WO2015129348A1 - Cooling module - Google Patents

Cooling module Download PDF

Info

Publication number
WO2015129348A1
WO2015129348A1 PCT/JP2015/051657 JP2015051657W WO2015129348A1 WO 2015129348 A1 WO2015129348 A1 WO 2015129348A1 JP 2015051657 W JP2015051657 W JP 2015051657W WO 2015129348 A1 WO2015129348 A1 WO 2015129348A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
passage
radiator
vehicle
duct
Prior art date
Application number
PCT/JP2015/051657
Other languages
French (fr)
Japanese (ja)
Inventor
下野園 均
翔 古野
秀希 吉田
則行 大川
光 平柳
隆司 藤田
Original Assignee
カルソニックカンセイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カルソニックカンセイ株式会社 filed Critical カルソニックカンセイ株式会社
Publication of WO2015129348A1 publication Critical patent/WO2015129348A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • B60K11/04Arrangement or mounting of radiators, radiator shutters, or radiator blinds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/08Air inlets for cooling; Shutters or blinds therefor
    • B60K11/085Air inlets for cooling; Shutters or blinds therefor with adjustable shutters or blinds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/10Guiding or ducting cooling-air, to, or from, liquid-to-air heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/10Controlling of coolant flow the coolant being cooling-air by throttling amount of air flowing through liquid-to-air heat exchangers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/88Optimized components or subsystems, e.g. lighting, actively controlled glasses

Definitions

  • the present invention relates to a cooling module, for example, a cooling module installed in an automobile for cooling a radiator and a condenser.
  • a cooling module including a shroud (duct), a radiator, a refrigerant radiator (condenser), and a blower fan is known (for example, see Patent Document 1).
  • the radiator is arranged in the duct so as to block all the air passages formed in the duct.
  • the condenser is provided in front of the radiator in the duct and blocks a part of the air passage formed in the duct.
  • an air bypass passage is formed in front of the radiator.
  • the blower fan is provided behind the radiator.
  • the blower fan by driving the blower fan, the remaining air entering the duct from the opening at the front end of the duct passes through only the radiator and is cooled.
  • the radiator and the condenser are cooled by the traveling air without driving the blower fan.
  • the ratio of the flow rate of air passing through the condenser and the radiator in series and the flow rate of air passing through the bypass passage only through the radiator is the strength of the air flow generated by driving the blower fan. Regardless of the strength of the traveling wind generated by the traveling of the vehicle, it is almost constant.
  • the amount of heat that must be dissipated from the condenser increases in order to use the air conditioner, and when the engine is heavily loaded, such as when the vehicle is climbing a hill, the radiator The amount of heat that needs to be released from the heat increases.
  • the condenser and the radiator may be insufficiently cooled. There is a risk of cooling the condenser and the radiator more than necessary.
  • the present invention has been made in view of the above problems, and provides a cooling module that can cool a condenser and a radiator according to the necessity of cooling in a cooling module mounted on a vehicle. With the goal.
  • the cooling module includes a duct installed in a vehicle, a radiator provided in the duct, a condenser provided in front of the radiator in the duct, and a traveling state of the vehicle.
  • An air amount adjusting unit that adjusts the amount of air flowing to the radiator; and a blower unit that forcibly creates an air flow in the duct.
  • a first passage through which a part of the air flowing in the duct flows and a portion of the air flowing in the duct provided in parallel to the first passage in the duct
  • a second passage through which the remaining air flows.
  • the radiator is provided behind the first passage and the second passage in the duct.
  • the capacitor is provided in the first passage.
  • the air amount adjusting unit is configured to adjust the amount of air flowing through the second passage in accordance with a traveling state of the vehicle.
  • a bypass passage through which air directly hitting the radiator flows is formed in the second passage, and the air amount adjustment unit is configured to adjust the amount of air flowing through the second passage including the bypass passage. Preferably it is.
  • the duct is provided with an opening for allowing the air that has entered the bypass passage to flow to the engine of the vehicle without passing through the condenser and the radiator. It is preferable that the cooling module is configured to adjust the amount of air flowing through the opening according to the traveling state.
  • the cooling module is a cooling module in which the capacitor and the radiator are arranged so that the lower end side of the capacitor is wider than the upper end side of the capacitor with respect to the distance between the capacitor and the radiator in the longitudinal direction of the vehicle.
  • the second passage is a cooling module provided with a heat exchanger.
  • the air amount adjustment unit is a cooling module configured to operate under the wind pressure of the traveling wind of the vehicle.
  • the air amount adjustment unit is a cooling module configured to be driven by an actuator in accordance with a detection result of a vehicle speed sensor that detects a traveling speed of the vehicle.
  • the cooling is configured such that the air amount adjustment unit is operated according to at least one of a load of an engine of the vehicle, an operating condition of an air conditioner of the vehicle, an outside air temperature, a temperature inside the vehicle, and a temperature of a refrigerant in the radiator.
  • the air amount adjustment unit is operated according to at least one of a load of an engine of the vehicle, an operating condition of an air conditioner of the vehicle, an outside air temperature, a temperature inside the vehicle, and a temperature of a refrigerant in the radiator.
  • it is a module.
  • the heat exchanger is a turbocharger intercooler, and is a cooling module configured to close the second passage by the air amount adjusting unit when the vehicle is in an idling state where the vehicle is stopped. It is preferable.
  • the heat exchanger is a sub-radiator used for cooling high-power equipment, and when the vehicle is in an idling state where the vehicle is stopped, the second passage is closed or slightly opened by the air amount adjustment unit. It is preferable that the cooling module is configured as described above.
  • a part of the sub-radiator is a cooling module located in the first passage.
  • FIG. 10 is a side view showing the operation of the cooling module shown in FIG. 9. It is a schematic diagram which shows schematic structure of the cooling module which concerns on the further modification. It is a schematic diagram which shows schematic structure of the cooling module which concerns on the further modification. It is a side view which shows schematic structure of the cooling module which concerns on the 3rd Embodiment of this invention. It is a side view which shows schematic structure of the cooling module which concerns on the 4th Embodiment of this invention.
  • FR represents the front of the vehicle
  • RR represents the rear of the vehicle.
  • the cooling module 1 As shown in FIG. 1 and the like, the cooling module 1 according to the first embodiment of the present invention is mounted on a vehicle 3, and includes a duct 5, a radiator 7, a condenser 11, an air amount adjusting unit 12, and a blower unit. 14.
  • the duct 5 is formed in a cylindrical shape in the present embodiment, and is installed in the vehicle 3 with an opening through which air enters and exits at the front end and the rear end. That is, air flows into the duct 5 from the opening at the front end, and the air in the duct 5 is discharged from the opening at the rear end. An air passage through which air flows from the front side to the rear side of the vehicle is formed in the duct 5.
  • the radiator 7 is a heat exchanger that cools the cooling water of the engine 15 of the vehicle 3, and is provided in the duct 5.
  • the condenser 11 is a heat exchanger that cools the refrigerant of the air conditioner of the vehicle 3, and is provided in front of the radiator 7 in the duct 5.
  • the air amount adjusting unit 12 adjusts the amount of air flowing to the radiator 7 according to the traveling wind received when the vehicle 3 is traveling.
  • the blower unit 14 is configured by a blower fan, and forcibly creates an air flow in the duct 5.
  • the air blowing unit 14 generates an air flow in the duct 5 when the vehicle 3 is stopped and in an idling state. However, not only when the vehicle 3 is in an idling state, but also when the vehicle 3 is traveling (for example, traveling at a low speed), the air flow may be generated in the duct 5 by the air blowing unit 14. .
  • the first passage 21 in which a part of the air flowing in the duct 5 flows and the air flowing in the duct 5 are included.
  • a second passage 23 through which the remaining air flows are included.
  • the lower side is constituted by the first passage 21
  • the upper side is constituted by the second passage 23.
  • the second passage 23 is provided in parallel with the first passage 21 in the duct 5.
  • the upper part of the second passage 23 is configured as a bypass passage 9. That is, the bypass passage 9 is configured as a part of the second passage 23.
  • the radiator 7 is provided behind the first passage 21 and the second passage 23 in the duct 5.
  • the air that has passed through both the first passage 21 and the second passage 23 passes through the radiator 7, and the radiator 7 is cooled.
  • the capacitor 11 is provided in the first passage 21, and the air flowing through the first passage 21 passes through the capacitor 11, thereby cooling the capacitor 11.
  • the air that has passed through the condenser 11 also passes through the radiator 7 and cools the radiator 7.
  • the air amount adjusting unit 12 is configured to adjust the amount of air flowing through the second passage 23 including the bypass passage 9.
  • the air amount adjusting unit 12 is the first air amount adjusting unit 13, and specifically, the first shutter (first door) 33.
  • a first shutter (first door) 33 which is the first air amount adjusting unit 13, adjusts the amount of air flowing through the second passage 23 including the bypass passage 9.
  • the amount of air that flows directly through the second passage 23 including the bypass passage 9 to the radiator 7 is adjusted.
  • the capacitor 11 When viewed from the front side of the vehicle toward the rear side, the capacitor 11 is overlapped with a part of the radiator 7 (the lower part in the present embodiment), and a part of the radiator 7 is covered with the capacitor 11 and the capacitor 11 Hiding after.
  • a second passage 23 including a bypass passage 9 is formed where the radiator 7 appears.
  • the first air amount adjusting unit 13 adjusts the amount of air flowing to the radiator 7 according to the traveling wind received by the vehicle 3. Since the wind speed of the traveling wind and the traveling speed (vehicle speed) of the vehicle 3 are substantially proportional, the first air amount adjusting unit 13 adjusts the amount of air flowing to the radiator 7 according to the vehicle speed. Yes.
  • the first air amount adjustment unit 13 bypasses when the vehicle 3 is traveling at a speed slower than the first speed, or when the vehicle 3 is in an idling state where the traveling speed is “0”.
  • the second passage 23 including the passage 9 is closed (see FIG. 1). Further, the second passage 23 including the bypass passage 9 is opened (for example, fully opened) when the vehicle 3 is traveling at a speed equal to or higher than the first speed (see FIG. 2). .
  • the first air amount adjustment unit 13 closes the second passage 23 when the vehicle 3 is in an idling state, and gradually increases the opening area of the second passage 23 as the traveling speed of the vehicle 3 increases. You may be comprised so that it may enlarge.
  • the air enters the duct 5 through the front grille 29 of the vehicle 3 through the opening at the front end of the duct 5. All of the air passes through the condenser 11 and the radiator 7 in this order, and cools the condenser 11 and the radiator 7 in series.
  • the first air amount adjusting unit 13 is operated according to the traveling wind and the vehicle speed. However, the first air amount adjusting unit 13 is operated according to the load applied to the engine 15, the operating condition of the air conditioner mounted on the vehicle 3, the outside temperature, the temperature inside the vehicle, the temperature of the refrigerant of the radiator 7, etc. You may make it do.
  • an opening 17 is formed in the upper part of the duct 5. That is, as shown in FIG. 4, the air flowing through the bypass passage 9 flows to the engine 15 of the vehicle 3 without passing through the condenser 11 and the radiator 7 in a state where the opening 17 is opened.
  • the engine 15 is provided behind the cooling module 1, and the air that has passed through the opening 17 flows backward from the opening 17 to cool the engine 15 and the like.
  • the air amount adjustment unit 12 is configured to adjust the amount of air flowing through the opening 17 according to the traveling wind received when the vehicle 3 is traveling.
  • the air amount adjusting unit 12 includes a first air amount adjusting unit 13 and a second air amount adjusting unit 19, and the second air amount adjusting unit 19 is It consists of a second shutter 35.
  • the second air amount adjusting unit 19 adjusts the amount of air flowing through the opening 17 according to the traveling wind received when the vehicle 3 is traveling. It is supposed to be.
  • the vehicle 3 when the vehicle 3 is traveling forward at a speed higher than the first speed and slower than the second speed, as shown in FIG.
  • the first shutter 33 is opened to open the second passage 23, and the second shutter 35 that is the second air amount adjusting unit 19 is used to close the opening 17 of the duct 5.
  • the air that has entered the duct 5 from the opening at the front end of the duct 5 flows through the second passage 23 including the bypass passage 9.
  • the second speed is higher than the first speed.
  • the first shutter 33 that is the first air amount adjusting unit 13 is opened to open the second passage.
  • the opening 17 of the duct 5 is opened by opening the second shutter 35 which is the second air amount adjusting unit 19 while keeping 23 open.
  • the air that has entered the duct 5 from the opening at the front end of the duct 5 flows through the second passage 23 and the opening 17 of the duct 5.
  • the air discharged from the opening 17 enters the engine room 43 of the vehicle 3 located behind the cooling module 1 and cools the engine 15 and the like without passing through the condenser 11 and the radiator 7. .
  • the air amount adjustment unit 12 (13, 19) is configured to operate autonomously by receiving the wind pressure of the traveling wind of the vehicle 3 (direct operation by the force of the wind pressure).
  • the air amount adjustment unit 12 (13, 19) may be configured to be driven by an actuator according to the detection result of the vehicle speed sensor that detects the traveling speed of the vehicle 3.
  • the first air amount adjustment unit 13 is configured to adjust the amount of air by rotationally driving the first shutter (first door) 33, and the second air amount adjustment unit 19. Is configured to adjust the amount of air by rotationally driving the second shutter 35.
  • the front end portions of the shutters 33 and 35 are rotatably engaged with the duct 5. Thereby, the air resistance generated by the shutters 33 and 35 is reduced.
  • the reference numeral 37 in FIGS. 1 to 4 is a bumper
  • the reference numeral 39 is a hood (bonnet)
  • the reference numeral 41 is an undercover.
  • the duct 5 is formed in, for example, a rectangular cylinder shape, and is disposed in the engine room 43 behind the bumper 37 and on the front side of the engine 15.
  • the duct 5 includes, for example, a first part 45, a second part 47, a third part 49, a fourth part 51, and a fifth part 53. .
  • the first part 45 to the fifth part 53 are connected from the front to the back in this order.
  • the width dimension of the first part 45 to the third part 49 is constant.
  • the height dimension of the first portion 45 is constant.
  • the height dimension of the second part 47 is equal to that of the first part 45 at the front end, but gradually decreases toward the rear.
  • part 47 gradually goes down as it goes to the rear end from the front end. It has migrated. Thereby, an inclined surface portion 55 is formed above the second portion 47.
  • the height dimension of the third part 49 is constant and is equal to the height dimension of the rear end of the second part 47.
  • the radiator 7 is configured to include a heat exchange core portion that is configured by a flat tube and a corrugated fin.
  • the heat exchange core part of the radiator 7 is formed in a rectangular flat plate shape.
  • the heat exchange core portion of the radiator 7 is provided in the third portion 49 of the duct 5 such that the thickness direction is the front-rear direction.
  • the upper end of the heat exchange core portion of the radiator 7 is in contact with or slightly away from the upper wall of the third portion 49 of the duct 5, and the lower end of the heat exchange core portion of the radiator 7 is the third portion of the duct 5.
  • the left and right ends of the heat exchange core portion of the radiator 7 are located at the left and right walls of the third portion 49 of the duct 5. . Further, in the front-rear direction, the position of the front end of the third portion 49 of the duct 5 and the position of the front end of the radiator 7 are substantially coincident with each other.
  • the capacitor 11 is also configured to include a heat exchange core portion composed of a flat tube and a corrugated fin.
  • the heat exchange core portion of the capacitor 11 is also formed in a rectangular flat plate shape. However, the height of the capacitor 11 is lower than the height of the radiator 7.
  • the heat exchange core portion of the condenser 11 is provided in the second portion 47 of the duct 5 such that the thickness direction is the front-rear direction.
  • the upper end of the heat exchange core portion of the condenser 11 is separated from the upper wall of the second portion 47 of the duct 5 by a predetermined distance.
  • the lower end of the heat exchange core portion of the condenser 11 is in contact with or slightly away from the lower wall of the second portion 47 of the duct 5.
  • the left and right ends of the heat exchange core portion of the condenser 11 are located at the left and right walls of the second portion 47 of the duct 5.
  • a bypass passage 9 is formed in front of the upper portion of the radiator 7 in the duct 5.
  • the air blowing unit 14 is provided in the fifth portion 53 of the duct 5.
  • the first shutter 33 constituting the first air amount adjustment unit 13 is formed in a rectangular shape that is substantially the same shape as the part constituting the slope portion 55 of the duct 5.
  • the first shutter 33 is provided in the duct 5, and the front end of the first shutter 33 is the front end of the slope portion 55 of the duct 5 (the upper part of the boundary between the first part 45 and the second part 47. ) And is rotatably engaged with the duct 5.
  • the first shutter 33 extends obliquely downward from the front end toward the lower side.
  • the first shutter 33 When the vehicle 3 is traveling at a speed equal to or higher than the first speed, the first shutter 33 is rotated upward by the wind pressure of the traveling wind, and the first shutter 33 is disposed on all the slope portions 55 of the duct 5.
  • the second passage 23 including the bypass passage 9 is opened substantially (see FIG. 2).
  • the first shutter 33 is rotated downward by the urging force of the elastic member such as a torsion coil spring and the gravity and is in the state shown in FIG. 1, but is brought into the state shown in FIG. 1 only by gravity. May be.
  • the elastic member such as a torsion coil spring and the gravity
  • the opening 17 of the duct 5 is formed over the entire slope portion 55, for example.
  • the second shutter 35 constituting the second air amount adjusting unit 19 is formed in a rectangular shape that is substantially the same shape as the first shutter 33.
  • the second shutter 35 is provided above the first shutter 33, and the front end of the second shutter 35 is the front end of the slope portion 55 of the duct 5 (the first part 45 and the second part 47. At the upper part of the boundary).
  • the second shutter 35 extends obliquely downward from the front end to the lower side.
  • the first shutter 33 When the vehicle 3 is traveling at a speed higher than the first speed and slower than the second speed, the first shutter 33 is rotated upward by the wind pressure, and the first shutter 33 is moved to the second speed.
  • the bypass passage 9 is formed so as to substantially overlap the shutter 35 (the inclined surface 55 of the duct 5) (see FIG. 3). At this time, the opening 17 of the duct 5 is closed.
  • the first shutter 33 and the second shutter 35 are rotated upward by the wind pressure, and the shutters 33 and 35 are inclined surfaces of the duct 5.
  • the opening 17 of the duct 5 is formed so as to rotate upward from the portion 55 (see FIG. 4).
  • the second passage 23 is closed by the first shutter 33 as shown by a two-dot chain line in FIG.
  • the opening 17 is closed by the second shutter 35.
  • the air flow as shown by the arrow in FIG.
  • the air that has entered the duct 5 from the opening at the front end of the duct 5 flows through the first passage 21, passes through the condenser 11 and the radiator 7, cools the condenser 11 and the radiator 7, and From the opening, the air is discharged out of the duct 5 through the blower 14.
  • air that has entered the duct 5 from the opening at the tip of the duct 5 flows through the first passage 21 and the second passage 23, passes through the condenser 11 and the radiator 7, and cools the condenser 11 and the radiator 7.
  • the air is discharged from the opening at the rear end of the duct 5 to the outside of the duct 5 through the blower 14.
  • air that has entered the bypass passage 9 in the duct 5 from the opening at the front end of the duct 5 is discharged from the opening 17 to the outside of the duct 5 and flows toward the rear engine 15 and the like.
  • the remaining air that has entered the duct 5 through the opening at the front end of the duct 5 flows through the first passage 21 and the second passage 23, passes through the condenser 11 and the radiator 7, and passes through the condenser 11 and the radiator 7. And is discharged from the opening at the rear end of the duct 5 to the outside of the duct 5 through the blower 14.
  • the cooling module 1 is configured to adjust the amount of air flowing to the radiator 7 by the air amount adjusting unit 12 according to the traveling wind received when the vehicle 3 is traveling. Therefore, the ratio between the flow rate of air that cools the radiator 7 and the flow rate of air that cools the condenser 11 can be appropriately changed. Thereby, the capacitor
  • the radiator 7 can be reduced in size and the traveling of the vehicle 3 can be improved.
  • the amount of air flowing to the radiator 7 is adjusted by the air amount adjusting unit 12 as shown in FIG. Therefore, the flow rate of air flowing through the capacitor 11 can be increased, and the amount of heat released by the capacitor 11 can be increased.
  • the bypass passage 9 is formed in the duct 5, and the amount of air that the first air amount adjustment unit 13 flows through the bypass passage 9 (the flow rate of air that directly hits the radiator 7). Since it is configured to adjust, when the amount of heat to be radiated by the radiator 7 is large, the radiator 7 can be cooled more reliably by flowing air through the bypass passage 9.
  • an opening 17 is provided for allowing a part of the air that has entered the duct 5 to flow to the engine 15 of the vehicle 3 without passing through the condenser 11 and the radiator 7.
  • the second air amount adjusting unit 19 is configured to adjust the amount of air flowing through the opening 17 in accordance with the traveling wind received when the vehicle 3 is traveling. Therefore, when the amount of heat to be directly radiated from the engine 15 is large under conditions such as when the engine 15 is operating at a high load, the air is directly supplied to the engine room 43 by opening the opening 17 as shown in FIG. By flowing, in addition to the radiator 7 and the condenser 11, the equipment in the engine 15 and the engine room 43 can be cooled.
  • the air quantity adjustment part 12 (13, 19) is comprised so that it may receive the wind pressure of the driving
  • the cooling module 1 according to the second embodiment is configured in substantially the same manner as the cooling module according to the first embodiment, and has substantially the same effect.
  • the first passage 21 and the second passage 23 are formed by being partitioned by a plate-shaped partition member 57.
  • the partition member 57 is provided in the duct 5 on the front side of the duct 5.
  • the radiator 7 is provided behind the first passage 21 and the second passage 23 in the duct 5, and the air that has passed through both the first passage 21 and the second passage 23 is disposed in the radiator 7. And the radiator 7 is cooled.
  • the capacitor 11 is provided in the first passage 21, and the capacitor 11 is cooled by the air flowing through the first passage 21 passing through the capacitor 11.
  • the air that has passed through the condenser 11 also passes through the radiator 7 and cools the radiator 7.
  • the air amount adjustment unit 12 includes a third air amount adjustment unit 27.
  • the third air amount adjustment unit 27 includes a third shutter 59.
  • the third air amount adjusting unit 27 is similar to the first air amount adjusting unit 13 of the cooling module 1 according to the first embodiment, according to the traveling wind received when the vehicle 3 is traveling, The amount of air flowing through the second passage 23 is adjusted.
  • condenser 11 is inclined and arrange
  • the radiator 7 is arranged substantially vertically along the vertical direction, and the capacitor 11 is gradually inclined toward the vehicle rear side as it goes upward. As a result, the air that has passed through the second passage 23 rises even when directed upward, so that it can flow into the space between the radiator 7 and the condenser 11 and enhance the cooling effect of the radiator 7.
  • a heat exchanger 25 is provided in the second passage 23.
  • the air flowing through the second passage 23 passes through the heat exchanger 25 to cool the heat exchanger 25.
  • the heat exchanger 25 is constituted by, for example, a turbocharger intercooler.
  • the second passage 23 is configured to be completely closed by the third air amount adjustment unit 27, for example, as shown in FIG. .
  • the second passage 23 is configured to be fully opened by the third air amount adjustment unit 27 as shown in FIG.
  • the duct 5 of the cooling module 1 according to the second embodiment is formed in the same shape as the duct of the cooling module according to the first embodiment.
  • the partition member 57 is formed in a plate shape, and is disposed inside the duct 5 so that the thickness direction is the vertical direction. That is, the partition member 57 extends along the front-rear direction from the front side of the duct 5 toward the rear of the vehicle.
  • the air passage in the duct 5 is divided by the partition member 57 into a first passage 21 located on the upper side and a second passage 23 located on the lower side.
  • the condenser 11 is provided in the first passage 21, and almost all of the air flowing in the first passage 21 flows through the heat exchange core portion of the condenser 11.
  • the heat exchanger (intercooler) 25 is provided in the second passage 23, and almost all of the air flowing in the second passage 23 flows through the heat exchange core portion of the heat exchanger 25. It is like that.
  • the radiator 7 is provided behind the partition member 57.
  • the third air amount adjustment unit 27 is configured to adjust the amount of air by rotationally driving a plurality of third shutters 59 provided on the front side of the heat exchanger 25.
  • the third shutter 59 constituting the third air amount adjustment unit 27 is formed in a rectangular shape that is the same shape as the first shutter 33.
  • the third shutters 59 are arranged in the second passage 23 along the vertical direction.
  • the second passage 23 is closed when the thickness direction of each shutter 59 is the front-rear direction, and the second passage 23 is opened when the thickness direction of each shutter 59 is the vertical direction. Yes.
  • the third shutter 59 is driven in the same manner as the first shutter 33.
  • the air that has entered the duct 5 from the opening at the front end of the duct 5 passes through the first passage 21 and the second passage 23, passes through the condenser 11 and the radiator 7, and also passes through the intercooler 25 and the radiator. 7, the condenser 11, the intercooler 25, and the radiator 7 are cooled, and discharged from the opening of the rear end of the duct 5 to the outside of the duct 5.
  • the cooling module 1 when the heat exchanger 25 is configured by an intercooler of a turbocharger and the vehicle 3 is in an idling state in which the vehicle 3 is stopped, the third air amount adjustment unit 27, the second passage (air passage through which air for cooling the intercooler flows) 23 is configured to be almost completely closed, so that the intercooler is not unnecessarily cooled.
  • the cooling module 1 employs a sub-radiator as the heat exchanger 25 (see FIG. 9).
  • the sub-radiator is used for cooling high-power equipment such as HV (Hybrid Vehicle) and EV (Electric Vehicle).
  • the second air passage 23 is closed (see FIG. 9) or slightly opened by the third air amount adjustment unit 27. It is configured.
  • a part of the sub-radiator (for example, the upper end portion) is located in the first passage 21 as shown in FIG. 9 and FIG.
  • the air that has entered the duct 5 from the opening at the tip of the duct 5 passes only through the first passage 21, passes through the condenser 11 and the radiator 7, cools the condenser 11 and the radiator 7, and It is discharged out of the duct 5 through the opening at the end.
  • the third shutter 59 may be opened to some extent.
  • the heat exchanger 25 is configured by a sub-radiator used for cooling high-power equipment such as HV and EV. Accordingly, when the vehicle 3 is in an idling state where the vehicle 3 is stopped, the second air passage 23 is configured to be closed or slightly opened by the third air amount adjusting unit 27, so that the HV, EV, etc. High power equipment can be cooled accurately.
  • a part of the sub-radiator 25 is located in the second passage 23. Therefore, even when the second air passage 23 is closed by the third air amount adjusting unit 27 in an idling state where the vehicle 3 is stopped, the sub-radiator that requires a slight heat dissipation is cooled. Can do.
  • the form of the cooling module 1 may be appropriately changed as shown in FIGS. 11 and 12, for example.
  • the radiator 7 and the condenser 11 are formed in the same size, and the air amount adjusting unit 12 is formed by one shutter 61.
  • the first passage 21 is disposed on the upper side, and the second passage 23 is disposed on the lower side.
  • FIG. 11A shows a state in which the vehicle 3 is traveling at a speed slower than the first speed or in an idling state, and all of the air that has entered the duct 5 is connected to the condenser 11 and the radiator. 7 in this order.
  • FIG. 11B shows a state where the vehicle 3 is traveling at a speed higher than the first speed and slower than the second moving speed. The portion passes only through the radiator 7, and the remaining air that has entered the duct 5 passes through the condenser 11 and the radiator 7 in this order.
  • FIG. 11 (c) shows a state when the vehicle 3 is traveling at a speed equal to or higher than the second speed, and a part of the air that has entered the duct 5 passes through the radiator 7 and the condenser 11. Without being discharged from the opening 17 of the duct 5, the engine 15 or the like is directly cooled, and the remaining air entering the duct 5 cools the condenser 11 and the radiator 7.
  • FIG. 11 is provided with an air amount adjusting unit 12 (shutter 61) only on the upper side of the duct 5.
  • FIG. 12 is different from that shown in FIG. 11 in that the air amount adjusting unit 12 (shutter 61) is provided on the upper side and the lower side of the duct 5, and the other points are shown in FIG. Are configured in the same manner and operate in the same manner.
  • the air amount adjustment unit 12 may be provided on both the left and right sides instead of or in addition to the upper and lower sides.
  • FIG. 12A shows a state in which the vehicle 3 is traveling at a speed slower than the first speed or in an idling state, and all of the air that has entered the duct 5 is connected to the condenser 11 and the radiator. 7 in this order.
  • FIG. 12B shows a state where the vehicle 3 is traveling at a speed higher than the first speed and slower than the second moving speed. The portion passes only through the radiator 7, and the remaining air that has entered the duct 5 passes through the condenser 11 and the radiator 7 in this order.
  • the third air amount adjustment unit 27 is operated according to the traveling wind and the vehicle speed, but the load applied to the engine 15 as in the first embodiment,
  • the third air amount adjustment unit 27 may be operated according to at least one of the operating condition of the air conditioner mounted on the vehicle 3, the outside air temperature, the temperature inside the vehicle, the temperature of the refrigerant of the radiator 7, and the like. .
  • the partition member 157 is pivotal compared to the cooling module 1 according to the second embodiment shown in FIGS. This is different from the third shutter 59 that is moved to the rear side of the vehicle.
  • the partition member 157 has an action of partitioning the first passage 21 and the second passage 23 and adjusting the air volume of the air flowing into the first passage 21 and the second passage 23. This will be specifically described below.
  • the rear end portion of the partition member 157 is pivotally supported by the front end of the lower end portion of the capacitor 11 so as to be rotatable. Therefore, at the time of partitioning, the front end portion of the partition member 157 is in contact with the lower surface of the rear end portion of the bumper 37. Further, at the time of air volume control, the partition member 157 rotates clockwise in a side view.
  • the blower fan which is the blower unit 14 is operated to compensate for the inflow shortage into the first passage 21.
  • the partition member 157 is rotated, and an air inflow portion is defined between the front end portion of the partition member 157 and the bumper 37. Then, the partition material 157 acts as an air guide, and air flows from the air inflow portion and passes through the condenser 11 and the radiator 7, whereby the condenser 11 and the radiator 7 can be effectively cooled. Therefore, the operating amount of the blower fan can be reduced to reduce power consumption.
  • the amount of air supplied from the second passage 23 to the first passage 21 by the partition member 157 is the minimum amount of air necessary for cooling the condenser 11 and the radiator 7, so that the aerodynamics when the vehicle travels The impact is small. Further, when the second passage 23 is less likely to flow in air than the first passage 21 due to the shape of the front grille, it is preferable to provide the partition member 157 on the first passage 21 side. Moreover, the upper surface of the duct 5 is comprised by the baffle plate 105, and has an air guide function.
  • the third shutter 59 is eliminated from the third embodiment, and the length of the partition member 257 is set longer than that in the third embodiment.
  • the rear end portion of the partition member 257 is pivotally supported by the front end of the lower end portion of the capacitor 11 so as to be rotatable. Therefore, at the time of partitioning, the front end portion of the partition member 257 is in contact with the lower surface of the bumper 37. Further, at the time of air volume control, the partition member 257 rotates clockwise in a side view, and the lower end of the partition member 257 is in contact with the lower surface of the duct 5.
  • the front end portion of the partition member 257 is in contact with the lower surface of the bumper 37 at the time of partitioning, the first passage 21 and the second passage 23 are reliably separated by the partition member 257. Therefore, the air that has entered the upper side of the duct 5 flows in the first passage 21 to efficiently cool the condenser 11 and the radiator 7.
  • the second passage 23 is blocked. Therefore, the air that has entered the lower side of the duct 5 is sent obliquely upward along the partition member 257 and joins the first passage 21. Since air passes through the condenser 11 and the radiator 7, the condenser 11 and the radiator 7 are efficiently cooled.
  • the air volume control in the second passage 23 is performed only by the partition member 257, so that the structure is simplified. There is.
  • the present invention is applied to a cooling module mounted on a vehicle. Further, according to the present invention, there is an effect that the condenser and the radiator can be cooled according to the necessity of cooling them.

Abstract

This cooling module (1) mounted in a vehicle (3) is provided with a duct (5) arranged in the vehicle (3), a radiator (7) provided in the duct (5), a condenser (11) disposed in front of the radiator (7) in the duct (5), an air amount adjustment unit (12) which adjusts the amount of air flowing to the radiator (7) depending on the travel state of the vehicle (3), and a fan unit (14) which creates a flow of forced air in the duct (5).

Description

クーリングモジュールCooling module
 本発明は、クーリングモジュールに係り、たとえば、自動車に設置されてラジエータやコンデンサを冷却するものに関する。 The present invention relates to a cooling module, for example, a cooling module installed in an automobile for cooling a radiator and a condenser.
 従来、シュラウド(ダクト)とラジエータと冷媒放熱器(コンデンサ)と送風ファンとを備えたクーリングモジュールが知られている(たとえば、特許文献1参照)。 Conventionally, a cooling module including a shroud (duct), a radiator, a refrigerant radiator (condenser), and a blower fan is known (for example, see Patent Document 1).
 このクーリングモジュールでは、ラジエータがダクト内に形成されている空気通路の総てを塞ぐようにしてダクト内に配置されている。 In this cooling module, the radiator is arranged in the duct so as to block all the air passages formed in the duct.
 コンデンサは、ダクト内でラジエータの前方に設けられており、ダクト内に形成されている空気通路の一部を塞いでいる。これにより、ラジエータの前方には、空気のバイパス通路が形成されている。また、送風ファンは、ラジエータの後方に設けられている。 The condenser is provided in front of the radiator in the duct and blocks a part of the air passage formed in the duct. Thus, an air bypass passage is formed in front of the radiator. Further, the blower fan is provided behind the radiator.
 送風ファンを駆動することで、ダクトの前端の開口部からダクト内に入った一部の空気が、コンデンサとラジエータとを直列的に通過し、コンデンサとラジエータとを冷却するようになっている。 By driving the blower fan, a part of the air that has entered the duct through the opening at the front end of the duct passes through the condenser and the radiator in series, thereby cooling the condenser and the radiator.
 また、送風ファンを駆動することで、ダクト前端の開口部からダクト内に入った残りの空気がラジエータのみを通過して冷却するようになっている。 Also, by driving the blower fan, the remaining air entering the duct from the opening at the front end of the duct passes through only the radiator and is cooled.
 なお、クーリングモジュールが搭載された車輌が走行しているときには、送風ファンを駆動することなく、走行風によって、上述したラジエータとコンデンサの冷却がされるようになっている。 When the vehicle equipped with the cooling module is traveling, the radiator and the condenser are cooled by the traveling air without driving the blower fan.
特開2005-219531号公報JP-A-2005-219531
 従来のクーリングモジュールでは、コンデンサとラジエータとを直列的に通過する空気の流量と、バイパス通路を通ってラジエータのみを通過する空気の流量との割合が、送風ファンの駆動によって発生する空気流の強さや車輌の走行によって発生する走行風の強さにかかわらず、ほぼ一定になっている。 In the conventional cooling module, the ratio of the flow rate of air passing through the condenser and the radiator in series and the flow rate of air passing through the bypass passage only through the radiator is the strength of the air flow generated by driving the blower fan. Regardless of the strength of the traveling wind generated by the traveling of the vehicle, it is almost constant.
 したがって、コンデンサとラジエータとをこれらの冷却の必要度に応じて冷却することができない場合があるという問題がある。 Therefore, there is a problem that the condenser and the radiator may not be cooled according to the necessity of cooling them.
 たとえば、夏の炎天下で車輌がアイドリング状態にあるときには、エアコンを使用するためにコンデンサから放熱すべき熱量が多くなり、車輌が坂道を登っている等のエンジンに高い負荷がかかっているときには、ラジエータから放熱すべき熱量が多くなる。 For example, when the vehicle is idling under the hot sun in summer, the amount of heat that must be dissipated from the condenser increases in order to use the air conditioner, and when the engine is heavily loaded, such as when the vehicle is climbing a hill, the radiator The amount of heat that needs to be released from the heat increases.
 しかし、上述したように、コンデンサとラジエータとを直列的に通過する空気の流量とラジエータのみを通過する空気の流量との割合が一定になっていると、コンデンサやラジエータに冷却不足が発生したり、コンデンサやラジエータを必要以上に冷却してしまうおそれがある。 However, as described above, if the ratio between the flow rate of air passing through the condenser and the radiator in series and the flow rate of air passing only through the radiator is constant, the condenser and the radiator may be insufficiently cooled. There is a risk of cooling the condenser and the radiator more than necessary.
 本発明は、上記問題点に鑑みてなされたものであり、車輌に搭載されるクーリングモジュールにおいて、コンデンサとラジエータとをこれらの冷却の必要度に応じて冷却することができるクーリングモジュールを提供することを目的とする。 The present invention has been made in view of the above problems, and provides a cooling module that can cool a condenser and a radiator according to the necessity of cooling in a cooling module mounted on a vehicle. With the goal.
 本発明に係るクーリングモジュールは、車輌に設置されるダクトと、前記ダクト内に設けられたラジエータと、前記ダクト内で前記ラジエータの前方に設けられたコンデンサと、前記車輌の走行状態に応じて、前記ラジエータへ流れる空気の量を調節する空気量調整部と、前記ダクト内で空気の流れを強制的につくる送風部と、を備えている。前記ダクト内には、前記ダクト内を流れる空気のうちの一部の空気が流れる第1の通路と、前記ダクト内で第1の通路に対し並列して設けられ前記ダクト内を流れる空気のうちの残りの空気が流れる第2の通路とが設けられている。前記ラジエータは、前記ダクト内で前記第1の通路と前記第2の通路との後方に設けられている。前記コンデンサは、第1の通路に設けられている。前記空気量調整部は、前記車輌の走行状態に応じて、前記第2の通路を流れる空気の量を調節するように構成されている。 The cooling module according to the present invention includes a duct installed in a vehicle, a radiator provided in the duct, a condenser provided in front of the radiator in the duct, and a traveling state of the vehicle. An air amount adjusting unit that adjusts the amount of air flowing to the radiator; and a blower unit that forcibly creates an air flow in the duct. In the duct, a first passage through which a part of the air flowing in the duct flows and a portion of the air flowing in the duct provided in parallel to the first passage in the duct And a second passage through which the remaining air flows. The radiator is provided behind the first passage and the second passage in the duct. The capacitor is provided in the first passage. The air amount adjusting unit is configured to adjust the amount of air flowing through the second passage in accordance with a traveling state of the vehicle.
 前記ラジエータに直接あたる空気が流れるバイパス通路が前記第2の通路内に形成され、前記空気量調整部は、前記バイパス通路を含む第2の通路を流れる空気の量を調節するように構成されていることが好ましい。 A bypass passage through which air directly hitting the radiator flows is formed in the second passage, and the air amount adjustment unit is configured to adjust the amount of air flowing through the second passage including the bypass passage. Preferably it is.
 前記ダクトには、前記バイパス通路に入った空気を、前記コンデンサと前記ラジエータとを通すことなく前記車輌のエンジンに流すための開口部が設けられており、前記空気量調整部は、前記車輌の走行状態に応じて、前記開口部を流れる空気の量を調節するように構成されているクーリングモジュールであることが好ましい。 The duct is provided with an opening for allowing the air that has entered the bypass passage to flow to the engine of the vehicle without passing through the condenser and the radiator. It is preferable that the cooling module is configured to adjust the amount of air flowing through the opening according to the traveling state.
 前記コンデンサと前記ラジエータとの車輌前後方向に沿った間隔について、コンデンサの上端側よりコンデンサの下端側が広くなるようにコンデンサとラジエータとを配置しているクーリングモジュールであることが好ましい。 It is preferable that the cooling module is a cooling module in which the capacitor and the radiator are arranged so that the lower end side of the capacitor is wider than the upper end side of the capacitor with respect to the distance between the capacitor and the radiator in the longitudinal direction of the vehicle.
 前記第2の通路には、熱交換器が設けられているクーリングモジュールであることが好ましい。 It is preferable that the second passage is a cooling module provided with a heat exchanger.
 前記空気量調整部が、前記車輌の走行風の風圧を受けて稼動するように構成されているクーリングモジュールであることが好ましい。 It is preferable that the air amount adjustment unit is a cooling module configured to operate under the wind pressure of the traveling wind of the vehicle.
 前記空気量調整部が、前記車輌の走行速度を検出する車速度センサの検出結果に応じ、アクチュエータによって駆動するように構成されているクーリングモジュールであることが好ましい。 It is preferable that the air amount adjustment unit is a cooling module configured to be driven by an actuator in accordance with a detection result of a vehicle speed sensor that detects a traveling speed of the vehicle.
 前記空気量調整部が、前記車輌のエンジンの負荷、前記車輌のエアコンの稼動状況、外気温、車内の温度、ラジエータの冷媒の温度の少なくともいずれかに応じて稼動するように構成されているクーリングモジュールであることが好ましい。 The cooling is configured such that the air amount adjustment unit is operated according to at least one of a load of an engine of the vehicle, an operating condition of an air conditioner of the vehicle, an outside air temperature, a temperature inside the vehicle, and a temperature of a refrigerant in the radiator. Preferably it is a module.
 前記熱交換器は、ターボチャージャのインタクーラであり、前記車輌が停止しているアイドリング状態にあるときには、前記空気量調整部によって前記第2の通路が閉じられるように構成されているクーリングモジュールであることが好ましい。 The heat exchanger is a turbocharger intercooler, and is a cooling module configured to close the second passage by the air amount adjusting unit when the vehicle is in an idling state where the vehicle is stopped. It is preferable.
 前記熱交換器は、強電装備の冷却に使用されるサブラジエータであり、前記車輌が停止しているアイドリング状態にあるときには、前記空気量調整部によって前記第2の通路が閉じるかもしくは僅かに開くように構成されているクーリングモジュールであることが好ましい。 The heat exchanger is a sub-radiator used for cooling high-power equipment, and when the vehicle is in an idling state where the vehicle is stopped, the second passage is closed or slightly opened by the air amount adjustment unit. It is preferable that the cooling module is configured as described above.
 前記サブラジエータの一部が、前記第1の通路内に位置しているクーリングモジュールであることが好ましい。 It is preferable that a part of the sub-radiator is a cooling module located in the first passage.
本発明の第1の実施形態に係るクーリングモジュールの概略構成を示す側面図である。It is a side view showing a schematic structure of a cooling module concerning a 1st embodiment of the present invention. 図1で示すクーリングモジュールの動作を示す側面図である。It is a side view which shows operation | movement of the cooling module shown in FIG. 図1で示すクーリングモジュールの変形例を示す側面図である。It is a side view which shows the modification of the cooling module shown in FIG. 図3で示すクーリングモジュールの動作を示す側面図である。It is a side view which shows operation | movement of the cooling module shown in FIG. 本発明の第2の実施形態に係るクーリングモジュールの概略構成を示す側面図である。It is a side view which shows schematic structure of the cooling module which concerns on the 2nd Embodiment of this invention. 図5で示すクーリングモジュールの動作を示す側面図である。It is a side view which shows operation | movement of the cooling module shown in FIG. 図5で示すクーリングモジュールの変形例を示す側面図である。It is a side view which shows the modification of the cooling module shown in FIG. 図7で示すクーリングモジュールの動作を示す側面図である。It is a side view which shows operation | movement of the cooling module shown in FIG. 図5で示すクーリングモジュールの別の変形例を示す側面図である。It is a side view which shows another modification of the cooling module shown in FIG. 図9で示すクーリングモジュールの動作を示す側面図である。FIG. 10 is a side view showing the operation of the cooling module shown in FIG. 9. さらなる変形例に係るクーリングモジュールの概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the cooling module which concerns on the further modification. さらなる変形例に係るクーリングモジュールの概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the cooling module which concerns on the further modification. 本発明の第3の実施形態に係るクーリングモジュールの概略構成を示す側面図である。It is a side view which shows schematic structure of the cooling module which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係るクーリングモジュールの概略構成を示す側面図である。It is a side view which shows schematic structure of the cooling module which concerns on the 4th Embodiment of this invention.
 以下に、本発明の実施形態について説明する。なお、図面において、FRは車輌前方を示し、RRは車輌後方を意味する。 Hereinafter, embodiments of the present invention will be described. In the drawings, FR represents the front of the vehicle, and RR represents the rear of the vehicle.
 [第1の実施形態]
 本発明の第1の実施形態に係るクーリングモジュール1は、図1等で示すように、車輌3に搭載されるものであり、ダクト5とラジエータ7とコンデンサ11と空気量調整部12と送風部14とを備えている。
[First Embodiment]
As shown in FIG. 1 and the like, the cooling module 1 according to the first embodiment of the present invention is mounted on a vehicle 3, and includes a duct 5, a radiator 7, a condenser 11, an air amount adjusting unit 12, and a blower unit. 14.
 ダクト5は、本実施形態では、筒状に形成されており、前端と後端に空気が出入りする開口部が形成されて車輌3に設置されている。つまり、前端の開口部からダクト5内に空気が流入し、後端の開口部からダクト5内の空気が排出される。ダクト5内には、車輌の前側から後側に向かって空気が流れる空気通路が形成されている。 The duct 5 is formed in a cylindrical shape in the present embodiment, and is installed in the vehicle 3 with an opening through which air enters and exits at the front end and the rear end. That is, air flows into the duct 5 from the opening at the front end, and the air in the duct 5 is discharged from the opening at the rear end. An air passage through which air flows from the front side to the rear side of the vehicle is formed in the duct 5.
 ラジエータ7は、車輌3のエンジン15の冷却水を冷やす熱交換器であり、ダクト5内に設けられている。コンデンサ11は、車輌3のエアコンの冷媒を冷やす熱交換器であり、ダクト5内でラジエータ7の前方に設けられている。 The radiator 7 is a heat exchanger that cools the cooling water of the engine 15 of the vehicle 3, and is provided in the duct 5. The condenser 11 is a heat exchanger that cools the refrigerant of the air conditioner of the vehicle 3, and is provided in front of the radiator 7 in the duct 5.
 空気量調整部12は、車輌3が走行しているときに受ける走行風に応じて、ラジエータ7へ流れる空気の量を調節するものである。送風部14は、本実施形態では、送風ファンで構成されており、ダクト5内での空気の流れを強制的につくるようになっている。 The air amount adjusting unit 12 adjusts the amount of air flowing to the radiator 7 according to the traveling wind received when the vehicle 3 is traveling. In the present embodiment, the blower unit 14 is configured by a blower fan, and forcibly creates an air flow in the duct 5.
 送風部14は、車輌3が停止してアイドリング状態になっているときにダクト5内での空気の流れを発生させる。ただし、車輌3がアイドリング状態になっているときだけでなく、車輌3が走行(たとえば、低速走行)しているときにおいても、送風部14によってダクト5内に空気の流れを発生させる場合がある。 The air blowing unit 14 generates an air flow in the duct 5 when the vehicle 3 is stopped and in an idling state. However, not only when the vehicle 3 is in an idling state, but also when the vehicle 3 is traveling (for example, traveling at a low speed), the air flow may be generated in the duct 5 by the air blowing unit 14. .
 ここで、第1の実施形態に係るクーリングモジュール1のダクト5内には、ダクト5内を流れる空気のうちの一部の空気が流れる第1の通路21と、ダクト5内を流れる空気のうちの残りの空気が流れる第2の通路23とが設けられている。具体的には、ダクト5内に形成された前記空気通路のうち、下側が第1の通路21に構成され、上側が第2の通路23に構成されている。また、第2の通路23は、ダクト5内で第1の通路21に対し並列して設けられている。さらに、第2の通路23のうち上部は、バイパス通路9に構成されている。つまり、バイパス通路9は第2の通路23の一部に構成されている。 Here, in the duct 5 of the cooling module 1 according to the first embodiment, the first passage 21 in which a part of the air flowing in the duct 5 flows and the air flowing in the duct 5 are included. And a second passage 23 through which the remaining air flows. Specifically, among the air passages formed in the duct 5, the lower side is constituted by the first passage 21 and the upper side is constituted by the second passage 23. Further, the second passage 23 is provided in parallel with the first passage 21 in the duct 5. Furthermore, the upper part of the second passage 23 is configured as a bypass passage 9. That is, the bypass passage 9 is configured as a part of the second passage 23.
 ラジエータ7は、ダクト5内で第1の通路21と第2の通路23との後方に設けられている。第1の通路21と第2の通路23との両方を通ってきた空気がラジエータ7を通過し、ラジエータ7が冷却されるようになっている。 The radiator 7 is provided behind the first passage 21 and the second passage 23 in the duct 5. The air that has passed through both the first passage 21 and the second passage 23 passes through the radiator 7, and the radiator 7 is cooled.
 コンデンサ11は、第1の通路21内に設けられており、第1の通路21を流れる空気が、コンデンサ11を通過することでコンデンサ11が冷却される。なお、コンデンサ11を通過した空気も、ラジエータ7を通過し、ラジエータ7を冷却するようになっている。 The capacitor 11 is provided in the first passage 21, and the air flowing through the first passage 21 passes through the capacitor 11, thereby cooling the capacitor 11. The air that has passed through the condenser 11 also passes through the radiator 7 and cools the radiator 7.
 前記バイパス通路9には、ラジエータ7に直接あたる空気が流れる。即ち、ダクト5前端の開口部からダクト5内に入った空気の一部がコンデンサ11を通ることなくバイパス通路9を通ってラジエータ7に向かって流れラジエータ7に直接あたるようになっている。 In the bypass passage 9, air that directly hits the radiator 7 flows. That is, a part of the air that has entered the duct 5 through the opening at the front end of the duct 5 flows through the bypass passage 9 toward the radiator 7 without passing through the condenser 11 and directly hits the radiator 7.
 空気量調整部12は、バイパス通路9を含む第2の通路23を流れる空気の量を調節するように構成されている。 The air amount adjusting unit 12 is configured to adjust the amount of air flowing through the second passage 23 including the bypass passage 9.
 さらに説明すると、空気量調整部12は、本実施形態では、第1の空気量調整部13であり、具体的には、第1のシャッタ(第1のドア)33である。第1の空気量調整部13である第1のシャッタ(第1のドア)33が、バイパス通路9を含む第2の通路23を流れる空気の量を調節するようになっている。これによって、バイパス通路9を含む第2の通路23を通りラジエータ7まで直接流れる空気の量を調節するようになっている。 More specifically, in the present embodiment, the air amount adjusting unit 12 is the first air amount adjusting unit 13, and specifically, the first shutter (first door) 33. A first shutter (first door) 33, which is the first air amount adjusting unit 13, adjusts the amount of air flowing through the second passage 23 including the bypass passage 9. Thus, the amount of air that flows directly through the second passage 23 including the bypass passage 9 to the radiator 7 is adjusted.
 車両前側から後側に向かって見ると、ラジエータ7の一部(本実施形態では、下側の部位)にコンデンサ11が重なっており、ラジエータ7の一部がコンデンサ11で覆われていてコンデンサ11の後に隠れている。 When viewed from the front side of the vehicle toward the rear side, the capacitor 11 is overlapped with a part of the radiator 7 (the lower part in the present embodiment), and a part of the radiator 7 is covered with the capacitor 11 and the capacitor 11 Hiding after.
 また、ラジエータ7の他部(本実施形態では、上側の部位)が、コンデンサ11で覆われることなく現れている。このラジエータ7が現れているところにバイパス通路9を含む第2の通路23が形成されている。 Further, the other part of the radiator 7 (the upper part in the present embodiment) appears without being covered with the capacitor 11. A second passage 23 including a bypass passage 9 is formed where the radiator 7 appears.
 第1の空気量調整部13は、車輌3が受ける走行風に応じてラジエータ7へ流れる空気の量を調節するようになっている。走行風の風速と車輌3の走行速度(車速)とは概ね比例しているので、第1の空気量調整部13は、車速に応じてラジエータ7へ流れる空気の量を調節するようになっている。 The first air amount adjusting unit 13 adjusts the amount of air flowing to the radiator 7 according to the traveling wind received by the vehicle 3. Since the wind speed of the traveling wind and the traveling speed (vehicle speed) of the vehicle 3 are substantially proportional, the first air amount adjusting unit 13 adjusts the amount of air flowing to the radiator 7 according to the vehicle speed. Yes.
 たとえば、第1の空気量調整部13は、車輌3が第1の速度よりも遅い速度で走行しているとき、もしくは、走行速度が「0」であるアイドリング状態になっているときに、バイパス通路9を含む第2の通路23を閉じる(図1参照)。また、第1の速度以上の速度で車輌3が走行しているときにバイパス通路9を含む第2の通路23を開くように(たとえば、全開するように)構成されている(図2参照)。 For example, the first air amount adjustment unit 13 bypasses when the vehicle 3 is traveling at a speed slower than the first speed, or when the vehicle 3 is in an idling state where the traveling speed is “0”. The second passage 23 including the passage 9 is closed (see FIG. 1). Further, the second passage 23 including the bypass passage 9 is opened (for example, fully opened) when the vehicle 3 is traveling at a speed equal to or higher than the first speed (see FIG. 2). .
 なお、第1の空気量調整部13が、車輌3がアイドリング状態にあるときに第2の通路23を閉じ、車輌3の走行速度が増加するに応じて第2の通路23の開口面積を次第に大きくするように構成されていてもよい。 The first air amount adjustment unit 13 closes the second passage 23 when the vehicle 3 is in an idling state, and gradually increases the opening area of the second passage 23 as the traveling speed of the vehicle 3 increases. You may be comprised so that it may enlarge.
 第1の空気量調整部13によって第2の通路23が閉じられているとき(図1参照)には、車輌3のフロントグリル29を通ってダクト5前端の開口部からダクト5内に入った空気の総てが、コンデンサ11とラジエータ7とをこの順に通過し、コンデンサ11とラジエータ7とを直列的に冷やすようになっている。 When the second passage 23 is closed by the first air amount adjusting unit 13 (see FIG. 1), the air enters the duct 5 through the front grille 29 of the vehicle 3 through the opening at the front end of the duct 5. All of the air passes through the condenser 11 and the radiator 7 in this order, and cools the condenser 11 and the radiator 7 in series.
 一方、図2に示すように、第1の空気量調整部13である第1のシャッタ(第1のドア)33が開くと、第2の通路23が開放される。このとき、車輌3のフロントグリル29を通ってダクト5前端の開口部から第2の通路23に入った空気は、バイパス通路9を流れ、コンデンサ11を通過することなくラジエータ7のみを通過し、ラジエータ7を直接冷やす。 On the other hand, as shown in FIG. 2, when the first shutter (first door) 33 which is the first air amount adjusting unit 13 is opened, the second passage 23 is opened. At this time, the air that has entered the second passage 23 from the opening at the front end of the duct 5 through the front grille 29 of the vehicle 3 flows through the bypass passage 9 and passes only through the radiator 7 without passing through the condenser 11. Cool the radiator 7 directly.
 なお、上記説明では、走行風や車速に応じて第1の空気量調整部13を稼動している。しかし、エンジン15にかかっている負荷、車輌3に搭載されているエアコンの稼動状況、外気温、車内の温度、ラジエータ7の冷媒の温度等に応じて、第1の空気量調整部13を稼動するようにしてもよい。 In the above description, the first air amount adjusting unit 13 is operated according to the traveling wind and the vehicle speed. However, the first air amount adjusting unit 13 is operated according to the load applied to the engine 15, the operating condition of the air conditioner mounted on the vehicle 3, the outside temperature, the temperature inside the vehicle, the temperature of the refrigerant of the radiator 7, etc. You may make it do.
 次いで、図3,4を用いて、第1実施形態の変形例について説明する。 Next, a modification of the first embodiment will be described with reference to FIGS.
 第1実施形態の変形例では、図3,4に示すように、ダクト5の上部に、開口部17が形成されている。つまり、図4に示すように、バイパス通路9を流れる空気は、開口部17が開口した状態において、コンデンサ11とラジエータ7とを通ることなく車輌3のエンジン15まで流れる。なお、エンジン15は、クーリングモジュール1よりも後方に設けられており、開口部17を通過した空気は、開口部17から後方に流れエンジン15等を冷却する。 In the modification of the first embodiment, as shown in FIGS. 3 and 4, an opening 17 is formed in the upper part of the duct 5. That is, as shown in FIG. 4, the air flowing through the bypass passage 9 flows to the engine 15 of the vehicle 3 without passing through the condenser 11 and the radiator 7 in a state where the opening 17 is opened. The engine 15 is provided behind the cooling module 1, and the air that has passed through the opening 17 flows backward from the opening 17 to cool the engine 15 and the like.
 空気量調整部12は、車輌3が走行しているときに受ける走行風に応じて、開口部17を流れる空気の量を調節するように構成されている。 The air amount adjustment unit 12 is configured to adjust the amount of air flowing through the opening 17 according to the traveling wind received when the vehicle 3 is traveling.
 さらに説明すると、第1実施形態の変形例による空気量調整部12は、第1の空気量調整部13と第2の空気量調整部19とから構成され、第2の空気量調整部19は第2のシャッタ35からなる。また、第2の空気量調整部19は、第1の空気量調整部13と同様に、車輌3が走行しているときに受ける走行風に応じて、開口部17を流れる空気の量を調節するようになっている。 More specifically, the air amount adjusting unit 12 according to the modified example of the first embodiment includes a first air amount adjusting unit 13 and a second air amount adjusting unit 19, and the second air amount adjusting unit 19 is It consists of a second shutter 35. Similarly to the first air amount adjusting unit 13, the second air amount adjusting unit 19 adjusts the amount of air flowing through the opening 17 according to the traveling wind received when the vehicle 3 is traveling. It is supposed to be.
 たとえば、車輌3が第1の速度以上の速度であって第2の速度よりも遅い速度で前方に走行しているときには、図3に示すように、第1の空気量調整部13である第1のシャッタ33を開いて第2の通路23を開放し、第2の空気量調整部19である第2のシャッタ35でダクト5の開口部17を閉じるように構成されている。このとき、ダクト5前端の開口部からダクト5内に入った空気が、バイパス通路9を含む第2の通路23を流れる。なお、第2の速度は、第1の速度よりも速い速度である。 For example, when the vehicle 3 is traveling forward at a speed higher than the first speed and slower than the second speed, as shown in FIG. The first shutter 33 is opened to open the second passage 23, and the second shutter 35 that is the second air amount adjusting unit 19 is used to close the opening 17 of the duct 5. At this time, the air that has entered the duct 5 from the opening at the front end of the duct 5 flows through the second passage 23 including the bypass passage 9. Note that the second speed is higher than the first speed.
 また、車輌3が第2の速度以上の速度で前方に走行しているときには、図4に示すように、第1の空気量調整部13である第1のシャッタ33を開いて第2の通路23を開放したまま、第2の空気量調整部19である第2のシャッタ35を開くことによってダクト5の開口部17を開放するようになっている。このとき、ダクト5前端の開口部からダクト5内に入った空気が、第2の通路23とダクト5の開口部17とを流れるようになっている。開口部17から排出された空気は、コンデンサ11やラジエータ7を通ることなく、クーリングモジュール1の後方に位置している車輌3のエンジンルーム43内に入りエンジン15等を冷却するようになっている。 When the vehicle 3 is traveling forward at a speed equal to or higher than the second speed, as shown in FIG. 4, the first shutter 33 that is the first air amount adjusting unit 13 is opened to open the second passage. The opening 17 of the duct 5 is opened by opening the second shutter 35 which is the second air amount adjusting unit 19 while keeping 23 open. At this time, the air that has entered the duct 5 from the opening at the front end of the duct 5 flows through the second passage 23 and the opening 17 of the duct 5. The air discharged from the opening 17 enters the engine room 43 of the vehicle 3 located behind the cooling module 1 and cools the engine 15 and the like without passing through the condenser 11 and the radiator 7. .
 空気量調整部12(13,19)は、車輌3の走行風の風圧を受けて自律的に稼動する(風圧による力で直接稼動)ように構成されている。なお、空気量調整部12(13,19)が、車輌3の走行速度を検出する車速度センサの検出結果に応じ、アクチュエータによって駆動するように構成されていてもよい。 The air amount adjustment unit 12 (13, 19) is configured to operate autonomously by receiving the wind pressure of the traveling wind of the vehicle 3 (direct operation by the force of the wind pressure). The air amount adjustment unit 12 (13, 19) may be configured to be driven by an actuator according to the detection result of the vehicle speed sensor that detects the traveling speed of the vehicle 3.
 また、第1の空気量調整部13は、第1のシャッタ(第1のドア)33を回転駆動することで空気の量を調節するように構成されており、第2の空気量調整部19は、第2のシャッタ35を回転駆動することで空気の量を調節するように構成されている。 The first air amount adjustment unit 13 is configured to adjust the amount of air by rotationally driving the first shutter (first door) 33, and the second air amount adjustment unit 19. Is configured to adjust the amount of air by rotationally driving the second shutter 35.
 そして、図3に示すように、第1のシャッタ33が開いて第2の通路23が開放され、第2のシャッタ35でダクト5の開口部17が閉じられているときには、各シャッタ33,35が重なるように構成されている。 As shown in FIG. 3, when the first shutter 33 is opened and the second passage 23 is opened, and the opening 17 of the duct 5 is closed by the second shutter 35, the shutters 33 and 35 are opened. Are configured to overlap.
 また、図4に示すように、第1のシャッタ33が開いて第2の通路23が開放され、第2のシャッタ35が全開になっているときには、各シャッタ33,35が重なっていて、バイパス通路9の空気が開口部17を通って、エンジンルーム43内に流れるように構成されている。 Further, as shown in FIG. 4, when the first shutter 33 is opened and the second passage 23 is opened, and the second shutter 35 is fully opened, the shutters 33 and 35 are overlapped, and the bypass is performed. The air in the passage 9 is configured to flow into the engine room 43 through the opening 17.
 各シャッタ33,35の前端部分は、ダクト5に回動自在に係合している。これにより、各シャッタ33,35によって発生する空気抵抗が低減されている。 The front end portions of the shutters 33 and 35 are rotatably engaged with the duct 5. Thereby, the air resistance generated by the shutters 33 and 35 is reduced.
 ところで、図1~図4に参照符号37で示すものはバンパーであり、参照符号39で示すものはフード(ボンネット)であり、参照符号41で示すものはアンダーカバーである。 Incidentally, the reference numeral 37 in FIGS. 1 to 4 is a bumper, the reference numeral 39 is a hood (bonnet), and the reference numeral 41 is an undercover.
 ダクト5は、たとえば、矩形な筒状に形成されており、エンジンルーム43の内で、バンパー37の後方であってエンジン15の前側に配置されている。 The duct 5 is formed in, for example, a rectangular cylinder shape, and is disposed in the engine room 43 behind the bumper 37 and on the front side of the engine 15.
 また、ダクト5は、図1で示すように、たとえば、第1の部位45と第2の部位47と第3の部位49と第4の部位51と第5の部位53とで構成されている。第1の部位45~第5の部位53は、この順に前から後に向かってつながっている。 As shown in FIG. 1, the duct 5 includes, for example, a first part 45, a second part 47, a third part 49, a fourth part 51, and a fifth part 53. . The first part 45 to the fifth part 53 are connected from the front to the back in this order.
 第1の部位45~第3の部位49の幅寸法は一定になっている。第1の部位45の高さ寸法は一定になっている。第2の部位47の高さ寸法は、前端では第1の部位45のものと等しいが後方に向かうにしたがって次第に小さくなっている。なお、第2の部位47の下端の位置は、第1の部位45の下端の位置と一致しているので、第2の部位47の上端が、前端から後端に向かうにしたがって次第に下側に移行している。これにより、第2の部位47の上方には、斜面部55が形成されている。 The width dimension of the first part 45 to the third part 49 is constant. The height dimension of the first portion 45 is constant. The height dimension of the second part 47 is equal to that of the first part 45 at the front end, but gradually decreases toward the rear. In addition, since the position of the lower end of the 2nd site | part 47 corresponds with the position of the lower end of the 1st site | part 45, the upper end of the 2nd site | part 47 gradually goes down as it goes to the rear end from the front end. It has migrated. Thereby, an inclined surface portion 55 is formed above the second portion 47.
 第3の部位49の高さ寸法は一定になっており、第2の部位47後端の高さ寸法と等しくなっている。 The height dimension of the third part 49 is constant and is equal to the height dimension of the rear end of the second part 47.
 ラジエータ7は、扁平チューブとコルゲートフィンで構成されている熱交換コア部を備えて構成されている。ラジエータ7の熱交換コア部は、矩形な平板状に形成されている。ラジエータ7の熱交換コア部はこの厚さ方向が前後方向になるようにして、ダクト5の第3の部位49内に設けられている。 The radiator 7 is configured to include a heat exchange core portion that is configured by a flat tube and a corrugated fin. The heat exchange core part of the radiator 7 is formed in a rectangular flat plate shape. The heat exchange core portion of the radiator 7 is provided in the third portion 49 of the duct 5 such that the thickness direction is the front-rear direction.
 ラジエータ7の熱交換コア部の上端は、ダクト5の第3の部位49の上壁に接するか上壁から僅かに離れており、ラジエータ7の熱交換コア部の下端は、ダクト5の第3の部位49の下壁に接するか下壁から僅かに離れており、ラジエータ7の熱交換コア部の左右端のそれぞれは、ダクト5の第3の部位49の左右壁のところに位置している。また、前後方向では、ダクト5の第3の部位49の前端の位置とラジエータ7の前端の位置とはお互いがほぼ一致している。 The upper end of the heat exchange core portion of the radiator 7 is in contact with or slightly away from the upper wall of the third portion 49 of the duct 5, and the lower end of the heat exchange core portion of the radiator 7 is the third portion of the duct 5. The left and right ends of the heat exchange core portion of the radiator 7 are located at the left and right walls of the third portion 49 of the duct 5. . Further, in the front-rear direction, the position of the front end of the third portion 49 of the duct 5 and the position of the front end of the radiator 7 are substantially coincident with each other.
 コンデンサ11も、扁平チューブとコルゲートフィンで構成されている熱交換コア部を備えて構成されている。コンデンサ11の熱交換コア部も、矩形な平板状に形成されている。ただし、コンデンサ11の高さはラジエータ7の高さよりも低くなっている。 The capacitor 11 is also configured to include a heat exchange core portion composed of a flat tube and a corrugated fin. The heat exchange core portion of the capacitor 11 is also formed in a rectangular flat plate shape. However, the height of the capacitor 11 is lower than the height of the radiator 7.
 コンデンサ11の熱交換コア部はこの厚さ方向が前後方向になるようにして、ダクト5の第2の部位47内に設けられている。 The heat exchange core portion of the condenser 11 is provided in the second portion 47 of the duct 5 such that the thickness direction is the front-rear direction.
 コンデンサ11の熱交換コア部の上端は、ダクト5の第2の部位47の上壁から所定の距離だけ離れている。コンデンサ11の熱交換コア部の下端は、ダクト5の第2の部位47の下壁に接するか下壁から僅かに離れている。コンデンサ11の熱交換コア部の左右端のそれぞれは、ダクト5の第2の部位47の左右壁のところに位置している。 The upper end of the heat exchange core portion of the condenser 11 is separated from the upper wall of the second portion 47 of the duct 5 by a predetermined distance. The lower end of the heat exchange core portion of the condenser 11 is in contact with or slightly away from the lower wall of the second portion 47 of the duct 5. The left and right ends of the heat exchange core portion of the condenser 11 are located at the left and right walls of the second portion 47 of the duct 5.
 これにより、ダクト5内のラジエータ7の上側部位の前方には、バイパス通路9が形成されている。 Thus, a bypass passage 9 is formed in front of the upper portion of the radiator 7 in the duct 5.
 送風部14は、ダクト5の第5の部位53内に設けられている。 The air blowing unit 14 is provided in the fifth portion 53 of the duct 5.
 第1の空気量調整部13を構成している第1のシャッタ33は、ダクト5の斜面部55を構成している部位とほぼ同形状である矩形状に形成されている。第1のシャッタ33は、ダクト5内に設けられており、第1のシャッタ33の前端は、ダクト5の斜面部55の前端(第1の部位45と第2の部位47との境界の上部)でダクト5に回動自在に係合している。第1のシャッタ33は、前端から下側下方に向かって斜めに延びている。 The first shutter 33 constituting the first air amount adjustment unit 13 is formed in a rectangular shape that is substantially the same shape as the part constituting the slope portion 55 of the duct 5. The first shutter 33 is provided in the duct 5, and the front end of the first shutter 33 is the front end of the slope portion 55 of the duct 5 (the upper part of the boundary between the first part 45 and the second part 47. ) And is rotatably engaged with the duct 5. The first shutter 33 extends obliquely downward from the front end toward the lower side.
 車輌3がアイドル状態にあるときには、第1のシャッタ33の後端がコンデンサ11の上端に接しており、バイパス通路9を含む第2の通路23が閉じられている(図1)。 When the vehicle 3 is in the idle state, the rear end of the first shutter 33 is in contact with the upper end of the capacitor 11, and the second passage 23 including the bypass passage 9 is closed (FIG. 1).
 車輌3が第1の速度以上の速度で走行しているときには、走行風の風圧で第1のシャッタ33が上方に回動し、第1のシャッタ33がダクト5の斜面部55の総てにほぼ重なり、バイパス通路9を含む第2の通路23が開放されるようになっている(図2参照)。 When the vehicle 3 is traveling at a speed equal to or higher than the first speed, the first shutter 33 is rotated upward by the wind pressure of the traveling wind, and the first shutter 33 is disposed on all the slope portions 55 of the duct 5. The second passage 23 including the bypass passage 9 is opened substantially (see FIG. 2).
 なお、第1のシャッタ33は、捻りコイルバネ等の弾性部材による付勢力と重力とにより、下方に回動し図1で示す状態になるのであるが、重力のみによって、図1で示す状態になってもよい。 The first shutter 33 is rotated downward by the urging force of the elastic member such as a torsion coil spring and the gravity and is in the state shown in FIG. 1, but is brought into the state shown in FIG. 1 only by gravity. May be.
 開口部17が形成されている構成にあっては、ダクト5の開口部17が、たとえば、斜面部55の総てにわたって形成されている。 In the configuration in which the opening 17 is formed, the opening 17 of the duct 5 is formed over the entire slope portion 55, for example.
 第2の空気量調整部19を構成している第2のシャッタ35は、第1のシャッタ33とほぼ同形状である矩形状に形成されている。第2のシャッタ35は、第1のシャッタ33の上方に設けられており、第2のシャッタ35の前端は、ダクト5の斜面部55の前端(第1の部位45と第2の部位47との境界の上部)でダクト5に回動自在に係合している。第2のシャッタ35は、前端から下側下方に向かって斜めに延びている。 The second shutter 35 constituting the second air amount adjusting unit 19 is formed in a rectangular shape that is substantially the same shape as the first shutter 33. The second shutter 35 is provided above the first shutter 33, and the front end of the second shutter 35 is the front end of the slope portion 55 of the duct 5 (the first part 45 and the second part 47. At the upper part of the boundary). The second shutter 35 extends obliquely downward from the front end to the lower side.
 車輌3が第1の速度以上の速度であって第2の速度よりも遅い速度で走行しているときには、風圧で第1のシャッタ33が上方に回動し、第1のシャッタ33が第2のシャッタ35(ダクト5の斜面部55)にほぼ重なり、バイパス通路9が形成されるようになっている(図3参照)。このとき、ダクト5の開口部17は閉じている。 When the vehicle 3 is traveling at a speed higher than the first speed and slower than the second speed, the first shutter 33 is rotated upward by the wind pressure, and the first shutter 33 is moved to the second speed. The bypass passage 9 is formed so as to substantially overlap the shutter 35 (the inclined surface 55 of the duct 5) (see FIG. 3). At this time, the opening 17 of the duct 5 is closed.
 また、車輌3が第2の速度以上の速度で走行しているときには、風圧で第1のシャッタ33と第2のシャッタ35とが上方に回動し、各シャッタ33,35がダクト5の斜面部55よりも上方に回動し、ダクト5の開口部17が形成されるようになっている(図4参照)。 When the vehicle 3 is traveling at a speed equal to or higher than the second speed, the first shutter 33 and the second shutter 35 are rotated upward by the wind pressure, and the shutters 33 and 35 are inclined surfaces of the duct 5. The opening 17 of the duct 5 is formed so as to rotate upward from the portion 55 (see FIG. 4).
 次に、図3,4を用いて、第1実施形態の変形例に係るクーリングモジュール1の動作を説明する。 Next, the operation of the cooling module 1 according to a modification of the first embodiment will be described with reference to FIGS.
 車輌3が上述した第1の速度よりも遅い速度で走行しているかもしくはアイドリング状態にあるとき、図3に二点鎖線で示すように、第2の通路23が第1のシャッタ33で閉じられており、開口部17が第2のシャッタ35で閉じられている。また、送風部14が稼動していることで、図1に矢印で示すような空気流が発生している。 When the vehicle 3 is traveling at a speed slower than the first speed described above or in an idling state, the second passage 23 is closed by the first shutter 33 as shown by a two-dot chain line in FIG. The opening 17 is closed by the second shutter 35. Moreover, the air flow as shown by the arrow in FIG.
 すなわち、ダクト5先端の開口部からダクト5内に入った空気が、第1の通路21を流れ、コンデンサ11とラジエータ7とを通り、コンデンサ11とラジエータ7とを冷却し、ダクト5の後端の開口部から送風部14を介してダクト5の外に排出される。 That is, the air that has entered the duct 5 from the opening at the front end of the duct 5 flows through the first passage 21, passes through the condenser 11 and the radiator 7, cools the condenser 11 and the radiator 7, and From the opening, the air is discharged out of the duct 5 through the blower 14.
 車輌3が第1の速度以上であって第2の速度よりも遅い速度で走行しているとき、図3で示すように、第1のシャッタ33が開いて第2の通路23が開放されており、開口部17が第2のシャッタ35で閉じられている。そして、図3に矢印で示すような空気流が発生している。 When the vehicle 3 is traveling at a speed higher than the first speed and slower than the second speed, as shown in FIG. 3, the first shutter 33 is opened and the second passage 23 is opened. The opening 17 is closed by the second shutter 35. And the airflow as shown by the arrow in FIG. 3 is generated.
 すなわち、ダクト5先端の開口部からダクト5内に入った空気が、第1の通路21および第2の通路23を流れ、コンデンサ11とラジエータ7とを通り、コンデンサ11とラジエータ7とを冷却し、ダクト5の後端の開口部から送風部14を介してダクト5の外に排出される。 That is, air that has entered the duct 5 from the opening at the tip of the duct 5 flows through the first passage 21 and the second passage 23, passes through the condenser 11 and the radiator 7, and cools the condenser 11 and the radiator 7. The air is discharged from the opening at the rear end of the duct 5 to the outside of the duct 5 through the blower 14.
 また、車輌3が第2の速度以上の速度で走行しているとき、図4で示すように、第1のシャッタ33と第2のシャッタ35とが開いて第2の通路23が開放されるとともに開口部17が開いている。そして、図4に矢印で示すような空気流が発生している。 Further, when the vehicle 3 is traveling at a speed equal to or higher than the second speed, as shown in FIG. 4, the first shutter 33 and the second shutter 35 are opened and the second passage 23 is opened. At the same time, the opening 17 is open. And the airflow as shown by the arrow in FIG. 4 is generated.
 すなわち、ダクト5の前端の開口部からダクト5内のバイパス通路9に入った空気が、開口部17からダクト5の外に排出され後方のエンジン15等に向かって流れる。また、ダクト5の前端の開口部からダクト5内に入った残りの空気が、第1の通路21および第2の通路23を流れて、コンデンサ11とラジエータ7とを通り、コンデンサ11とラジエータ7とを冷却し、ダクト5の後端の開口部から送風部14を介してダクト5の外に排出される。 That is, air that has entered the bypass passage 9 in the duct 5 from the opening at the front end of the duct 5 is discharged from the opening 17 to the outside of the duct 5 and flows toward the rear engine 15 and the like. The remaining air that has entered the duct 5 through the opening at the front end of the duct 5 flows through the first passage 21 and the second passage 23, passes through the condenser 11 and the radiator 7, and passes through the condenser 11 and the radiator 7. And is discharged from the opening at the rear end of the duct 5 to the outside of the duct 5 through the blower 14.
 クーリングモジュール1によれば、車輌3が走行しているときに受ける走行風に応じて、空気量調整部12によりラジエータ7へ流れる空気の量を調節するように構成されている。従って、ラジエータ7を冷却する空気の流量とコンデンサ11を冷却する空気の流量との割合を適宜変更することができる。これにより、コンデンサ11とラジエータ7とをこれらの冷却の必要度に応じて的確に冷却することができ、コンデンサ11とラジエータ7との冷却効率が低下することを抑制することができる。 The cooling module 1 is configured to adjust the amount of air flowing to the radiator 7 by the air amount adjusting unit 12 according to the traveling wind received when the vehicle 3 is traveling. Therefore, the ratio between the flow rate of air that cools the radiator 7 and the flow rate of air that cools the condenser 11 can be appropriately changed. Thereby, the capacitor | condenser 11 and the radiator 7 can be cooled appropriately according to the necessity of these cooling, and it can suppress that the cooling efficiency of the capacitor | condenser 11 and the radiator 7 falls.
 たとえば、車輌3が高速走行しているときや坂道を登っているとき等エンジン15に高い負荷がかかっているときに、図1で示すように、空気量調整部12によってラジエータ7へ流れる空気の量を調節して増やすことで、ラジエータ7での放熱量を多くすることができる。これにより、ラジエータ7を小型化し車輌3の走行を向上させることができる。 For example, when a high load is applied to the engine 15 such as when the vehicle 3 is traveling at a high speed or climbing a hill, as shown in FIG. By increasing the amount by adjusting the amount of heat, the amount of heat released by the radiator 7 can be increased. Thereby, the radiator 7 can be reduced in size and the traveling of the vehicle 3 can be improved.
 また、車内の温度を下げる必要がある夏の炎天下等で車輌3がアイドリング状態になっているときに、図1に示すように、空気量調整部12によってラジエータ7へ流れる空気の量を調節して減らすことで、コンデンサ11に流す空気の流量を増やし、コンデンサ11での放熱量を多くすることができる。 In addition, when the vehicle 3 is in an idling state under the summer sun when it is necessary to lower the temperature in the vehicle, the amount of air flowing to the radiator 7 is adjusted by the air amount adjusting unit 12 as shown in FIG. Therefore, the flow rate of air flowing through the capacitor 11 can be increased, and the amount of heat released by the capacitor 11 can be increased.
 また、クーリングモジュール1によれば、バイパス通路9がダクト5内に形成されており、第1の空気量調整部13がバイパス通路9を流れる空気の量(ラジエータ7に直接あたる空気の流量)を調節するように構成されているので、ラジエータ7で放熱すべき熱量が多いときにバイパス通路9に空気を流すことで、ラジエータ7を一層確実に冷却することができる。 Further, according to the cooling module 1, the bypass passage 9 is formed in the duct 5, and the amount of air that the first air amount adjustment unit 13 flows through the bypass passage 9 (the flow rate of air that directly hits the radiator 7). Since it is configured to adjust, when the amount of heat to be radiated by the radiator 7 is large, the radiator 7 can be cooled more reliably by flowing air through the bypass passage 9.
 また、クーリングモジュール1によれば、ダクト5の内部に入った空気の一部をコンデンサ11とラジエータ7とを通すことなく車輌3のエンジン15に流すための開口部17が設けられており、第2の空気量調整部19が、車輌3が走行しているときに受ける走行風に応じて、開口部17を流れる空気の量を調節するように構成されている。従って、エンジン15が高い負荷で稼動している等の条件下、エンジン15から直接放熱すべき熱量が多いときに、図4で示すように、開口部17をあけてエンジンルーム43に空気を直接流すことで、ラジエータ7およびコンデンサ11に加えてエンジン15やエンジンルーム43内の機器も冷却することができる。 Further, according to the cooling module 1, an opening 17 is provided for allowing a part of the air that has entered the duct 5 to flow to the engine 15 of the vehicle 3 without passing through the condenser 11 and the radiator 7. The second air amount adjusting unit 19 is configured to adjust the amount of air flowing through the opening 17 in accordance with the traveling wind received when the vehicle 3 is traveling. Therefore, when the amount of heat to be directly radiated from the engine 15 is large under conditions such as when the engine 15 is operating at a high load, the air is directly supplied to the engine room 43 by opening the opening 17 as shown in FIG. By flowing, in addition to the radiator 7 and the condenser 11, the equipment in the engine 15 and the engine room 43 can be cooled.
 また、クーリングモジュール1によれば、空気量調整部12(13,19)が、車輌3の走行風の風圧を受けて自律的に稼動するように構成されているので、簡素な構成で、コンデンサ11とラジエータ7との冷却効率が低下することを抑制することができる。 Moreover, according to the cooling module 1, since the air quantity adjustment part 12 (13, 19) is comprised so that it may receive the wind pressure of the driving | running | working wind of the vehicle 3, and it is comprised, it is a structure with simple structure. It can suppress that the cooling efficiency of 11 and the radiator 7 falls.
 [第2の実施形態]
 次いで、第2の実施形態について説明するが、前述した第1の実施形態と同一の構成部位には、同一符号をつけて、説明を省略する。第2の実施形態に係るクーリングモジュール1は、第1の実施形態に係るクーリングモジュールとほぼ同様に構成されており、ほぼ同様の効果を奏する。
[Second Embodiment]
Next, the second embodiment will be described. The same components as those in the first embodiment described above are denoted by the same reference numerals, and the description thereof is omitted. The cooling module 1 according to the second embodiment is configured in substantially the same manner as the cooling module according to the first embodiment, and has substantially the same effect.
 第1の通路21と第2の通路23とは、板状の仕切り材57で仕切られることで形成されている。仕切り材57は、ダクト5内でダクト5の前側に設けられている。 The first passage 21 and the second passage 23 are formed by being partitioned by a plate-shaped partition member 57. The partition member 57 is provided in the duct 5 on the front side of the duct 5.
 ラジエータ7は、ダクト5内で第1の通路21と第2の通路23との後方に設けられており、第1の通路21と第2の通路23との両方を通ってきた空気がラジエータ7を通過し、ラジエータ7が冷却されるようになっている。 The radiator 7 is provided behind the first passage 21 and the second passage 23 in the duct 5, and the air that has passed through both the first passage 21 and the second passage 23 is disposed in the radiator 7. And the radiator 7 is cooled.
 コンデンサ11は、第1の通路21内に設けられており、第1の通路21を流れる空気が、コンデンサ11を通過することでコンデンサ11が冷却されるようになっている。なお、コンデンサ11を通過した空気も、ラジエータ7を通過し、ラジエータ7を冷却するようになっている。 The capacitor 11 is provided in the first passage 21, and the capacitor 11 is cooled by the air flowing through the first passage 21 passing through the capacitor 11. The air that has passed through the condenser 11 also passes through the radiator 7 and cools the radiator 7.
 図5および図6に示すように、空気量調整部12は、第3の空気量調整部27を備えて構成されている。具体的には、第3の空気量調整部27は、第3のシャッタ59から構成されている。第3の空気量調整部27は、第1の実施形態に係るクーリングモジュール1の第1の空気量調整部13と同様にして、車輌3が走行しているときに受ける走行風に応じて、第2の通路23を流れる空気の量を調節するようになっている。 As shown in FIG. 5 and FIG. 6, the air amount adjustment unit 12 includes a third air amount adjustment unit 27. Specifically, the third air amount adjustment unit 27 includes a third shutter 59. The third air amount adjusting unit 27 is similar to the first air amount adjusting unit 13 of the cooling module 1 according to the first embodiment, according to the traveling wind received when the vehicle 3 is traveling, The amount of air flowing through the second passage 23 is adjusted.
 なお、コンデンサ11を傾斜して配置して、コンデンサ11とラジエータ7との間隔をコンデンサ11の下端側で広くしている(図5、図6参照)。具体的には、ラジエータ7は上下方向に沿ってほぼ垂直に配置され、コンデンサ11は、上方に行くにつれて徐々に車輌後方側に向かうように傾斜している。これにより、第2の通路23を通ってきた空気は、上方に向けても上昇するため、ラジエータ7とコンデンサ11との間にも流入してラジエータ7の冷却効果を高めることができる。 In addition, the capacitor | condenser 11 is inclined and arrange | positioned and the space | interval of the capacitor | condenser 11 and the radiator 7 is made wide on the lower end side of the capacitor | condenser 11 (refer FIG. 5, FIG. 6). Specifically, the radiator 7 is arranged substantially vertically along the vertical direction, and the capacitor 11 is gradually inclined toward the vehicle rear side as it goes upward. As a result, the air that has passed through the second passage 23 rises even when directed upward, so that it can flow into the space between the radiator 7 and the condenser 11 and enhance the cooling effect of the radiator 7.
 次に、図7,8を用いて、第2の実施形態の変形例について説明する。 Next, a modified example of the second embodiment will be described with reference to FIGS.
 図7,8に示すように、第2の実施形態の変形例においては、第2の通路23内に熱交換器25が設けられている。この場合、第2の通路23内を流れる空気は、熱交換器25を通過することで熱交換器25を冷却するようになっている。 As shown in FIGS. 7 and 8, in the modification of the second embodiment, a heat exchanger 25 is provided in the second passage 23. In this case, the air flowing through the second passage 23 passes through the heat exchanger 25 to cool the heat exchanger 25.
 また、熱交換器25は、たとえば、ターボチャージャのインタクーラで構成されている。そして、車輌3が停止しているアイドリング状態にあるときには、図7で示すように、第3の空気量調整部27によって第2の通路23が、たとえば、完全に閉じられるように構成されている。 Further, the heat exchanger 25 is constituted by, for example, a turbocharger intercooler. When the vehicle 3 is in an idling state in which it is stopped, the second passage 23 is configured to be completely closed by the third air amount adjustment unit 27, for example, as shown in FIG. .
 一方、エンジン15に高い負荷がかかっているときには、図8で示すように、第3の空気量調整部27によって第2の通路23が、たとえば、全開するように構成されている。 On the other hand, when a high load is applied to the engine 15, the second passage 23 is configured to be fully opened by the third air amount adjustment unit 27 as shown in FIG.
 第2の実施形態に係るクーリングモジュール1のダクト5は、第1の実施形態に係るクーリングモジュールのダクトと同様な形状に形成されて同様に配置されている。 The duct 5 of the cooling module 1 according to the second embodiment is formed in the same shape as the duct of the cooling module according to the first embodiment.
 仕切り材57は、板状に形成されており、厚さ方向が上下方向になるようにダクト5の内部に配設されている。つまり、仕切り材57は、ダクト5の前側から車輌後方に向けて前後方向に沿って延在している。ダクト5内の空気通路が仕切り材57によって、上側に位置している第1の通路21と、下側に位置している第2の通路23と、に分かれている。 The partition member 57 is formed in a plate shape, and is disposed inside the duct 5 so that the thickness direction is the vertical direction. That is, the partition member 57 extends along the front-rear direction from the front side of the duct 5 toward the rear of the vehicle. The air passage in the duct 5 is divided by the partition member 57 into a first passage 21 located on the upper side and a second passage 23 located on the lower side.
 コンデンサ11は、第1の通路21内に設けられており、第1の通路21内を流れる空気のほぼ全てが、コンデンサ11の熱交換コア部を通過して流れるようになっている。 The condenser 11 is provided in the first passage 21, and almost all of the air flowing in the first passage 21 flows through the heat exchange core portion of the condenser 11.
 熱交換器(インタクーラ)25は、第2の通路23内に設けられており、第2の通路23内を流れる空気のほぼ総てが、熱交換器25の熱交換コア部を通過して流れるようになっている。ラジエータ7は、仕切り材57の後方に設けられている。 The heat exchanger (intercooler) 25 is provided in the second passage 23, and almost all of the air flowing in the second passage 23 flows through the heat exchange core portion of the heat exchanger 25. It is like that. The radiator 7 is provided behind the partition member 57.
 第3の空気量調整部27は、熱交換器25の前側に設けられている複数の第3のシャッタ59を回転駆動することで空気の量を調節するように構成されている。 The third air amount adjustment unit 27 is configured to adjust the amount of air by rotationally driving a plurality of third shutters 59 provided on the front side of the heat exchanger 25.
 第3の空気量調整部27を構成している第3のシャッタ59は、第1のシャッタ33と同様な形状である矩形状に形成されている。第3の各シャッタ59は、上下方向にならんで第2の通路23内に配置されている。 The third shutter 59 constituting the third air amount adjustment unit 27 is formed in a rectangular shape that is the same shape as the first shutter 33. The third shutters 59 are arranged in the second passage 23 along the vertical direction.
 そして、各シャッタ59の厚さ方向が前後方向になったとき第2の通路23が閉じられ、各シャッタ59の厚さ方向が上下方向になったとき第2の通路23が開くようになっている。 The second passage 23 is closed when the thickness direction of each shutter 59 is the front-rear direction, and the second passage 23 is opened when the thickness direction of each shutter 59 is the vertical direction. Yes.
 なお、第3の各シャッタ59の駆動は、第1のシャッタ33と同様になされるように構成されている。 The third shutter 59 is driven in the same manner as the first shutter 33.
 次に、熱交換器25が設けられている第2の実施形態の変形例に係るクーリングモジュール1の動作を説明する。 Next, the operation of the cooling module 1 according to a modification of the second embodiment in which the heat exchanger 25 is provided will be described.
 車輌3が第1の速度よりも遅い速度で走行しているかもしくはアイドリング状態にあるとき、図7に示すように、第2の通路23が第3のシャッタ59で閉じられている。また、送風部14が稼動していることで、図7に矢印で示すような空気流が発生している。 When the vehicle 3 is traveling at a speed slower than the first speed or in an idling state, the second passage 23 is closed by the third shutter 59 as shown in FIG. Moreover, the air flow as shown by the arrow in FIG.
 すなわち、ダクト5の前端の開口部からダクト5内に入った空気が、第1の通路21のみを通って、コンデンサ11とラジエータ7とを通り、コンデンサ11とラジエータ7とを冷却し、ダクト5の後端の開口部からダクト5の外に排出される。 That is, air that has entered the duct 5 from the opening at the front end of the duct 5 passes only through the first passage 21, passes through the condenser 11 and the radiator 7, cools the condenser 11 and the radiator 7, and then enters the duct 5. It is discharged out of the duct 5 through the opening at the rear end.
 車輌3が第1の速度以上の速度で走行しているとき、図8で示すように、第3のシャッタ59が開いて第2の通路23が開放されている。そして、図8に矢印で示すような空気流が発生している。 When the vehicle 3 is traveling at a speed equal to or higher than the first speed, the third shutter 59 is opened and the second passage 23 is opened as shown in FIG. And the airflow as shown by the arrow in FIG. 8 is generated.
 すなわち、ダクト5の前端の開口部からダクト5内に入った空気が、第1の通路21と第2の通路23とを通って、コンデンサ11とラジエータ7とを通り、また、インタクーラ25とラジエータ7とを通り、コンデンサ11とインタクーラ25とラジエータ7とを冷却し、ダクト5の後端の開口部からダクト5の外に排出される。 That is, the air that has entered the duct 5 from the opening at the front end of the duct 5 passes through the first passage 21 and the second passage 23, passes through the condenser 11 and the radiator 7, and also passes through the intercooler 25 and the radiator. 7, the condenser 11, the intercooler 25, and the radiator 7 are cooled, and discharged from the opening of the rear end of the duct 5 to the outside of the duct 5.
 第2の実施形態に係るクーリングモジュール1によれば、熱交換器25がターボチャージャのインタクーラで構成されており、車輌3が停止しているアイドリング状態にあるときに、第3の空気量調整部27によって第2の通路(インタクーラを冷却する空気が流れる空気通路)23がほぼ完全に閉じられるように構成されているので、インタクーラが不必要に冷却されることがない。 According to the cooling module 1 according to the second embodiment, when the heat exchanger 25 is configured by an intercooler of a turbocharger and the vehicle 3 is in an idling state in which the vehicle 3 is stopped, the third air amount adjustment unit 27, the second passage (air passage through which air for cooling the intercooler flows) 23 is configured to be almost completely closed, so that the intercooler is not unnecessarily cooled.
 次に、図9,10を用いて、第2の実施形態の別の変形例に係るクーリングモジュール1を説明する。 Next, a cooling module 1 according to another modification of the second embodiment will be described with reference to FIGS.
 別の変形例に係るクーリングモジュール1は、熱交換器25としてサブラジエータを採用している(図9参照)。サブラジエータは、HV(Hybrid Vehicle)やEV(Electric Vehicle)等の強電装備の冷却に使用されるものである。 The cooling module 1 according to another modification employs a sub-radiator as the heat exchanger 25 (see FIG. 9). The sub-radiator is used for cooling high-power equipment such as HV (Hybrid Vehicle) and EV (Electric Vehicle).
 サブラジエータを採用したクーリングモジュール1では、車輌3が停止しているアイドリング状態にあるときには、第3の空気量調整部27によって第2の通路23を閉じるか(図9参照)もしくは僅かに開くように構成されている。 In the cooling module 1 employing the sub-radiator, when the vehicle 3 is in an idling state in which the vehicle 3 is stopped, the second air passage 23 is closed (see FIG. 9) or slightly opened by the third air amount adjustment unit 27. It is configured.
 また、サブラジエータを採用したクーリングモジュール1では、サブラジエータの一部(たとえば、上端部)が、図9や図10で示すように、前記第1の通路21内に位置している。 Further, in the cooling module 1 employing the sub-radiator, a part of the sub-radiator (for example, the upper end portion) is located in the first passage 21 as shown in FIG. 9 and FIG.
 サブラジエータが設けられている第2の実施形態の別の変形例に係るクーリングモジュール1の動作を説明する。 The operation of the cooling module 1 according to another modification of the second embodiment provided with a sub-radiator will be described.
 車輌3が上述した第1の速度よりも遅い速度で走行しているかもしくはアイドリング状態にあるとき、図9に示すように、第2の通路23が第3のシャッタ59で閉じられている。また、送風部14が稼動していることで、図9に矢印で示すような空気流が発生している。 When the vehicle 3 is traveling at a speed slower than the first speed described above or is in an idling state, the second passage 23 is closed by the third shutter 59 as shown in FIG. Moreover, the air flow as shown by the arrow in FIG.
 すなわち、ダクト5先端の開口部からダクト5内に入った空気が、第1の通路21のみを通って、コンデンサ11とラジエータ7とを通り、コンデンサ11とラジエータ7とを冷却し、ダクト5後端の開口部からダクト5の外に排出される。なお、上述したように、第3のシャッタ59がある程度開いていてもよい。 That is, the air that has entered the duct 5 from the opening at the tip of the duct 5 passes only through the first passage 21, passes through the condenser 11 and the radiator 7, cools the condenser 11 and the radiator 7, and It is discharged out of the duct 5 through the opening at the end. As described above, the third shutter 59 may be opened to some extent.
 車輌3が第1の速度以上の速度で走行しているとき、図10で示すように、第3のシャッタ59が開いて第2の通路23が開放されている。そして、図10に矢印で示すような空気流が発生している。 When the vehicle 3 is traveling at a speed equal to or higher than the first speed, the third shutter 59 is opened and the second passage 23 is opened as shown in FIG. And the airflow as shown by the arrow in FIG. 10 is generated.
 すなわち、ダクト5の前端の開口部からダクト5内に入った空気が、第1の通路21を流れてコンデンサ11とラジエータ7とを通る。また、第2の通路23を流れてサブラジエータ25とラジエータ7とを通る。このように、空気によってコンデンサ11とインタクーラ25とラジエータ7とを冷却し、ダクト5の後端の開口部からダクト5の外に排出される。 That is, air that has entered the duct 5 from the opening at the front end of the duct 5 flows through the first passage 21 and passes through the condenser 11 and the radiator 7. Further, it flows through the second passage 23 and passes through the sub-radiator 25 and the radiator 7. In this way, the condenser 11, the intercooler 25, and the radiator 7 are cooled by the air and discharged from the duct 5 through the opening at the rear end of the duct 5.
 別の変形例に係るクーリングモジュール1によれば、熱交換器25がHV、EV等の強電装備の冷却に使用されるサブラジエータで構成されている。従って、車輌3が停止しているアイドリング状態にあるときに、第3の空気量調整部27によって第2の通路23が閉じるかもしくは僅かに開くように構成されているので、HV、EV等の強電装備の冷却を的確に行うことができる。 According to the cooling module 1 according to another modification, the heat exchanger 25 is configured by a sub-radiator used for cooling high-power equipment such as HV and EV. Accordingly, when the vehicle 3 is in an idling state where the vehicle 3 is stopped, the second air passage 23 is configured to be closed or slightly opened by the third air amount adjusting unit 27, so that the HV, EV, etc. High power equipment can be cooled accurately.
 また、別の変形例に係るクーリングモジュール1によれば、サブラジエータ25の一部が第2の通路23内に位置している。従って、車輌3が停止しているアイドリング状態等において第3の空気量調整部27によって第2の通路23を閉じているときであっても、若干の放熱が必要であるサブラジエータを冷却することができる。 Further, according to the cooling module 1 according to another modification, a part of the sub-radiator 25 is located in the second passage 23. Therefore, even when the second air passage 23 is closed by the third air amount adjusting unit 27 in an idling state where the vehicle 3 is stopped, the sub-radiator that requires a slight heat dissipation is cooled. Can do.
 ところで、クーリングモジュール1の形態を、たとえば、図11、図12で示すように適宜変更してもよい。 Incidentally, the form of the cooling module 1 may be appropriately changed as shown in FIGS. 11 and 12, for example.
 図11で示すものは、ラジエータ7とコンデンサ11とが同じ大きさに形成されており、1つのシャッタ61で空気量調整部12を形成している。なお、上側に第1の通路21が配置され、下側に第2の通路23が配置されている。 11, the radiator 7 and the condenser 11 are formed in the same size, and the air amount adjusting unit 12 is formed by one shutter 61. The first passage 21 is disposed on the upper side, and the second passage 23 is disposed on the lower side.
 図11(a)は、車輌3が第1の速度よりも遅い速度で走行しているかもしくはアイドリング状態にあるときの状態を示しており、ダクト5に入った空気の総てがコンデンサ11とラジエータ7とをこの順に通過するようになっている。 FIG. 11A shows a state in which the vehicle 3 is traveling at a speed slower than the first speed or in an idling state, and all of the air that has entered the duct 5 is connected to the condenser 11 and the radiator. 7 in this order.
 図11(b)は、車輌3が第1の速度以上の速度であって第2の移動速度よりも遅い速度で走行しているときの状態を示しており、ダクト5に入った空気の一部がラジエータ7のみを通過し、ダクト5に入った残りの空気がコンデンサ11とラジエータ7とをこの順に通過するようになっている。 FIG. 11B shows a state where the vehicle 3 is traveling at a speed higher than the first speed and slower than the second moving speed. The portion passes only through the radiator 7, and the remaining air that has entered the duct 5 passes through the condenser 11 and the radiator 7 in this order.
 図11(c)は、車輌3が第2の速度以上の速度で走行しているときの状態を示しており、ダクト5に入った空気の一部が、ラジエータ7やコンデンサ11を通過することなくダクト5の開口部17から排出されてエンジン15等を直接冷却し、ダクト5に入った残りの空気がコンデンサ11とラジエータ7とを冷却するようになっている。 FIG. 11 (c) shows a state when the vehicle 3 is traveling at a speed equal to or higher than the second speed, and a part of the air that has entered the duct 5 passes through the radiator 7 and the condenser 11. Without being discharged from the opening 17 of the duct 5, the engine 15 or the like is directly cooled, and the remaining air entering the duct 5 cools the condenser 11 and the radiator 7.
 図11で示すものは、ダクト5の上側のみに空気量調整部12(シャッタ61)が設けられている。図12で示すものは、ダクト5の上側と下側とに空気量調整部12(シャッタ61)が設けられている点が図11で示すものとは異なり、その他の点は図11で示すものと同様に構成されており、同様に動作するようになっている。なお、空気量調整部12を上下に設けることに代えてもしくは加えて、左右両側に設けてもよい。 11 is provided with an air amount adjusting unit 12 (shutter 61) only on the upper side of the duct 5. In FIG. 12 is different from that shown in FIG. 11 in that the air amount adjusting unit 12 (shutter 61) is provided on the upper side and the lower side of the duct 5, and the other points are shown in FIG. Are configured in the same manner and operate in the same manner. Note that the air amount adjustment unit 12 may be provided on both the left and right sides instead of or in addition to the upper and lower sides.
 図12(a)は、車輌3が第1の速度よりも遅い速度で走行しているかもしくはアイドリング状態にあるときの状態を示しており、ダクト5に入った空気の総てがコンデンサ11とラジエータ7とをこの順に通過するようになっている。 FIG. 12A shows a state in which the vehicle 3 is traveling at a speed slower than the first speed or in an idling state, and all of the air that has entered the duct 5 is connected to the condenser 11 and the radiator. 7 in this order.
 図12(b)は、車輌3が第1の速度以上の速度であって第2の移動速度よりも遅い速度で走行しているときの状態を示しており、ダクト5に入った空気の一部がラジエータ7のみを通過し、ダクト5に入った残りの空気がコンデンサ11とラジエータ7とをこの順に通過するようになっている。 FIG. 12B shows a state where the vehicle 3 is traveling at a speed higher than the first speed and slower than the second moving speed. The portion passes only through the radiator 7, and the remaining air that has entered the duct 5 passes through the condenser 11 and the radiator 7 in this order.
 なお、上記第2の実施形態の説明で、走行風や車速に応じて第3の空気量調整部27を稼動しているが、第1の実施形態と同様にエンジン15にかかっている負荷、車輌3に搭載されているエアコンの稼動状況、外気温、車内の温度、ラジエータ7の冷媒の温度等の少なくともいずれかに応じて、第3の空気量調整部27を稼動するようにしてもよい。 In the description of the second embodiment, the third air amount adjustment unit 27 is operated according to the traveling wind and the vehicle speed, but the load applied to the engine 15 as in the first embodiment, The third air amount adjustment unit 27 may be operated according to at least one of the operating condition of the air conditioner mounted on the vehicle 3, the outside air temperature, the temperature inside the vehicle, the temperature of the refrigerant of the radiator 7, and the like. .
 [第3の実施形態]
 次いで、第3の実施形態について説明するが、前述した第1および第2の実施形態と同一の構成部位には、同一符号をつけて、説明を省略する。
[Third Embodiment]
Next, a third embodiment will be described. The same components as those in the first and second embodiments described above are denoted by the same reference numerals, and description thereof is omitted.
 図13に示すように、第3の実施形態に係るクーリングモジュール1は、図5,6に示す第2の実施形態に係るクーリングモジュール1と比較すると、仕切り材157が回動式になっていること、および、第3のシャッタ59が車輌後方側に移動して配置されていることが相違している。 As shown in FIG. 13, in the cooling module 1 according to the third embodiment, the partition member 157 is pivotal compared to the cooling module 1 according to the second embodiment shown in FIGS. This is different from the third shutter 59 that is moved to the rear side of the vehicle.
 仕切り材157は、第1の通路21と第2の通路23とを仕切ると共に、第1の通路21と第2の通路23とに流入する空気の風量を調整する作用を有する。以下、具体的に説明する。 The partition member 157 has an action of partitioning the first passage 21 and the second passage 23 and adjusting the air volume of the air flowing into the first passage 21 and the second passage 23. This will be specifically described below.
 仕切り材157の後端部は、コンデンサ11の下端部の前端に回動可能に軸支されている。従って、仕切り時は、仕切り材157の前端部がバンパー37の後端部の下面に当接している。また、風量制御時は、仕切り材157が側面視で時計回り方向に回動する。 The rear end portion of the partition member 157 is pivotally supported by the front end of the lower end portion of the capacitor 11 so as to be rotatable. Therefore, at the time of partitioning, the front end portion of the partition member 157 is in contact with the lower surface of the rear end portion of the bumper 37. Further, at the time of air volume control, the partition member 157 rotates clockwise in a side view.
 フロントグリルの形状に伴い、第1の通路21は第2の通路23よりも空気が流入しにくくなっている。よって、送風部14である送風ファンを稼働させて、第1の通路21への流入不足を補っている。 With the shape of the front grille, the first passage 21 is less likely to allow air to flow in than the second passage 23. Therefore, the blower fan, which is the blower unit 14, is operated to compensate for the inflow shortage into the first passage 21.
 ここで、図13(b)に示すように、仕切り材157を回動させて、仕切り材157の前端部とバンパー37との間に空気流入部が画成される。すると、仕切り材157がエアガイドの作用をして、この空気流入部から空気が流入してコンデンサ11およびラジエータ7を通過することにより、コンデンサ11およびラジエータ7を効果的に冷却することができる。よって、送風ファンの稼働量を低下させて消費電力を削減することができる。 Here, as shown in FIG. 13 (b), the partition member 157 is rotated, and an air inflow portion is defined between the front end portion of the partition member 157 and the bumper 37. Then, the partition material 157 acts as an air guide, and air flows from the air inflow portion and passes through the condenser 11 and the radiator 7, whereby the condenser 11 and the radiator 7 can be effectively cooled. Therefore, the operating amount of the blower fan can be reduced to reduce power consumption.
 なお、第2の通路23から仕切り材157によって第1の通路21に供給される空気の量は、コンデンサ11およびラジエータ7の冷却に必要な最小限の風量であるため、車輌走行時の空力の影響は小さい。さらに、フロントグリルの形状に伴い、第2の通路23が第1の通路21よりも空気が流入しにくくなっている場合は、仕切り材157を第1の通路21側に設けることが好ましい。また、ダクト5の上面は、導風板105に構成され、エアガイド機能を有する。 Note that the amount of air supplied from the second passage 23 to the first passage 21 by the partition member 157 is the minimum amount of air necessary for cooling the condenser 11 and the radiator 7, so that the aerodynamics when the vehicle travels The impact is small. Further, when the second passage 23 is less likely to flow in air than the first passage 21 due to the shape of the front grille, it is preferable to provide the partition member 157 on the first passage 21 side. Moreover, the upper surface of the duct 5 is comprised by the baffle plate 105, and has an air guide function.
 [第4の実施形態]
 次いで、第4の実施形態について説明するが、前述した第1~第3の実施形態と同一の構成部位には、同一符号をつけて、説明を省略する。
[Fourth Embodiment]
Next, a fourth embodiment will be described. The same components as those in the first to third embodiments described above are denoted by the same reference numerals, and description thereof is omitted.
 第4の実施形態では、第3の実施形態に対して、第3のシャッタ59を廃止すると共に、仕切り材257の長さを第3の実施形態よりも長く設定している。 In the fourth embodiment, the third shutter 59 is eliminated from the third embodiment, and the length of the partition member 257 is set longer than that in the third embodiment.
 仕切り材257の後端部は、コンデンサ11の下端部の前端に回動可能に軸支されている。従って、仕切り時は、仕切り材257の前端部がバンパー37の下面に当接している。また、風量制御時は、仕切り材257が側面視で時計回り方向に回動し、仕切り材257の下端がダクト5の下面に当接している。 The rear end portion of the partition member 257 is pivotally supported by the front end of the lower end portion of the capacitor 11 so as to be rotatable. Therefore, at the time of partitioning, the front end portion of the partition member 257 is in contact with the lower surface of the bumper 37. Further, at the time of air volume control, the partition member 257 rotates clockwise in a side view, and the lower end of the partition member 257 is in contact with the lower surface of the duct 5.
 従って、仕切り時には、仕切り材257の前端部がバンパー37の下面に当接しているため、仕切り材257によって第1の通路21と第2の通路23とを確実に隔離される。よって、ダクト5の上側に入った空気は、第1の通路21内を流れて、コンデンサ11およびラジエータ7を効率的に冷却する。 Therefore, since the front end portion of the partition member 257 is in contact with the lower surface of the bumper 37 at the time of partitioning, the first passage 21 and the second passage 23 are reliably separated by the partition member 257. Therefore, the air that has entered the upper side of the duct 5 flows in the first passage 21 to efficiently cool the condenser 11 and the radiator 7.
 風量制御時には、仕切り材257の下端がダクト5の下面に当接しているため、第2の通路23が封鎖される。従って、ダクト5の下側に入った空気は、仕切り材257に沿って斜め上方に送られて第1の通路21に合流する。そして、空気はコンデンサ11およびラジエータ7を通るため、これらのコンデンサ11およびラジエータ7は効率的に冷却される。なお、本実施形態では、第3実施形態と比較して第3のシャッタ59がないため、仕切り材257のみで第2の通路23内の風量制御を行うので、構造が簡素化されるという効果がある。 At the time of air volume control, since the lower end of the partition member 257 is in contact with the lower surface of the duct 5, the second passage 23 is blocked. Therefore, the air that has entered the lower side of the duct 5 is sent obliquely upward along the partition member 257 and joins the first passage 21. Since air passes through the condenser 11 and the radiator 7, the condenser 11 and the radiator 7 are efficiently cooled. In this embodiment, since there is no third shutter 59 as compared with the third embodiment, the air volume control in the second passage 23 is performed only by the partition member 257, so that the structure is simplified. There is.
 なお、特願2014-036664(出願日:2014年2月27日)の全内容は、ここに援用される。 The entire content of Japanese Patent Application No. 2014-036664 (application date: February 27, 2014) is incorporated herein by reference.
産業上の利用分野Industrial application fields
 本発明は、車輌に搭載されるクーリングモジュールに適用される。また、本発明によれば、コンデンサとラジエータとをこれらの冷却の必要度に応じて冷却することができるという効果を奏する。 The present invention is applied to a cooling module mounted on a vehicle. Further, according to the present invention, there is an effect that the condenser and the radiator can be cooled according to the necessity of cooling them.
 1 クーリングモジュール
 3 車輌
 5 ダクト
 7 ラジエータ
 9 バイパス通路
 11 コンデンサ
 12 空気量調整部
 14 送風部
 15 エンジン
 17 開口部
 21 第1の通路
 23 第2の通路
 25 熱交換器
 
DESCRIPTION OF SYMBOLS 1 Cooling module 3 Vehicle 5 Duct 7 Radiator 9 Bypass passage 11 Condenser 12 Air quantity adjustment part 14 Air blower part 15 Engine 17 Opening part 21 1st passage 23 2nd passage 25 Heat exchanger

Claims (11)

  1.  車輌に設置されるダクトと、
     前記ダクト内に設けられたラジエータと、
     前記ダクト内で前記ラジエータの前方に設けられたコンデンサと、
     前記車輌の走行状態に応じて、前記ラジエータへ流れる空気の量を調節する空気量調整部と、
     前記ダクト内で空気の流れを強制的につくる送風部と、を備え、
     前記ダクト内には、前記ダクト内を流れる空気のうちの一部の空気が流れる第1の通路と、前記ダクト内で第1の通路に対し並列して設けられ前記ダクト内を流れる空気のうちの残りの空気が流れる第2の通路とが設けられており、
     前記ラジエータは、前記ダクト内で前記第1の通路と前記第2の通路との後方に設けられており、
     前記コンデンサは、第1の通路に設けられており、
     前記空気量調整部は、前記車輌の走行状態に応じて、前記第2の通路を流れる空気の量を調節するように構成されている
     ことを特徴とするクーリングモジュール。
    A duct installed in the vehicle;
    A radiator provided in the duct;
    A capacitor provided in front of the radiator in the duct;
    An air amount adjusting unit that adjusts the amount of air flowing to the radiator according to the running state of the vehicle;
    An air blowing section for forcibly creating an air flow in the duct,
    In the duct, a first passage through which a part of the air flowing in the duct flows and a portion of the air flowing in the duct provided in parallel to the first passage in the duct And a second passage through which the remaining air flows.
    The radiator is provided behind the first passage and the second passage in the duct;
    The capacitor is provided in the first passage;
    The cooling module according to claim 1, wherein the air amount adjusting unit is configured to adjust an amount of air flowing through the second passage according to a traveling state of the vehicle.
  2.  請求項1に記載のクーリングモジュールにおいて、
     前記ラジエータに直接あたる空気が流れるバイパス通路が前記第2の通路内に形成され、
     前記空気量調整部は、前記バイパス通路を含む第2の通路を流れる空気の量を調節するように構成されていることを特徴とするクーリングモジュール。
    The cooling module according to claim 1,
    A bypass passage through which air directly hitting the radiator flows is formed in the second passage;
    The cooling module according to claim 1, wherein the air amount adjusting unit is configured to adjust an amount of air flowing through the second passage including the bypass passage.
  3.  請求項2に記載のクーリングモジュールにおいて、
     前記ダクトには、前記バイパス通路に入った空気を、前記コンデンサと前記ラジエータとを通すことなく前記車輌のエンジンに流すための開口部が設けられており、
     前記空気量調整部は、前記車輌の走行状態に応じて、前記開口部を流れる空気の量を調節するように構成されていることを特徴とするクーリングモジュール。
    The cooling module according to claim 2,
    The duct is provided with an opening for allowing the air that has entered the bypass passage to flow to the engine of the vehicle without passing through the condenser and the radiator,
    The cooling module according to claim 1, wherein the air amount adjusting unit is configured to adjust an amount of air flowing through the opening in accordance with a traveling state of the vehicle.
  4.  請求項1~請求項3のいずれか1項に記載のクーリングモジュールにおいて、
     前記コンデンサと前記ラジエータとの車輌前後方向に沿った間隔について、コンデンサの上端側よりコンデンサの下端側が広くなるようにコンデンサとラジエータとを配置していることを特徴とするクーリングモジュール。
    The cooling module according to any one of claims 1 to 3,
    A cooling module, wherein a capacitor and a radiator are arranged so that a lower end side of the capacitor is wider than an upper end side of the capacitor with respect to an interval along the vehicle front-rear direction between the capacitor and the radiator.
  5.  請求項1~請求項4のいずれか1項に記載のクーリングモジュールにおいて、
     前記第2の通路には、熱交換器が設けられていることを特徴とするクーリングモジュール。
    The cooling module according to any one of claims 1 to 4,
    The cooling module according to claim 1, wherein a heat exchanger is provided in the second passage.
  6.  請求項1~請求項4のいずれか1項に記載のクーリングモジュールにおいて、
     前記空気量調整部が、前記車輌の走行風の風圧を受けて稼動するように構成されていることを特徴とするクーリングモジュール。
    The cooling module according to any one of claims 1 to 4,
    The cooling module according to claim 1, wherein the air amount adjusting unit is configured to operate by receiving a wind pressure of a traveling wind of the vehicle.
  7.  請求項1~請求項4のいずれか1項に記載のクーリングモジュールにおいて、
     前記空気量調整部が、前記車輌の走行速度を検出する車速度センサの検出結果に応じ、アクチュエータによって駆動するように構成されていることを特徴とするクーリングモジュール。
    The cooling module according to any one of claims 1 to 4,
    The cooling module, wherein the air amount adjustment unit is configured to be driven by an actuator according to a detection result of a vehicle speed sensor that detects a traveling speed of the vehicle.
  8.  請求項1~請求項4のいずれか1項に記載のクーリングモジュールにおいて、
     前記空気量調整部が、前記車輌のエンジンの負荷、前記車輌のエアコンの稼動状況、外気温、車内の温度、ラジエータの冷媒の温度の少なくともいずれかに応じて稼動するように構成されていることを特徴とするクーリングモジュール。
    The cooling module according to any one of claims 1 to 4,
    The air amount adjustment unit is configured to operate in accordance with at least one of a load of an engine of the vehicle, an operating condition of an air conditioner of the vehicle, an outside air temperature, an in-vehicle temperature, and a radiator refrigerant temperature. Cooling module characterized by
  9.  請求項5~請求項8のいずれか1項に記載のクーリングモジュールにおいて、
     前記熱交換器は、ターボチャージャのインタクーラであり、
     前記車輌が停止しているアイドリング状態にあるときには、前記空気量調整部によって前記第2の通路が閉じられるように構成されていることを特徴とするクーリングモジュール。
    The cooling module according to any one of claims 5 to 8,
    The heat exchanger is a turbocharger intercooler,
    The cooling module, wherein the second passage is closed by the air amount adjusting unit when the vehicle is in an idling state where the vehicle is stopped.
  10.  請求項5~請求項8のいずれか1項に記載のクーリングモジュールにおいて、
     前記熱交換器は、強電装備の冷却に使用されるサブラジエータであり、
     前記車輌が停止しているアイドリング状態にあるときには、前記空気量調整部によって前記第2の通路が閉じるかもしくは僅かに開くように構成されていることを特徴とするクーリングモジュール。
    The cooling module according to any one of claims 5 to 8,
    The heat exchanger is a sub-radiator used for cooling high-power equipment,
    The cooling module, wherein the second passage is closed or slightly opened by the air amount adjustment unit when the vehicle is in an idling state in which the vehicle is stopped.
  11.  請求項10に記載のクーリングモジュールにおいて、
     前記サブラジエータの一部が、前記第1の通路内に位置していることを特徴とするクーリングモジュール。
     
    The cooling module according to claim 10,
    The cooling module according to claim 1, wherein a part of the sub-radiator is located in the first passage.
PCT/JP2015/051657 2014-02-27 2015-01-22 Cooling module WO2015129348A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014036664 2014-02-27
JP2014-036664 2014-02-27

Publications (1)

Publication Number Publication Date
WO2015129348A1 true WO2015129348A1 (en) 2015-09-03

Family

ID=54008677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051657 WO2015129348A1 (en) 2014-02-27 2015-01-22 Cooling module

Country Status (1)

Country Link
WO (1) WO2015129348A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017060582A1 (en) * 2015-10-09 2017-04-13 Valeo Systemes Thermiques Front-end module support and corresponding front-end module
EP3187355A1 (en) * 2015-12-21 2017-07-05 Thunder Power New Energy Vehicle Development Company Limited Vehicle radiator v-type layout
JP2017180447A (en) * 2016-03-30 2017-10-05 現代自動車株式会社Hyundai Motor Company System for controlling air flow rate in vehicle engine room and control method thereof
FR3062347A1 (en) * 2017-02-02 2018-08-03 Peugeot Citroen Automobiles Sa DEVICE FOR CONTROLLING AN AIR FLOW CIRCULATING UNDER THE HOOD OF A VEHICLE
CN109263435A (en) * 2018-10-15 2019-01-25 威马智慧出行科技(上海)有限公司 A kind of air conditioning for automobiles refrigerating module
JP2020063011A (en) * 2018-10-19 2020-04-23 トヨタ自動車株式会社 Cooling structure of fuel cell vehicle
FR3089178A1 (en) * 2018-12-03 2020-06-05 VALEO SYSTEMES THERMIQUES - Service propriété Industrielle Front panel module for motor vehicle
WO2020207682A1 (en) * 2019-04-09 2020-10-15 Siemens Mobility GmbH Cooling unit for a vehicle, vehicle, and method for operating a cooling unit
FR3111419A1 (en) * 2020-06-16 2021-12-17 Valeo Systemes Thermiques Heat exchange module comprising at least two heat exchangers
WO2023094421A1 (en) * 2021-11-23 2023-06-01 Polestar Performance Ab Multilayer heat exchanger

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03233128A (en) * 1990-02-06 1991-10-17 Nippondenso Co Ltd Cooling device of water cooling type internal combustion engine for vehicle
JPH04237819A (en) * 1991-01-23 1992-08-26 Nippondenso Co Ltd Cooling device of water cooled internal combustion engine for vehicle
JPH0550862A (en) * 1991-08-16 1993-03-02 Nippondenso Co Ltd Cooling device of internal combustion engine for vehicle
JPH0558172A (en) * 1991-08-27 1993-03-09 Toyota Motor Corp Control device for moving grill
JPH05202748A (en) * 1992-01-29 1993-08-10 Nippondenso Co Ltd Cooling device for water cooled internal combustion engine of vehicle
JPH0885346A (en) * 1994-09-20 1996-04-02 Seirei Ind Co Ltd Engine cooling device for movable agricultural machinery
JPH08260969A (en) * 1995-03-24 1996-10-08 Nissan Motor Co Ltd Cooling device for engine room
JP2002332844A (en) * 2001-05-11 2002-11-22 Denso Corp Cooling device for vehicle
JP2005061343A (en) * 2003-08-18 2005-03-10 Suzuki Motor Corp Cooling device of vehicle
JP2007030744A (en) * 2005-07-28 2007-02-08 Denso Corp Cooling system for hybrid vehicle
JP2007099194A (en) * 2005-10-07 2007-04-19 Toyota Motor Corp Airflow guiding structure of vehicular cooling system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03233128A (en) * 1990-02-06 1991-10-17 Nippondenso Co Ltd Cooling device of water cooling type internal combustion engine for vehicle
JPH04237819A (en) * 1991-01-23 1992-08-26 Nippondenso Co Ltd Cooling device of water cooled internal combustion engine for vehicle
JPH0550862A (en) * 1991-08-16 1993-03-02 Nippondenso Co Ltd Cooling device of internal combustion engine for vehicle
JPH0558172A (en) * 1991-08-27 1993-03-09 Toyota Motor Corp Control device for moving grill
JPH05202748A (en) * 1992-01-29 1993-08-10 Nippondenso Co Ltd Cooling device for water cooled internal combustion engine of vehicle
JPH0885346A (en) * 1994-09-20 1996-04-02 Seirei Ind Co Ltd Engine cooling device for movable agricultural machinery
JPH08260969A (en) * 1995-03-24 1996-10-08 Nissan Motor Co Ltd Cooling device for engine room
JP2002332844A (en) * 2001-05-11 2002-11-22 Denso Corp Cooling device for vehicle
JP2005061343A (en) * 2003-08-18 2005-03-10 Suzuki Motor Corp Cooling device of vehicle
JP2007030744A (en) * 2005-07-28 2007-02-08 Denso Corp Cooling system for hybrid vehicle
JP2007099194A (en) * 2005-10-07 2007-04-19 Toyota Motor Corp Airflow guiding structure of vehicular cooling system

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3042154A1 (en) * 2015-10-09 2017-04-14 Valeo Systemes Thermiques FRONT FACE MODULE SUPPORT AND CORRESPONDING FRONT FACE MODULE
WO2017060582A1 (en) * 2015-10-09 2017-04-13 Valeo Systemes Thermiques Front-end module support and corresponding front-end module
US10173496B2 (en) 2015-12-21 2019-01-08 Thunder Power New Energy Vehicle Development Company Limited Vehicle radiator V type layout
EP3187355A1 (en) * 2015-12-21 2017-07-05 Thunder Power New Energy Vehicle Development Company Limited Vehicle radiator v-type layout
JP2017180447A (en) * 2016-03-30 2017-10-05 現代自動車株式会社Hyundai Motor Company System for controlling air flow rate in vehicle engine room and control method thereof
CN110248835A (en) * 2017-02-02 2019-09-17 标致雪铁龙汽车股份有限公司 For adjusting the device in the air-flow of the hood flowing underneath of vehicle
WO2018142042A1 (en) * 2017-02-02 2018-08-09 Psa Automobiles Sa Device for controlling an air flow flowing under the bonnet of a vehicle
FR3062347A1 (en) * 2017-02-02 2018-08-03 Peugeot Citroen Automobiles Sa DEVICE FOR CONTROLLING AN AIR FLOW CIRCULATING UNDER THE HOOD OF A VEHICLE
CN110248835B (en) * 2017-02-02 2022-09-27 标致雪铁龙汽车股份有限公司 Device for regulating the air flow flowing under the hood of a vehicle
CN109263435A (en) * 2018-10-15 2019-01-25 威马智慧出行科技(上海)有限公司 A kind of air conditioning for automobiles refrigerating module
JP2020063011A (en) * 2018-10-19 2020-04-23 トヨタ自動車株式会社 Cooling structure of fuel cell vehicle
FR3089178A1 (en) * 2018-12-03 2020-06-05 VALEO SYSTEMES THERMIQUES - Service propriété Industrielle Front panel module for motor vehicle
WO2020207682A1 (en) * 2019-04-09 2020-10-15 Siemens Mobility GmbH Cooling unit for a vehicle, vehicle, and method for operating a cooling unit
FR3111419A1 (en) * 2020-06-16 2021-12-17 Valeo Systemes Thermiques Heat exchange module comprising at least two heat exchangers
WO2021255104A1 (en) * 2020-06-16 2021-12-23 Valeo Systemes Thermiques Heat exchange module comprising at least two heat exchangers
WO2023094421A1 (en) * 2021-11-23 2023-06-01 Polestar Performance Ab Multilayer heat exchanger

Similar Documents

Publication Publication Date Title
WO2015129348A1 (en) Cooling module
JP5293888B2 (en) Cooling air introduction structure
JP4957768B2 (en) Cooling air introduction structure
JP5067502B2 (en) Cooling air introduction structure
JP5447733B2 (en) Cooling air introduction structure
JPH05330457A (en) Underfloor structure of automobile
JP5314462B2 (en) Outside air introduction device for vehicles
KR101567733B1 (en) External type active air flap apparatus for vehicle
JP2008500484A (en) Cooling system
JP2007099194A (en) Airflow guiding structure of vehicular cooling system
JP2008106727A (en) Air suction device at front of vehicle
EP3243679B1 (en) Charge air shutter
US9951675B2 (en) Structure of intercooler cover integrated into fan shroud for turbocharged engine and method for operating the same
JP5772538B2 (en) Cooling air introduction structure
JP6416651B2 (en) Shutter opening / closing control device for vehicle
JP2016190533A (en) Cooling system
JP4106297B2 (en) Vehicle heat exchanger
JP6507569B2 (en) vehicle
KR20210056795A (en) Wheel house structure
JP2006316747A (en) Heat exchange device for vehicle
JP6160912B2 (en) Cold air introduction structure for vehicles
JP2017056838A (en) vehicle
JP2016190534A (en) Cooling system
JP4161820B2 (en) Vehicle heat exchanger cooling structure
JP2005112174A (en) Cooling system for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15755119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15755119

Country of ref document: EP

Kind code of ref document: A1