angle A3. Thus, the pressure of the supply flow path 21 in the period T3 and the period T4 (period Th) differs depending on whether the gaseous fuel injection valve 8 is abnormal (open abnormality) or normal.
  • the control device 10 can detect, for example, whether or not the gate valve 22 is abnormal, based on the detection result of the pressure sensor 23 in the period Th.
  • FIG. 11 is a view showing the relationship between the crank angle and the pressure of the supply flow passage 21 (pressure at the inlet of the gaseous fuel injection valve 8) when the gaseous fuel injection valve 8 is abnormally closed.
  • the command signal to open the gaseous fuel injection valve 8 is output from the control device 10
  • the gaseous fuel injection valve 8 closes and the gate valve 22
  • the gaseous fuel PG of the pressure P1 from the gaseous fuel supply source is supplied to the supply flow passage 21.
  • the pressure of the supply flow path 21 in the period T2, the period T3, and the period T4 becomes the pressure P1.
  • the pressure of the supply flow passage 21 in the period T2, the period T3, and the period T4 (period Th) differs depending on whether the gaseous fuel injection valve 8 is abnormal (closed abnormality) or normal.
  • the control device 10 can detect, for example, whether or not the gate valve 22 is abnormal, based on the detection result of the pressure sensor 23 in the period Th.
  • the pressure shown in FIG. 8 pressure when the gate valve 22 is abnormally opened
  • the pressure shown in FIG. 11 pressure when the gaseous fuel injection valve 8 is abnormally closed
  • T2 and period T3 pressure when the gaseous fuel injection valve 8 is abnormally closed
  • the control device 10 causes an abnormality in either the gaseous fuel injection valve 8 or the gate valve 22 based on the detection result of the pressure sensor 23 and the detection result of the in-cylinder sensor 16 that detects the pressure of the combustion chamber 7. You may determine the height.
  • the pressure in the combustion chamber 7 differs between when the gate valve 22 is abnormally open and when the gaseous fuel injection valve 8 is abnormally closed. For example, when the gaseous fuel injection valve 8 is closed abnormally, the gaseous fuel PG is not injected from the gaseous fuel injection valve 8 to the combustion chamber 7, so the possibility of misfiring in the combustion chamber 7 becomes high.
  • the gaseous fuel PG is supplied to the combustion chamber 7 through the gate valve 22 and the gaseous fuel injection valve 8. Therefore, the possibility of misfiring in the combustion chamber 7 is low.
  • the type of abnormality of the combustion chamber 7 is likely to be different between when the gate valve 22 is abnormally opened and when the gaseous fuel injection valve 8 is abnormally closed. Further, as described above, the pressure of the combustion chamber 7 differs depending on the type of abnormality of the combustion chamber 7.
  • the control device 10 can determine which of the gaseous fuel injection valve 8 and the gate valve 22 has an abnormality based on the detection result of the in-cylinder sensor 16 and the storage information of the storage device.
  • the period T4 is different. It approximates in. Therefore, it may be difficult to determine which of the gate valve 22 and the gaseous fuel injection valve 8 is abnormal based on the detection result of the pressure sensor 23 in the period T4.
  • the type of abnormality of the combustion chamber 7 is different and the pressure of the combustion chamber 7 is different between when the gate valve 22 is abnormally closed and when the gaseous fuel injection valve 8 is abnormally opened.
  • the control device 10 can determine which of the gaseous fuel injection valve 8 and the gate valve 22 has an abnormality based on the detection result of the in-cylinder sensor 16 and the storage information of the storage device.
  • the gaseous fuel injection is performed based on the detection result of the pressure of the supply flow passage 21 between the gaseous fuel injection valve 8 and the gate valve 22 and the detection result of the crank angle. At least one of an abnormality of the valve 8 and an abnormality of the gate valve 22 can be detected. Therefore, for example, appropriate measures can be taken to eliminate the abnormality. Moreover, the problem which continues using the gaseous fuel supply system 15 which abnormality has generate
  • the gate valve 22 functions as a safety valve (interlock mechanism), and operates when the piston 3 is disposed near the top dead center in order to inject the gaseous fuel PG. Since the gaseous fuel injection valve 8 operates with the gate valve 22 open, the gaseous fuel PG is injected from the gaseous fuel injection valve 8 to the combustion chamber 7 at an appropriate timing. Since the gaseous fuel injection valve 8 and the gate valve 22 operate in a state where the piston 3 is disposed near the top dead center, the pressure sensor 23 in the period Th when the piston 3 is disposed near the bottom dead center An abnormality in at least one of the gaseous fuel injection valve 8 and the gate valve 22 can be smoothly detected based on the detection result.
  • a safety valve interlock mechanism
  • the detection result of the pressure sensor 23 when an abnormality occurs in the gaseous fuel injection valve 8 in the period Th and the detection result of the pressure sensor 23 when an abnormality occurs in the gate valve 22 Even in the case of approximation, it is possible to determine which of the gaseous fuel injection valve 8 and the gate valve 22 has an abnormality by referring to the detection result of the in-cylinder sensor 16.
  • a temperature sensor capable of detecting the temperature of the gas (exhaust gas) discharged from the combustion chamber 7 through the exhaust port 12 is provided, and the detection result of the temperature sensor and the detection of the pressure sensor 23 Based on the result, it may be determined which of the gaseous fuel injection valve 8 and the gate valve 22 has an abnormality. Even when the detection result of the pressure sensor 23 when abnormality occurs in the gaseous fuel injection valve 8 and the detection result of the pressure sensor 23 when abnormality occurs in the gate valve 22 in the period Th approximates that temperature sensor It is possible to determine which of the gaseous fuel injection valve 8 and the gate valve 22 has an abnormality by referring to the detection result of the above.
  • the temperature of the exhaust gas discharged from the exhaust port 12 differs depending on the type of abnormality of the combustion chamber 7. Therefore, when the detection result of the pressure sensor 23 when an abnormality occurs in the gaseous fuel injection valve 8 and the detection result of the pressure sensor 23 when an abnormality occurs in the gate valve 22 approximates, the exhaust gas detected by the temperature sensor Based on the temperature detection result, it can be determined which of the gaseous fuel injection valve 8 and the gate valve 22 has an abnormality.
  • the control device 10 By storing the relationship between the type of abnormality of the combustion chamber 7 and the temperature of the exhaust gas corresponding to the type of abnormality in the storage device, the control device 10 detects the detection result of the temperature sensor and the storage information of the storage device It is possible to determine which of the gaseous fuel injection valve 8 and the gate valve 22 has an abnormality based on
  • an example of detecting an abnormality of the gaseous fuel injection valve 8 will be described based on the detection result of the pressure sensor 23 in the fuel oil dedicated mode.
  • the gaseous fuel PG is not supplied from the gaseous fuel supply source, and the controller 10 outputs a command signal to close the gaseous fuel injection valve 8.
  • the gaseous fuel injection valve 8 operates normally, the gaseous fuel injection valve 8 is closed, and the gaseous fuel PG is not injected from the gaseous fuel injection valve 8.
  • FIG. 12 is a diagram showing the relationship between the crank angle and the pressure of the supply flow passage 21 (pressure at the inlet of the gaseous fuel injection valve 8) when the gaseous fuel injection valve 8 is normal and open abnormality in the fuel oil dedicated mode It is.
  • the horizontal axis is the crank angle
  • the vertical axis is the pressure of the supply flow path 21 between the gaseous fuel injection valve 8 and the gate valve 22 (pressure at the inlet of the gaseous fuel injection valve 8).
  • the output of the pressure sensor 23 is constant.
  • the gaseous fuel injection valve 8 is abnormal (when it is open) in the fuel oil dedicated mode, high temperature / high pressure gas in the combustion chamber 7 flows from the gaseous fuel injection valve 8 into the supply flow passage 21. Thereby, the pressure of the supply flow path 21 rises. The pressure in the supply channel 21 is detected by the pressure sensor 23. Therefore, based on the detection result of the pressure sensor 23, the control device 10 can detect whether or not an abnormality has occurred in the gaseous fuel injection valve 8 in the fuel oil dedicated mode.
  • FIG. 13 is a schematic view showing an example of the gaseous fuel supply system 15 according to the present embodiment.
  • the gaseous fuel supply system 15 includes a gaseous fuel injection valve 8 for injecting the gaseous fuel PG into the combustion chamber 7 and a pre-injection valve 30.
  • the pre-injection valve 30 is controlled by the control device 10.
  • the pre-injection valve 30 injects the gaseous fuel PG into the combustion chamber 7.
  • the pre-injection valve 30 injects the gaseous fuel PG into the combustion chamber 7 before injecting the gaseous fuel PG from the gaseous fuel injection valve 8.
  • the gaseous fuel PG is further generated from the gaseous fuel injection valve 8. Combustion is performed in the combustion chamber 7 by injection of
  • FIG. 14 is a diagram showing the relationship between the crank angle in the partial premixed combustion mode in which partial premixed combustion is performed and the pressure of the supply flow passage 21 (pressure at the inlet of the gaseous fuel injection valve 8).
  • the horizontal axis is the crank angle
  • the vertical axis is the pressure of the supply flow path 21 between the gaseous fuel injection valve 8 and the gate valve 22 (pressure at the inlet of the gaseous fuel injection valve 8).
  • FIG. 14 shows the relationship between the crank angle and the pressure of the supply flow passage 21 when the pre-injection valve 30 is normal and the opening abnormality.
  • the injection of the gaseous fuel PG from the pre-injection valve 30 is performed before the injection of the gaseous fuel PG from the gaseous fuel injection valve 8 is performed.
  • the operation of the gaseous fuel injection valve 8 and the gate valve 22 when injecting the gaseous fuel PG from the gaseous fuel injection valve 8 is the same as that of the above-described embodiment. That is, the control device 10 opens the gate valve 22 when the crank angle is A1 degree and opens the gas fuel injection valve 8 when the crank angle is A2 degree, and the gas fuel injection valve 8 when the crank angle is A3 degree. Is closed, and when the crank angle is A4 degrees, a command signal is output to close the gate valve 22.
  • the sequence of opening and closing the gate valve 22 and the pre-injection valve 30 when injecting the gaseous fuel PG from the pre-injection valve 30 is the same as the gate valve 22 and the gaseous fuel injection valve 8 when injecting the gaseous fuel PG from the gaseous fuel injection valve 8 It is similar to the sequence of opening and closing of. That is, when injecting the gaseous fuel PG from the pre-injection valve 30, the control device 10 opens the gate valve 22 when the crank angle is A1p degree and opens the pre-injection valve 30 when the crank angle is A2p degree. When the angle is A3 p degrees, the pre injection valve 30 is closed, and when the crank angle is A4 p degrees, the pre injection valve 30 is closed.
  • the control device 10 closes the pre-injection valve 30 which injected the gaseous fuel PG at the crank angle A3 p and closes the gate valve 22 at the crank angle A4 p, and then the gaseous fuel PG is injected from the gaseous fuel injection valve 8 Thus, the command signal is output to open the gate valve 22 at the crank angle A1.
  • an abnormality in which the pre-injection valve 30 is open although the control device 10 outputs a command signal to close the pre-injection valve 30 will be described.
  • the gate valve 22 is closed at the crank angle A4p without the pre-injection valve 30 closing. With the valve 22 closed, the gaseous fuel PG is injected from the pre-injection valve 30 into the combustion chamber 7. As a result, as shown in FIG. 14, the pressure of the supply flow channel 21 decreases from the time of the crank angle A3 p.
  • the command signal for closing the pre-injection valve 30 is output at the crank angle A3 p, and then the gate valve 22 is output at the crank angle A1.
  • the pressure in the supply channel 21 in the period Tj until the command signal for opening is output is different. That is, when the pre-injection valve 30 is normal, the pressure of the supply flow passage 21 in the period Tj is the pressure P2 as shown by the solid line in FIG. 14. When the pre-injection valve 30 is abnormally opened, the period Tj The pressure of the supply flow passage 21 at the point of (4) is lower than the pressure P2, as shown by the dotted line in FIG. Therefore, the control device 10 can detect whether or not the pre-injection valve 30 is abnormal based on the detection result of the pressure sensor 23 in the period Tj.
  • FIG. 15 is a view showing the relationship between the crank angle and the pressure of the supply flow passage 21 (pressure at the inlet of the gaseous fuel injection valve 8) when the pre-injection valve 30 is abnormally closed.
  • the command signal for opening the pre-injection valve 30 is output from the control device 10
  • the pre-injection valve 30 does not open, the pre-injection valve 30 is closed and the gate valve 22 is open.
  • the gaseous fuel PG at the pressure P1 is supplied to the supply flow channel 21.
  • the pressure of the supply flow path 21 in the period Tj becomes the pressure P1.
  • the pressure of the supply flow passage 21 in the period Tj differs between when the pre-injection valve 30 is abnormal (closed abnormality) and when it is normal. That is, when the pre-injection valve 30 is normal, the pressure of the supply flow passage 21 in the period Tj is the pressure P2 as shown by the solid line in FIG.
  • the period Tj The pressure of the supply flow passage 21 at the pressure point P2 is a pressure P1 higher than the pressure P2, as shown by a dotted line in FIG. Therefore, based on the detection result of the pressure sensor 23 in the period Tj, it can be detected whether or not the pre-injection valve 30 is abnormal.
  • Reference Signs List 1 dual fuel engine 7 combustion chamber 8 gas fuel injection valve 15 gas fuel supply system 16 in-cylinder sensor 21 supply flow path 22 gate valve 23 pressure sensor 30 pre-injection valve PG gas fuel

Abstract

A gas fuel supply system (15) supplies gas fuel into the combustion chamber (7) of an engine. The gas fuel supply system is provided with: an injection valve (8) for injecting the gas fuel into the combustion chamber; a supply flow passage through which the gas fuel to be supplied to the injection valve flows; a gate valve which can open and close the supply flow passage; a pressure sensor for detecting pressure in the portion of the supply flow passage, which is located between the injection valve and the gate valve; and a control device for controlling the injection valve and the gate valve. The abnormality of the injection valve and/or the gate valve is detected on the basis of the result of detection by the pressure sensor and on the basis of the result of detection by a detection device for detecting the crank angle of the crankshaft of the engine.

Description

気体燃料供給システム及び気体燃料供給システムの異常検出方法Gas fuel supply system and abnormality detection method for gas fuel supply system
 本発明は、気体燃料供給システム及び気体燃料供給システムの異常検出方法に関する。 The present invention relates to a gaseous fuel supply system and an abnormality detection method for the gaseous fuel supply system.
 例えば船舶の動力源として、特許文献1に開示されているような、液体燃料及び気体燃料の両方を使って動力を発生するデュアルフューエルエンジン(二元燃料エンジン)が知られている。 For example, as a power source of a ship, a dual fuel engine (binary fuel engine) that generates power using both liquid fuel and gaseous fuel as disclosed in Patent Document 1 is known.
特許第3432098号公報Patent No. 3432098
 デュアルフューエルエンジンは、液体燃料(燃料油)のみを使う燃料油専用モードと、液体燃料及び気体燃料(燃料ガス)の両方を使う二種燃料モードとのそれぞれで作動可能である。燃料油専用モードは、燃焼室に液体燃料を供給して、その供給された液体燃料を燃焼させる方式である。二種燃料モードは、燃焼室に気体燃料を供給するとともに、燃焼室に少量の液体燃料を供給してパイロット火炎を生成して、パイロット火炎で気体燃料を着火して燃焼させる方式である。 The dual fuel engine can operate in a fuel oil dedicated mode using only liquid fuel (fuel oil) and a dual fuel mode using both liquid fuel and gaseous fuel (fuel gas). The fuel oil dedicated mode is a system in which liquid fuel is supplied to the combustion chamber to burn the supplied liquid fuel. In the dual fuel mode, a gaseous fuel is supplied to the combustion chamber, a small amount of liquid fuel is supplied to the combustion chamber to generate a pilot flame, and the gaseous fuel is ignited and burned by the pilot flame.
 デュアルフューエルエンジンにおいて、燃焼室に気体燃料を供給する気体燃料供給システムに異常が生じているにもかかわらず、その状態を放置しておくと、デュアルフューエルエンジンの性能が低下する可能性がある。そのため、気体燃料供給システムの異常の有無及び異常の発生部位を検出することが求められる。 In the dual fuel engine, although the gaseous fuel supply system for supplying the gaseous fuel to the combustion chamber is abnormal, if the condition is left, the performance of the dual fuel engine may be degraded. Therefore, it is required to detect the presence or absence of an abnormality of the gaseous fuel supply system and the occurrence site of the abnormality.
 本発明は、異常を検出できる気体燃料供給システム及び気体燃料供給システムの異常検出方法を提供することを目的とする。 An object of the present invention is to provide a gaseous fuel supply system capable of detecting an abnormality and an abnormality detection method for the gaseous fuel supply system.
 本発明に係る気体燃料供給システムは、エンジンの燃焼室に気体燃料を供給する気体燃料供給システムであって、前記燃焼室に前記気体燃料を噴射する噴射弁と、前記噴射弁に供給される前記気体燃料が流れる供給流路と、前記供給流路を開閉可能なゲート弁と、前記噴射弁と前記ゲート弁との間の前記供給流路の圧力を検出する圧力センサと、前記噴射弁及び前記ゲート弁を制御する制御装置と、を備え、前記圧力センサの検出結果と前記エンジンのクランク軸のクランク角度を検出する検出装置の検出結果とに基づいて、前記噴射弁及び前記ゲート弁の少なくとも一方の異常を検出する。 The gaseous fuel supply system according to the present invention is a gaseous fuel supply system for supplying gaseous fuel to a combustion chamber of an engine, and an injection valve for injecting the gaseous fuel to the combustion chamber, and the above supplied for the injection valve A supply flow path through which gaseous fuel flows, a gate valve capable of opening and closing the supply flow path, a pressure sensor for detecting the pressure of the supply flow path between the injection valve and the gate valve, the injection valve and the injection valve And at least one of the injection valve and the gate valve based on the detection result of the pressure sensor and the detection result of the detection device for detecting the crank angle of the crankshaft of the engine. To detect abnormalities in
 本発明によれば、噴射弁とゲート弁との間の供給流路の圧力の検出結果と、クランク軸のクランク角度の検出結果とに基づいて、噴射弁の異常及びゲート弁の異常の少なくとも一方を検出することができる。噴射弁及びゲート弁の異常は、動作不良を含む。異常は、例えば、制御装置から開弁の指令信号が出力されているにもかかわらず開弁しない状態、又は制御装置から閉弁の指令信号が出力されているにもかかわらず閉弁しない状態を含む。本発明によれば、これらの異常を検出できるため、その異常を解消するための適切な措置を講ずることができる。また、異常が生じている気体燃料供給システムを使用し続けてしまう不都合を防止できる。 According to the present invention, at least one of the injection valve abnormality and the gate valve abnormality based on the detection result of the pressure in the supply flow passage between the injection valve and the gate valve and the detection result of the crank angle of the crankshaft. Can be detected. Abnormalities in the injection valve and the gate valve include malfunction. For example, a state where the valve does not open despite the command signal for valve opening is output from the controller, or a state where the valve does not close despite the command signal for valve closing being output from the controller Including. According to the present invention, since these abnormalities can be detected, appropriate measures can be taken to eliminate the abnormalities. Moreover, the inconvenience which continues using the gaseous fuel supply system which abnormality has produced can be prevented.
 前記制御装置は、前記検出装置の検出結果に基づいて上死点及び下死点を含む前記エンジンのピストンの位置を求め、前記燃焼室に前記気体燃料を供給するために、前記ピストンが上死点近傍に位置する時点において前記ゲート弁を開けた後、前記噴射弁を開け、前記噴射弁を閉じた後、前記ゲート弁を閉じるように指令信号を出力し、前記ピストンが下死点近傍に位置する時点での前記圧力センサの検出結果に基づいて、前記異常を検出してもよい。ゲート弁は、安全弁(インターロック機構)として機能し、ピストンが上死点近傍に位置する時点において作動する。噴射弁は、ゲート弁が開いている状態で作動する。ピストンが上死点近傍に位置する時点で噴射弁及びゲート弁が作動するため、ピストンが下死点近傍に位置する時点での圧力の検出結果に基づいて、噴射弁及びゲート弁の少なくとも一方の異常を円滑に検出することができる。ピストンの位置は、検出装置の検出結果から導出可能であるため、検出装置の検出結果及び圧力センサの検出結果に基づいて異常を検出することができる。 The control device determines the position of a piston of the engine including top dead center and bottom dead center based on the detection result of the detection device, and the piston is top dead to supply the gaseous fuel to the combustion chamber. After the gate valve is opened at a point near the point, the injection valve is opened and the injection valve is closed, and then a command signal is output to close the gate valve, and the piston is in the vicinity of bottom dead center The abnormality may be detected based on the detection result of the pressure sensor at the time of positioning. The gate valve functions as a safety valve (interlock mechanism) and operates when the piston is located near the top dead center. The injection valve operates with the gate valve open. Since the injection valve and the gate valve operate when the piston is located near the top dead center, at least one of the injection valve and the gate valve is detected based on the detection result of the pressure when the piston is located near the bottom dead center. Abnormality can be detected smoothly. Since the position of the piston can be derived from the detection result of the detection device, an abnormality can be detected based on the detection result of the detection device and the detection result of the pressure sensor.
 本発明に係る気体燃料供給システムにおいて、前記圧力センサの検出結果と前記燃焼室の圧力を検出する筒内センサの検出結果とに基づいて、前記噴射弁及び前記ゲート弁のどちらに異常が生じたかを判定してもよい。例えば、噴射弁に異常が生じたときの圧力の検出結果と、ゲート弁に異常が生じたときの圧力の検出結果とが近似する場合、燃焼室の圧力を検出することにより、その燃焼室の圧力の検出結果に基づいて、前記噴射弁及び前記ゲート弁のどちらに異常が生じたかを判定することができる。 In the gas fuel supply system according to the present invention, which of the injection valve and the gate valve has an abnormality based on the detection result of the pressure sensor and the detection result of the in-cylinder sensor for detecting the pressure of the combustion chamber May be determined. For example, when the detection result of the pressure when an abnormality occurs in the injection valve and the detection result of the pressure when an abnormality occurs in the gate valve approximate each other, the pressure of the combustion chamber is detected. Based on the pressure detection result, it can be determined which of the injection valve and the gate valve has an abnormality.
 本発明に係る気体燃料供給システムにおいて、前記噴射弁からの前記気体燃料の噴射前に、気体燃料を前記燃焼室に噴射するプレ噴射弁を備え、前記制御装置は、前記気体燃料を噴射した前記プレ噴射弁を閉じてから前記ゲート弁を閉じた後、前記噴射弁からの前記気体燃料の噴射のために前記ゲート弁を開けるように指令信号を出力し、前記プレ噴射弁を閉じるための指令信号が出力されてから前記ゲート弁を開くための指令信号が出力されるまでの期間における前記圧力センサの検出結果に基づいて、前記プレ噴射弁の異常を検出してもよい。気体燃料供給システムがプレ噴射弁を有する場合、プレ噴射弁を閉じるための指令信号が出力されてから、噴射弁からの気体燃料の噴射のためにゲート弁を開くための指令信号が出力されるまでの期間における圧力センサの検出結果に基づいてプレ噴射弁の異常を検出することができる。 The gaseous fuel supply system according to the present invention further includes a pre-injection valve for injecting the gaseous fuel into the combustion chamber before the injection of the gaseous fuel from the injection valve, wherein the control device injects the gaseous fuel. After closing the pre-injection valve and closing the gate valve, a command signal is output to open the gate valve for injection of the gaseous fuel from the injection valve, and a command for closing the pre-injection valve An abnormality of the pre-injection valve may be detected based on a detection result of the pressure sensor in a period from when a signal is output until a command signal for opening the gate valve is output. When the gaseous fuel supply system has a pre-injection valve, a command signal for closing the pre-injection valve is output, and then a command signal for opening the gate valve for injection of the gaseous fuel from the injection valve is output It is possible to detect an abnormality in the pre-injection valve based on the detection result of the pressure sensor in the period up to.
 本発明に係る気体燃料供給システムにおいて、前記エンジンは、デュアルフューエルエンジンを含み、前記燃焼室に液体燃料が供給され前記気体燃料が供給されない燃料油専用モードにおける前記圧力センサの検出結果に基づいて、前記噴射弁の異常を検出してもよい。燃料油専用モードにおいては噴射弁から気体燃料は噴射されず、噴射弁は閉じるように制御される。燃料油専用モードにおいて噴射弁が開いている場合、燃焼室の高温高圧の気体が噴射弁から供給流路に流入し、供給流路の圧力を上昇させる。そのため、燃料油専用モードにおいて噴射弁に異常が生じたか否かを検出することができる。 In the gaseous fuel supply system according to the present invention, the engine includes a dual fuel engine, and a liquid fuel is supplied to the combustion chamber and the gaseous fuel is not supplied based on a detection result of the pressure sensor in a fuel oil dedicated mode. An abnormality of the injection valve may be detected. In the fuel oil dedicated mode, no gaseous fuel is injected from the injection valve, and the injection valve is controlled to close. When the injection valve is open in the fuel oil dedicated mode, the high-temperature and high-pressure gas in the combustion chamber flows from the injection valve into the supply flow path to raise the pressure in the supply flow path. Therefore, it is possible to detect whether or not an abnormality has occurred in the injection valve in the fuel oil dedicated mode.
 本発明に係る気体燃料供給システムの異常検出方法は、エンジンの燃焼室に気体燃料を供給する気体燃料供給システムの異常検出方法であって、前記気体燃料供給システムは、前記燃焼室に気体燃料を噴射する噴射弁と、前記噴射弁に供給される前記気体燃料が流れる供給流路と、前記供給流路を開閉可能なゲート弁と、を備え、前記噴射弁と前記ゲート弁との間の前記供給流路の圧力を検出する工程と、前記エンジンのクランク軸のクランク角度を検出する工程と、前記供給流路の圧力の検出結果と前記クランク角度の検出結果とに基づいて、前記噴射弁及び前記ゲート弁の少なくとも一方の異常を検出する工程と、を含む。 The abnormality detection method for a gaseous fuel supply system according to the present invention is the abnormality detection method for a gaseous fuel supply system for supplying gaseous fuel to a combustion chamber of an engine, wherein the gaseous fuel supply system comprises: An injection valve for injection, a supply flow path through which the gaseous fuel supplied to the injection valve flows, and a gate valve capable of opening and closing the supply flow path, the space between the injection valve and the gate valve Detecting the pressure in the supply flow path, detecting the crank angle of the crankshaft of the engine, and detecting the pressure in the supply flow path and the detection result of the crank angle; Detecting an abnormality of at least one of the gate valves.
 本発明によれば、噴射弁とゲート弁との間の供給流路の圧力の検出結果と、クランク角度の検出結果とに基づいて、噴射弁の異常及びゲート弁の異常の少なくとも一方を検出することができる。 According to the present invention, at least one of the injection valve abnormality and the gate valve abnormality is detected based on the detection result of the pressure in the supply flow passage between the injection valve and the gate valve and the detection result of the crank angle. be able to.
 本発明によれば、気体燃料供給システムの異常を円滑に検出できる。 According to the present invention, an abnormality in the gaseous fuel supply system can be detected smoothly.
図1は、デュアルフューエルエンジンの一例を示す模式図である。FIG. 1 is a schematic view showing an example of a dual fuel engine. 図2は、デュアルフューエルエンジンの動作の一例を示す模式図である。FIG. 2 is a schematic view showing an example of the operation of the dual fuel engine. 図3は、二種燃料モードにおいて燃焼室に燃料が噴射されている状態の一例を模式的に示す平面図である。FIG. 3 is a plan view schematically showing an example of a state in which fuel is injected into the combustion chamber in the dual fuel mode. 図4は、二種燃料モードにおいて燃料が燃焼している状態の一例を模式的に示す図である。FIG. 4 is a view schematically showing an example of a state in which the fuel is burned in the dual fuel mode. 図5は、二種燃料モードにおいて燃料が燃焼している状態の一例を模式的に示す平面図である。FIG. 5 is a plan view schematically showing an example of a state in which the fuel is burned in the dual fuel mode. 図6は、気体燃料供給システムの一例を示す模式図である。FIG. 6 is a schematic view showing an example of the gaseous fuel supply system. 図7は、気体燃料噴射弁及びゲート弁が正常に作動しているときのクランク角度と供給流路の圧力との関係を示す図である。FIG. 7 is a view showing the relationship between the crank angle and the pressure of the supply flow passage when the gaseous fuel injection valve and the gate valve are operating normally. 図8は、ゲート弁が開異常のときのクランク角度と供給流路の圧力との関係を示す図である。FIG. 8 is a view showing the relationship between the crank angle and the pressure of the supply passage when the gate valve is abnormally opened. 図9は、ゲート弁が閉異常のときのクランク角度と供給流路の圧力との関係を示す図である。FIG. 9 is a view showing the relationship between the crank angle and the pressure of the supply flow passage when the gate valve is abnormally closed. 図10は、気体燃料噴射弁が開異常のときのクランク角度と供給流路の圧力との関係を示す図である。FIG. 10 is a view showing the relationship between the crank angle and the pressure of the supply passage when the gaseous fuel injection valve is abnormally opened. 図11は、気体燃料噴射弁が閉異常のときのクランク角度と供給流路の圧力との関係を示す図である。FIG. 11 is a view showing the relationship between the crank angle and the pressure of the supply passage when the gaseous fuel injection valve is abnormally closed. 図12は、燃料油専用モードにおいて気体燃料噴射弁が開異常ときのクランク角度と供給流路の圧力との関係を示す図である。FIG. 12 is a view showing the relationship between the crank angle and the pressure of the supply passage when the gas fuel injection valve is abnormally opened in the fuel oil dedicated mode. 図13は、気体燃料供給システムの一例を示す模式図である。FIG. 13 is a schematic view showing an example of a gaseous fuel supply system. 図14は、プレ噴射弁が開異常のときのクランク角度と供給流路の圧力との関係を示す図である。FIG. 14 is a view showing the relationship between the crank angle and the pressure of the supply passage when the pre-injection valve is abnormally opened. 図15は、プレ噴射弁が閉異常のときのクランク角度と供給流路の圧力との関係を示す図である。FIG. 15 is a view showing the relationship between the crank angle and the pressure of the supply flow passage when the pre-injection valve is abnormally closed.
 以下、本発明に係る実施形態について図面を参照しながら説明するが、本発明はこれに限定されない。以下で説明する各実施形態の要件は、適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto. The requirements of the embodiments described below can be combined as appropriate. In addition, some components may not be used.
<第1実施形態>
 第1実施形態について説明する。図1は、本実施形態に係るデュアルフューエルエンジン1の一例を示す模式図である。本実施形態に係るデュアルフューエルエンジン1は、クロスヘッド型ディーゼルエンジンを含み、例えば、船舶等の推進用エンジンとして使用される。
First Embodiment
The first embodiment will be described. FIG. 1 is a schematic view showing an example of a dual fuel engine 1 according to the present embodiment. The dual fuel engine 1 according to the present embodiment includes a cross-head type diesel engine, and is used, for example, as a propulsion engine for ships and the like.
 デュアルフューエルエンジン1は、台板50と、台板50に設けられた架構(本体)51と、架構51に設けられたジャケット52とを備えている。 The dual fuel engine 1 includes a base plate 50, a frame (main body) 51 provided on the base plate 50, and a jacket 52 provided on the frame 51.
 また、デュアルフューエルエンジン1は、ジャケット52に設けられたシリンダ2と、シリンダ2の内部で往復移動するピストン3と、ピストン3に接続されたピストン棒41と、連接棒43と、ピストン棒41と連接棒43とを連結するクロスヘッド42と、クランクピン44を介して連接棒43と接続されたクランク軸4とを備えている。 In the dual fuel engine 1, a cylinder 2 provided in a jacket 52, a piston 3 reciprocating in the cylinder 2, a piston rod 41 connected to the piston 3, a connecting rod 43, and a piston rod 41. A crosshead 42 connecting the connecting rod 43 and a crankshaft 4 connected to the connecting rod 43 via a crankpin 44 are provided.
 シリンダ2は、ジャケット52に設けられたシリンダライナ2Aと、シリンダライナ2A上に設けられたシリンダカバー2Bとを有する。クロスヘッド42は、架構51に設けられた案内部51Gに沿って動き、ピストン棒41からの機械的動力を連接棒43に伝達する。クランク軸4は、台板50に配置され、ピストン3から伝達される機械的動力を出力する。 The cylinder 2 has a cylinder liner 2A provided on the jacket 52 and a cylinder cover 2B provided on the cylinder liner 2A. The cross head 42 moves along a guide portion 51 G provided on the frame 51 to transmit mechanical power from the piston rod 41 to the connecting rod 43. The crankshaft 4 is disposed on the base plate 50 and outputs mechanical power transmitted from the piston 3.
 ピストン3の頂面とシリンダ2の天井面とが対向する。シリンダ2の天井面の中央部に排気弁11が設けられる。ピストン3とシリンダ2と排気弁11との間に燃焼室7が形成される。 The top surface of the piston 3 and the ceiling surface of the cylinder 2 face each other. An exhaust valve 11 is provided at the center of the ceiling surface of the cylinder 2. A combustion chamber 7 is formed between the piston 3, the cylinder 2 and the exhaust valve 11.
 また、デュアルフューエルエンジン1は、クランク軸4の回転角度(クランク角度)を検出する検出装置6と、燃焼室7に気体燃料PGを供給する気体燃料噴射弁8を含む気体燃料供給システム15と、燃焼室7に液体燃料FOを供給する液体燃料噴射弁9を含む液体燃料供給システム20と、燃焼室7の圧力を検出する筒内センサ16と、デュアルフューエルエンジン1を制御する制御装置10とを備えている。 The dual fuel engine 1 further includes a gas fuel supply system 15 including a detection device 6 for detecting a rotation angle (crank angle) of the crankshaft 4 and a gas fuel injection valve 8 for supplying the gas fuel PG to the combustion chamber 7. A liquid fuel supply system 20 including a liquid fuel injection valve 9 for supplying liquid fuel FO to the combustion chamber 7, an in-cylinder sensor 16 for detecting the pressure in the combustion chamber 7, and a control device 10 for controlling the dual fuel engine 1 Have.
 気体燃料噴射弁8は、燃焼室7に気体燃料PGを噴射可能である。気体燃料PGは、例えば、CNG(圧縮天然ガス)、及びH(水素ガス)の少なくとも一つを含む。本実施形態において、気体燃料噴射弁8は、燃焼室7に2つ配置される。なお、気体燃料噴射弁8の数は任意である。 The gaseous fuel injection valve 8 can inject the gaseous fuel PG into the combustion chamber 7. The gaseous fuel PG includes, for example, at least one of CNG (compressed natural gas) and H 2 (hydrogen gas). In the present embodiment, two gaseous fuel injection valves 8 are disposed in the combustion chamber 7. The number of gaseous fuel injection valves 8 is arbitrary.
 液体燃料噴射弁9は、燃焼室7に液体燃料FOを噴射可能である。液体燃料FOは、例えば、軽油、重油、及び重質油の少なくとも一つを含む。本実施形態において、液体燃料噴射弁9は、燃焼室7に2つ配置される。なお、液体燃料噴射弁9の数は任意である。 The liquid fuel injection valve 9 can inject the liquid fuel FO into the combustion chamber 7. The liquid fuel FO includes, for example, at least one of light oil, heavy oil, and heavy oil. In the present embodiment, two liquid fuel injection valves 9 are disposed in the combustion chamber 7. The number of liquid fuel injection valves 9 is arbitrary.
 検出装置6は、クランクアングルセンサを含み、クランク軸4のクランク角度を検出する。検出装置6は、ピストン3の上死点を基準としてクランク角度を検出してもよい。クランクアングルセンサは、例えば、クランク軸4に装着された計測部材(円盤、検出用歯車など)の回転位置からクランク角度を検出してクランク角度信号を出力する。クランクアングルセンサは、光学式でもよいし電磁式でもよい。なお、検出装置6は、クランク軸4の回転位置、又はピストン3の位置などからクランク角度を検出してもよい。また、上死点センサを使ってピストン3が上死点に位置するときのクランク軸4の位置情報(基準位置情報)を検出し、その位置情報とクランク軸4の回転速度情報とに基づいて、クランク角度を求めてもよい。 The detection device 6 includes a crank angle sensor, and detects a crank angle of the crankshaft 4. The detection device 6 may detect the crank angle with reference to the top dead center of the piston 3. The crank angle sensor, for example, detects a crank angle from the rotational position of a measurement member (disk, detection gear, etc.) mounted on the crankshaft 4 and outputs a crank angle signal. The crank angle sensor may be optical or electromagnetic. The detection device 6 may detect the crank angle from the rotational position of the crankshaft 4 or the position of the piston 3 or the like. Further, the top dead center sensor is used to detect positional information (reference positional information) of the crankshaft 4 when the piston 3 is positioned at the top dead center, and based on the positional information and the rotational speed information of the crankshaft 4 The crank angle may be determined.
 検出装置6の検出結果は制御装置10に出力される。クランク角度とピストン3の位置とは関連付けられている。制御装置10は、検出装置6の検出結果に基づいて、上死点及び下死点を含むピストン3の位置を求めることができる。また、制御装置10は、内蔵されているタイマーの出力と、検出装置6の検出結果とに基づいて、例えば、ピストン3が上死点に配置された時点、及び下死点に配置された時点を求めることができる。制御装置10は、クランク角度に基づいて、排気弁11の開閉、気体燃料噴射弁8からの気体燃料PGの噴射、及び液体燃料噴射弁9からの液体燃料FOの噴射を制御するための指令信号を出力する。 The detection result of the detection device 6 is output to the control device 10. The crank angle and the position of the piston 3 are associated. The control device 10 can determine the position of the piston 3 including the top dead center and the bottom dead center based on the detection result of the detection device 6. Also, based on the output of the built-in timer and the detection result of the detection device 6, the control device 10, for example, the time when the piston 3 is arranged at the top dead center and the time when the piston 3 is arranged at the bottom dead center You can ask for The control device 10 controls the opening / closing of the exhaust valve 11, the injection of the gaseous fuel PG from the gaseous fuel injection valve 8, and the injection of the liquid fuel FO from the liquid fuel injection valve 9 based on the crank angle. Output
 筒内センサ16は、燃焼室7の圧力を検出する。筒内センサ16の検出結果は、制御装置10に入力される。制御装置10は、筒内センサ16の検出結果に基づいて、燃焼室7の異常の有無を判定することができる。制御装置10は、筒内センサ16の検出結果に基づいて、燃焼室7の異常の種類(内容)を求めることができる。 The in-cylinder sensor 16 detects the pressure in the combustion chamber 7. The detection result of the in-cylinder sensor 16 is input to the control device 10. The control device 10 can determine the presence or absence of an abnormality in the combustion chamber 7 based on the detection result of the in-cylinder sensor 16. The control device 10 can obtain the type (content) of the abnormality of the combustion chamber 7 based on the detection result of the in-cylinder sensor 16.
 燃焼室7の異常は、燃焼異常、気体燃料の供給過多、及び気体燃料の供給過少の少なくとも一つを含む。燃焼異常は、失火を含む。燃焼室7が正常な状態と異常な状態とで燃焼室7の圧力は異なる。また、燃焼室7の異常の種類によっても燃焼室7の圧力は異なる。本実施形態においては、燃焼室7の異常の種類とその異常の種類に対応する燃焼室7の圧力との関係が予め求められている。その関係は、予備実験又はシミュレーションにより求められ、制御装置10に接続されている記憶装置に記憶されている。制御装置10は、筒内センサ16の検出結果と記憶装置の記憶情報とに基づいて、燃焼室7の異常の有無を判定可能であり、異常が生じている場合、その異常の種類を判定可能である。 The abnormality of the combustion chamber 7 includes at least one of a combustion abnormality, oversupply of gaseous fuel, and undersupply of gaseous fuel. Combustion abnormalities include misfires. The pressure in the combustion chamber 7 differs between the normal state and the abnormal state of the combustion chamber 7. Further, the pressure of the combustion chamber 7 also differs depending on the type of abnormality of the combustion chamber 7. In the present embodiment, the relationship between the type of abnormality of the combustion chamber 7 and the pressure of the combustion chamber 7 corresponding to the type of abnormality is obtained in advance. The relationship is determined by preliminary experiments or simulations, and stored in a storage device connected to the control device 10. The control device 10 can determine the presence or absence of an abnormality in the combustion chamber 7 based on the detection result of the in-cylinder sensor 16 and the storage information of the storage device, and can determine the type of the abnormality if an abnormality occurs. It is.
 図2は、デュアルフューエルエンジン1の動作の一例を示す模式図である。本実施形態において、デュアルフューエルエンジン1は、2ストローク1サイクルのユニフロー掃排気式ディーゼルエンジンであり、ピストン3が下死点近傍に配置されたときに掃気ポートから燃焼室7に新しい空気が導入され、上死点から下死点へ移行中に燃焼室7の気体が排気ポートから排出される。デュアルフューエルエンジン1の動作は、新しい空気を取り入れて燃焼室7に送る吸入工程(A)と、燃焼室7の空気をピストン3で圧縮する圧縮工程(B)と、燃焼室7に燃料を噴射してその燃料を燃焼させる燃焼工程(C)と、燃焼工程後の燃焼室7の気体を排気弁11から排出する排気工程(D)と、を含む。 FIG. 2 is a schematic view showing an example of the operation of the dual fuel engine 1. In this embodiment, the dual fuel engine 1 is a two-stroke one-cycle uniflow swept exhaust diesel engine, and new air is introduced from the scavenging port into the combustion chamber 7 when the piston 3 is disposed near the bottom dead center. During the transition from the top dead center to the bottom dead center, the gas in the combustion chamber 7 is exhausted from the exhaust port. The operation of the dual fuel engine 1 includes a suction step (A) for taking in new air and sending it to the combustion chamber 7, a compression step (B) for compressing the air in the combustion chamber 7 by the piston 3, and injecting fuel into the combustion chamber 7. And an exhaust process (D) in which the gas in the combustion chamber 7 after the combustion process is discharged from the exhaust valve 11.
 デュアルフューエルエンジン1は、液体燃料FOのみを使う燃料油専用モードと、液体燃料FO及び気体燃料PGの両方を使う二種燃料モードとのそれぞれで作動可能である。 The dual fuel engine 1 can operate in a fuel oil dedicated mode using only liquid fuel FO and a dual fuel mode using both liquid fuel FO and gaseous fuel PG.
 燃料油専用モードは、液体燃料噴射弁9から燃焼室7に液体燃料FOを供給し、液体燃料FOを燃焼させる一方、気体燃料噴射弁8から燃焼室7に気体燃料PGを供給しないモードである。燃料油専用モードでは、圧縮工程において、燃焼室7の空気が圧縮された後、燃焼工程において、液体燃料噴射弁9から燃焼室7に液体燃料FOが噴射される。高温高圧の空気に液体燃料FOが噴射されることにより、液体燃料FOは自然発火して燃焼する。 The fuel oil dedicated mode is a mode in which the liquid fuel FO is supplied from the liquid fuel injection valve 9 to the combustion chamber 7 to burn the liquid fuel FO while the gaseous fuel injection valve 8 does not supply the gaseous fuel PG to the combustion chamber 7 . In the fuel oil dedicated mode, after the air in the combustion chamber 7 is compressed in the compression step, the liquid fuel FO is injected from the liquid fuel injection valve 9 to the combustion chamber 7 in the combustion step. By injecting the liquid fuel FO into the high-temperature and high-pressure air, the liquid fuel FO spontaneously burns and burns.
 二種燃料モードは、燃焼室7に液体燃料FO及び気体燃料PGの両方が供給されるモードである。二種燃料モードでは、気体燃料噴射弁8から燃焼室7に気体燃料PGを噴射した後、液体燃料噴射弁9から燃料室7に少量の液体燃料FOを噴射してパイロット火炎を生成することで、パイロット火炎で気体燃料PGを着火して燃焼させる。 The dual fuel mode is a mode in which both the liquid fuel FO and the gaseous fuel PG are supplied to the combustion chamber 7. In the dual fuel mode, after gaseous fuel PG is injected from the gaseous fuel injection valve 8 to the combustion chamber 7, a small amount of liquid fuel FO is injected from the liquid fuel injection valve 9 to the fuel chamber 7 to generate a pilot flame. , The pilot flame ignites the gaseous fuel PG and burns it.
 次に、図3、図4、及び図5を参照して二種燃料モードの詳細について説明する。図3は、二種燃料モードにおいて、気体燃料弁8から燃焼室7に気体燃料PGが噴射され、液体燃料弁9から燃焼室7に液体燃料FOが噴射されている状態の一例を模式的に示す平面図である。図4は、二種燃料モードにおいて、液体燃料FO及び気体燃料PGのそれぞれが燃焼している状態の一例を模式的に示す図である。図5は、二種燃料モードにおいて、液体燃料FO及び気体燃料PGが燃焼している状態の一例を模式的に示す平面図である。 Next, details of the dual fuel mode will be described with reference to FIGS. 3, 4 and 5. FIG. 3 schematically shows an example in which the gaseous fuel PG is injected from the gaseous fuel valve 8 to the combustion chamber 7 and the liquid fuel FO is injected from the liquid fuel valve 9 to the combustion chamber 7 in the dual fuel mode. It is a top view shown. FIG. 4 is a view schematically showing an example of a state in which each of the liquid fuel FO and the gaseous fuel PG is burning in the dual fuel mode. FIG. 5 is a plan view schematically showing an example of a state in which the liquid fuel FO and the gaseous fuel PG are burning in the dual fuel mode.
 圧縮工程において、燃焼室7の空気が圧縮される。図3に示すように、燃焼工程において、気体燃料噴射弁8から燃焼室7に気体燃料PGが噴射される。また、液体燃料噴射弁9から燃焼室7に少量の液体燃料FOが噴射される。ピストン3が上死点近傍に配置される時点において、液体燃料FOと気体燃料PGとが燃焼室7にほぼ同時に噴射される。二種燃料モードにおいて、主燃料は、気体燃料PGである。 In the compression process, the air in the combustion chamber 7 is compressed. As shown in FIG. 3, in the combustion step, gaseous fuel PG is injected from the gaseous fuel injection valve 8 to the combustion chamber 7. Further, a small amount of liquid fuel FO is injected from the liquid fuel injection valve 9 into the combustion chamber 7. At the time when the piston 3 is disposed near the top dead center, the liquid fuel FO and the gaseous fuel PG are injected into the combustion chamber 7 substantially simultaneously. In the dual fuel mode, the main fuel is a gaseous fuel PG.
 図3に示すように、気体燃料噴射弁8は、気体燃料PGを噴射する噴射口8Sを複数有する。液体燃料噴射弁9は、液体燃料FOを噴射する噴射口9Sを複数有する。気体燃料噴射弁8は、その気体燃料噴射弁8の軸に対する放射方向に関して外側に向かって気体燃料PGを噴射する。液体燃料噴射弁9は、その液体燃料噴射弁9の軸に対する放射方向に関して外側に向かって液体燃料FOを噴射する。気体燃料噴射弁8及び液体燃料噴射弁9のそれぞれは、気体燃料PGと液体燃料FOとが交差するように、気体燃料PG及び液体燃料FOを噴射する。 As shown in FIG. 3, the gaseous fuel injection valve 8 has a plurality of injection ports 8S for injecting the gaseous fuel PG. The liquid fuel injection valve 9 has a plurality of injection ports 9S for injecting the liquid fuel FO. The gaseous fuel injection valve 8 injects gaseous fuel PG outward in the radial direction with respect to the axis of the gaseous fuel injection valve 8. The liquid fuel injection valve 9 injects the liquid fuel FO outward in the radial direction with respect to the axis of the liquid fuel injection valve 9. Each of the gaseous fuel injection valve 8 and the liquid fuel injection valve 9 injects the gaseous fuel PG and the liquid fuel FO so that the gaseous fuel PG and the liquid fuel FO intersect.
 液体燃料噴射弁9から噴射された少量の液体燃料FOは自然発火して、パイロット火炎を生成する。気体燃料噴射弁8は、圧力P1の気体燃料PGを噴射する。高温高圧の空気が満たされ、パイロット火炎が生成されている燃焼室7に、高圧の気体燃料PGが供給されることにより、図4及び図5に示すように、燃焼室7において拡散燃焼が生じる。本実施形態において、二種燃料モードは、拡散燃焼方式で気体燃料PGを燃焼させる。 A small amount of liquid fuel FO injected from the liquid fuel injection valve 9 spontaneously ignites to generate a pilot flame. The gaseous fuel injection valve 8 injects gaseous fuel PG at a pressure P1. As shown in FIGS. 4 and 5, diffusion combustion occurs in the combustion chamber 7 by supplying the high-pressure gaseous fuel PG to the combustion chamber 7 in which the high temperature and high pressure air is filled and the pilot flame is generated. . In the present embodiment, the dual fuel mode burns the gaseous fuel PG by the diffusion combustion method.
 次に、本実施形態に係る気体燃料供給システム15の一例について説明する。図6は、本実施形態に係る気体燃料供給システム15の一例を示す図である。 Next, an example of the gaseous fuel supply system 15 according to the present embodiment will be described. FIG. 6 is a view showing an example of the gaseous fuel supply system 15 according to the present embodiment.
 気体燃料供給システム15は、デュアルフューエルエンジン1の燃焼室7に気体燃料PGを供給する。気体燃料供給システム15は、制御装置10により制御される。気体燃料供給システム15は、燃焼室7に気体燃料PGを噴射する気体燃料噴射弁8と、気体燃料噴射弁8に供給される気体燃料PGが流れる供給流路21と、供給流路21を開閉可能なゲート弁22と、気体燃料噴射弁8とゲート弁22との間の供給流路21の圧力を検出する圧力センサ23とを備えている。気体燃料噴射弁8及びゲート弁22は、制御装置10に制御される。圧力センサ23の検出結果は、制御装置10に出力される。ゲート弁22は、気体燃料PGを送出可能なポンプを含む気体燃料供給源と接続される。気体燃料供給源は、ゲート弁22に気体燃料PGを供給する。気体燃料供給源は、圧力P1の気体燃料PGを供給する。 The gaseous fuel supply system 15 supplies gaseous fuel PG to the combustion chamber 7 of the dual fuel engine 1. The gaseous fuel supply system 15 is controlled by the controller 10. The gaseous fuel supply system 15 opens and closes the gaseous fuel injection valve 8 for injecting the gaseous fuel PG into the combustion chamber 7, the supply flow path 21 through which the gaseous fuel PG supplied to the gaseous fuel injection valve 8 flows, and the supply flow path 21. A possible gate valve 22 and a pressure sensor 23 for detecting the pressure of the supply flow path 21 between the gaseous fuel injection valve 8 and the gate valve 22 are provided. The gaseous fuel injection valve 8 and the gate valve 22 are controlled by the controller 10. The detection result of the pressure sensor 23 is output to the control device 10. The gate valve 22 is connected to a gaseous fuel source including a pump capable of delivering the gaseous fuel PG. The gaseous fuel supply source supplies gaseous fuel PG to the gate valve 22. The gaseous fuel supply source supplies gaseous fuel PG at pressure P1.
 ゲート弁22は、安全弁(インターロック機構)として機能する。気体燃料噴射弁8及びゲート弁22の両方が開くことにより、気体燃料供給源からの気体燃料PGは、ゲート弁22、供給流路21、及び気体燃料噴射弁8を介して、燃焼室7に供給される。 The gate valve 22 functions as a safety valve (interlock mechanism). By opening both the gaseous fuel injection valve 8 and the gate valve 22, the gaseous fuel PG from the gaseous fuel supply source is supplied to the combustion chamber 7 through the gate valve 22, the supply flow passage 21 and the gaseous fuel injection valve 8. Supplied.
 圧力センサ23は、気体燃料噴射弁8とゲート弁22との間の供給流路21の圧力を検出する。圧力センサ23は、気体燃料噴射弁8の入口の圧力を検出可能である。圧力センサ23の検出結果は、制御装置10に出力される。本実施形態において、制御装置10は、圧力センサ23の検出結果と、検出装置6の検出結果とに基づいて、気体燃料噴射弁8及びゲート弁22の少なくとも一方の異常を検知する。 The pressure sensor 23 detects the pressure of the supply flow passage 21 between the gaseous fuel injection valve 8 and the gate valve 22. The pressure sensor 23 can detect the pressure at the inlet of the gaseous fuel injection valve 8. The detection result of the pressure sensor 23 is output to the control device 10. In the present embodiment, the control device 10 detects an abnormality of at least one of the gas fuel injection valve 8 and the gate valve 22 based on the detection result of the pressure sensor 23 and the detection result of the detection device 6.
 図7は、気体燃料噴射弁8及びゲート弁22が正常に作動しているときのクランク角度と、供給流路21の圧力(気体燃料噴射弁8の入口の圧力)との関係を示す図である。図7は、気体燃料噴射弁8の開閉動作、及びゲート弁22の開閉動作のタイミングチャートを含む。 FIG. 7 is a view showing the relationship between the crank angle when the gaseous fuel injection valve 8 and the gate valve 22 operate normally and the pressure of the supply flow passage 21 (pressure at the inlet of the gaseous fuel injection valve 8). is there. FIG. 7 includes a timing chart of the opening and closing operation of the gaseous fuel injection valve 8 and the opening and closing operation of the gate valve 22.
 図7において、クランク角度が0度のとき、ピストン3は上死点に配置される。クランク角度が180度(又は-180度)のとき、ピストン3は下死点に配置される。なお、図7は、クランク角度が-30度から90度の範囲における、気体燃料噴射弁8とゲート弁22との間の供給流路21の圧力を示す。 In FIG. 7, when the crank angle is 0 degree, the piston 3 is disposed at the top dead center. When the crank angle is 180 degrees (or -180 degrees), the piston 3 is disposed at the bottom dead center. FIG. 7 shows the pressure of the supply flow passage 21 between the gaseous fuel injection valve 8 and the gate valve 22 when the crank angle is in the range of -30 degrees to 90 degrees.
 制御装置10は、燃焼室7に気体燃料PGを供給するために、ゲート弁22を開けた後、気体燃料噴射弁8を開けるように指令信号を出力する。制御装置10は、ピストン3が上死点近傍に位置する時点において、ゲート弁22を開ける。図7において、クランク角度がA1度になったとき、制御装置10は、ゲート弁22を開けるように指令信号を出力する。また、制御装置10は、ピストン3が上死点近傍に位置する時点において、気体燃料噴射弁8を開ける。図7において、クランク角度がA2度になったとき、制御装置10は、気体燃料噴射弁8を開けるように指令信号を出力する。クランク角度がA1度になったときからA2度になるまでの期間T1においては、ゲート弁22が開いており、気体燃料噴射弁8は閉じている。 The controller 10 outputs a command signal to open the gaseous fuel injection valve 8 after opening the gate valve 22 in order to supply the gaseous fuel PG to the combustion chamber 7. The controller 10 opens the gate valve 22 when the piston 3 is located near the top dead center. In FIG. 7, when the crank angle becomes A1 degree, the control device 10 outputs a command signal to open the gate valve 22. Further, the control device 10 opens the gaseous fuel injection valve 8 when the piston 3 is located near the top dead center. In FIG. 7, when the crank angle becomes A2 degrees, the control device 10 outputs a command signal to open the gaseous fuel injection valve 8. In a period T1 from when the crank angle becomes A1 degree to A2 degree, the gate valve 22 is open and the gaseous fuel injection valve 8 is closed.
 ゲート弁22には、気体燃料供給源から圧力P1の気体燃料PGが供給される。気体燃料噴射弁8が閉じた状態でゲート弁22が開くことにより、期間T1において、気体燃料噴射弁8とゲート弁22との間の供給流路21の圧力は、圧力P1となる。 The gaseous fuel PG of pressure P1 is supplied to the gate valve 22 from a gaseous fuel supply source. By opening the gate valve 22 in a state where the gaseous fuel injection valve 8 is closed, the pressure of the supply flow passage 21 between the gaseous fuel injection valve 8 and the gate valve 22 becomes the pressure P1 in the period T1.
 クランク角度がA2度になったときに、ゲート弁22が開いている状態で気体燃料噴射弁8が開くことにより、気体燃料噴射弁8から気体燃料PGが燃焼室7に噴射される。なお、本実施形態において、クランク角度A2は、0度である。すなわち、ピストン3が上死点に配置されたときに、気体燃料噴射弁8から気体燃料PGが噴射される。なお、クランク角度A2は、0度でなくてもよい。気体燃料噴射弁8が開いて気体燃料PGが噴射されることにより、気体燃料噴射弁8とゲート弁22との間の供給流路21の圧力は低下する。 When the crank angle becomes A2 degrees, the gaseous fuel injection valve 8 is opened in a state where the gate valve 22 is open, whereby the gaseous fuel PG is injected from the gaseous fuel injection valve 8 to the combustion chamber 7. In the present embodiment, the crank angle A2 is 0 degree. That is, when the piston 3 is disposed at the top dead center, the gaseous fuel PG is injected from the gaseous fuel injection valve 8. The crank angle A2 may not be 0 degrees. By opening the gaseous fuel injection valve 8 and injecting the gaseous fuel PG, the pressure of the supply flow passage 21 between the gaseous fuel injection valve 8 and the gate valve 22 decreases.
 制御装置10は、気体燃料噴射弁8を閉じた後、ゲート弁22を閉じるように指令信号を出力する。図7において、クランク角度がA3度になったとき、制御装置10は、気体燃料噴射弁8を閉じるように指令信号を出力する。クランク角度がA3度よりも大きいA4度になったとき、制御装置10は、ゲート弁22を閉じるように指令信号を出力する。 The control device 10 outputs a command signal to close the gate valve 22 after closing the gaseous fuel injection valve 8. In FIG. 7, when the crank angle becomes A3 degrees, the control device 10 outputs a command signal to close the gaseous fuel injection valve 8. When the crank angle becomes A4 degrees larger than A3 degrees, the control device 10 outputs a command signal to close the gate valve 22.
 クランク角度がA2度になったときからA3度になるまでの期間T2においては、気体燃料噴射弁8及びゲート弁22の両方が開いている。期間T2において、気体燃料噴射弁8とゲート弁22との間の供給流路21の圧力は徐々に低下する。 In a period T2 from when the crank angle becomes A2 degrees to A3 degrees, both the gaseous fuel injection valve 8 and the gate valve 22 are open. In the period T2, the pressure in the supply flow passage 21 between the gaseous fuel injection valve 8 and the gate valve 22 gradually decreases.
 クランク角度がA3度になったとき、制御装置10は、ゲート弁22が開いている状態で、気体燃料噴射弁8を閉じる。これにより、クランク角度がA3度になったときからA4度になるまでの期間T3において、気体燃料噴射弁8とゲート弁22との間の供給流路21の圧力は徐々に増大する。 When the crank angle becomes A3 degrees, the controller 10 closes the gaseous fuel injection valve 8 with the gate valve 22 open. Thus, in a period T3 from when the crank angle becomes A3 degrees to A4 degrees, the pressure in the supply flow path 21 between the gaseous fuel injection valve 8 and the gate valve 22 gradually increases.
 クランク角度がA4度になったとき、制御装置10は、気体燃料噴射弁8を閉じている状態で、ゲート弁22を閉じる。これにより、期間T3の後の期間T4において、気体燃料噴射弁8とゲート弁22との間の供給流路21の圧力は、一定となる。本実施形態においては、気体燃料噴射弁8とゲート弁22との間の供給流路21の圧力が圧力P1に上昇する前に、ゲート弁22が閉じられる。本実施形態において、期間T4における供給流路21の圧力は、圧力P1よりも低い圧力P2である。 When the crank angle becomes A4 degrees, the controller 10 closes the gate valve 22 with the gaseous fuel injection valve 8 closed. Thereby, in period T4 after period T3, the pressure of the supply flow path 21 between the gaseous fuel injection valve 8 and the gate valve 22 becomes constant. In the present embodiment, the gate valve 22 is closed before the pressure of the supply flow passage 21 between the gaseous fuel injection valve 8 and the gate valve 22 rises to the pressure P1. In the present embodiment, the pressure of the supply flow passage 21 in the period T4 is a pressure P2 lower than the pressure P1.
 本実施形態において、期間T1は、ゲート弁22を開けるための指令信号が出力されてから、気体燃料噴射弁8を開けるための指令信号が出力されるまでの期間を含む。期間T2は、気体燃料噴射弁8を開けるための指令信号が出力されてから、気体燃料噴射弁8を閉じるための指令信号が出力されるまでの期間を含む。期間T3は、気体燃料噴射弁8を閉じるための指令信号が出力されてから、ゲート弁22を閉じるための指令信号が出力されるまでの期間を含む。期間T4は、ゲート弁22を閉じるための指令信号が出力されてから、次のサイクルにおいてゲート弁22を開けるための指令信号が出力されるまでの期間を含む。制御装置10は、検出装置6の検出結果に基づいて、指令信号を出力するタイミングを決定する。 In the present embodiment, the period T1 includes a period from when a command signal for opening the gate valve 22 is output until a command signal for opening the gaseous fuel injection valve 8 is output. The period T2 includes a period from when a command signal for opening the gaseous fuel injection valve 8 is output to when a command signal for closing the gaseous fuel injection valve 8 is output. A period T3 includes a period from when a command signal for closing the gaseous fuel injection valve 8 is output to when a command signal for closing the gate valve 22 is output. A period T4 includes a period from when a command signal for closing the gate valve 22 is output until a command signal for opening the gate valve 22 is output in the next cycle. The control device 10 determines the timing for outputting the command signal based on the detection result of the detection device 6.
 次に、気体燃料噴射弁8及びゲート弁22の異常検出方法について説明する。図8は、制御装置10がゲート弁22を閉じる指令信号を出力したにもかかわらず、ゲート弁22が開いている異常(開異常)を示す図である。図8において、横軸はクランク角度であり、縦軸は、気体燃料噴射弁8とゲート弁22との間の供給流路21の圧力(気体燃料噴射弁8の入口の圧力)である。 Next, an abnormality detection method of the gaseous fuel injection valve 8 and the gate valve 22 will be described. FIG. 8 is a diagram showing an abnormality (open abnormality) in which the gate valve 22 is open even though the control device 10 outputs a command signal to close the gate valve 22. In FIG. 8, the horizontal axis is the crank angle, and the vertical axis is the pressure of the supply flow path 21 between the gaseous fuel injection valve 8 and the gate valve 22 (pressure at the inlet of the gaseous fuel injection valve 8).
 図7を参照して説明したように、制御装置10は、クランク角度がA1度のとき、ゲート弁22を開ける指令信号を出力し、クランク角度がA2度のとき、気体燃料噴射弁8を開ける指令信号を出力し、クランク角度がA3度のとき、気体燃料噴射弁8を閉じる指令信号を出力し、クランク角度がA4度のとき、ゲート弁22を閉じる指令信号を出力する。 As described with reference to FIG. 7, the controller 10 outputs a command signal to open the gate valve 22 when the crank angle is A1 degree, and opens the gaseous fuel injection valve 8 when the crank angle is A2 degree. A command signal is output, and when the crank angle is A3 degrees, a command signal for closing the gaseous fuel injection valve 8 is output, and when the crank angle is A4 degrees, a command signal for closing the gate valve 22 is output.
 クランク角度A4のとき、制御装置10からゲート弁22を閉じる指令信号が出力されたにもかかわらず、ゲート弁22が閉じないと、期間T4においても、気体燃料供給源からの圧力P1の気体燃料PGが供給流路21に供給される。これにより、図8に示すように、期間T4における供給流路21の圧力は、圧力P1となる。 When the crank valve A4 outputs a command signal to close the gate valve 22 from the control device 10 when the gate valve 22 does not close even at the crank angle A4, the gas fuel of the pressure P1 from the gas fuel supply source also in the period T4 PG is supplied to the supply flow channel 21. Thereby, as shown in FIG. 8, the pressure of the supply flow path 21 in period T4 turns into pressure P1.
 期間T4は、ピストン3が下死点近傍に位置する時点を含む。すなわち、期間T4は、クランク角度が180度である時点を含む。上述のように、気体燃料噴射弁8及びゲート弁22が正常に作動しているときの期間T4における供給流路21の圧力は、圧力P2である。このように、ゲート弁22が異常(開異常)なときと正常なときとで、期間T4における供給流路21の圧力は異なる。すなわち、ゲート弁22が正常なときは、期間Th(期間T4)における供給流路21の圧力は、図8中、実線で示すように、圧力P2となり、ゲート弁22が開異常なときは、期間Thにおける供給流路21の圧力は、図8中、点線で示すように、圧力P2よりも高い圧力P1となる。したがって、制御装置10は、ピストン3が下死点近傍に配置されているときの期間T4の少なくとも一部の期間Thにおける圧力センサ23の検出結果に基づいて、ゲート弁22が異常か否かを検出することができる。 The period T4 includes the time when the piston 3 is located near the bottom dead center. That is, the period T4 includes the time when the crank angle is 180 degrees. As described above, the pressure of the supply flow passage 21 in the period T4 when the gaseous fuel injection valve 8 and the gate valve 22 operate normally is the pressure P2. As described above, the pressure of the supply flow passage 21 in the period T4 differs between when the gate valve 22 is abnormal (open abnormality) and when it is normal. That is, when the gate valve 22 is normal, the pressure of the supply channel 21 in the period Th (period T4) is the pressure P2 as shown by the solid line in FIG. 8 and when the gate valve 22 is abnormally opened, The pressure of the supply flow channel 21 in the period Th is a pressure P1 higher than the pressure P2, as shown by a dotted line in FIG. Therefore, the control device 10 determines whether the gate valve 22 is abnormal or not based on the detection result of the pressure sensor 23 in at least a part of the period Th of the period T4 when the piston 3 is disposed near the bottom dead center. It can be detected.
 次に、制御装置10がゲート弁22を開ける指令信号を出力したにもかかわらず、ゲート弁22が閉じている異常(閉異常)について説明する。図9は、ゲート弁22が閉異常であるときの、クランク角度と供給流路21の圧力(気体燃料噴射弁8の入口の圧力)との関係を示す図である。 Next, although the control device 10 outputs a command signal to open the gate valve 22, an abnormality (close abnormality) in which the gate valve 22 is closed will be described. FIG. 9 is a view showing the relationship between the crank angle and the pressure of the supply flow passage 21 (pressure at the inlet of the gaseous fuel injection valve 8) when the gate valve 22 is in abnormal closing.
 クランク角度A1のとき、制御装置10からゲート弁22を開ける指令信号が出力されたにもかかわらず、ゲート弁22が開かずに、クランク角度A2のとき、気体燃料噴射弁8が開くと、ゲート弁22が閉じた状態で、供給流路21の気体燃料PGは気体燃料噴射弁8から燃焼室7に噴射される。その結果、図9に示すように、クランク角度A2の時点から、供給流路21の圧力は低下する。このように、ゲート弁22が異常(閉異常)なときと正常なときとで、期間T2、期間T3、及び期間T4(期間Th)における供給流路21の圧力は異なる。すなわち、ゲート弁22が正常なときは、期間Th(期間T4)における供給流路21の圧力は、図9中、実線で示すように、圧力P2となり、ゲート弁22が閉異常なときは、期間Thにおける供給流路21の圧力は、図9中、点線で示すように、圧力P2よりも低い圧力となる。また、本例では、期間T2及び期間T3においても、ゲート弁22が閉異常なときの供給流路21の圧力は、ゲート弁22が正常なときの供給流路21の圧力よりも低くなる。したがって、制御装置10は、例えば、期間Thの圧力センサ23の検出結果に基づいて、ゲート弁22が異常か否かを検出することができる。 At the crank angle A1, although the command signal to open the gate valve 22 is output from the control device 10, the gate valve 22 does not open, and at the crank angle A2, when the gaseous fuel injection valve 8 opens, the gate With the valve 22 closed, the gaseous fuel PG in the supply passage 21 is injected from the gaseous fuel injection valve 8 into the combustion chamber 7. As a result, as shown in FIG. 9, the pressure of the supply flow passage 21 decreases from the time of the crank angle A2. Thus, the pressure of the supply flow path 21 in the period T2, the period T3, and the period T4 (period Th) differs depending on whether the gate valve 22 is abnormal (closed abnormality) or normal. That is, when the gate valve 22 is normal, the pressure of the supply channel 21 in the period Th (period T4) is the pressure P2 as shown by the solid line in FIG. 9, and when the gate valve 22 is abnormally closed, The pressure of the supply flow channel 21 in the period Th is a pressure lower than the pressure P2, as indicated by a dotted line in FIG. Further, in this example, also in the period T2 and the period T3, the pressure of the supply flow passage 21 when the gate valve 22 is abnormally closed is lower than the pressure of the supply flow passage 21 when the gate valve 22 is normal. Therefore, the control device 10 can detect, for example, whether or not the gate valve 22 is abnormal, based on the detection result of the pressure sensor 23 in the period Th.
 次に、制御装置10が気体燃料噴射弁8を閉じる指令信号を出力したにもかかわらず、気体燃料噴射弁8が開いている異常(開異常)について説明する。図10は、気体燃料噴射弁8が開異常であるときの、クランク角度と供給流路21の圧力(気体燃料噴射弁8の入口の圧力)との関係を示す図である。 Next, although the control device 10 outputs a command signal for closing the gaseous fuel injection valve 8, an abnormality (open abnormality) in which the gaseous fuel injection valve 8 is opened will be described. FIG. 10 is a view showing the relationship between the crank angle and the pressure of the supply flow passage 21 (pressure at the inlet of the gaseous fuel injection valve 8) when the gaseous fuel injection valve 8 is abnormally opened.
 クランク角度A3のとき、制御装置10から気体燃料噴射弁8を閉じる指令信号が出力されたにもかかわらず、気体燃料噴射弁8が閉じずに、クランク角度A4のとき、ゲート弁22が閉じると、ゲート弁22が閉じた状態で、供給流路21の気体燃料PGは気体燃料噴射弁8から燃焼室7に噴射される。その結果、図10に示すように、クランク角度A3の時点から、供給流路21の圧力は低下する。このように、気体燃料噴射弁8が異常(開異常)なときと正常なときとで、期間T3、及び期間T4(期間Th)における供給流路21の圧力は異なる。すなわち、気体燃料噴射弁8が正常なときは、期間Th(期間T4)における供給流路21の圧力は、図10中、実線で示すように、圧力P2となり、気体燃料噴射弁8が開異常なときは、期間Thにおける供給流路21の圧力は、図10中、点線で示すように、圧力P2よりも低い圧力となる。また、本例では、期間T3においても、気体燃料噴射弁8が開異常なときの供給流路21の圧力は、気体燃料噴射弁8が正常なときの供給流路21の圧力よりも低くなる。したがって、制御装置10は、例えば、期間Thの圧力センサ23の検出結果に基づいて、ゲート弁22が異常か否かを検出することができる。 If at the crank angle A3, although the command signal for closing the gaseous fuel injection valve 8 is output from the control device 10, the gaseous fuel injection valve 8 does not close and at the crank angle A4, the gate valve 22 closes. With the gate valve 22 closed, the gaseous fuel PG in the supply flow passage 21 is injected from the gaseous fuel injection valve 8 into the combustion chamber 7. As a result, as shown in FIG. 10, the pressure of the supply flow passage 21 decreases from the time of the crank angle A3. Thus, the pressure of the supply flow path 21 in the period T3 and the period T4 (period Th) differs depending on whether the gaseous fuel injection valve 8 is abnormal (open abnormality) or normal. That is, when the gaseous fuel injection valve 8 is normal, the pressure of the supply channel 21 in the period Th (period T4) becomes the pressure P2 as shown by the solid line in FIG. 10, and the gaseous fuel injection valve 8 is abnormally opened. In such a case, the pressure of the supply flow passage 21 in the period Th is lower than the pressure P2, as shown by the dotted line in FIG. Further, in this example, also in the period T3, the pressure of the supply flow passage 21 when the gaseous fuel injection valve 8 is abnormally opened is lower than the pressure of the supply flow passage 21 when the gaseous fuel injection valve 8 is normal. . Therefore, the control device 10 can detect, for example, whether or not the gate valve 22 is abnormal, based on the detection result of the pressure sensor 23 in the period Th.
 次に、制御装置10が気体燃料噴射弁8を開ける指令信号を出力したにもかかわらず、気体燃料噴射弁8が閉じている異常(閉異常)について説明する。図11は、気体燃料噴射弁8が閉異常であるときの、クランク角度と供給流路21の圧力(気体燃料噴射弁8の入口の圧力)との関係を示す図である。 Next, although the control device 10 outputs a command signal for opening the gaseous fuel injection valve 8, an abnormality (close abnormality) in which the gaseous fuel injection valve 8 is closed will be described. FIG. 11 is a view showing the relationship between the crank angle and the pressure of the supply flow passage 21 (pressure at the inlet of the gaseous fuel injection valve 8) when the gaseous fuel injection valve 8 is abnormally closed.
 クランク角度A2のとき、制御装置10から気体燃料噴射弁8を開ける指令信号が出力されたにもかかわらず、気体燃料噴射弁8が開かないと、気体燃料噴射弁8が閉じ、ゲート弁22が開いている状態で、気体燃料供給源からの圧力P1の気体燃料PGが供給流路21に供給される。これにより、図11に示すように、期間T2、期間T3、及び期間T4(期間Th)における供給流路21の圧力は、圧力P1となる。このように、気体燃料噴射弁8が異常(閉異常)なときと正常なときとで、期間T2、期間T3、及び期間T4(期間Th)における供給流路21の圧力は異なる。すなわち、気体燃料噴射弁8が正常なときは、期間Th(期間T4)における供給流路21の圧力は、図11中、実線で示すように、圧力P2となり、気体燃料噴射弁8が閉異常なときは、期間Thにおける供給流路21の圧力は、図11中、点線で示すように、圧力P2よりも高い圧力P1となる。また、本例では、期間T2及び期間T3においても、気体燃料噴射弁8が閉異常なときの供給流路21の圧力は、気体燃料噴射弁8が正常なときの供給流路21の圧力よりも高くなる。したがって、制御装置10は、例えば、期間Thの圧力センサ23の検出結果に基づいて、ゲート弁22が異常か否かを検出することができる。 At the crank angle A2, although the command signal to open the gaseous fuel injection valve 8 is output from the control device 10, if the gaseous fuel injection valve 8 does not open, the gaseous fuel injection valve 8 closes and the gate valve 22 In the open state, the gaseous fuel PG of the pressure P1 from the gaseous fuel supply source is supplied to the supply flow passage 21. Thereby, as shown in FIG. 11, the pressure of the supply flow path 21 in the period T2, the period T3, and the period T4 (period Th) becomes the pressure P1. As described above, the pressure of the supply flow passage 21 in the period T2, the period T3, and the period T4 (period Th) differs depending on whether the gaseous fuel injection valve 8 is abnormal (closed abnormality) or normal. That is, when the gaseous fuel injection valve 8 is normal, the pressure of the supply flow passage 21 in the period Th (period T4) becomes the pressure P2 as shown by the solid line in FIG. 11, and the gaseous fuel injection valve 8 is abnormally closed. In such a case, the pressure of the supply flow channel 21 in the period Th is a pressure P1 higher than the pressure P2, as indicated by a dotted line in FIG. Further, in this example, also in the period T2 and the period T3, the pressure of the supply channel 21 when the gaseous fuel injection valve 8 is abnormally closed is higher than the pressure of the supply channel 21 when the gaseous fuel injection valve 8 is normal. Will also be high. Therefore, the control device 10 can detect, for example, whether or not the gate valve 22 is abnormal, based on the detection result of the pressure sensor 23 in the period Th.
 本実施形態において、図8に示す圧力(ゲート弁22が開異常のときの圧力)と図11に示す圧力(気体燃料噴射弁8が閉異常のときの圧力)とは、期間T2及び期間T3において異なるものの、期間T4において近似する。そのため、ゲート弁22及び気体燃料噴射弁8のどちらが異常なのかを、期間T4における圧力センサ23の検出結果に基づいて判断することが困難となる可能性がある。 In the present embodiment, the pressure shown in FIG. 8 (pressure when the gate valve 22 is abnormally opened) and the pressure shown in FIG. 11 (pressure when the gaseous fuel injection valve 8 is abnormally closed) are period T2 and period T3. , But approximate in the period T4. Therefore, it may be difficult to determine which of the gate valve 22 and the gaseous fuel injection valve 8 is abnormal based on the detection result of the pressure sensor 23 in the period T4.
 その場合、制御装置10は、圧力センサ23の検出結果と燃焼室7の圧力を検出する筒内センサ16の検出結果とに基づいて、気体燃料噴射弁8及びゲート弁22のどちらに異常が生じたかを判定してもよい。ゲート弁22が開異常のときと気体燃料噴射弁8が閉異常のときとで、燃焼室7の圧力は異なる。例えば、気体燃料噴射弁8が閉異常のとき、気体燃料噴射弁8から燃焼室7に気体燃料PGが噴射されないため、燃焼室7において失火が生じる可能性が高くなる。一方、ゲート弁22が開異常のとき、ゲート弁22及び気体燃料噴射弁8を介して燃焼室7に気体燃料PGが供給されるため、燃焼室7において失火が生じる可能性は低い。このように、ゲート弁22が開異常のときと気体燃料噴射弁8が閉異常のときとで、燃焼室7の異常の種類は異なる可能性が高い。また、上述したように、燃焼室7の異常の種類によって、燃焼室7の圧力は異なる。そのため、気体燃料噴射弁8に異常が生じたときの圧力センサ23の検出結果と、ゲート弁22に異常が生じたときの圧力センサ23の検出結果とが近似する場合、筒内センサ16による燃焼室7の圧力の検出結果に基づいて、気体燃料噴射弁8及びゲート弁22のどちらに異常が生じたかを判定することができる。 In that case, the control device 10 causes an abnormality in either the gaseous fuel injection valve 8 or the gate valve 22 based on the detection result of the pressure sensor 23 and the detection result of the in-cylinder sensor 16 that detects the pressure of the combustion chamber 7. You may determine the height. The pressure in the combustion chamber 7 differs between when the gate valve 22 is abnormally open and when the gaseous fuel injection valve 8 is abnormally closed. For example, when the gaseous fuel injection valve 8 is closed abnormally, the gaseous fuel PG is not injected from the gaseous fuel injection valve 8 to the combustion chamber 7, so the possibility of misfiring in the combustion chamber 7 becomes high. On the other hand, when the gate valve 22 is abnormally opened, the gaseous fuel PG is supplied to the combustion chamber 7 through the gate valve 22 and the gaseous fuel injection valve 8. Therefore, the possibility of misfiring in the combustion chamber 7 is low. As described above, the type of abnormality of the combustion chamber 7 is likely to be different between when the gate valve 22 is abnormally opened and when the gaseous fuel injection valve 8 is abnormally closed. Further, as described above, the pressure of the combustion chamber 7 differs depending on the type of abnormality of the combustion chamber 7. Therefore, when the detection result of the pressure sensor 23 when an abnormality occurs in the gaseous fuel injection valve 8 and the detection result of the pressure sensor 23 when an abnormality occurs in the gate valve 22 approximates combustion by the in-cylinder sensor 16 It is possible to determine which of the gaseous fuel injection valve 8 and the gate valve 22 has an abnormality based on the detection result of the pressure of the chamber 7.
 上述のように、燃焼室7の異常の種類とその異常の種類に対応する燃焼室7の圧力との関係が記憶装置に記憶されている。制御装置10は、筒内センサ16の検出結果と、記憶装置の記憶情報とに基づいて、気体燃料噴射弁8及びゲート弁22のどちらに異常が生じたかを判定することができる。 As described above, the relationship between the type of abnormality of the combustion chamber 7 and the pressure of the combustion chamber 7 corresponding to the type of abnormality is stored in the storage device. The control device 10 can determine which of the gaseous fuel injection valve 8 and the gate valve 22 has an abnormality based on the detection result of the in-cylinder sensor 16 and the storage information of the storage device.
 また、図9に示す圧力(ゲート弁22が閉異常のときの圧力)と図10に示す圧力(気体燃料噴射弁8が開異常のときの圧力)とは、期間T2において異なるものの、期間T4において近似する。そのため、ゲート弁22及び気体燃料噴射弁8のどちらが異常なのかを、期間T4における圧力センサ23の検出結果に基づいて判断することが困難となる可能性がある。 Further, although the pressure shown in FIG. 9 (pressure when the gate valve 22 is abnormally closed) and the pressure shown in FIG. 10 (pressure when the gaseous fuel injection valve 8 is abnormally opened) are different in the period T2, the period T4 is different. It approximates in. Therefore, it may be difficult to determine which of the gate valve 22 and the gaseous fuel injection valve 8 is abnormal based on the detection result of the pressure sensor 23 in the period T4.
 その場合においても、ゲート弁22が閉異常のときと気体燃料噴射弁8が開異常のときとで、燃焼室7の異常の種類は異なり、燃焼室7の圧力は異なる。例えば、ゲート弁22が閉異常のとき、ゲート弁22から気体燃料噴射弁8に気体燃料PGが供給されないため、燃焼室7において失火が生じる可能性は高くなる。一方、気体燃料噴射弁8が開異常のとき、気体燃料噴射弁8から燃焼室7に気体燃料PGが噴射されるため、燃焼室7において失火が生じる可能性は低い。そのため、制御装置10は、筒内センサ16の検出結果と、記憶装置の記憶情報とに基づいて、気体燃料噴射弁8及びゲート弁22のどちらに異常が生じたかを判定することができる。 Even in that case, the type of abnormality of the combustion chamber 7 is different and the pressure of the combustion chamber 7 is different between when the gate valve 22 is abnormally closed and when the gaseous fuel injection valve 8 is abnormally opened. For example, when the gate valve 22 is abnormally closed, the gaseous fuel PG is not supplied from the gate valve 22 to the gaseous fuel injection valve 8, so the possibility of misfire in the combustion chamber 7 becomes high. On the other hand, when the gaseous fuel injection valve 8 is abnormally opened, the gaseous fuel PG is injected from the gaseous fuel injection valve 8 to the combustion chamber 7, so the possibility of misfiring in the combustion chamber 7 is low. Therefore, the control device 10 can determine which of the gaseous fuel injection valve 8 and the gate valve 22 has an abnormality based on the detection result of the in-cylinder sensor 16 and the storage information of the storage device.
 以上説明したように、本実施形態によれば、気体燃料噴射弁8とゲート弁22との間の供給流路21の圧力の検出結果と、クランク角度の検出結果とに基づいて、気体燃料噴射弁8の異常及びゲート弁22の異常の少なくとも一方を検出することができる。したがって、例えば、その異常を解消するための適切な措置を講ずることができる。また、異常が生じている気体燃料供給システム15を使用し続けてしまう不都合を防止できる。 As described above, according to the present embodiment, the gaseous fuel injection is performed based on the detection result of the pressure of the supply flow passage 21 between the gaseous fuel injection valve 8 and the gate valve 22 and the detection result of the crank angle. At least one of an abnormality of the valve 8 and an abnormality of the gate valve 22 can be detected. Therefore, for example, appropriate measures can be taken to eliminate the abnormality. Moreover, the problem which continues using the gaseous fuel supply system 15 which abnormality has generate | occur | produced can be prevented.
 また、本実施形態において、ゲート弁22は、安全弁(インターロック機構)として機能し、気体燃料PGを噴射するためにピストン3が上死点の近傍に配置されるときに作動する。気体燃料噴射弁8は、ゲート弁22が開いている状態で作動するため、気体燃料噴射弁8から燃焼室7に適切なタイミングで気体燃料PGが噴射される。ピストン3が上死点の近傍に配置されている状態で気体燃料噴射弁8及びゲート弁22が作動するため、ピストン3が下死点近傍に配置されているときの期間Thにおける圧力センサ23の検出結果に基づいて、気体燃料噴射弁8及びゲート弁22の少なくとも一方の異常を円滑に検出することができる。 Further, in the present embodiment, the gate valve 22 functions as a safety valve (interlock mechanism), and operates when the piston 3 is disposed near the top dead center in order to inject the gaseous fuel PG. Since the gaseous fuel injection valve 8 operates with the gate valve 22 open, the gaseous fuel PG is injected from the gaseous fuel injection valve 8 to the combustion chamber 7 at an appropriate timing. Since the gaseous fuel injection valve 8 and the gate valve 22 operate in a state where the piston 3 is disposed near the top dead center, the pressure sensor 23 in the period Th when the piston 3 is disposed near the bottom dead center An abnormality in at least one of the gaseous fuel injection valve 8 and the gate valve 22 can be smoothly detected based on the detection result.
 また、本実施形態においては、期間Thにおける、気体燃料噴射弁8に異常が生じたときの圧力センサ23の検出結果と、ゲート弁22に異常が生じたときの圧力センサ23の検出結果とが近似する場合でも、筒内センサ16の検出結果を参照することにより、気体燃料噴射弁8及びゲート弁22のどちらに異常が生じたかを判定することができる。 Further, in the present embodiment, the detection result of the pressure sensor 23 when an abnormality occurs in the gaseous fuel injection valve 8 in the period Th and the detection result of the pressure sensor 23 when an abnormality occurs in the gate valve 22 Even in the case of approximation, it is possible to determine which of the gaseous fuel injection valve 8 and the gate valve 22 has an abnormality by referring to the detection result of the in-cylinder sensor 16.
 なお、本実施形態において、例えば、燃焼室7から排気ポート12を介して排出される気体(排気ガス)の温度を検出可能な温度センサを設け、その温度センサの検出結果と圧力センサ23の検出結果とに基づいて、気体燃料噴射弁8及びゲート弁22のどちらに異常が生じたかを判定してもよい。期間Thにおける、気体燃料噴射弁8に異常が生じたときの圧力センサ23の検出結果と、ゲート弁22に異常が生じたときの圧力センサ23の検出結果とが近似する場合でも、その温度センサの検出結果を参照することにより、気体燃料噴射弁8及びゲート弁22のどちらに異常が生じたかを判定することができる。 In the present embodiment, for example, a temperature sensor capable of detecting the temperature of the gas (exhaust gas) discharged from the combustion chamber 7 through the exhaust port 12 is provided, and the detection result of the temperature sensor and the detection of the pressure sensor 23 Based on the result, it may be determined which of the gaseous fuel injection valve 8 and the gate valve 22 has an abnormality. Even when the detection result of the pressure sensor 23 when abnormality occurs in the gaseous fuel injection valve 8 and the detection result of the pressure sensor 23 when abnormality occurs in the gate valve 22 in the period Th approximates that temperature sensor It is possible to determine which of the gaseous fuel injection valve 8 and the gate valve 22 has an abnormality by referring to the detection result of the above.
 燃焼室7の異常の種類によって、排気ポート12から排出される排気ガスの温度は異なる。そのため、気体燃料噴射弁8に異常が生じたときの圧力センサ23の検出結果と、ゲート弁22に異常が生じたときの圧力センサ23の検出結果とが近似する場合、温度センサによる排気ガスの温度の検出結果に基づいて、気体燃料噴射弁8及びゲート弁22のどちらに異常が生じたかを判定することができる。燃焼室7の異常の種類とその異常の種類に対応する排気ガスの温度との関係を記憶装置に記憶しておくことにより、制御装置10は、温度センサの検出結果と、記憶装置の記憶情報とに基づいて、気体燃料噴射弁8及びゲート弁22のどちらに異常が生じたかを判定することができる。 The temperature of the exhaust gas discharged from the exhaust port 12 differs depending on the type of abnormality of the combustion chamber 7. Therefore, when the detection result of the pressure sensor 23 when an abnormality occurs in the gaseous fuel injection valve 8 and the detection result of the pressure sensor 23 when an abnormality occurs in the gate valve 22 approximates, the exhaust gas detected by the temperature sensor Based on the temperature detection result, it can be determined which of the gaseous fuel injection valve 8 and the gate valve 22 has an abnormality. By storing the relationship between the type of abnormality of the combustion chamber 7 and the temperature of the exhaust gas corresponding to the type of abnormality in the storage device, the control device 10 detects the detection result of the temperature sensor and the storage information of the storage device It is possible to determine which of the gaseous fuel injection valve 8 and the gate valve 22 has an abnormality based on
<第2実施形態>
 第2実施形態について説明する。以下の実施形態において、上述の実施形態と同一又は同等の構成部分については同一の符号を付し、その説明を簡略又は省略する。
Second Embodiment
The second embodiment will be described. In the following embodiments, the same or equivalent components as or to those of the above-described embodiments are denoted by the same reference numerals, and the description thereof will be simplified or omitted.
 本実施形態においては、燃料油専用モードにおける圧力センサ23の検出結果に基づいて、気体燃料噴射弁8の異常を検出する例について説明する。燃料油専用モードにおいて、気体燃料供給源から気体燃料PGは供給されず、制御装置10は、気体燃料噴射弁8を閉じるように指令信号を出力する。燃料油専用モードにおいて、気体燃料噴射弁8が正常に作動するとき、気体燃料噴射弁8は閉じ、気体燃料噴射弁8から気体燃料PGは噴射されない。 In the present embodiment, an example of detecting an abnormality of the gaseous fuel injection valve 8 will be described based on the detection result of the pressure sensor 23 in the fuel oil dedicated mode. In the fuel oil dedicated mode, the gaseous fuel PG is not supplied from the gaseous fuel supply source, and the controller 10 outputs a command signal to close the gaseous fuel injection valve 8. In the fuel oil dedicated mode, when the gaseous fuel injection valve 8 operates normally, the gaseous fuel injection valve 8 is closed, and the gaseous fuel PG is not injected from the gaseous fuel injection valve 8.
 制御装置10が気体燃料噴射弁8を閉じる指令信号を出力したにもかかわらず、気体燃料噴射弁8が開いている異常(開異常)が生じた場合、圧力センサ23の検出結果に基づいて、その気体燃料噴射弁8の異常を検出することができる。 When an abnormality (open abnormality) in which the gaseous fuel injection valve 8 is open occurs (due to the command signal that the control device 10 closes the gaseous fuel injection valve 8), based on the detection result of the pressure sensor 23, An abnormality of the gaseous fuel injection valve 8 can be detected.
 図12は、燃料油専用モードにおいて気体燃料噴射弁8が正常及び開異常であるときの、クランク角度と供給流路21の圧力(気体燃料噴射弁8の入口の圧力)との関係を示す図である。図12において、横軸はクランク角度であり、縦軸は、気体燃料噴射弁8とゲート弁22との間の供給流路21の圧力(気体燃料噴射弁8の入口の圧力)である。 FIG. 12 is a diagram showing the relationship between the crank angle and the pressure of the supply flow passage 21 (pressure at the inlet of the gaseous fuel injection valve 8) when the gaseous fuel injection valve 8 is normal and open abnormality in the fuel oil dedicated mode It is. In FIG. 12, the horizontal axis is the crank angle, and the vertical axis is the pressure of the supply flow path 21 between the gaseous fuel injection valve 8 and the gate valve 22 (pressure at the inlet of the gaseous fuel injection valve 8).
 燃料油専用モードにおいて気体燃料噴射弁8が正常である場合、圧力センサ23の出力は一定である。一方、燃料油専用モードにおいて気体燃料噴射弁8が異常である場合(開いている場合)、燃焼室7の高温高圧の気体が気体燃料噴射弁8から供給流路21に流入する。これにより、供給流路21の圧力が上昇する。供給流路21の圧力は、圧力センサ23に検出される。そのため、制御装置10は、圧力センサ23の検出結果に基づいて、燃料油専用モードにおいて気体燃料噴射弁8に異常が生じたか否かを検出することができる。 When the gaseous fuel injection valve 8 is normal in the fuel oil dedicated mode, the output of the pressure sensor 23 is constant. On the other hand, when the gaseous fuel injection valve 8 is abnormal (when it is open) in the fuel oil dedicated mode, high temperature / high pressure gas in the combustion chamber 7 flows from the gaseous fuel injection valve 8 into the supply flow passage 21. Thereby, the pressure of the supply flow path 21 rises. The pressure in the supply channel 21 is detected by the pressure sensor 23. Therefore, based on the detection result of the pressure sensor 23, the control device 10 can detect whether or not an abnormality has occurred in the gaseous fuel injection valve 8 in the fuel oil dedicated mode.
 以上説明したように、本実施形態によれば、気体燃料噴射弁8が使用されない燃料油専用モードにおいても、気体燃料噴射弁8の異常を検出することができる。 As described above, according to the present embodiment, it is possible to detect an abnormality in the gaseous fuel injection valve 8 even in the fuel oil dedicated mode in which the gaseous fuel injection valve 8 is not used.
<第3実施形態>
 第3実施形態について説明する。以下の実施形態において、上述の実施形態と同一又は同等の構成部分については同一の符号を付し、その説明を簡略又は省略する。
Third Embodiment
A third embodiment will be described. In the following embodiments, the same or equivalent components as or to those of the above-described embodiments are denoted by the same reference numerals, and the description thereof will be simplified or omitted.
 図13は、本実施形態に係る気体燃料供給システム15の一例を示す模式図である。図13に示すように、気体燃料供給システム15は、燃焼室7に気体燃料PGを噴射する気体燃料噴射弁8と、プレ噴射弁30とを備えている。プレ噴射弁30は、制御装置10に制御される。プレ噴射弁30は、気体燃料PGを燃焼室7に噴射する。 FIG. 13 is a schematic view showing an example of the gaseous fuel supply system 15 according to the present embodiment. As shown in FIG. 13, the gaseous fuel supply system 15 includes a gaseous fuel injection valve 8 for injecting the gaseous fuel PG into the combustion chamber 7 and a pre-injection valve 30. The pre-injection valve 30 is controlled by the control device 10. The pre-injection valve 30 injects the gaseous fuel PG into the combustion chamber 7.
 プレ噴射弁30は、気体燃料噴射弁8からの気体燃料PGの噴射前に、気体燃料PGを燃焼室7に噴射する。本実施形態においては、プレ噴射弁30から噴射された気体燃料PGにより、燃焼室7において、まず空気と気体燃料PGとの混合気体が生成された後、さらに気体燃料噴射弁8から気体燃料PGが噴射されることにより、燃焼室7において燃焼が行われる。 The pre-injection valve 30 injects the gaseous fuel PG into the combustion chamber 7 before injecting the gaseous fuel PG from the gaseous fuel injection valve 8. In the present embodiment, after the mixed gas of air and gaseous fuel PG is first generated in the combustion chamber 7 by the gaseous fuel PG injected from the pre-injection valve 30, the gaseous fuel PG is further generated from the gaseous fuel injection valve 8. Combustion is performed in the combustion chamber 7 by injection of
 図14は、部分予混合燃焼を行う部分予混合燃焼モードのクランク角度と供給流路21の圧力(気体燃料噴射弁8の入口の圧力)との関係を示す図である。図14において、横軸はクランク角度であり、縦軸は、気体燃料噴射弁8とゲート弁22との間の供給流路21の圧力(気体燃料噴射弁8の入口の圧力)である。また、図14は、プレ噴射弁30が正常及び開異常であるときの、クランク角度と供給流路21の圧力との関係を示す。 FIG. 14 is a diagram showing the relationship between the crank angle in the partial premixed combustion mode in which partial premixed combustion is performed and the pressure of the supply flow passage 21 (pressure at the inlet of the gaseous fuel injection valve 8). In FIG. 14, the horizontal axis is the crank angle, and the vertical axis is the pressure of the supply flow path 21 between the gaseous fuel injection valve 8 and the gate valve 22 (pressure at the inlet of the gaseous fuel injection valve 8). Further, FIG. 14 shows the relationship between the crank angle and the pressure of the supply flow passage 21 when the pre-injection valve 30 is normal and the opening abnormality.
 部分予混合燃焼モードにおいては、気体燃料噴射弁8からの気体燃料PGの噴射が行われる前に、プレ噴射弁30からの気体燃料PGの噴射が行われる。気体燃料噴射弁8から気体燃料PGを噴射するときの気体燃料噴射弁8及びゲート弁22の動作は、上述の実施形態と同様である。すなわち、制御装置10は、クランク角度がA1度のとき、ゲート弁22を開け、クランク角度がA2度のとき、気体燃料噴射弁8を開け、クランク角度がA3度のとき、気体燃料噴射弁8を閉じ、クランク角度がA4度のとき、ゲート弁22を閉じるように指令信号を出力する。 In the partial premixed combustion mode, the injection of the gaseous fuel PG from the pre-injection valve 30 is performed before the injection of the gaseous fuel PG from the gaseous fuel injection valve 8 is performed. The operation of the gaseous fuel injection valve 8 and the gate valve 22 when injecting the gaseous fuel PG from the gaseous fuel injection valve 8 is the same as that of the above-described embodiment. That is, the control device 10 opens the gate valve 22 when the crank angle is A1 degree and opens the gas fuel injection valve 8 when the crank angle is A2 degree, and the gas fuel injection valve 8 when the crank angle is A3 degree. Is closed, and when the crank angle is A4 degrees, a command signal is output to close the gate valve 22.
 プレ噴射弁30から気体燃料PGを噴射するときのゲート弁22及びプレ噴射弁30の開閉のシーケンスは、気体燃料噴射弁8から気体燃料PGを噴射するときのゲート弁22及び気体燃料噴射弁8の開閉のシーケンスと同様である。すなわち、プレ噴射弁30から気体燃料PGを噴射するとき、制御装置10は、クランク角度がA1p度のとき、ゲート弁22を開け、クランク角度がA2p度のとき、プレ噴射弁30を開け、クランク角度がA3p度のとき、プレ噴射弁30を閉じ、クランク角度がA4p度のとき、プレ噴射弁30を閉じる。 The sequence of opening and closing the gate valve 22 and the pre-injection valve 30 when injecting the gaseous fuel PG from the pre-injection valve 30 is the same as the gate valve 22 and the gaseous fuel injection valve 8 when injecting the gaseous fuel PG from the gaseous fuel injection valve 8 It is similar to the sequence of opening and closing of. That is, when injecting the gaseous fuel PG from the pre-injection valve 30, the control device 10 opens the gate valve 22 when the crank angle is A1p degree and opens the pre-injection valve 30 when the crank angle is A2p degree. When the angle is A3 p degrees, the pre injection valve 30 is closed, and when the crank angle is A4 p degrees, the pre injection valve 30 is closed.
 制御装置10は、クランク角度A3pにおいて気体燃料PGを噴射したプレ噴射弁30を閉じてからクランク角度A4pにおいてゲート弁22を閉じた後、気体燃料噴射弁8からの気体燃料PGの噴射が行われるように、クランク角度A1においてゲート弁22を開けるように指令信号を出力する。 The control device 10 closes the pre-injection valve 30 which injected the gaseous fuel PG at the crank angle A3 p and closes the gate valve 22 at the crank angle A4 p, and then the gaseous fuel PG is injected from the gaseous fuel injection valve 8 Thus, the command signal is output to open the gate valve 22 at the crank angle A1.
 図14を参照して、制御装置10がプレ噴射弁30を閉じる指令信号を出力したにもかかわらず、プレ噴射弁30が開いている異常(開異常)について説明する。 With reference to FIG. 14, an abnormality (open abnormality) in which the pre-injection valve 30 is open although the control device 10 outputs a command signal to close the pre-injection valve 30 will be described.
 クランク角度A3pのとき、制御装置10からプレ噴射弁30を閉じる指令信号が出力されたにもかかわらず、プレ噴射弁30が閉じずに、クランク角度A4pのとき、ゲート弁22が閉じると、ゲート弁22が閉じた状態で、気体燃料PGはプレ噴射弁30から燃焼室7に噴射される。その結果、図14に示すように、クランク角度A3pの時点から、供給流路21の圧力は低下する。このように、プレ噴射弁30が異常(開異常)なときと正常なときとで、クランク角度A3pにおいてプレ噴射弁30を閉じるための指令信号が出力されてからクランク角度A1においてゲート弁22を開くための指令信号が出力されるまでの期間Tjにおける供給流路21の圧力は異なる。すなわち、プレ噴射弁30が正常なときは、期間Tjにおける供給流路21の圧力は、図14中、実線で示すように、圧力P2となり、プレ噴射弁30が開異常なときは、期間Tjにおける供給流路21の圧力は、図14中、点線で示すように、圧力P2よりも低い圧力となる。したがって、制御装置10は、期間Tjにおける圧力センサ23の検出結果に基づいて、プレ噴射弁30が異常か否かを検出することができる。 At the crank angle A3p, although the command signal for closing the pre-injection valve 30 is output from the control device 10, the gate valve 22 is closed at the crank angle A4p without the pre-injection valve 30 closing. With the valve 22 closed, the gaseous fuel PG is injected from the pre-injection valve 30 into the combustion chamber 7. As a result, as shown in FIG. 14, the pressure of the supply flow channel 21 decreases from the time of the crank angle A3 p. Thus, when the pre-injection valve 30 is abnormal (open abnormality) and normal, the command signal for closing the pre-injection valve 30 is output at the crank angle A3 p, and then the gate valve 22 is output at the crank angle A1. The pressure in the supply channel 21 in the period Tj until the command signal for opening is output is different. That is, when the pre-injection valve 30 is normal, the pressure of the supply flow passage 21 in the period Tj is the pressure P2 as shown by the solid line in FIG. 14. When the pre-injection valve 30 is abnormally opened, the period Tj The pressure of the supply flow passage 21 at the point of (4) is lower than the pressure P2, as shown by the dotted line in FIG. Therefore, the control device 10 can detect whether or not the pre-injection valve 30 is abnormal based on the detection result of the pressure sensor 23 in the period Tj.
 次に、制御装置10がプレ噴射弁30を開ける指令信号を出力したにもかかわらず、プレ噴射弁30が閉じている異常(閉異常)について説明する。図15は、プレ噴射弁30が閉異常であるときの、クランク角度と供給流路21の圧力(気体燃料噴射弁8の入口の圧力)との関係を示す図である。 Next, although the control device 10 outputs a command signal to open the pre-injection valve 30, an abnormality (close abnormality) in which the pre-injection valve 30 is closed will be described. FIG. 15 is a view showing the relationship between the crank angle and the pressure of the supply flow passage 21 (pressure at the inlet of the gaseous fuel injection valve 8) when the pre-injection valve 30 is abnormally closed.
 クランク角度A2pのとき、制御装置10からプレ噴射弁30を開く指令信号が出力されたにもかかわらず、プレ噴射弁30が開かないと、プレ噴射弁30が閉じ、ゲート弁22が開いている状態で、圧力P1の気体燃料PGが供給流路21に供給される。これにより、図15に示すように、期間Tjにおける供給流路21の圧力は、圧力P1となる。このように、プレ噴射弁30が異常(閉異常)なときと正常なときとで、期間Tjにおける供給流路21の圧力は異なる。すなわち、プレ噴射弁30が正常なときは、期間Tjにおける供給流路21の圧力は、図15中、実線で示すように、圧力P2となり、プレ噴射弁30が閉異常なときは、期間Tjにおける供給流路21の圧力は、図15中、点線で示すように、圧力P2よりも高い圧力P1となる。したがって、期間Tjにおける圧力センサ23の検出結果に基づいて、プレ噴射弁30が異常か否かを検出することができる。 At the crank angle A2p, although the command signal for opening the pre-injection valve 30 is output from the control device 10, if the pre-injection valve 30 does not open, the pre-injection valve 30 is closed and the gate valve 22 is open. In the state, the gaseous fuel PG at the pressure P1 is supplied to the supply flow channel 21. Thereby, as shown in FIG. 15, the pressure of the supply flow path 21 in the period Tj becomes the pressure P1. Thus, the pressure of the supply flow passage 21 in the period Tj differs between when the pre-injection valve 30 is abnormal (closed abnormality) and when it is normal. That is, when the pre-injection valve 30 is normal, the pressure of the supply flow passage 21 in the period Tj is the pressure P2 as shown by the solid line in FIG. 15, and when the pre-injection valve 30 is abnormally closed, the period Tj The pressure of the supply flow passage 21 at the pressure point P2 is a pressure P1 higher than the pressure P2, as shown by a dotted line in FIG. Therefore, based on the detection result of the pressure sensor 23 in the period Tj, it can be detected whether or not the pre-injection valve 30 is abnormal.
 以上説明したように、本実施形態によれば、気体燃料供給システム15がプレ噴射弁30を有する場合、プレ噴射弁30が閉じてからゲート弁22が開くまでの期間Tjにおける圧力センサ23の検出結果に基づいてプレ噴射弁30の異常を検出することができる。 As described above, according to the present embodiment, when the gaseous fuel supply system 15 has the pre-injection valve 30, detection of the pressure sensor 23 in a period Tj from closing of the pre-injection valve 30 to opening of the gate valve 22. An abnormality in the pre-injection valve 30 can be detected based on the result.
 1 デュアルフューエルエンジン
 7 燃焼室
 8 気体燃料噴射弁
 15 気体燃料供給システム
 16 筒内センサ
 21 供給流路
 22 ゲート弁
 23 圧力センサ
 30 プレ噴射弁
 PG 気体燃料
Reference Signs List 1 dual fuel engine 7 combustion chamber 8 gas fuel injection valve 15 gas fuel supply system 16 in-cylinder sensor 21 supply flow path 22 gate valve 23 pressure sensor 30 pre-injection valve PG gas fuel

Claims (6)

  1.  エンジンの燃焼室に気体燃料を供給する気体燃料供給システムであって、
     前記燃焼室に前記気体燃料を噴射する噴射弁と、
     前記噴射弁に供給される前記気体燃料が流れる供給流路と、
     前記供給流路を開閉可能なゲート弁と、
     前記噴射弁と前記ゲート弁との間の前記供給流路の圧力を検出する圧力センサと、
     前記噴射弁及び前記ゲート弁を制御する制御装置と、を備え、
     前記圧力センサの検出結果と前記エンジンのクランク軸のクランク角度を検出する検出装置の検出結果とに基づいて、前記噴射弁及び前記ゲート弁の少なくとも一方の異常を検出する気体燃料供給システム。
    A gaseous fuel supply system for supplying gaseous fuel to a combustion chamber of an engine, comprising:
    An injection valve for injecting the gaseous fuel into the combustion chamber;
    A supply flow path through which the gaseous fuel supplied to the injection valve flows;
    A gate valve capable of opening and closing the supply flow path;
    A pressure sensor for detecting the pressure in the supply passage between the injection valve and the gate valve;
    A controller for controlling the injection valve and the gate valve;
    A gaseous fuel supply system for detecting an abnormality in at least one of the injection valve and the gate valve based on the detection result of the pressure sensor and the detection result of a detection device for detecting a crank angle of a crankshaft of the engine.
  2.  前記制御装置は、前記検出装置の検出結果に基づいて上死点及び下死点を含む前記エンジンのピストンの位置を求め、前記燃焼室に前記気体燃料を供給するために、前記ピストンが上死点近傍に位置する時点おいて前記ゲート弁を開けた後、前記噴射弁を開け、前記噴射弁を閉じた後、前記ゲート弁を閉じるように指令信号を出力し、
     前記ピストンが下死点近傍に位置する時点での前記圧力センサの検出結果に基づいて、前記異常を検出する請求項1に記載の気体燃料供給システム。
    The control device determines the position of a piston of the engine including top dead center and bottom dead center based on the detection result of the detection device, and the piston is top dead to supply the gaseous fuel to the combustion chamber. After the gate valve is opened at a point near the point, the injection valve is opened, and after closing the injection valve, a command signal is output to close the gate valve,
    The gaseous fuel supply system according to claim 1, wherein the abnormality is detected based on the detection result of the pressure sensor when the piston is located near the bottom dead center.
  3.  前記圧力センサの検出結果と前記燃焼室の圧力を検出する筒内センサの検出結果とに基づいて、前記噴射弁及び前記ゲート弁のどちらに異常が生じたかを判定する請求項2に記載の気体燃料供給システム。 The gas according to claim 2, wherein it is determined which of the injection valve and the gate valve has an abnormality based on the detection result of the pressure sensor and the detection result of an in-cylinder sensor that detects the pressure of the combustion chamber. Fuel supply system.
  4.  前記噴射弁からの前記気体燃料の噴射前に、気体燃料を前記燃焼室に噴射するプレ噴射弁を備え、
     前記制御装置は、前記気体燃料を噴射した前記プレ噴射弁を閉じてから前記ゲート弁を閉じた後、前記噴射弁からの前記気体燃料の噴射のために前記ゲート弁を開けるように指令信号を出力し、
     前記プレ噴射弁を閉じるための指令信号が出力されてから前記ゲート弁を開くための指令信号が出力されるまでの期間における前記圧力センサの検出結果に基づいて、前記プレ噴射弁の異常を検出する請求項2又は請求項3に記載の気体燃料供給システム。
    It has a pre-injection valve that injects gaseous fuel into the combustion chamber before injecting the gaseous fuel from the injection valve.
    After closing the pre-injection valve that injected the gaseous fuel and closing the gate valve, the control device instructs the gate valve to open the gate valve for injection of the gaseous fuel from the injection valve. Output
    An abnormality in the pre-injection valve is detected based on the detection result of the pressure sensor in a period from the output of the command signal for closing the pre-injection valve to the output of a command signal for opening the gate valve. The gaseous fuel supply system according to claim 2 or claim 3.
  5.  前記エンジンは、デュアルフューエルエンジンを含み、
     前記燃焼室に液体燃料が供給され前記気体燃料が供給されない燃料油専用モードにおける前記圧力センサの検出結果に基づいて、前記噴射弁の異常を検出する請求項1から請求項4のいずれか一項に記載の気体燃料供給システム。
    The engine includes a dual fuel engine,
    The abnormality of the said injection valve is detected based on the detection result of the said pressure sensor in the fuel oil exclusive mode in which liquid fuel is supplied to the said combustion chamber, and the said gaseous fuel is not supplied, The any one of Claims 1-4 The gaseous fuel supply system according to claim 1.
  6.  エンジンの燃焼室に気体燃料を供給する気体燃料供給システムの異常検出方法であって、
     前記気体燃料供給システムは、前記燃焼室に気体燃料を噴射する噴射弁と、前記噴射弁に供給される前記気体燃料が流れる供給流路と、前記供給流路を開閉可能なゲート弁と、を備え、
     前記噴射弁と前記ゲート弁との間の前記供給流路の圧力を検出する工程と、
     前記エンジンのクランク軸のクランク角度を検出する工程と、
     前記供給流路の圧力の検出結果と前記クランク角度の検出結果とに基づいて、前記噴射弁及び前記ゲート弁の少なくとも一方の異常を検出する工程と、を含む気体燃料供給システムの異常検出方法。
    An anomaly detection method for a gaseous fuel supply system for supplying gaseous fuel to a combustion chamber of an engine, comprising:
    The gaseous fuel supply system includes an injection valve for injecting the gaseous fuel into the combustion chamber, a supply flow path through which the gaseous fuel is supplied to the injection valve, and a gate valve capable of opening and closing the supply flow path. Equipped
    Detecting the pressure in the supply passage between the injection valve and the gate valve;
    Detecting a crank angle of a crankshaft of the engine;
    And detecting the abnormality in at least one of the injection valve and the gate valve based on the detection result of the pressure in the supply passage and the detection result of the crank angle.
PCT/JP2014/083025 2013-12-26 2014-12-12 Gas fuel supply system and method for detecting abnormality of gas fuel supply system WO2015098578A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480059078.9A CN105849395B (en) 2013-12-26 2014-12-12 The method for detecting abnormality of gas fuel supply system and gas fuel supply system
KR1020167010947A KR101864971B1 (en) 2013-12-26 2014-12-12 Gas fuel supply system and method for detecting abnormality of gas fuel supply system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-270058 2013-12-26
JP2013270058A JP6373578B2 (en) 2013-12-26 2013-12-26 Gaseous fuel supply system and abnormality detection method for gaseous fuel supply system

Publications (1)

Publication Number Publication Date
WO2015098578A1 true WO2015098578A1 (en) 2015-07-02

Family

ID=53478442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083025 WO2015098578A1 (en) 2013-12-26 2014-12-12 Gas fuel supply system and method for detecting abnormality of gas fuel supply system

Country Status (4)

Country Link
JP (1) JP6373578B2 (en)
KR (1) KR101864971B1 (en)
CN (1) CN105849395B (en)
WO (1) WO2015098578A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114622986A (en) * 2020-12-09 2022-06-14 曼能源解决方案公司(德国曼能源解决方案股份公司子公司) Internal combustion engine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017115757A1 (en) * 2017-07-13 2019-01-17 Man Diesel & Turbo Se Method and control device for operating an internal combustion engine
KR102439314B1 (en) * 2017-10-24 2022-09-02 현대중공업 주식회사 Engine for Ship
DK180386B1 (en) * 2019-06-14 2021-02-24 Man Energy Solutions Filial Af Man Energy Solutions Se Tyskland Internal combustion engine
US11352965B2 (en) * 2019-10-18 2022-06-07 Caterpillar Inc. Reverse flow detection system
CN114718722B (en) * 2022-02-24 2023-03-21 潍柴动力股份有限公司 Valve fault detection method and system for precombustion chamber air intake and engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000282956A (en) * 1999-03-29 2000-10-10 Honda Motor Co Ltd Gas fuel supply system for vehicle
JP3432098B2 (en) 1996-01-15 2003-07-28 マーン・ベー・オグ・ドバルドヴェー・ディーゼール・アクティーゼルスカブ Control method of fuel supply to high-pressure gas injection engine and its engine
JP2006329135A (en) * 2005-05-30 2006-12-07 Nikki Co Ltd Diagnostic method for fuel supply system
JP2009013992A (en) * 2008-09-17 2009-01-22 Toyota Motor Corp Protection control method for gas fuel injection valve of bifuel cylinder direct injection engine
JP2012132418A (en) * 2010-12-24 2012-07-12 Kawasaki Heavy Ind Ltd Apparatus and method for detecting failure of fuel supply valve in gas engine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002070632A (en) * 2000-08-25 2002-03-08 Hitachi Ltd Engine controller with failure diagnostic device
JP5518537B2 (en) * 2010-03-18 2014-06-11 株式会社ケーヒン Shut-off valve failure diagnosis device
JP5425677B2 (en) * 2010-03-19 2014-02-26 株式会社ケーヒン Fuel supply system and shut-off valve failure diagnosis device
WO2012086211A1 (en) * 2010-12-24 2012-06-28 川崎重工業株式会社 Gas fuel leakage detection method, and gas fuel leakage detection device, and gas engine equipped with same
ITMI20110547A1 (en) * 2011-04-04 2012-10-05 Landi Renzo Spa METHOD AND DEVICE FOR DIAGNOSTICS OF GASEOUS FLUID LOSSES IN A FUEL SUPPLY CIRCUIT OF A MOTOR VEHICLE
JP5827587B2 (en) * 2012-03-27 2015-12-02 株式会社ケーヒン Fuel injection system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3432098B2 (en) 1996-01-15 2003-07-28 マーン・ベー・オグ・ドバルドヴェー・ディーゼール・アクティーゼルスカブ Control method of fuel supply to high-pressure gas injection engine and its engine
JP2000282956A (en) * 1999-03-29 2000-10-10 Honda Motor Co Ltd Gas fuel supply system for vehicle
JP2006329135A (en) * 2005-05-30 2006-12-07 Nikki Co Ltd Diagnostic method for fuel supply system
JP2009013992A (en) * 2008-09-17 2009-01-22 Toyota Motor Corp Protection control method for gas fuel injection valve of bifuel cylinder direct injection engine
JP2012132418A (en) * 2010-12-24 2012-07-12 Kawasaki Heavy Ind Ltd Apparatus and method for detecting failure of fuel supply valve in gas engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114622986A (en) * 2020-12-09 2022-06-14 曼能源解决方案公司(德国曼能源解决方案股份公司子公司) Internal combustion engine

Also Published As

Publication number Publication date
CN105849395B (en) 2019-10-18
JP6373578B2 (en) 2018-08-15
CN105849395A (en) 2016-08-10
KR101864971B1 (en) 2018-06-05
KR20160060750A (en) 2016-05-30
JP2015124713A (en) 2015-07-06

Similar Documents

Publication Publication Date Title
WO2015098578A1 (en) Gas fuel supply system and method for detecting abnormality of gas fuel supply system
KR101411395B1 (en) Two-stroke engine
KR101725850B1 (en) Uniflow scavenging 2-cycle engine
KR101702549B1 (en) Two-stroke uniflow engine
EP2891780B1 (en) Uniflow scavenging two-cycle engine
US9334813B2 (en) Control system for a dual-fuel engine
JP5587091B2 (en) 2-stroke gas engine
JP5811539B2 (en) 2-cycle engine
KR101564867B1 (en) Dual-fuel diesel engine and method for operating same
WO2014034796A1 (en) Uniflow scavenging two-cycle engine
KR102206923B1 (en) Ending operation of dual fuel engine in gaseous fuel mode
DK3015679T3 (en) Cylinder for a piston combustion engine, piston combustion engine and method for operating a piston combustion engine
WO2014077002A1 (en) Diesel engine control device, diesel engine, and diesel engine control method
DK3015699T3 (en) Gas supply system with a control system and cylinder for a piston combustion engine, piston combustion engine and method of operation of a piston combustion engine
KR102442206B1 (en) Ship Engine and Method for Ship Engine
KR101817025B1 (en) Gas fuel supply system, control device, and engine
JP6872871B2 (en) Gas supply system and cylinder liner for reciprocating piston internal combustion engine, reciprocating piston internal combustion engine, and operating method of reciprocating piston internal combustion engine
JP6003288B2 (en) Uniflow scavenging 2-cycle engine
EP3336339A1 (en) Controlling a dual-fuel internal combustion engine operated at least partly on gaseous fuel
JP2015165106A (en) Dual-fuel engine, ship with the same, and dual-fuel engine control method
KR20180095637A (en) Piston engine operating method and piston engine
JP6128895B2 (en) Premixed compression ignition engine and operation control method thereof
JP2014101884A (en) Two-stroke gas engine
JP2017096134A (en) Gas engine and ship

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875316

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014875316

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014875316

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167010947

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE