WO2015129185A1 - Resin-sealed semiconductor device, production method therefor, and mounting body therefor - Google Patents

Resin-sealed semiconductor device, production method therefor, and mounting body therefor Download PDF

Info

Publication number
WO2015129185A1
WO2015129185A1 PCT/JP2015/000653 JP2015000653W WO2015129185A1 WO 2015129185 A1 WO2015129185 A1 WO 2015129185A1 JP 2015000653 W JP2015000653 W JP 2015000653W WO 2015129185 A1 WO2015129185 A1 WO 2015129185A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor device
top surface
sealing resin
lead terminals
lead terminal
Prior art date
Application number
PCT/JP2015/000653
Other languages
French (fr)
Japanese (ja)
Inventor
老田 成志
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2015129185A1 publication Critical patent/WO2015129185A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49548Cross section geometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16245Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49568Lead-frames or other flat leads specifically adapted to facilitate heat dissipation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape

Definitions

  • the present disclosure relates to a resin-encapsulated semiconductor device in which a semiconductor chip and a lead frame are encapsulated with an encapsulating resin, and a mounting body thereof. In particular, a part of a lead terminal is exposed from the encapsulating resin. Is related to the structure.
  • Patent Document 1 In response to such a requirement, for example, a semiconductor device described in Patent Document 1 is known.
  • FIG. 11 is a side sectional view showing a configuration of a conventional semiconductor device.
  • a conventional semiconductor device 100 is mounted on a chip mounting portion 102 on which a semiconductor chip 101 is mounted, a lead frame having a terminal portion to be a lead terminal 103, and the chip mounting portion 102, and is electrically connected to the terminal portion. And a semiconductor chip 101.
  • a through groove that penetrates the terminal portion from one surface that is the surface on the semiconductor chip 101 side to the other surface in the thickness direction, a lid portion 104 that closes an end portion of the through groove on one surface side of the terminal portion, A resin portion 105 for sealing the semiconductor chip 101 so as to expose the other surface of the terminal portion and the inner surface of the through groove, and the plating film 106 is the other surface of the terminal portion and the inner surface of the through groove. It is covered.
  • solder is easily attached to the side surface of the lead terminal 103 of the semiconductor device 100.
  • the side surface of the lead terminal 103 of the semiconductor device 100 contributes to the improvement of solder wettability, and further, the improvement of the solder connection strength can be maintained in the mounting body of the semiconductor device 100.
  • an object of the present disclosure is to greatly improve the solder connection strength of a printed circuit board mounting body without substantially changing the sizes of conventional semiconductor devices and lead terminals.
  • the semiconductor device includes a semiconductor chip, a plurality of lead terminals electrically connected to the semiconductor chip, and a sealing resin portion that seals the semiconductor chip and the plurality of lead terminals.
  • the plurality of lead terminals are formed inside the rectangular sealing resin region formed by the outermost peripheral side of the sealing resin portion when viewed from the top surface.
  • At least one of the plurality of lead terminals is a top surface exposed lead terminal having a top surface exposed from the sealing resin portion in the sealing resin region.
  • solder bonding strength can be obtained when solder bonding is performed with a printed circuit board.
  • the size of the lead terminal hardly needs to be changed from the conventional one.
  • the semiconductor device may include a die pad on which the semiconductor chip is placed.
  • the sealing resin portion may seal the semiconductor chip, the plurality of lead terminals, and the die pad.
  • bottom surfaces of the plurality of lead terminals may not be covered with the sealing resin portion.
  • the top surface exposed lead terminal may be located at a corner portion of the semiconductor device.
  • solder joint state of the solder joint portion at the corner portion of the semiconductor device where stress is most concentrated can be strengthened, sufficient solder joint strength can be obtained.
  • top surface exposed lead terminals may be arranged at the four corners of the semiconductor device.
  • a plating film may be coated on at least one of the top surface, the bottom surface, and the side surface of the top surface exposed lead terminal.
  • solder wettability is remarkably improved, a sufficient solder joint strength can be obtained when a semiconductor device is mounted on a printed board.
  • the top surface of the top surface exposed lead terminal is inclined toward the bottom surface side of the semiconductor device from the central portion toward the outer peripheral portion of the semiconductor device.
  • solder material can easily reach the top surface side of the top surface exposed lead terminal, the wet spread area can be increased and the wet spread speed can be improved, and a solder fillet is easily formed.
  • a groove or a recess may be formed on the top surface of the top surface exposed lead terminal.
  • solder material comes into contact with the top surface side of the top surface exposed lead terminal, the solder material spreads along the groove and the concave portion by a so-called capillary phenomenon. Accordingly, it is possible to increase the wet spread area and improve the wet spread speed, and as a result, solder fillets are easily formed.
  • groove or the recess may be formed from the center of the semiconductor device toward the outer periphery.
  • top-surface exposed lead terminal may have a shape that is curved outward from the bottom surface of the semiconductor device at the outer peripheral portion of the semiconductor device.
  • top surface of the top exposed lead terminal may be the same height as the top surface of the sealing resin portion.
  • a mounting body of a semiconductor device includes any one of the semiconductor devices described above, a printed circuit board having a wiring pattern, and a solder material that connects a plurality of lead terminals and the wiring pattern of the semiconductor device. Are also arranged on the top surface of the top exposed lead terminal of the semiconductor device.
  • the shape of the solder material for connecting the semiconductor device and the printed circuit board that is, the so-called solder fillet can be made strong, and a highly reliable mounting body of the semiconductor device can be obtained.
  • the first method for manufacturing a semiconductor device includes the following first to sixth steps. That is, the method includes a first step of preparing a plurality of lead terminals and a semiconductor chip, and a second step of joining the semiconductor chip and the plurality of lead terminals with a thin metal wire. Then, a third step of placing the resin adhesion preventing material on a part of at least one top surface of the plurality of lead terminals, and a fourth step of sealing the plurality of lead terminals, the semiconductor chip, and the fine metal wires with a sealing resin And a process. Furthermore, the resin adhesion preventing material is removed to provide a fifth step for obtaining a sealing resin body, and a sixth step for obtaining a semiconductor device by dividing the sealing resin body individually.
  • the second method for manufacturing a semiconductor device includes the following first to sixth steps. That is, the method includes a first step of preparing a plurality of lead terminals and a semiconductor chip, and a second step of joining the semiconductor chip and the plurality of lead terminals with a thin metal wire. Then, a third step of placing a resin adhesion preventing material on a part of at least one top surface of the plurality of lead terminals, and molding by sealing the plurality of lead terminals, the semiconductor chip, and the fine metal wires with a sealing resin And a fourth step of obtaining a sealing resin body to be performed. Furthermore, a fifth step of dividing the sealing resin body individually and a sixth step of obtaining a semiconductor device by removing the resin adhesion preventing material are provided.
  • a lead frame having a plurality of lead terminals, a die pad for mounting the semiconductor chip, and a suspension lead for supporting the die pad may be prepared. Further, a seventh step of placing the semiconductor chip on the die pad may be provided between the first step and the second step.
  • the semiconductor device and the mounting body thereof according to the present disclosure have a lead terminal that cuts out the sealing resin on the surface side of the semiconductor device and exposes the top surface, so that there is almost no need to change the size of the lead terminal.
  • the effect that the solder joint strength with the substrate is improved can be achieved.
  • FIG. 1 is a perspective view showing the configuration of the semiconductor device according to the first embodiment.
  • 2A is a view of the semiconductor device of FIG. 1 when viewed from the top surface direction.
  • 2B is a cross-sectional view of the semiconductor device of FIG. 2A taken along the line IIb-IIb.
  • 2C is a view of the semiconductor device of FIG. 1 when viewed from the bottom.
  • FIG. 3A is a view of another example of the semiconductor device according to the first embodiment when viewed from the top surface direction.
  • FIG. 3B is a diagram of another example of the semiconductor device according to the first embodiment viewed from the top surface direction.
  • 4 is a cross-sectional view of the mounting body of the semiconductor device shown in FIG. FIG.
  • FIG. 5 is a cross-sectional view comparing manufacturing flows of the semiconductor device shown in FIG. 1 and a conventional semiconductor device.
  • FIG. 6 is a cross-sectional view for comparing manufacturing flows of the semiconductor device according to the second embodiment and a conventional semiconductor device.
  • FIG. 7 is a side cross-sectional view of a mounting body including a semiconductor device according to the third embodiment.
  • FIG. 8A is a diagram illustrating a main part when an example of the semiconductor device according to the fourth embodiment is viewed from the top surface direction.
  • FIG. 8B is a diagram illustrating a main part when an example of the semiconductor device according to the fourth embodiment is viewed from the top surface direction.
  • 8C is a cross-sectional view of the semiconductor device of FIG. 8A taken along the line VIIIc-VIIIc.
  • FIG. 8D is a cross-sectional view of the semiconductor device of FIG. 8B taken along line VIIId-VIIId.
  • FIG. 9 is a side cross-sectional view of a mounting body including a semiconductor device according to the fifth embodiment.
  • FIG. 10 is a side cross-sectional view of a mounting body including a semiconductor device according to the sixth embodiment.
  • FIG. 11 is a side sectional view showing a configuration of a conventional semiconductor device.
  • FIG. 12 is a diagram for explaining a problem of a conventional semiconductor device.
  • FIG. 1 is a perspective view of the semiconductor device according to the first embodiment.
  • the semiconductor device 11 of the present embodiment includes a semiconductor chip 12, a die pad 13 on which the semiconductor chip 12 is placed, and a plurality of leads electrically connected to the semiconductor chip 12 by metal thin wires 14. And a terminal 15. And it has the sealing resin part 16 which seals at least one part of the semiconductor chip 12, the die pad 13, the metal fine wire 14, and the lead terminal 15.
  • the semiconductor device 11 is called a so-called QFN (Quad-Flat-Non-Lead) package in which a plurality of lead terminals 15 are formed inside the resin region of the sealing resin portion 16 when viewed from the top surface direction.
  • QFN Quad-Flat-Non-Lead
  • a feature is that a part of the top surface of at least one lead terminal 15 is exposed from the sealing resin portion 16.
  • the QFN package has a rectangular shape.
  • the lead terminals arranged on the back surface side of the semiconductor device are covered with sealing resin, and the top surface of the lead terminal is sealed. Not exposed from the resin.
  • the sealing resin region is formed by a rectangular region equal to the bottom surface of the semiconductor device 11 formed by the sealing resin portion 16 and the lead terminal 15 or by a side constituting the outermost periphery of the sealing resin portion 16. This is a square area.
  • the lead terminal 15 whose top surface is exposed from the sealing resin portion 16 is particularly referred to as a top surface exposed lead terminal 17.
  • reference numeral 15 represents a lead terminal whose top surface is covered with the sealing resin portion 16, and reference numeral 17 represents a top exposed lead terminal of the present disclosure.
  • the lead terminal 15 has a terminal width of about 0.1 to 0.4 mm and a terminal pitch of about 0.4 to 1.27 mm, and the terminal width is 0.15 to 0 with the recent miniaturization of the QFN package. .2mm and terminal pitch is 0.4 to 0.65mm.
  • FIG. 2A to 2C are diagrams of the semiconductor device of FIG. 1 when viewed from a plurality of directions.
  • 2A is a plan view as viewed from the top surface side of the semiconductor device
  • FIG. 2B is a cross-sectional view of the semiconductor device of FIG. 2A taken along the line IIb-IIb
  • FIG. 2C is as viewed from the bottom surface side of the semiconductor device. It is a top view.
  • the bottom surfaces of all the lead terminals 15 and 17 including the top surface exposed lead terminals 17 are exposed on the bottom surface of the semiconductor device 11, and the appearance is not different from the conventional QFN package.
  • a notch 30 is formed in a part of the sealing resin portion 16 on the outer peripheral side of the semiconductor device 11.
  • the top surface of the lead terminal is exposed from the portion 30 (top surface exposed lead terminal 17).
  • the top surface of the normal lead terminal 15 is completely covered with the sealing resin portion 16, whereas the top surface exposed lead In the terminal 17, a part of the top surface on the outer peripheral side of the semiconductor device 11 is exposed at the corner portion and the side surface portion of the semiconductor device 11.
  • the exposed portion of the top surface exposed lead terminal 17 is to be soldered to the wiring pattern 19 of the printed circuit board 18 in a reflow mounting process described later (see FIG. 4).
  • FIG. 3A and 3B are plan views seen from the top side showing another example of the first embodiment.
  • FIG. 1 and FIG. 2 an example is described in which the top exposed lead terminals 17 are installed in a corner portion and a side portion adjacent to the corner portion in the outer peripheral portion of the semiconductor device 11.
  • the present invention is not limited to these examples.
  • the top surface exposed lead terminal 17 may be provided only in the corner portion, or may be provided only in the side surface portion as shown in FIG. 3B.
  • the top exposed lead terminal 17 is connected to the four corners of the semiconductor device 11 in view of difficulty in joining with a wiring pattern of a printed circuit board to be described later, difficulty in manufacturing a semiconductor device, manufacturing cost of the semiconductor device, and the like. You may provide in a part and may provide in two corner parts on a diagonal.
  • the top exposed lead terminal 17 may be formed by exposing a part of the upper surface of all the lead terminals 15 in the side surface portion. Further, the top exposed lead terminals 17 may be provided only on one side surface, or the top exposed lead terminals 17 and the lead terminals 15 may be provided alternately. Moreover, the top surface exposed lead terminal 17 may be provided on either one of the corner portion or the side surface portion, or may be provided on both. That is, at least one of the plurality of lead terminals 15 may be the top surface exposed lead terminal 17.
  • FIG. 4 is a cross-sectional view of a mounting body using the semiconductor device of FIG.
  • a solder paste (not shown) is applied to the wiring pattern 19 of the printed circuit board 18. Then, the solder paste and the lead terminal 15 and the top exposed lead terminal 17 of the semiconductor device 11 are placed in face-to-face alignment and heated at a high temperature with a reflow device or the like, thereby mounting the package 20 of the semiconductor device 11 of the present disclosure. Is completed.
  • the bottom surface side of the top exposed lead terminal 17 is widely connected to the wiring pattern 19 of the printed circuit board 18 by the solder material 21, it can stably supply and demand electrical signals. Further, since the top surface side of the top surface exposed lead terminal 17 is connected to the solder alloy so as to be pressed against the wiring pattern 19 of the printed circuit board 18 by the solder material 21, the mounting strength can be maintained high.
  • printed circuit boards often have a thickness of about 0.5mm to 2.0mm, and the layer structure consists of a single-sided board where the conductor layer exists only on one side and two layers where the conductive layer exists on both the front and back sides.
  • the layer structure consists of a single-sided board where the conductor layer exists only on one side and two layers where the conductive layer exists on both the front and back sides.
  • These printed circuit boards are selectively used as necessary, such as the wiring density rule of semiconductor devices, heat dissipation, and the generation of set equipment to be used.
  • solder paste material melts at a maximum temperature of about 260 ° C. in consideration of the burden on the reflow heating device and the heat resistance of the semiconductor device.
  • solder pastes such as Sn, Ag, and Cu are generally used in many cases.
  • the mounting body 20 shown in FIG. 4. The thickness of the semiconductor device 11 and the size in the planar direction, the lead terminal 15, the top exposed lead terminal 17, the sealing resin portion 16, the solder material 21, and the printed board 18
  • the mounting body 20 is subjected to expansion and contraction stress loads depending on the physical property specification values such as the thermal expansion coefficient, the respective processing methods, the manufacturing flow and the connection conditions for connecting each other. Therefore, a particularly large load is applied to the solder material 21 that joins the semiconductor device 11 and the printed circuit board 18.
  • the structure is not capable of stress relaxation as in the QFP (Quad-Flat-Package) with the gull wing leads, so a large load is applied to the solder material 21. It is clear that it takes.
  • the mounting body 20 inside the housing is not comparable to the conventional one. It is often stressed and it can be easily imagined that electrical open defects are caused.
  • the portion most susceptible to the influence is a portion related to the solder material 21 connecting the semiconductor device 11 and the printed board 18 shown in FIG. Therefore, it goes without saying that the reliability of the mounting body 20 described above can be improved by making the shape of the solder material 21, that is, a so-called solder fillet, into a firm shape.
  • a so-called face-up type semiconductor chip in which the electrode of the semiconductor chip 12 faces the top surface side. 12 and a thin metal wire 14 are used.
  • a so-called face-down method in which the electrodes of the semiconductor chip 12 face the bottom surface may be used.
  • bumps may be interposed using flip chip bonding, or the electrodes of the semiconductor chip 12 and the lead terminals 15 may be electrically connected by direct bonding by forming a eutectic alloy or the like.
  • fine metal wire 14 an aluminum fine wire, a gold wire, or the like can be used.
  • the sealing resin portion 16 does not exist on the bottom surface of the die pad 13 on which the semiconductor chip 12 is placed, and the bottom surface of the die pad 13 is exposed.
  • the die pad 13 also plays a role of efficiently releasing heat generated from the semiconductor chip 12. Therefore, by soldering the printed circuit board 18 with the solder material 21, the heat dissipation of the semiconductor chip 12 can be enhanced, and the function of the semiconductor chip 12 can be kept stable.
  • the present embodiment may be applied to a so-called die pad upset QFN package in which the bottom surface of the die pad 13 is covered with the sealing resin portion 16. Further, without using the die pad 13, a part of the lead terminal 15 may be insulated and the semiconductor chip 12 may be supported on the insulator. Further, an insulating resin tape may be provided and the semiconductor chip 12 may be mounted on the insulating resin tape. That is, this embodiment may be applied to a die padless lead frame instead of using the die pad 13.
  • all the lead terminals 15 and the die pad 13 including the top surface exposed lead terminals 17 may be formed by the same lead frame due to manufacturing advantages, but may not necessarily be the same.
  • a lead terminal and a die pad manufactured by different materials or by different manufacturing methods may be prepared by a method of combining and forming in a later step.
  • the lead frame has a copper (Cu) material frame, a nickel (Ni) layer as a base plating, a palladium (Pd) layer thereon, and a thin gold (Au) layer as an uppermost layer.
  • Cu copper
  • Ni nickel
  • Pd palladium
  • Au gold
  • the lead frame has a copper (Cu) material frame, a nickel (Ni) layer as a base plating, a palladium (Pd) layer thereon, and a thin gold (Au) layer as an uppermost layer.
  • Cu copper
  • Ni nickel
  • Pd palladium
  • Au gold
  • the step of coating the plating film may be a so-called pre-plating (pre-plating) method performed before placing the semiconductor chip 12 on the die pad 13. Further, a so-called post-plating method in which the plating film is coated after the semiconductor device 11 is sealed with resin may be used.
  • FIG. 5 is a diagram for comparing the manufacturing flow between the semiconductor device shown in FIG. 1 and a conventional semiconductor device.
  • the left side of the alternate long and short dash line is a cross-sectional view showing the manufacturing flow of the semiconductor device of the present embodiment
  • the right side is a cross-sectional view showing the manufacturing flow of the conventional semiconductor device.
  • the semiconductor chip 12 is electrically connected to the semiconductor chip 12 by a metal pad 14, and a die pad 13 on which the semiconductor chip 12 is bonded and mounted by an adhesive, so-called die bonding material.
  • a lead frame 22 provided with the lead terminals 15 is prepared.
  • the die pad 13 is supported by the suspension leads, it is not shown in the cross section in FIG. Further, the suspension lead is bent in the thickness direction to form a so-called depressed portion, and a part of the suspension lead is covered with a sealing resin described later.
  • the material of the lead frame 22, the plating film coated on the surface of the lead frame 22, the direction of the semiconductor chip 12, and the type of the fine metal wires 14 are as described above.
  • the resin adhesion preventing pin 23 is brought into contact with the top surface of the lead terminal 15 that becomes the top surface exposed lead terminal 17 in the subsequent process. Note that this process does not exist in the conventional manufacturing flow. Further, the resin adhesion preventing pin 23 is not provided on the top surface of the normal lead terminal 15 covered with the sealing resin portion 16.
  • the resin adhesion prevention pin 23 serves as a mask that prevents the sealing resin from entering the top surface of the top surface exposed lead terminal 17 during resin sealing. That is, the presence of the resin adhesion preventing pin 23 can prevent the sealing resin burr from being formed on the top surface of the top surface exposed lead terminal 17. Then, the process B in FIG. 5 is an important process that finally determines the structure of the top exposed lead terminal 17 of the semiconductor device 11 of the present disclosure.
  • the resin adhesion prevention pin 23 is provided in the mold for resin sealing and has a structure that can be removed after the sealing resin is cured by contacting the top exposed lead terminal 17 before injecting the sealing resin. It has become.
  • the resin sealing mold it is not necessarily attached to the resin sealing mold to reduce the cost of the resin sealing mold, and is resistant to the high temperature environment at the time of resin sealing as will be described later.
  • the material may be removed or disappear after completion or after individual dicing. That is, the resin adhesion preventing pin 23 may be removed by any method.
  • the fine metal wires 14 are connected to the top surface exposed lead terminals 17 that are in contact with the resin adhesion preventing pins 23 and are shown as electrically effective signal pins. 11, only lead terminals located at the four corners, so-called reinforcing lands, may be used as the top exposed lead terminals 17, and the resin adhesion preventing pins 23 may be brought into contact with each other. That is, the resin adhesion preventing pin 23 may be brought into contact with at least one top surface of the plurality of lead terminals 15.
  • step C of FIG. 5 all lead terminals except for the semiconductor chip 12, the fine metal wires 14, part of the die pad 13, and part of the top face of the top exposed lead terminal 17 are injected with sealing resin. A sealing resin portion 16 for sealing the top surface of 15 is formed.
  • step D of FIG. 5 the resin adhesion preventing pins 23 that have been in contact with the top exposed lead terminals 17 are removed and divided individually by a dicing saw 25 or the like to complete the semiconductor device 11.
  • the notch portion 30 is formed in the sealing resin portion 16 by removing the resin adhesion preventing pin 23.
  • the semiconductor device 11 is a resin-encapsulated semiconductor device called a so-called QFN package in which the lead terminals 15 are formed inside the resin region of the encapsulating resin portion 16 when viewed from the top surface direction. That is, the resin-encapsulated semiconductor device 11 having a structure (a top exposed lead terminal 17) in which at least a part of at least one lead terminal 15 in the top surface direction is exposed from the sealing resin portion 16 is completed.
  • the exposed surface on the top surface side of the top surface exposed lead terminal 17 of the present disclosure if a so-called post-plating method for covering the plating film after the semiconductor device 11 is sealed with resin is used, the exposed surface on the top surface side of the top surface exposed lead terminal 17 of the present disclosure, Of course, a plating film is formed on the exposed surface on the bottom side. Further, since the plating film can be formed on the side surfaces of all the lead terminals 15 including the top surface exposed lead terminals 17 where the metal material is exposed by cutting with the dicing saw 25, the solder wettability is improved. Improve dramatically.
  • the manufacturing method of the present disclosure is not limited to the case where the lead frame 22 is used.
  • the shape of the top exposed lead terminal 17 that is a basic concept of the present disclosure is applicable to all semiconductor devices having a semiconductor chip mounted and having a lead terminal.
  • the substrate type, TAB type, ceramic type, etc. are widely used. It is possible to apply.
  • FIG. 6 is a diagram for comparing manufacturing flows of the semiconductor device according to the second embodiment and a conventional semiconductor device.
  • components having substantially the same function are denoted by the same reference numerals as those in the first embodiment, and detailed description may be omitted.
  • the left side of the alternate long and short dash line is a cross-sectional view showing the manufacturing flow of the semiconductor device of the present embodiment
  • the right side is a cross-sectional view showing the manufacturing flow of the conventional semiconductor device.
  • Step A in FIG. 6 is the same as Step A in FIG. 6
  • step B of FIG. 6 the resin adhesion preventing lid member 24 is brought into contact with the top surface of the lead terminal 15.
  • This resin adhesion preventing lid member 24 serves to serve as a mask that prevents the sealing resin from entering the top surface of the top exposed lead terminal 17 during resin sealing. That is, it is possible to prevent the sealing resin burr from being formed on the top surface of the top surface exposed lead terminal 17 due to the presence of the resin adhesion preventing lid member 24.
  • the process B in FIG. 6 is an important process that finally determines the structure of the top exposed lead terminal 17 of the semiconductor device 11 of the present disclosure.
  • the resin adhesion prevention lid member 24 is placed so as to come into contact with the lead terminal 15 serving as the top exposed lead terminal 17 before injecting the sealing resin.
  • the fine metal wire 14 is connected to the top surface exposed lead terminal 17 that is in contact with the resin adhesion preventing lid member 24 and is shown as an electrically effective signal pin. Only the lead terminals located at the four corners of the device 11, that is, so-called reinforcing lands, may be used as the top exposed lead terminals 17, and the resin adhesion preventing lid member 24 may be brought into contact therewith. That is, the resin adhesion prevention lid member 24 may be brought into contact with at least one top surface of the plurality of lead terminals 15.
  • step C of FIG. 6 all lead terminals except for the semiconductor chip 12, the fine metal wires 14, part of the die pad 13, and part of the top surface of the top surface exposed lead terminal 17 are injected with sealing resin. A sealing resin portion 16 for sealing the top surface of 15 is formed.
  • step D of FIG. 6 the resin adhesion prevention lid member 24 that is in contact with the top surface exposed lead terminal 17 appears on the side surface of the semiconductor device 11 by being divided individually by a dicing saw 25 or the like.
  • step E of FIG. 6 by removing the resin adhesion prevention lid member 24, a structure in which the top surface of the lead terminal 15 is exposed (top surface exposed lead terminal 17) can be formed.
  • the notch portion 30 is formed in the sealing resin portion 16 by removing the resin adhesion preventing lid member 24.
  • the resin adhesion preventing lid member 24 is preferably a material that is resistant to a high temperature environment at the time of resin sealing, and further disappears (including when removed) after being divided individually.
  • the same metal material as the top surface exposed lead terminal 17 or the same epoxy resin material as the sealing resin portion 16 may be used.
  • a metal piece formed with the same composition as the solder material 21 is resistant to heating in a resin sealing process at around 170 ° C., and can be melted together with the solder paste material during reflow mounting. Therefore, formation of a good solder fillet can be expected.
  • FIG. 7 is a side cross-sectional view of a mounting body including a semiconductor device according to the third embodiment.
  • components having substantially the same function are denoted by the same reference numerals as those in the first embodiment, and detailed description may be omitted.
  • the top surface exposed lead terminal 17 whose top surface is exposed from the sealing resin portion 16 does not form a parallel state between the top surface and the bottom surface, and the top surface and the bottom surface are formed in the outer peripheral portion of the semiconductor device 11. It is characterized by a structure in which the distance in the thickness direction becomes thinner in a tapered shape as it goes toward the outer periphery.
  • the bottom surface of the top surface exposed lead terminal 17 is parallel to the bottom surface of the semiconductor device 11, whereas the top surface of the top surface exposed lead terminal 17 is inclined with respect to the bottom surface of the semiconductor device 11.
  • the mounting strength can be improved.
  • the top exposed lead 17 in the present embodiment may be installed at either the corner portion or the side surface portion, and in order to maintain higher solder connection reliability, You may apply to all the lead terminals of a corner part and a side part.
  • FIG. 8A and FIG. 8B are views showing main parts of an example of the semiconductor device according to the fourth embodiment, respectively, and FIG. 8A and FIG. 8B are plan views when the semiconductor device is viewed from the top surface side, respectively.
  • 8C is a cross-sectional view of the semiconductor device of FIG. 8A taken along the line VIIIc-VIIIc.
  • 8D is a cross-sectional view of the semiconductor device of FIG. 8B taken along line VIIId-VIIId.
  • the top surface exposed lead terminal 17 whose top surface is exposed from the sealing resin portion 16 in the fourth embodiment is characterized in that a groove portion 17a or a concave portion 17a is formed on the top surface.
  • the groove portion 17 a or the recess portion 17 a extends from the center direction of the semiconductor device 11 toward the outer peripheral portion of the semiconductor device 11. As long as the groove part 17a or the recessed part 17a is extended in the direction which goes to an outer peripheral part, it may be linear as shown to FIG. 8A, or may be curvilinear as shown to FIG. 8B. Further, both may be mixed in the same top exposed lead terminal 17.
  • solder material 21 comes into contact with the top surface side of the top surface exposed lead terminal 17, the solder material 21 can spread along the groove portion 17a and the recess portion 17a by a so-called capillary phenomenon.
  • capillary phenomenon it is possible to increase the wet spreading area and improve the wet spreading speed, and as a result, an effect that a solder fillet is easily formed can be expected.
  • the mounting strength can be improved.
  • the top-surface exposed lead terminal 17 in the present embodiment may be installed in either the corner portion or the side portion. Further, in order to maintain higher solder connection reliability, the present invention may be applied to all lead terminals in the corner portion and the side portion. Moreover, it is good also as a structure combined with 3rd Embodiment.
  • FIG. 9 is a side cross-sectional view of a mounting body including a semiconductor device according to the fifth embodiment.
  • components having substantially the same function are denoted by the same reference numerals as those in the first embodiment, and detailed description may be omitted.
  • the top exposed lead terminal 17 whose upper surface is exposed from the sealing resin portion 16 in the fifth embodiment has a structure that is curved in the thickness direction toward the printed circuit board 18 as it approaches the outer peripheral portion of the semiconductor device 11. It is characterized by that.
  • the end portion of the top surface exposed lead terminal 17 is disposed closer to the printed circuit board 18 than the bottom surface of the semiconductor device 11 (the bottom surface of the sealing resin portion 16). With such a structure, a gap between the bottom surface of the top surface exposed lead terminal 17 and the printed board 18, a so-called standoff can be secured.
  • the bottom surface of the top surface exposed lead terminal 17 protrudes from the bottom surface of the sealing resin portion 16. Therefore, the stand-off height of the top surface exposed lead terminal 17 is ensured to be high when the top surface exposed lead terminal 17 and the wiring pattern 19 on the printed circuit board 18 are joined when the semiconductor device 11 is mounted on the printed circuit board 18. Can do. Therefore, the thickness of the solder material inevitably increases and a structure capable of absorbing more strain can be obtained, so that the bonding strength can be improved.
  • the top exposed lead terminal 17 in the present embodiment may be installed at either the corner or the side surface, and in order to maintain higher solder connection reliability. It may be applied to all the lead terminals in the corner portion and the side portion. Moreover, it is good also as a structure combined with 4th Embodiment.
  • FIG. 10 is a side cross-sectional view of a mounting body including a semiconductor device according to the sixth embodiment.
  • components having substantially the same function are denoted by the same reference numerals as those in the first embodiment, and detailed description may be omitted.
  • the top-surface exposed lead terminal 17 whose upper surface is exposed from the sealing resin portion 16 in the sixth embodiment is characterized by a structure in which the side surface is extended in the thickness direction.
  • top exposed lead terminal 17 exposed from the sealing resin portion 16 from the bottom surface to the top surface of the semiconductor device 11 at the corner portion of the semiconductor device 11. That is, the top surface of the sealing resin portion 16 and the top surface of the top surface exposed lead terminal 17 have the same height and are flush with each other.
  • the top exposed lead terminal 17 is L-shaped in the cross-sectional view of the semiconductor device 11 in the thickness direction. With such a structure, the solder material 21 existing on the top surface of the top surface exposed lead terminal 17 can further wet in the thickness direction, and a thicker solder fillet can be formed.
  • the mounting strength can be improved.
  • the shape of the top exposed lead terminal 17 may be a structure combined with the third to fifth embodiments.
  • the semiconductor device 11 since the lead terminal is formed inside the sealing resin region as in the conventional QFN package, the semiconductor device 11 itself can be reduced in size and soldered to the printed circuit board 18. It is possible to provide a QFN package with excellent performance that connection strength can be improved.
  • the present disclosure has an effect that a solder fillet can be formed from the top surface direction of a lead terminal in a mounting body of a semiconductor device, and a strong solder connection strength can be maintained. Therefore, a semiconductor having a minute lead terminal This is useful for keeping the solder connection strength between the apparatus and the printed circuit board strong, and is useful as a mounting body that can sufficiently withstand a load of a large mechanical stress or thermal stress.

Abstract

The present invention greatly improves the solder connection strength of a mounting body for a printed circuit board while causing almost no change to the sizes of conventional semiconductor devices and lead terminals. A semiconductor device (11) is provided with a semiconductor chip (12), a plurality of lead terminals (15) that are electrically connected with the semiconductor chip, and a sealing resin section (16) that seals the semiconductor chip and the plurality of lead terminals. When viewed from the top surface, the plurality of lead terminals are formed more to the inside than a sealing resin area of a square that is configured from the outermost periphery of the sealing resin section. At least one of the plurality of lead terminals is an exposed top surface lead terminal (17) having a top surface that is exposed from the sealing resin within the sealing resin area.

Description

樹脂封止型半導体装置、およびその製造方法、ならびにその実装体Resin-sealed semiconductor device, manufacturing method thereof, and mounting body thereof
 本開示は、半導体チップおよびリードフレームを封止樹脂で封止した樹脂封止型半導体装置、およびその実装体に関するものであり、特にリード端子の一部の面を封止樹脂から露出させるようにした構造に関するものである。 The present disclosure relates to a resin-encapsulated semiconductor device in which a semiconductor chip and a lead frame are encapsulated with an encapsulating resin, and a mounting body thereof. In particular, a part of a lead terminal is exposed from the encapsulating resin. Is related to the structure.
 近年、OA(Office Automation)機器や家電製品等の軽薄短小化、および一般ユーザーからの幅広い要望に応える多種多機能化にともない、電子機器に搭載される半導体装置は小型化・薄型化・多ピン化が進んでいる。一方で、最近では自動車や航空機器の電子化にともないプリント基板実装体に対しては、車載レベルに充分耐え得る信頼性が求められてきている。狭小面積のリード端子を用いて、高耐性の実装信頼性を実現するために、実装体のハンダ接合部の強度向上は必須課題となってきている。 In recent years, semiconductor devices mounted on electronic devices have become smaller, thinner, and multi-pinned as OA (Office Automation) devices and home appliances have become lighter, thinner, and smaller, and have a variety of functions to meet a wide range of requests from general users. Is progressing. On the other hand, recently, with the digitization of automobiles and aeronautical equipment, there has been a demand for reliability that can sufficiently withstand the in-vehicle level for printed circuit board mounting bodies. In order to achieve highly reliable mounting reliability using a lead terminal with a small area, it is essential to improve the strength of the solder joint of the mounting body.
 このような要求に対して、例えば、特許文献1に記載されている半導体装置が知られている。 In response to such a requirement, for example, a semiconductor device described in Patent Document 1 is known.
 以下、従来の半導体装置について図11を参照しながら説明する。図11は、従来の半導体装置の構成を示す側面断面図である。従来の半導体装置100は、半導体チップ101が搭載されるチップ搭載部102、及びリード端子103となる端子部を備えたリードフレームと、チップ搭載部102に搭載され、端子部と電気的に接続された半導体チップ101とを有する。さらに端子部を半導体チップ101側の面である一方の面から他方の面に厚さ方向に貫通する貫通溝と、端子部の一方の面側の貫通溝の端部を塞ぐ蓋部104と、端子部の他方の面及び貫通溝の内側面を露出するように半導体チップ101を封止する樹脂部105と、を有し、端子部の他方の面及び貫通溝の内側面がメッキ膜106で被覆されている。この構成により、半導体装置100のリード端子103の側面にハンダが付き易いとされている。このような構成を採用することにより、半導体装置100のリード端子103の側面はハンダ濡れ性向上に寄与し、さらに半導体装置100の実装体においてはハンダ接続強度向上を維持できるとしている。 Hereinafter, a conventional semiconductor device will be described with reference to FIG. FIG. 11 is a side sectional view showing a configuration of a conventional semiconductor device. A conventional semiconductor device 100 is mounted on a chip mounting portion 102 on which a semiconductor chip 101 is mounted, a lead frame having a terminal portion to be a lead terminal 103, and the chip mounting portion 102, and is electrically connected to the terminal portion. And a semiconductor chip 101. Furthermore, a through groove that penetrates the terminal portion from one surface that is the surface on the semiconductor chip 101 side to the other surface in the thickness direction, a lid portion 104 that closes an end portion of the through groove on one surface side of the terminal portion, A resin portion 105 for sealing the semiconductor chip 101 so as to expose the other surface of the terminal portion and the inner surface of the through groove, and the plating film 106 is the other surface of the terminal portion and the inner surface of the through groove. It is covered. With this configuration, it is assumed that solder is easily attached to the side surface of the lead terminal 103 of the semiconductor device 100. By adopting such a configuration, the side surface of the lead terminal 103 of the semiconductor device 100 contributes to the improvement of solder wettability, and further, the improvement of the solder connection strength can be maintained in the mounting body of the semiconductor device 100.
特開2013-225595号公報JP 2013-225595 A
 しかしながら上記の構成では、図12に示すように、ハンダ接合部に厚み方向の応力ダメージが掛かった場合、半導体装置100がプリント基板107から離反しようとする応力を完全に留めることができないため、半導体装置100のオープン不良を招く恐れがある。 However, in the above configuration, as shown in FIG. 12, when the solder joint is subjected to stress damage in the thickness direction, the stress that the semiconductor device 100 tries to separate from the printed circuit board 107 cannot be completely retained. There is a risk of causing an open failure of the device 100.
 かかる点に鑑みて、本開示は、従来の半導体装置およびリード端子のサイズをほとんど変更することなく、プリント基板実装体のハンダ接続強度を大きく向上させることを課題とする。 In view of the above, an object of the present disclosure is to greatly improve the solder connection strength of a printed circuit board mounting body without substantially changing the sizes of conventional semiconductor devices and lead terminals.
 上記課題を解決するため本開示によって次のような解決手段を講じた。すなわち、半導体装置は、半導体チップと、半導体チップと電気的に接続される複数のリード端子と、半導体チップおよび前記複数のリード端子を封止する封止樹脂部とを備える。そして複数のリード端子は、頂面から見て封止樹脂部の最外周の辺で構成される方形の封止樹脂領域よりも内側に形成されている。そして複数のリード端子のうち少なくとも一つは、封止樹脂領域内において頂面が前記封止樹脂部から露出している頂面露出リード端子である。 In order to solve the above-mentioned problems, the present disclosure has taken the following solutions. That is, the semiconductor device includes a semiconductor chip, a plurality of lead terminals electrically connected to the semiconductor chip, and a sealing resin portion that seals the semiconductor chip and the plurality of lead terminals. The plurality of lead terminals are formed inside the rectangular sealing resin region formed by the outermost peripheral side of the sealing resin portion when viewed from the top surface. At least one of the plurality of lead terminals is a top surface exposed lead terminal having a top surface exposed from the sealing resin portion in the sealing resin region.
 このような半導体装置によると、プリント基板とハンダ接合する場合において、十分なハンダ接合強度を得ることができる。また、少なくとも1つのリード端子の頂面を露出させた頂面露出リード端子を配置すればよいため、リード端子のサイズを従来のものからほとんど変更する必要がない。 According to such a semiconductor device, sufficient solder bonding strength can be obtained when solder bonding is performed with a printed circuit board. In addition, since it is only necessary to arrange a top exposed lead terminal in which the top surface of at least one lead terminal is exposed, the size of the lead terminal hardly needs to be changed from the conventional one.
 また、上記半導体装置は、半導体チップが載置されるダイパッドを備えていてもよく、この場合、封止樹脂部は、半導体チップおよび複数のリード端子、ならびにダイパッドを封止すればよい。 In addition, the semiconductor device may include a die pad on which the semiconductor chip is placed. In this case, the sealing resin portion may seal the semiconductor chip, the plurality of lead terminals, and the die pad.
 なお、複数のリード端子の底面は封止樹脂部に覆われていなくてもよい。 Note that the bottom surfaces of the plurality of lead terminals may not be covered with the sealing resin portion.
 また、頂面露出リード端子は、当該半導体装置のコーナー部に位置していてもよい。 Moreover, the top surface exposed lead terminal may be located at a corner portion of the semiconductor device.
 このようにすると、最もストレスが集中する半導体装置のコーナー部のハンダ接合部のハンダ接合状態を強固にすることができるため、十分なハンダ接合強度を得ることができる。 In this case, since the solder joint state of the solder joint portion at the corner portion of the semiconductor device where stress is most concentrated can be strengthened, sufficient solder joint strength can be obtained.
 なお、頂面露出リード端子は、上記半導体装置の4つのコーナー部に配置されていてもよい。 Note that the top surface exposed lead terminals may be arranged at the four corners of the semiconductor device.
 また、頂面露出リード端子の、頂面、底面、および側面の少なくとも1つには、メッキ膜が被覆されていてもよい。 Further, a plating film may be coated on at least one of the top surface, the bottom surface, and the side surface of the top surface exposed lead terminal.
 このようにすると、ハンダ濡れ性が飛躍的に向上するため、プリント基板に半導体装置を実装する場合において、十分なハンダ接合強度を得ることができる。 In this case, since the solder wettability is remarkably improved, a sufficient solder joint strength can be obtained when a semiconductor device is mounted on a printed board.
 頂面露出リード端子の頂面は、当該半導体装置の中央部から外周部に向かって当該半導体装置の底面側に傾斜している。 The top surface of the top surface exposed lead terminal is inclined toward the bottom surface side of the semiconductor device from the central portion toward the outer peripheral portion of the semiconductor device.
 このようにすると、頂面露出リード端子の頂面側にハンダ材料が届き易くなり、濡れ拡がり面積の拡大および濡れ拡がり速度の向上が実現でき、ひいてはハンダフィレットが形成されやすくなる。 In this way, the solder material can easily reach the top surface side of the top surface exposed lead terminal, the wet spread area can be increased and the wet spread speed can be improved, and a solder fillet is easily formed.
 また、頂面露出リード端子の頂面には溝部または凹部が形成されていてもよい。 Moreover, a groove or a recess may be formed on the top surface of the top surface exposed lead terminal.
 このようにすると、頂面露出リード端子の頂面側にハンダ材料が接触した際に、いわゆる毛細管現象によりハンダ材料が溝部や凹部に沿って濡れ拡がるようになる。したがって、濡れ拡がり面積の拡大および濡れ拡がり速度の向上が実現でき、ひいてはハンダフィレットが形成されやすくなる。 In this way, when the solder material comes into contact with the top surface side of the top surface exposed lead terminal, the solder material spreads along the groove and the concave portion by a so-called capillary phenomenon. Accordingly, it is possible to increase the wet spread area and improve the wet spread speed, and as a result, solder fillets are easily formed.
 なお、溝部または凹部は、当該半導体装置の中央部から外周部に向かって形成されていてもよい。 Note that the groove or the recess may be formed from the center of the semiconductor device toward the outer periphery.
 また、頂面露出リード端子は、当該半導体装置の外周部において、当該半導体装置の底面よりも外側に湾曲した形状であってもよい。 Further, the top-surface exposed lead terminal may have a shape that is curved outward from the bottom surface of the semiconductor device at the outer peripheral portion of the semiconductor device.
 このようにすると、頂面露出リード端子のスタンドオフ高さが高く確保されることになり、そのためハンダ材料の厚みが必然的に増加し、より多くの歪を吸収できる構造となるため、接合強度の向上を図ることができる。また、スタンドオフ高さを高くすることにより、リフロー実装時におけるプリント基板の反りの影響を受けること無くハンダ接合実装が可能となる。これにより、プリント基板の反りによる半導体装置自身の製品持ち上がり現象や製品浮き現象を防止できるため、頂面露出リード端子を含むすべてのリード端子のオープン不良を防ぐことができる。 This ensures a high standoff height for the exposed lead terminal on the top surface, which inevitably increases the thickness of the solder material and allows the structure to absorb more strain. Can be improved. Further, by increasing the standoff height, it is possible to perform solder joint mounting without being affected by the warping of the printed circuit board during reflow mounting. As a result, the product lifting phenomenon and the product floating phenomenon of the semiconductor device due to the warping of the printed circuit board can be prevented, so that open defects of all lead terminals including the top exposed lead terminal can be prevented.
 また、頂面露出リード端子の最上面は、封止樹脂部の上面と同じ高さであってもよい。 Further, the top surface of the top exposed lead terminal may be the same height as the top surface of the sealing resin portion.
 本開示に係る半導体装置の実装体は、上記いずれか1つの半導体装置と、配線パターンを有するプリント基板と、半導体装置の複数のリード端子と配線パターンとを接続するハンダ材料とを備え、ハンダ材料は、半導体装置の前記頂面露出リード端子の頂面にも配置されている。 A mounting body of a semiconductor device according to the present disclosure includes any one of the semiconductor devices described above, a printed circuit board having a wiring pattern, and a solder material that connects a plurality of lead terminals and the wiring pattern of the semiconductor device. Are also arranged on the top surface of the top exposed lead terminal of the semiconductor device.
 これによると、半導体装置とプリント基板とを接続するハンダ材料の形状、いわゆるハンダフィレットを強固な形状とすることができ、信頼性の高い半導体装置の実装体を得ることができる。 According to this, the shape of the solder material for connecting the semiconductor device and the printed circuit board, that is, the so-called solder fillet can be made strong, and a highly reliable mounting body of the semiconductor device can be obtained.
 本開示に係る半導体装置の第1の製造方法は、以下に示す第1の工程~第6の工程を備えている。すなわち、複数のリード端子と半導体チップとを準備する第1の工程と、半導体チップと複数のリード端子とを金属細線により接合する第2の工程と、を備えている。そして複数のリード端子の少なくとも1つの頂面の一部に樹脂付着防止材料を載置する第3の工程と、複数のリード端子および半導体チップおよび金属細線を封止樹脂により封止する第4の工程と、を備えている。さらに樹脂付着防止材料を除去して、封止樹脂体を得る第5の工程と、封止樹脂体を個別に分割することによって、半導体装置を得る第6の工程とを備えている。 The first method for manufacturing a semiconductor device according to the present disclosure includes the following first to sixth steps. That is, the method includes a first step of preparing a plurality of lead terminals and a semiconductor chip, and a second step of joining the semiconductor chip and the plurality of lead terminals with a thin metal wire. Then, a third step of placing the resin adhesion preventing material on a part of at least one top surface of the plurality of lead terminals, and a fourth step of sealing the plurality of lead terminals, the semiconductor chip, and the fine metal wires with a sealing resin And a process. Furthermore, the resin adhesion preventing material is removed to provide a fifth step for obtaining a sealing resin body, and a sixth step for obtaining a semiconductor device by dividing the sealing resin body individually.
 また、本開示に係る半導体装置の第2の製造方法は、以下に示す第1の工程~第6の工程を備えている。すなわち、複数のリード端子と半導体チップとを準備する第1の工程と、半導体チップと複数のリード端子とを金属細線により接合する第2の工程と、を備えている。そして複数のリード端子の少なくとも1つの頂面の一部に樹脂付着防止材料を載置する第3の工程と、複数のリード端子および半導体チップおよび金属細線を封止樹脂で封止することによって成型される封止樹脂体を得る第4の工程と、を備えている。さらに封止樹脂体を個別に分割する第5の工程と、樹脂付着防止材料を除去することによって、半導体装置を得る第6の工程とを備えている。 Further, the second method for manufacturing a semiconductor device according to the present disclosure includes the following first to sixth steps. That is, the method includes a first step of preparing a plurality of lead terminals and a semiconductor chip, and a second step of joining the semiconductor chip and the plurality of lead terminals with a thin metal wire. Then, a third step of placing a resin adhesion preventing material on a part of at least one top surface of the plurality of lead terminals, and molding by sealing the plurality of lead terminals, the semiconductor chip, and the fine metal wires with a sealing resin And a fourth step of obtaining a sealing resin body to be performed. Furthermore, a fifth step of dividing the sealing resin body individually and a sixth step of obtaining a semiconductor device by removing the resin adhesion preventing material are provided.
 なお、上記各製造方法において、第1の工程では、複数のリード端子と、前記半導体チップを載置するダイパッドと、前記ダイパッドを支持する吊りリードとを有するリードフレームを準備してもよい。また、第1の工程と第2の工程との間において、前記半導体チップをダイパッド上に載置する第7の工程を備えていてもよい。 In each of the above manufacturing methods, in the first step, a lead frame having a plurality of lead terminals, a die pad for mounting the semiconductor chip, and a suspension lead for supporting the die pad may be prepared. Further, a seventh step of placing the semiconductor chip on the die pad may be provided between the first step and the second step.
 本開示に係る半導体装置およびその実装体は、半導体装置の表面側の封止樹脂を切り欠き、頂面を露出するリード端子を有することにより、リード端子のサイズをほとんど変更する必要がなく、プリント基板とのハンダ接合強度が向上するという効果を奏することができる。 The semiconductor device and the mounting body thereof according to the present disclosure have a lead terminal that cuts out the sealing resin on the surface side of the semiconductor device and exposes the top surface, so that there is almost no need to change the size of the lead terminal. The effect that the solder joint strength with the substrate is improved can be achieved.
図1は、第1の実施形態に係る半導体装置の構成を示す斜視図である。FIG. 1 is a perspective view showing the configuration of the semiconductor device according to the first embodiment. 図2Aは、図1の半導体装置を頂面の方向から見た場合の図である。2A is a view of the semiconductor device of FIG. 1 when viewed from the top surface direction. 図2Bは、図2Aの半導体装置をIIb-IIb線で切った場合の断面図である。2B is a cross-sectional view of the semiconductor device of FIG. 2A taken along the line IIb-IIb. 図2Cは、図1の半導体装置を底面から見た場合の図である。2C is a view of the semiconductor device of FIG. 1 when viewed from the bottom. 図3Aは、第1の実施形態に係る半導体装置の他の例を頂面の方向から見た場合の図である。FIG. 3A is a view of another example of the semiconductor device according to the first embodiment when viewed from the top surface direction. 図3Bは、第1の実施形態に係る半導体装置の他の例を頂面の方向から見た場合の図である。FIG. 3B is a diagram of another example of the semiconductor device according to the first embodiment viewed from the top surface direction. 図4は、図1に示す半導体装置の実装体の断面図である。4 is a cross-sectional view of the mounting body of the semiconductor device shown in FIG. 図5は、図1に示す半導体装置と従来の半導体装置との製造フローを比較した断面図である。FIG. 5 is a cross-sectional view comparing manufacturing flows of the semiconductor device shown in FIG. 1 and a conventional semiconductor device. 図6は、第2の実施形態に係る半導体装置と従来の半導体装置との製造フローを比較するためのした断面図である。FIG. 6 is a cross-sectional view for comparing manufacturing flows of the semiconductor device according to the second embodiment and a conventional semiconductor device. 図7は、第3の実施形態に係る半導体装置を備えた実装体の側面断面図である。FIG. 7 is a side cross-sectional view of a mounting body including a semiconductor device according to the third embodiment. 図8Aは、第4の実施形態に係る半導体装置の一例を頂面の方向から見た場合の主要部を示す図である。FIG. 8A is a diagram illustrating a main part when an example of the semiconductor device according to the fourth embodiment is viewed from the top surface direction. 図8Bは、第4の実施形態に係る半導体装置の一例を頂面の方向から見た場合の主要部を示す図である。FIG. 8B is a diagram illustrating a main part when an example of the semiconductor device according to the fourth embodiment is viewed from the top surface direction. 図8Cは、図8Aの半導体装置をVIIIc-VIIIc線で切った場合の断面図である。8C is a cross-sectional view of the semiconductor device of FIG. 8A taken along the line VIIIc-VIIIc. 図8Dは、図8Bの半導体装置をVIIId-VIIId線で切った場合の断面図である。8D is a cross-sectional view of the semiconductor device of FIG. 8B taken along line VIIId-VIIId. 図9は、第5の実施形態に係る半導体装置を備えた実装体の側面断面図である。FIG. 9 is a side cross-sectional view of a mounting body including a semiconductor device according to the fifth embodiment. 図10は、第6の実施形態に係る半導体装置を備えた実装体の側面断面図である。FIG. 10 is a side cross-sectional view of a mounting body including a semiconductor device according to the sixth embodiment. 図11は、従来の半導体装置の構成を示す側面断面図である。FIG. 11 is a side sectional view showing a configuration of a conventional semiconductor device. 図12は、従来の半導体装置の課題を説明するための図である。FIG. 12 is a diagram for explaining a problem of a conventional semiconductor device.
 以下、本発明の実施形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 <第1の実施形態>
 図1は、第1の実施形態に係る半導体装置の斜視図である。
<First Embodiment>
FIG. 1 is a perspective view of the semiconductor device according to the first embodiment.
 図1に示すように、本実施形態の半導体装置11は、半導体チップ12と、半導体チップ12が載置されたダイパッド13と、金属細線14により半導体チップ12と電気的に接続された複数のリード端子15と、を有している。そして、半導体チップ12およびダイパッド13および金属細線14およびリード端子15の少なくとも一部分を封止する封止樹脂部16を有している。 As shown in FIG. 1, the semiconductor device 11 of the present embodiment includes a semiconductor chip 12, a die pad 13 on which the semiconductor chip 12 is placed, and a plurality of leads electrically connected to the semiconductor chip 12 by metal thin wires 14. And a terminal 15. And it has the sealing resin part 16 which seals at least one part of the semiconductor chip 12, the die pad 13, the metal fine wire 14, and the lead terminal 15.
 半導体装置11は、その頂面方向から見ると、封止樹脂部16の樹脂領域よりも内側に複数のリード端子15が形成されている、いわゆるQFN(Quad-Flat-Non-Lead)パッケージと呼ばれる樹脂封止型半導体装置である。そして、少なくとも1本以上のリード端子15の頂面の一部分が封止樹脂部16から露出している構造を特徴としている。 The semiconductor device 11 is called a so-called QFN (Quad-Flat-Non-Lead) package in which a plurality of lead terminals 15 are formed inside the resin region of the sealing resin portion 16 when viewed from the top surface direction. This is a resin-encapsulated semiconductor device. A feature is that a part of the top surface of at least one lead terminal 15 is exposed from the sealing resin portion 16.
 一般にQFNパッケージは方形であり、通常のQFNパッケージでは、頂面側から見た場合、半導体装置の裏面側に配置されたリード端子は封止樹脂に覆われており、リード端子の上面は封止樹脂から露出していない。 In general, the QFN package has a rectangular shape. In the normal QFN package, when viewed from the top surface side, the lead terminals arranged on the back surface side of the semiconductor device are covered with sealing resin, and the top surface of the lead terminal is sealed. Not exposed from the resin.
 これに対して、本実施形態では、方形のQFNパッケージにおいて、頂面側から見た場合、封止樹脂領域内にリード端子の頂面方向の一部分が封止樹脂から露出している構造となっている。すなわち、半導体装置11の裏面側に配置されたリード端子15において、半導体装置11の外周部(封止樹脂領域の外周部)に沿った上面に封止樹脂部16の切り欠き部30が存在する構造である。 On the other hand, in this embodiment, when viewed from the top surface side in the square QFN package, a part of the lead terminal in the top surface direction is exposed from the sealing resin in the sealing resin region. ing. That is, in the lead terminal 15 disposed on the back surface side of the semiconductor device 11, the cutout portion 30 of the sealing resin portion 16 exists on the upper surface along the outer peripheral portion (the outer peripheral portion of the sealing resin region) of the semiconductor device 11. Structure.
 なお、封止樹脂領域とは、封止樹脂部16とリード端子15とで形成される半導体装置11の底面に等しい方形領域、或いは、封止樹脂部16の最外周を構成する辺で形成される方形領域である。ここで、複数のリード端子15のうち、頂面が封止樹脂部16から露出しているリード端子15を、特に頂面露出リード端子17とする。 The sealing resin region is formed by a rectangular region equal to the bottom surface of the semiconductor device 11 formed by the sealing resin portion 16 and the lead terminal 15 or by a side constituting the outermost periphery of the sealing resin portion 16. This is a square area. Here, among the plurality of lead terminals 15, the lead terminal 15 whose top surface is exposed from the sealing resin portion 16 is particularly referred to as a top surface exposed lead terminal 17.
 つまり、符号15は、頂面が封止樹脂部16に覆われているリード端子を表し、符号17は、本開示の頂面露出リード端子を表す。 That is, reference numeral 15 represents a lead terminal whose top surface is covered with the sealing resin portion 16, and reference numeral 17 represents a top exposed lead terminal of the present disclosure.
 リード端子15の端子巾が約0.1~0.4mm、端子ピッチが約0.4~1.27mm間隔が多いが、近年のQFNパッケージの小型化にともない、端子巾は0.15~0.2mm、端子ピッチは0.4~0.65mm間隔のものが主流である。 The lead terminal 15 has a terminal width of about 0.1 to 0.4 mm and a terminal pitch of about 0.4 to 1.27 mm, and the terminal width is 0.15 to 0 with the recent miniaturization of the QFN package. .2mm and terminal pitch is 0.4 to 0.65mm.
 図2A~図2Cは、図1の半導体装置を複数の方向から見た場合の図である。図2Aは、半導体装置の頂面側から見た平面図、図2Bは、図2Aの半導体装置をIIb-IIb線で切った場合の断面図、図2Cは、半導体装置の底面側から見た平面図である。 2A to 2C are diagrams of the semiconductor device of FIG. 1 when viewed from a plurality of directions. 2A is a plan view as viewed from the top surface side of the semiconductor device, FIG. 2B is a cross-sectional view of the semiconductor device of FIG. 2A taken along the line IIb-IIb, and FIG. 2C is as viewed from the bottom surface side of the semiconductor device. It is a top view.
 図2Cに示すように、半導体装置11の底面では頂面露出リード端子17を含むすべてのリード端子15,17の底面が露出しており、外見上は従来のQFNパッケージと何ら変わることは無い。 As shown in FIG. 2C, the bottom surfaces of all the lead terminals 15 and 17 including the top surface exposed lead terminals 17 are exposed on the bottom surface of the semiconductor device 11, and the appearance is not different from the conventional QFN package.
 一方、図2Aに示すように、半導体装置11を頂面側から見た場合、半導体装置11の外周部側の封止樹脂部16の一部に切り欠き部30が形成されており、切り欠き部30からリード端子の頂面が露出している(頂面露出リード端子17)。 On the other hand, as shown in FIG. 2A, when the semiconductor device 11 is viewed from the top surface side, a notch 30 is formed in a part of the sealing resin portion 16 on the outer peripheral side of the semiconductor device 11. The top surface of the lead terminal is exposed from the portion 30 (top surface exposed lead terminal 17).
 また、図2Bに示すように、半導体装置11を側面側から見た場合、通常のリード端子15の頂面は封止樹脂部16によって完全に覆われているのに対して、頂面露出リード端子17は、半導体装置11のコーナー部、及び側面部において、半導体装置11の外周部側の頂面の一部が露出している。 Further, as shown in FIG. 2B, when the semiconductor device 11 is viewed from the side, the top surface of the normal lead terminal 15 is completely covered with the sealing resin portion 16, whereas the top surface exposed lead In the terminal 17, a part of the top surface on the outer peripheral side of the semiconductor device 11 is exposed at the corner portion and the side surface portion of the semiconductor device 11.
 頂面露出リード端子17の露出部分が、後述するリフロー実装工程においてプリント基板18の配線パターン19とハンダ接続するものである(図4参照)。 The exposed portion of the top surface exposed lead terminal 17 is to be soldered to the wiring pattern 19 of the printed circuit board 18 in a reflow mounting process described later (see FIG. 4).
 図3Aおよび図3Bは、第1実施形態の他の例を示す頂面側から見た平面図である。図1および図2において、頂面露出リード端子17を、半導体装置11の外周部のうち、コーナー部とそのコーナー部に隣接する側面部に設置した一例を記載している。しかしながらこれら一例に限らず、例えば、図3Aに示すように、頂面露出リード端子17をコーナー部のみに設けても良く、図3Bに示すように、側面部のみに設けてもよい。 3A and 3B are plan views seen from the top side showing another example of the first embodiment. In FIG. 1 and FIG. 2, an example is described in which the top exposed lead terminals 17 are installed in a corner portion and a side portion adjacent to the corner portion in the outer peripheral portion of the semiconductor device 11. However, the present invention is not limited to these examples. For example, as shown in FIG. 3A, the top surface exposed lead terminal 17 may be provided only in the corner portion, or may be provided only in the side surface portion as shown in FIG. 3B.
 通常、半導体装置のコーナー部のハンダ接合部に最もストレスが集中することが知られているため、後述する半導体装置11の実装体20において、このコーナー部に頂面露出リード端子17を設置して、ハンダ接合状態を強固にすることは、信頼性向上に最も効果的であるといえる。 Usually, it is known that stress is concentrated most at the solder joint portion of the corner portion of the semiconductor device. Therefore, in the mounting body 20 of the semiconductor device 11 to be described later, a top exposed lead terminal 17 is installed at this corner portion. It can be said that strengthening the solder joint state is most effective for improving the reliability.
 一方、近年の半導体装置の多機能化にともないリード端子は多ピン化傾向にあり、リード端子の数量を極力多く設置する工夫が必要である。この場合、頂面の面積が大きなリード端子をコーナー部に設けるよりも、側面部と同じ面積のリード端子を多数設置することが望ましいといえる。 On the other hand, with the recent increase in the number of functions of semiconductor devices, the number of lead terminals tends to be increased, and it is necessary to devise a way to install as many lead terminals as possible. In this case, it can be said that it is desirable to install a large number of lead terminals having the same area as that of the side surface portion rather than providing a lead terminal having a large top surface area at the corner portion.
 以上の理由のほか、後述するプリント基板の配線パターンとの接合難易度、半導体装置の製造難易度、半導体装置の製造費用などを鑑み、頂面露出リード端子17を、半導体装置11の4つのコーナー部に設けてもよいし、対角線上の2つのコーナー部に設けてもよい。また、側面部における全リード端子15の上面の一部を露出させて頂面露出リード端子17としてもよい。また、一側面側のみに頂面露出リード端子17を設けてもよく、頂面露出リード端子17とリード端子15とを交互に設けてもよい。また、頂面露出リード端子17を、コーナー部および側面部のいずれか一方に設けてもよいし、両方に設けてもよい。つまり、複数のリード端子15のうち少なくとも1つが頂面露出リード端子17であればよい。 In addition to the above reasons, the top exposed lead terminal 17 is connected to the four corners of the semiconductor device 11 in view of difficulty in joining with a wiring pattern of a printed circuit board to be described later, difficulty in manufacturing a semiconductor device, manufacturing cost of the semiconductor device, and the like. You may provide in a part and may provide in two corner parts on a diagonal. Alternatively, the top exposed lead terminal 17 may be formed by exposing a part of the upper surface of all the lead terminals 15 in the side surface portion. Further, the top exposed lead terminals 17 may be provided only on one side surface, or the top exposed lead terminals 17 and the lead terminals 15 may be provided alternately. Moreover, the top surface exposed lead terminal 17 may be provided on either one of the corner portion or the side surface portion, or may be provided on both. That is, at least one of the plurality of lead terminals 15 may be the top surface exposed lead terminal 17.
 図4は、図1の半導体装置を用いた実装体の断面図である。図4に示すように、プリント基板18の配線パターン19にハンダペースト(図示せず)を塗布する。そして、そのハンダペーストと半導体装置11のリード端子15及び頂面露出リード端子17とを対面位置合わせして載置し、リフロー装置などで高温加熱することにより本開示の半導体装置11の実装体20が完成する。 FIG. 4 is a cross-sectional view of a mounting body using the semiconductor device of FIG. As shown in FIG. 4, a solder paste (not shown) is applied to the wiring pattern 19 of the printed circuit board 18. Then, the solder paste and the lead terminal 15 and the top exposed lead terminal 17 of the semiconductor device 11 are placed in face-to-face alignment and heated at a high temperature with a reflow device or the like, thereby mounting the package 20 of the semiconductor device 11 of the present disclosure. Is completed.
 頂面露出リード端子17の底面側は、ハンダ材料21によりプリント基板18の配線パターン19と広くハンダ合金接続されるため電気信号を安定的に需給することができる。さらに、頂面露出リード端子17の頂面側は、ハンダ材料21によりプリント基板18の配線パターン19に押し付けられるようにハンダ合金接続されるため実装強度を高く維持することができる。 Since the bottom surface side of the top exposed lead terminal 17 is widely connected to the wiring pattern 19 of the printed circuit board 18 by the solder material 21, it can stably supply and demand electrical signals. Further, since the top surface side of the top surface exposed lead terminal 17 is connected to the solder alloy so as to be pressed against the wiring pattern 19 of the printed circuit board 18 by the solder material 21, the mounting strength can be maintained high.
 通常、プリント基板は厚みが0.5mm~2.0mm程度のものが多く、その層構成は、導体層が片方の面にのみ存在する片面基板、導体層が表裏両方の面に存在する2層両面基板、導体層が内蔵されている多層基板、あるいはビルドアップ工法を用いた高密度配線基板などがある。これらのプリント基板は、半導体装置の配線密度ルールや放熱性、使用するセット機器の世代など、必要に応じて使い分けられる。 Usually, printed circuit boards often have a thickness of about 0.5mm to 2.0mm, and the layer structure consists of a single-sided board where the conductor layer exists only on one side and two layers where the conductive layer exists on both the front and back sides. There are a double-sided board, a multilayer board with a built-in conductor layer, and a high-density wiring board using a build-up method. These printed circuit boards are selectively used as necessary, such as the wiring density rule of semiconductor devices, heat dissipation, and the generation of set equipment to be used.
 また、ハンダペースト材料は、リフロー加熱装置への負担や半導体装置の耐熱性を考慮し、最高温度がおよそ260℃近傍までで溶融するのが望ましい。近年の環境問題を鑑みると、例えばSn,Ag,Cuを代表とする鉛フリーハンダペーストが一般的に使用されていることが多い。 Also, it is desirable that the solder paste material melts at a maximum temperature of about 260 ° C. in consideration of the burden on the reflow heating device and the heat resistance of the semiconductor device. In view of recent environmental problems, for example, lead-free solder pastes such as Sn, Ag, and Cu are generally used in many cases.
 半導体装置11をプリント基板18へハンダ付けを行う、いわゆるリフロー実装においては、リフローの際の高温加熱とリフロー完了後の常温さらしにより、実装体20の様々な箇所で膨張や収縮が起こりうる。 In so-called reflow mounting in which the semiconductor device 11 is soldered to the printed circuit board 18, expansion and contraction can occur at various locations of the mounting body 20 due to high-temperature heating during reflow and exposure to normal temperature after completion of reflow.
 このことを図4に示す実装体20で説明すると、半導体装置11の厚みや平面方向のサイズ、リード端子15および頂面露出リード端子17や封止樹脂部16やハンダ材料21やプリント基板18が持つ熱膨張係数などの物性スペック値、それぞれの加工方法、お互いを接続する製造フローや接続条件などにより、実装体20は膨張と収縮の応力負荷を受ける。そのため、半導体装置11とプリント基板18とを接合しているハンダ材料21には、特に大きな負荷がかかっている。 This will be described with reference to the mounting body 20 shown in FIG. 4. The thickness of the semiconductor device 11 and the size in the planar direction, the lead terminal 15, the top exposed lead terminal 17, the sealing resin portion 16, the solder material 21, and the printed board 18 The mounting body 20 is subjected to expansion and contraction stress loads depending on the physical property specification values such as the thermal expansion coefficient, the respective processing methods, the manufacturing flow and the connection conditions for connecting each other. Therefore, a particularly large load is applied to the solder material 21 that joins the semiconductor device 11 and the printed circuit board 18.
 さらに、QFNパッケージのようにリード端子とプリント基板との距離が短い場合は、ガルウイングリードを持つQFP(Quad-Flat-Package)のように応力緩和が出来る構造ではないため、ハンダ材料21に大きな負荷がかかることは明らかである。 Further, when the distance between the lead terminal and the printed circuit board is short as in the QFN package, the structure is not capable of stress relaxation as in the QFP (Quad-Flat-Package) with the gull wing leads, so a large load is applied to the solder material 21. It is clear that it takes.
 また、近年、自動車や航空機器の電子化により実装信頼性の向上が強く求められてきている。また、一般ユーザーの不注意な取り扱いによる携帯電子機器の落下衝撃や折り曲げストレス、そして電子機器を包む筺体自身の簡素化などにより、筺体内部の実装体20には、従来とは比較にならないほどのストレスが加わることが多く、電気的なオープン不良を引き起こすことは容易に想像できる。 In recent years, there has been a strong demand for improved mounting reliability through the digitization of automobiles and aircraft equipment. In addition, due to the drop impact and bending stress of portable electronic devices due to careless handling by general users, and the simplification of the housing itself that wraps the electronic devices, the mounting body 20 inside the housing is not comparable to the conventional one. It is often stressed and it can be easily imagined that electrical open defects are caused.
 その影響をもっとも受けやすいのが、図4に示す、半導体装置11とプリント基板18とを接続するハンダ材料21に係る部分である。したがって、このハンダ材料21の形状、いわゆるハンダフィレットを強固な形状とすることで、上述の実装体20の信頼性を向上させることができるのは言うまでも無い。 The portion most susceptible to the influence is a portion related to the solder material 21 connecting the semiconductor device 11 and the printed board 18 shown in FIG. Therefore, it goes without saying that the reliability of the mounting body 20 described above can be improved by making the shape of the solder material 21, that is, a so-called solder fillet, into a firm shape.
 本実施形態では、半導体チップ12の電極(図示せず)とリード端子15とを電気的に接続する手段として、半導体チップ12の電極が頂面側に向いている、いわゆるフェースアップ方式の半導体チップ12と金属細線14を用いた例を挙げている。これに対して、半導体チップ12の電極が底面側に向いている、いわゆるフェースダウン方式であってもよい。例えば、フリップチップ接合を利用してバンプを介在させたり、共晶合金の形成による直接接合などにより半導体チップ12の電極とリード端子15とを電気的に接続したりしてもよい。 In this embodiment, as a means for electrically connecting an electrode (not shown) of the semiconductor chip 12 and the lead terminal 15, a so-called face-up type semiconductor chip in which the electrode of the semiconductor chip 12 faces the top surface side. 12 and a thin metal wire 14 are used. On the other hand, a so-called face-down method in which the electrodes of the semiconductor chip 12 face the bottom surface may be used. For example, bumps may be interposed using flip chip bonding, or the electrodes of the semiconductor chip 12 and the lead terminals 15 may be electrically connected by direct bonding by forming a eutectic alloy or the like.
 金属細線14としては、アルミニウム細線、金線などを用いることができる。 As the fine metal wire 14, an aluminum fine wire, a gold wire, or the like can be used.
 本実施形態では、半導体チップ12を載置するダイパッド13の底面には封止樹脂部16は存在せず、ダイパッド13の底面が露出している。ダイパッド13は半導体チップ12を支持する役割のほか、半導体チップ12から発する熱を効率良く放出する役割も担っている。そのため、ハンダ材料21によりプリント基板18とハンダ接続することにより、半導体チップ12の放熱性を高めることができ、半導体チップ12の機能の安定化を維持することができる。 In this embodiment, the sealing resin portion 16 does not exist on the bottom surface of the die pad 13 on which the semiconductor chip 12 is placed, and the bottom surface of the die pad 13 is exposed. In addition to supporting the semiconductor chip 12, the die pad 13 also plays a role of efficiently releasing heat generated from the semiconductor chip 12. Therefore, by soldering the printed circuit board 18 with the solder material 21, the heat dissipation of the semiconductor chip 12 can be enhanced, and the function of the semiconductor chip 12 can be kept stable.
 また、ダイパッド13の底面を封止樹脂部16で覆い隠す、いわゆるダイパッドアップセット方式のQFNパッケージに対して、本実施形態を適用してもよい。また、ダイパッド13を用いずに、リード端子15の一部を絶縁化しその絶縁体の上で半導体チップ12を支持してもよい。また、絶縁樹脂テープを設けてその絶縁樹脂テープの上に半導体チップ12を搭載してもよい。すなわち、ダイパッド13を用いる場合に替えて、ダイパッドレスリードフレームに対して本実施形態を適用してもよい。 Further, the present embodiment may be applied to a so-called die pad upset QFN package in which the bottom surface of the die pad 13 is covered with the sealing resin portion 16. Further, without using the die pad 13, a part of the lead terminal 15 may be insulated and the semiconductor chip 12 may be supported on the insulator. Further, an insulating resin tape may be provided and the semiconductor chip 12 may be mounted on the insulating resin tape. That is, this embodiment may be applied to a die padless lead frame instead of using the die pad 13.
 本実施形態における頂面露出リード端子17を含むすべてのリード端子15およびダイパッド13は、製造上の利点により、同一のリードフレームによって形成されていてもよいが、必ずしも同一でなくてもよい。例えば、放熱性の向上を追及するなどの理由により、異なる材質や異なる製造工法で製造したリード端子とダイパッドを、のちの工程で合体形成する工法で準備してもよい。 In the present embodiment, all the lead terminals 15 and the die pad 13 including the top surface exposed lead terminals 17 may be formed by the same lead frame due to manufacturing advantages, but may not necessarily be the same. For example, for the purpose of pursuing improvement in heat dissipation, a lead terminal and a die pad manufactured by different materials or by different manufacturing methods may be prepared by a method of combining and forming in a later step.
 本実施形態におけるリードフレームは、銅(Cu)素材のフレームに、下地メッキとしてニッケル(Ni)層が、その上にパラジウム(Pd)層が、最上層に薄膜の金(Au)層が、それぞれメッキされた3層の金属メッキの場合を例に挙げている。ただし、銅(Cu)素材以外にも、例えば、鉄(Fe)系素材、42アロイ素材を使用してもよい。また、ニッケル(Ni)、パラジウム(Pd)、金(Au)以外の貴金属メッキが施されても良く、かならずしも3層メッキでなくてもよい。 In this embodiment, the lead frame has a copper (Cu) material frame, a nickel (Ni) layer as a base plating, a palladium (Pd) layer thereon, and a thin gold (Au) layer as an uppermost layer. The case of the plated three-layer metal plating is taken as an example. However, in addition to the copper (Cu) material, for example, an iron (Fe) material or a 42 alloy material may be used. Moreover, noble metal plating other than nickel (Ni), palladium (Pd), and gold (Au) may be applied, and it is not always necessary to use three-layer plating.
 さらに、メッキ膜を被覆する工程は、半導体チップ12をダイパッド13に載置する以前に行う、いわゆるプリメッキ(前メッキ)工法でもよい。また、半導体装置11が樹脂封止された以降にメッキ膜の被覆を行う、いわゆる後メッキ工法でもよい。 Furthermore, the step of coating the plating film may be a so-called pre-plating (pre-plating) method performed before placing the semiconductor chip 12 on the die pad 13. Further, a so-called post-plating method in which the plating film is coated after the semiconductor device 11 is sealed with resin may be used.
 次に、本実施形態の半導体装置11の製造方法について、図5を参照しながら説明する。図5は、図1に示す半導体装置と従来の半導体装置との製造フローを比較するための図である。図5の工程A~工程Dにおいて、一点鎖線の左側が本実施形態の半導体装置の製造フローを示す断面図であり、右側が従来の半導体装置の製造フローを示す断面図である。 Next, a method for manufacturing the semiconductor device 11 of this embodiment will be described with reference to FIG. FIG. 5 is a diagram for comparing the manufacturing flow between the semiconductor device shown in FIG. 1 and a conventional semiconductor device. In Step A to Step D of FIG. 5, the left side of the alternate long and short dash line is a cross-sectional view showing the manufacturing flow of the semiconductor device of the present embodiment, and the right side is a cross-sectional view showing the manufacturing flow of the conventional semiconductor device.
 まず、図5の工程Aに示すように、半導体チップ12と、半導体チップ12が接着剤、いわゆるダイボンド材によって接着載置されたダイパッド13と、金属細線14により半導体チップ12と電気的に接続されたリード端子15と、が設けられているリードフレーム22を準備する。なお、ダイパッド13は吊りリードによって支持されているが、図5中の断面には図示していない。また、吊りリードには厚み方向に曲げ加工がなされ、いわゆるディプレス部が形成されており、後述の封止樹脂によって一部分が覆われる構造となっている。また、リードフレーム22の材質、リードフレーム22の表面に被覆されるメッキ膜、半導体チップ12の向き、金属細線14の種類については前述の通りである。 First, as shown in step A of FIG. 5, the semiconductor chip 12, the semiconductor chip 12 is electrically connected to the semiconductor chip 12 by a metal pad 14, and a die pad 13 on which the semiconductor chip 12 is bonded and mounted by an adhesive, so-called die bonding material. A lead frame 22 provided with the lead terminals 15 is prepared. Although the die pad 13 is supported by the suspension leads, it is not shown in the cross section in FIG. Further, the suspension lead is bent in the thickness direction to form a so-called depressed portion, and a part of the suspension lead is covered with a sealing resin described later. The material of the lead frame 22, the plating film coated on the surface of the lead frame 22, the direction of the semiconductor chip 12, and the type of the fine metal wires 14 are as described above.
 次に、図5の工程Bでは、後の工程により頂面露出リード端子17となるリード端子15の頂面に樹脂付着防止ピン23を接触させる。なお、従来の製造フローでは、この工程は存在しない。また、封止樹脂部16に被覆される通常のリード端子15の頂面には樹脂付着防止ピン23を設けない。 Next, in the process B of FIG. 5, the resin adhesion preventing pin 23 is brought into contact with the top surface of the lead terminal 15 that becomes the top surface exposed lead terminal 17 in the subsequent process. Note that this process does not exist in the conventional manufacturing flow. Further, the resin adhesion preventing pin 23 is not provided on the top surface of the normal lead terminal 15 covered with the sealing resin portion 16.
 樹脂付着防止ピン23は、樹脂封止時に、頂面露出リード端子17の頂面に封止樹脂が回り込まないようにするマスクの役割を果たすためのものである。つまり、この樹脂付着防止ピン23の存在によって頂面露出リード端子17の頂面に封止樹脂バリが形成されるのを防止することができる。そして図5の工程Bは、最終的には本開示の半導体装置11の頂面露出リード端子17の構造を決する重要な工程となるのである。この樹脂付着防止ピン23は、樹脂封止用金型に併設されており、封止樹脂を注入する前に頂面露出リード端子17に接触し、封止樹脂が硬化した後に取り外しが出来る構造となっている。また、樹脂封止用金型の費用抑制などのため、必ずしも樹脂封止用金型に併設されるものでは無く、後述のように樹脂封止時の高温環境に耐性があり、樹脂封止硬化完了後もしくは個別ダイシング後に取り外し、あるいは消滅する材質であってもよい。つまり、樹脂付着防止ピン23を任意の方法により除去できればよい。 The resin adhesion prevention pin 23 serves as a mask that prevents the sealing resin from entering the top surface of the top surface exposed lead terminal 17 during resin sealing. That is, the presence of the resin adhesion preventing pin 23 can prevent the sealing resin burr from being formed on the top surface of the top surface exposed lead terminal 17. Then, the process B in FIG. 5 is an important process that finally determines the structure of the top exposed lead terminal 17 of the semiconductor device 11 of the present disclosure. The resin adhesion prevention pin 23 is provided in the mold for resin sealing and has a structure that can be removed after the sealing resin is cured by contacting the top exposed lead terminal 17 before injecting the sealing resin. It has become. In addition, it is not necessarily attached to the resin sealing mold to reduce the cost of the resin sealing mold, and is resistant to the high temperature environment at the time of resin sealing as will be described later. The material may be removed or disappear after completion or after individual dicing. That is, the resin adhesion preventing pin 23 may be removed by any method.
 なお、本実施形態では、この樹脂付着防止ピン23が接触している頂面露出リード端子17には金属細線14が接続され、電気的に有効な信号ピンとして図示しているが、例えば半導体装置11の4隅のコーナー部に位置するリード端子、いわゆる補強ランドのみを頂面露出リード端子17とし、樹脂付着防止ピン23を接触させてもよい。すなわち、複数のリード端子15のうち少なくとも1つの頂面に、樹脂付着防止ピン23を接触させればよい。 In the present embodiment, the fine metal wires 14 are connected to the top surface exposed lead terminals 17 that are in contact with the resin adhesion preventing pins 23 and are shown as electrically effective signal pins. 11, only lead terminals located at the four corners, so-called reinforcing lands, may be used as the top exposed lead terminals 17, and the resin adhesion preventing pins 23 may be brought into contact with each other. That is, the resin adhesion preventing pin 23 may be brought into contact with at least one top surface of the plurality of lead terminals 15.
 次に、図5の工程Cで、封止樹脂を注入して、半導体チップ12、金属細線14、ダイパッド13の一部、頂面露出リード端子17の頂面の一部を除くすべてのリード端子15の頂面を封止する封止樹脂部16を形成する。 Next, in step C of FIG. 5, all lead terminals except for the semiconductor chip 12, the fine metal wires 14, part of the die pad 13, and part of the top face of the top exposed lead terminal 17 are injected with sealing resin. A sealing resin portion 16 for sealing the top surface of 15 is formed.
 最後に、図5の工程Dで、頂面露出リード端子17に接触していた樹脂付着防止ピン23を取り外し、ダイシングソー25などにより個別に分割することにより半導体装置11が完成する。この工程において、樹脂付着防止ピン23を除去することにより、封止樹脂部16に切り欠き部30が形成される。 Finally, in step D of FIG. 5, the resin adhesion preventing pins 23 that have been in contact with the top exposed lead terminals 17 are removed and divided individually by a dicing saw 25 or the like to complete the semiconductor device 11. In this step, the notch portion 30 is formed in the sealing resin portion 16 by removing the resin adhesion preventing pin 23.
 半導体装置11は、頂面方向から見ると封止樹脂部16の樹脂領域よりも内側にリード端子15が形成されている、いわゆるQFNパッケージと呼ばれる樹脂封止型半導体装置である。すなわち、少なくとも1本以上のリード端子15の頂面方向の一部分が封止樹脂部16から露出している構造(頂面露出リード端子17)を持つ樹脂封止型の半導体装置11が完成する。 The semiconductor device 11 is a resin-encapsulated semiconductor device called a so-called QFN package in which the lead terminals 15 are formed inside the resin region of the encapsulating resin portion 16 when viewed from the top surface direction. That is, the resin-encapsulated semiconductor device 11 having a structure (a top exposed lead terminal 17) in which at least a part of at least one lead terminal 15 in the top surface direction is exposed from the sealing resin portion 16 is completed.
 なお、先に述べたとおり、半導体装置11が樹脂封止されたあとにメッキ膜を被覆する、いわゆる後メッキ工法を用いれば、本開示の頂面露出リード端子17の頂面側の露出面や底面側の露出面にメッキ膜が形成されるのはもちろんである。さらに、ダイシングソー25による切断で金属素材が剥き出しとなっている頂面露出リード端子17を含むすべてのリード端子15の側面側にもメッキ膜が形成することが可能となるため、ハンダ濡れ性が飛躍的に向上する。 Note that, as described above, if a so-called post-plating method for covering the plating film after the semiconductor device 11 is sealed with resin is used, the exposed surface on the top surface side of the top surface exposed lead terminal 17 of the present disclosure, Of course, a plating film is formed on the exposed surface on the bottom side. Further, since the plating film can be formed on the side surfaces of all the lead terminals 15 including the top surface exposed lead terminals 17 where the metal material is exposed by cutting with the dicing saw 25, the solder wettability is improved. Improve dramatically.
 なお、本実施形態では、リードフレーム22を備えている半導体装置11の製造方法の例を示したが、本開示の製造方法はリードフレーム22を用いる場合に限定されるものでない。本開示の基本的な概念である頂面露出リード端子17の形状は、半導体チップを搭載しリード端子を持つ半導体装置全般に適用できるものであり、例えば、基板タイプ、TABタイプ、セラミックタイプなど広く応用することが可能である。 In the present embodiment, an example of a manufacturing method of the semiconductor device 11 including the lead frame 22 has been described. However, the manufacturing method of the present disclosure is not limited to the case where the lead frame 22 is used. The shape of the top exposed lead terminal 17 that is a basic concept of the present disclosure is applicable to all semiconductor devices having a semiconductor chip mounted and having a lead terminal. For example, the substrate type, TAB type, ceramic type, etc. are widely used. It is possible to apply.
 <第2の実施形態>
 図6は、第2の実施形態に係る半導体装置と従来の半導体装置との製造フローを比較するための図である。なお、以下の説明において、実質的に同一の機能を有する構成要素については、第1の実施形態と同一の符号を付し、詳しい説明は省略する場合がある。
<Second Embodiment>
FIG. 6 is a diagram for comparing manufacturing flows of the semiconductor device according to the second embodiment and a conventional semiconductor device. In the following description, components having substantially the same function are denoted by the same reference numerals as those in the first embodiment, and detailed description may be omitted.
 図6の工程A~工程Eにおいて、一点鎖線の左側が本実施形態の半導体装置の製造フローを示す断面図であり、右側が従来の半導体装置の製造フローを示す断面図である。 6A to 6E, the left side of the alternate long and short dash line is a cross-sectional view showing the manufacturing flow of the semiconductor device of the present embodiment, and the right side is a cross-sectional view showing the manufacturing flow of the conventional semiconductor device.
 まず、図6の工程Aについては、前述の図5の工程Aと同様であるため詳細を省略する。 First, Step A in FIG. 6 is the same as Step A in FIG.
 次に、図6の工程Bでは、樹脂付着防止蓋材24をリード端子15の頂面に接触させる。この樹脂付着防止蓋材24は頂面露出リード端子17の頂面に樹脂封止時に封止樹脂が回り込まないようにするマスクの役割を果たすためのものである。つまり、この樹脂付着防止蓋材24の存在によって頂面露出リード端子17の頂面に封止樹脂バリが形成されるのを防止することができる。そして図6の工程Bは、最終的には本開示の半導体装置11の頂面露出リード端子17の構造を決する重要な工程となるのである。この樹脂付着防止蓋材24は、封止樹脂を注入する前に頂面露出リード端子17となるリード端子15に接触するように載置する。 Next, in step B of FIG. 6, the resin adhesion preventing lid member 24 is brought into contact with the top surface of the lead terminal 15. This resin adhesion preventing lid member 24 serves to serve as a mask that prevents the sealing resin from entering the top surface of the top exposed lead terminal 17 during resin sealing. That is, it is possible to prevent the sealing resin burr from being formed on the top surface of the top surface exposed lead terminal 17 due to the presence of the resin adhesion preventing lid member 24. Then, the process B in FIG. 6 is an important process that finally determines the structure of the top exposed lead terminal 17 of the semiconductor device 11 of the present disclosure. The resin adhesion prevention lid member 24 is placed so as to come into contact with the lead terminal 15 serving as the top exposed lead terminal 17 before injecting the sealing resin.
 なお、本実施形態では、この樹脂付着防止蓋材24が接触している頂面露出リード端子17には金属細線14が接続され、電気的に有効な信号ピンとして図示しているが、例えば半導体装置11の4隅のコーナー部に位置するリード端子、いわゆる補強ランドのみを頂面露出リード端子17とし、樹脂付着防止蓋材24を接触させてもよい。すなわち、複数のリード端子15のうち少なくとも1つの頂面に、樹脂付着防止蓋材24を接触させればよい。 In the present embodiment, the fine metal wire 14 is connected to the top surface exposed lead terminal 17 that is in contact with the resin adhesion preventing lid member 24 and is shown as an electrically effective signal pin. Only the lead terminals located at the four corners of the device 11, that is, so-called reinforcing lands, may be used as the top exposed lead terminals 17, and the resin adhesion preventing lid member 24 may be brought into contact therewith. That is, the resin adhesion prevention lid member 24 may be brought into contact with at least one top surface of the plurality of lead terminals 15.
 次に、図6の工程Cで、封止樹脂を注入して、半導体チップ12、金属細線14、ダイパッド13の一部、頂面露出リード端子17の頂面の一部を除くすべてのリード端子15の頂面を封止する封止樹脂部16を形成する。 Next, in step C of FIG. 6, all lead terminals except for the semiconductor chip 12, the fine metal wires 14, part of the die pad 13, and part of the top surface of the top surface exposed lead terminal 17 are injected with sealing resin. A sealing resin portion 16 for sealing the top surface of 15 is formed.
 次に、図6の工程Dで、ダイシングソー25などにより個別に分割することにより、頂面露出リード端子17に接触している樹脂付着防止蓋材24が半導体装置11の側面に現出する。 Next, in step D of FIG. 6, the resin adhesion prevention lid member 24 that is in contact with the top surface exposed lead terminal 17 appears on the side surface of the semiconductor device 11 by being divided individually by a dicing saw 25 or the like.
 最後に、図6の工程Eで、この樹脂付着防止蓋材24を除去することにより、リード端子15の頂面が露出する構造(頂面露出リード端子17)ができる。この工程において、樹脂付着防止蓋材24を除去することにより、封止樹脂部16に切り欠き部30が形成される。 Finally, in step E of FIG. 6, by removing the resin adhesion prevention lid member 24, a structure in which the top surface of the lead terminal 15 is exposed (top surface exposed lead terminal 17) can be formed. In this step, the notch portion 30 is formed in the sealing resin portion 16 by removing the resin adhesion preventing lid member 24.
 樹脂付着防止蓋材24は樹脂封止時の高温環境に対して耐性がある材質であって、さらに個別に分割したのちに消滅する(取り外す場合等を含む)ものであることが好ましい。例えば、ダイシングソー25の回転ダメージを軽減するために、頂面露出リード端子17と同一の金属材料や、封止樹脂部16と同一のエポキシ樹脂材料であってもよい。また、例えば、ハンダ材料21と同一組成で形成された金属片であれば170℃前後の樹脂封止工程の加熱に耐性があり、しかもリフロー実装時にはハンダペースト材料とともに溶融することができる。そのため、良好なハンダフィレットの形成が期待できる。さらに、例えば、樹脂封止耐熱性を持つ水溶性材料であれば、樹脂封止工程の加熱に耐性があるだけではなく、図6の工程Dで分割する際に、樹脂付着防止蓋材24がダイシングソー25の冷却水に溶解することにより、消滅(除去)させることができる。 The resin adhesion preventing lid member 24 is preferably a material that is resistant to a high temperature environment at the time of resin sealing, and further disappears (including when removed) after being divided individually. For example, in order to reduce rotational damage of the dicing saw 25, the same metal material as the top surface exposed lead terminal 17 or the same epoxy resin material as the sealing resin portion 16 may be used. Further, for example, a metal piece formed with the same composition as the solder material 21 is resistant to heating in a resin sealing process at around 170 ° C., and can be melted together with the solder paste material during reflow mounting. Therefore, formation of a good solder fillet can be expected. Furthermore, for example, if it is a water-soluble material having resin-sealing heat resistance, it is not only resistant to heating in the resin-sealing process, but also when the resin adhesion prevention lid member 24 is divided in the process D of FIG. It can be eliminated (removed) by dissolving in the cooling water of the dicing saw 25.
 <第3の実施形態>
 図7は、第3の実施形態に係る半導体装置を備えた実装体の側面断面図である。なお、以下の説明において、実質的に同一の機能を有する構成要素については、第1の実施形態と同一の符号を付し、詳しい説明は省略する場合がある。
<Third Embodiment>
FIG. 7 is a side cross-sectional view of a mounting body including a semiconductor device according to the third embodiment. In the following description, components having substantially the same function are denoted by the same reference numerals as those in the first embodiment, and detailed description may be omitted.
 本実施形態において、封止樹脂部16からその上面を露出した頂面露出リード端子17は、頂面と底面とが平行状態を成さず、半導体装置11の外周部では頂面と底面から成る厚さ方向の距離が外周部に向かうに連れてテーパ状に薄くなっていくという構造を特徴としている。 In the present embodiment, the top surface exposed lead terminal 17 whose top surface is exposed from the sealing resin portion 16 does not form a parallel state between the top surface and the bottom surface, and the top surface and the bottom surface are formed in the outer peripheral portion of the semiconductor device 11. It is characterized by a structure in which the distance in the thickness direction becomes thinner in a tapered shape as it goes toward the outer periphery.
 頂面露出リード端子17の底面は半導体装置11の底面に平行であるのに対して、頂面露出リード端子17の頂面は半導体装置11の底面に対して斜面となっている。この構造を有することにより、頂面露出リード端子17の頂面側にハンダ材料21が届き易くなり、濡れ拡がり面積の拡大および濡れ拡がり速度の向上が実現でき、ひいてはハンダフィレットが形成されやすいという効果が期待できる。 The bottom surface of the top surface exposed lead terminal 17 is parallel to the bottom surface of the semiconductor device 11, whereas the top surface of the top surface exposed lead terminal 17 is inclined with respect to the bottom surface of the semiconductor device 11. By having this structure, the solder material 21 can easily reach the top surface side of the top surface exposed lead terminal 17, the wet spread area can be increased and the wet spread speed can be increased, and as a result, a solder fillet is easily formed. Can be expected.
 これにより、頂面露出リード端子17の頂面側は、ハンダ材料21によりプリント基板18の配線パターン19に押し付けられるようにハンダ合金接続されるため実装強度を向上することができる。 Thereby, since the top surface side of the top surface exposed lead terminal 17 is connected to the solder alloy so as to be pressed against the wiring pattern 19 of the printed board 18 by the solder material 21, the mounting strength can be improved.
 なお、図3について説明したように、本実施形態における頂面露出リード17においても、コーナー部もしくは側面部のいずれに設置してもよく、また、ハンダ接続信頼性をより高く維持するために、コーナー部と側面部のすべてのリード端子に適用してもよい。 As described with reference to FIG. 3, the top exposed lead 17 in the present embodiment may be installed at either the corner portion or the side surface portion, and in order to maintain higher solder connection reliability, You may apply to all the lead terminals of a corner part and a side part.
 <第4の実施形態>
 図8Aおよび図8Bは、それぞれ第4の実施形態に係る半導体装置の一例の主要部を示す図であり、図8Aおよび図8Bは、それぞれ半導体装置を頂面側から見た場合の平面図、図8Cは、図8Aの半導体装置をVIIIc-VIIIc線で切った場合の断面図である。図8Dは、図8Bの半導体装置をVIIId-VIIId線で切った場合の断面図である。
<Fourth Embodiment>
8A and FIG. 8B are views showing main parts of an example of the semiconductor device according to the fourth embodiment, respectively, and FIG. 8A and FIG. 8B are plan views when the semiconductor device is viewed from the top surface side, respectively. 8C is a cross-sectional view of the semiconductor device of FIG. 8A taken along the line VIIIc-VIIIc. 8D is a cross-sectional view of the semiconductor device of FIG. 8B taken along line VIIId-VIIId.
 なお、以下の説明において、実質的に同一の機能を有する構成要素については、第1の実施形態と同一の符号を付し、詳しい説明は省略する場合がある。 In the following description, components having substantially the same function are denoted by the same reference numerals as those in the first embodiment, and detailed description may be omitted.
 第4の実施形態における封止樹脂部16からその上面を露出した頂面露出リード端子17は、頂面に溝部17aまたは凹部17aが形成されていることを特徴としている。溝部17aまたは凹部17aは、半導体装置11の中心方向から半導体装置11の外周部に向かう方向に伸びている。溝部17aまたは凹部17aは外周部に向かう方向に伸びていれば、図8Aに示すように直線状であっても、図8Bに示すように曲線状であっても構わない。また、両方が同一の頂面露出リード端子17に混在しても構わない。 The top surface exposed lead terminal 17 whose top surface is exposed from the sealing resin portion 16 in the fourth embodiment is characterized in that a groove portion 17a or a concave portion 17a is formed on the top surface. The groove portion 17 a or the recess portion 17 a extends from the center direction of the semiconductor device 11 toward the outer peripheral portion of the semiconductor device 11. As long as the groove part 17a or the recessed part 17a is extended in the direction which goes to an outer peripheral part, it may be linear as shown to FIG. 8A, or may be curvilinear as shown to FIG. 8B. Further, both may be mixed in the same top exposed lead terminal 17.
 この構造を有することにより、頂面露出リード端子17の頂面側にハンダ材料21が接触した際に、いわゆる毛細管現象により、ハンダ材料21が溝部17aや凹部17aに沿って濡れ拡がることができる。その結果、濡れ拡がり面積の拡大および濡れ拡がり速度の向上が実現でき、ひいてはハンダフィレットが形成されやすいという効果が期待できる。 By having this structure, when the solder material 21 comes into contact with the top surface side of the top surface exposed lead terminal 17, the solder material 21 can spread along the groove portion 17a and the recess portion 17a by a so-called capillary phenomenon. As a result, it is possible to increase the wet spreading area and improve the wet spreading speed, and as a result, an effect that a solder fillet is easily formed can be expected.
 これにより、頂面露出リード端子17の頂面側は、ハンダ材料21によりプリント基板18の配線パターン19に押し付けられるようにハンダ合金接続されるため実装強度を向上することができる。 Thereby, since the top surface side of the top surface exposed lead terminal 17 is connected to the solder alloy so as to be pressed against the wiring pattern 19 of the printed board 18 by the solder material 21, the mounting strength can be improved.
 なお、図3について説明したように、本実施形態における頂面露出リード端子17においても、コーナー部もしくは側面部のいずれに設置してもよい。また、ハンダ接続信頼性をより高く維持するために、コーナー部と側面部のすべてのリード端子に適用してもよい。また、第3の実施形態と組み合わせた構造としてもよい。 Note that, as described with reference to FIG. 3, the top-surface exposed lead terminal 17 in the present embodiment may be installed in either the corner portion or the side portion. Further, in order to maintain higher solder connection reliability, the present invention may be applied to all lead terminals in the corner portion and the side portion. Moreover, it is good also as a structure combined with 3rd Embodiment.
 <第5の実施形態>
 図9は、第5の実施形態に係る半導体装置を備えた実装体の側面断面図である。なお、以下の説明において、実質的に同一の機能を有する構成要素については、第1の実施形態と同一の符号を付し、詳しい説明は省略する場合がある。
<Fifth Embodiment>
FIG. 9 is a side cross-sectional view of a mounting body including a semiconductor device according to the fifth embodiment. In the following description, components having substantially the same function are denoted by the same reference numerals as those in the first embodiment, and detailed description may be omitted.
 第5の実施形態における封止樹脂部16からその上面を露出した頂面露出リード端子17は、半導体装置11の外周部に近づくにつれて、プリント基板18に向かって厚さ方向に湾曲した構造であることを特徴としている。 The top exposed lead terminal 17 whose upper surface is exposed from the sealing resin portion 16 in the fifth embodiment has a structure that is curved in the thickness direction toward the printed circuit board 18 as it approaches the outer peripheral portion of the semiconductor device 11. It is characterized by that.
 すなわち、頂面露出リード端子17の端部は、半導体装置11の底面(封止樹脂部16の底面)よりもプリント基板18により近い配置となる。このような構造により、頂面露出リード端子17の底面とプリント基板18との間隙、いわゆるスタンドオフを確保することができる。 That is, the end portion of the top surface exposed lead terminal 17 is disposed closer to the printed circuit board 18 than the bottom surface of the semiconductor device 11 (the bottom surface of the sealing resin portion 16). With such a structure, a gap between the bottom surface of the top surface exposed lead terminal 17 and the printed board 18, a so-called standoff can be secured.
 この構造では、頂面露出リード端子17の底面が封止樹脂部16の底面より突出した構造となる。そのため、プリント基板18に半導体装置11を実装する際の頂面露出リード端子17とプリント基板18上の配線パターン19との接合において、頂面露出リード端子17のスタンドオフ高さを高く確保することができる。そのため、ハンダ材料の厚みが必然的に増加し、より多くの歪を吸収できる構造となるため、接合強度の向上を図ることができる。 In this structure, the bottom surface of the top surface exposed lead terminal 17 protrudes from the bottom surface of the sealing resin portion 16. Therefore, the stand-off height of the top surface exposed lead terminal 17 is ensured to be high when the top surface exposed lead terminal 17 and the wiring pattern 19 on the printed circuit board 18 are joined when the semiconductor device 11 is mounted on the printed circuit board 18. Can do. Therefore, the thickness of the solder material inevitably increases and a structure capable of absorbing more strain can be obtained, so that the bonding strength can be improved.
 また、スタンドオフ高さを高くすることにより、リフロー実装時におけるプリント基板18の反りの影響を受けること無くハンダ接合実装ができる。さらに、プリント基板18の反りによる半導体装置11自身の製品持ち上がり現象や製品浮き現象を防止できるため、頂面露出リード端子17を含むすべてのリード端子15のオープン不良を防ぐことができる。 Also, by increasing the standoff height, it is possible to perform solder joint mounting without being affected by warping of the printed circuit board 18 during reflow mounting. Furthermore, since the product lifting phenomenon and the product floating phenomenon of the semiconductor device 11 due to the warpage of the printed circuit board 18 can be prevented, open defects of all the lead terminals 15 including the top exposed lead terminals 17 can be prevented.
 なお、図3について説明したように、本実施形態における頂面露出リード端子17においても、コーナー部もしくは側面部のいずれに設置してもよく、また、ハンダ接続信頼性をより高く維持するために、コーナー部と側面部のすべてのリード端子に適用してもよい。また、第4の実施形態と組み合わせた構造としてもよい。 As described with reference to FIG. 3, the top exposed lead terminal 17 in the present embodiment may be installed at either the corner or the side surface, and in order to maintain higher solder connection reliability. It may be applied to all the lead terminals in the corner portion and the side portion. Moreover, it is good also as a structure combined with 4th Embodiment.
 <第6の実施形態>
 図10は、第6の実施形態に係る半導体装置を備えた実装体の側面断面図である。なお、以下の説明において、実質的に同一の機能を有する構成要素については、第1の実施形態と同一の符号を付し、詳しい説明は省略する場合がある。
<Sixth Embodiment>
FIG. 10 is a side cross-sectional view of a mounting body including a semiconductor device according to the sixth embodiment. In the following description, components having substantially the same function are denoted by the same reference numerals as those in the first embodiment, and detailed description may be omitted.
 第6実施形態における封止樹脂部16からその上面を露出した頂面露出リード端子17は、側面の露出が厚み方向に延伸した構造を特徴としている。 The top-surface exposed lead terminal 17 whose upper surface is exposed from the sealing resin portion 16 in the sixth embodiment is characterized by a structure in which the side surface is extended in the thickness direction.
 具体的に、半導体装置11のコーナー部において、半導体装置11の底面から上面にかけて封止樹脂部16から露出する頂面露出リード端子17が存在する。すなわち、封止樹脂部16の上面と頂面露出リード端子17の最上面は同じ高さであり、面一である。また、頂面露出リード端子17は、半導体装置11の厚み方向の断面図においてL字形状となっている。このような構造により、頂面露出リード端子17の頂面に存在するハンダ材料21がさらに厚み方向に濡れ上がることが可能となり、より肉厚が厚いハンダフィレットを形成することが可能となる。 Specifically, there is a top exposed lead terminal 17 exposed from the sealing resin portion 16 from the bottom surface to the top surface of the semiconductor device 11 at the corner portion of the semiconductor device 11. That is, the top surface of the sealing resin portion 16 and the top surface of the top surface exposed lead terminal 17 have the same height and are flush with each other. The top exposed lead terminal 17 is L-shaped in the cross-sectional view of the semiconductor device 11 in the thickness direction. With such a structure, the solder material 21 existing on the top surface of the top surface exposed lead terminal 17 can further wet in the thickness direction, and a thicker solder fillet can be formed.
 これにより、頂面露出リード端子17の頂面側は、ハンダ材料21によりプリント基板18の配線パターン19に押し付けられるようにハンダ合金接続されるため実装強度を向上することができる。 Thereby, since the top surface side of the top surface exposed lead terminal 17 is connected to the solder alloy so as to be pressed against the wiring pattern 19 of the printed board 18 by the solder material 21, the mounting strength can be improved.
 本実施形態は半導体装置のコーナー部に配置されるが、頂面露出リード端子17の形状として、第3乃至第5の実施形態と組み合わせた構造としてもよい。 Although this embodiment is arranged at a corner portion of a semiconductor device, the shape of the top exposed lead terminal 17 may be a structure combined with the third to fifth embodiments.
 上記いずれの実施形態においても、従来のQFNパッケージと同じく封止樹脂領域よりも内側にリード端子が形成されているため、半導体装置11自身の小型化を維持しながらも、プリント基板18とのハンダ接続強度が向上できるという、優れた性能を持つQFNパッケージを提供することができる。 In any of the above embodiments, since the lead terminal is formed inside the sealing resin region as in the conventional QFN package, the semiconductor device 11 itself can be reduced in size and soldered to the printed circuit board 18. It is possible to provide a QFN package with excellent performance that connection strength can be improved.
 本開示は、半導体装置の実装体においてリード端子の頂面方向からハンダフィレットを形成することができ、強固なハンダ接続強度を保つことができるという効果を有する、そのため、微小なリード端子を持つ半導体装置とプリント基板とのハンダ接続強度を強固に保つのに有用であり、また大きな機械的ストレスや熱ストレスの負荷に充分に耐え得ることが可能な実装体として有用である。 The present disclosure has an effect that a solder fillet can be formed from the top surface direction of a lead terminal in a mounting body of a semiconductor device, and a strong solder connection strength can be maintained. Therefore, a semiconductor having a minute lead terminal This is useful for keeping the solder connection strength between the apparatus and the printed circuit board strong, and is useful as a mounting body that can sufficiently withstand a load of a large mechanical stress or thermal stress.
  11  半導体装置
  12  半導体チップ
  13  ダイパッド
  14  金属細線
  15  リード端子
  16  封止樹脂部
  17  頂面露出リード端子
  17a  溝部、凹部
  18  プリント基板
  19  配線パターン
  20  実装体
  21  ハンダ材料
  22  リードフレーム
  23  樹脂付着防止ピン(樹脂付着防止材料)
  24  樹脂付着防止蓋材(樹脂付着防止材料)
  25  ダイシングソー
DESCRIPTION OF SYMBOLS 11 Semiconductor device 12 Semiconductor chip 13 Die pad 14 Metal fine wire 15 Lead terminal 16 Sealing resin part 17 Top surface exposed lead terminal 17a Groove part, recessed part 18 Printed circuit board 19 Wiring pattern 20 Mounting body 21 Solder material 22 Lead frame 23 Resin adhesion prevention pin ( Resin adhesion prevention material)
24 Resin adhesion prevention lid (resin adhesion prevention material)
25 Dicing saw

Claims (15)

  1.  半導体チップと、
     前記半導体チップと電気的に接続される複数のリード端子と、
     前記半導体チップおよび前記複数のリード端子を封止する封止樹脂部とを備え、
     前記複数のリード端子は、頂面から見て前記封止樹脂部の最外周の辺で構成される方形の封止樹脂領域よりも内側に形成されており、
     前記複数のリード端子のうち少なくとも一つは、前記封止樹脂領域内において頂面が前記封止樹脂部から露出している頂面露出リード端子である
    ことを特徴とする半導体装置。
    A semiconductor chip;
    A plurality of lead terminals electrically connected to the semiconductor chip;
    A sealing resin portion for sealing the semiconductor chip and the plurality of lead terminals;
    The plurality of lead terminals are formed inside a rectangular sealing resin region formed by an outermost peripheral side of the sealing resin portion as viewed from the top surface,
    At least one of the plurality of lead terminals is a top surface exposed lead terminal having a top surface exposed from the sealing resin portion in the sealing resin region.
  2.  請求項1の半導体装置において、
     前記半導体チップが載置されるダイパッドを備え、
     前記封止樹脂部は、前記半導体チップおよび前記複数のリード端子、ならびに前記ダイパッドを封止する
    ことを特徴とする半導体装置。
    The semiconductor device according to claim 1.
    A die pad on which the semiconductor chip is placed;
    The sealing resin portion seals the semiconductor chip, the plurality of lead terminals, and the die pad.
  3.  請求項1の半導体装置において、
     前記複数のリード端子の底面は前記封止樹脂部に覆われていない
    ことを特徴とする半導体装置。
    The semiconductor device according to claim 1.
    A semiconductor device, wherein bottom surfaces of the plurality of lead terminals are not covered with the sealing resin portion.
  4.  請求項1および2のいずれかの半導体装置において、
     前記頂面露出リード端子は、当該半導体装置のコーナー部に位置する
    ことを特徴とする半導体装置。
    The semiconductor device according to any one of claims 1 and 2,
    The top exposed lead terminal is located at a corner portion of the semiconductor device.
  5.  請求項4の半導体装置において、
     前記頂面露出リード端子は、当該半導体装置の4つのコーナー部に配置されている
    ことを特徴とする半導体装置。
    The semiconductor device according to claim 4.
    The top exposed lead terminal is arranged at four corners of the semiconductor device.
  6.  請求項1から5のいずれか1つの半導体装置において、
     前記頂面露出リード端子の、頂面、底面、および側面の少なくとも1つには、メッキ膜が被覆されている
    ことを特徴とする半導体装置。
    The semiconductor device according to any one of claims 1 to 5,
    At least one of the top surface, the bottom surface, and the side surface of the top surface exposed lead terminal is coated with a plating film.
  7.  請求項1から6のいずれか1つの半導体装置において、
     前記頂面露出リード端子の頂面は、当該半導体装置の中央部から外周部に向かって当該半導体装置の底面側に傾斜している
    ことを特徴とする半導体装置。
    The semiconductor device according to any one of claims 1 to 6,
    The top surface of the top surface exposed lead terminal is inclined toward the bottom surface side of the semiconductor device from the central portion toward the outer peripheral portion of the semiconductor device.
  8.  請求項1から7のいずれか1つの半導体装置において、
     前記頂面露出リード端子の頂面には溝部または凹部が形成されている
    ことを特徴とする半導体装置。
    The semiconductor device according to any one of claims 1 to 7,
    A semiconductor device, wherein a groove or a recess is formed on a top surface of the top surface exposed lead terminal.
  9.  請求項8の半導体装置において、
     前記溝部または前記凹部は、当該半導体装置の中央部から外周部に向かって形成されている
    ことを特徴とする半導体装置。
    The semiconductor device according to claim 8.
    The groove portion or the concave portion is formed from the central portion toward the outer peripheral portion of the semiconductor device.
  10.  請求項1から9のいずれか1つの半導体装置において、
     前記頂面露出リード端子は、当該半導体装置の外周部において、当該半導体装置の底面よりも外側に湾曲した形状である
    ことを特徴とする半導体装置。
    The semiconductor device according to any one of claims 1 to 9,
    The semiconductor device according to claim 1, wherein the top exposed lead terminal has a shape that is curved outward from the bottom surface of the semiconductor device at an outer peripheral portion of the semiconductor device.
  11.  請求項3および4のいずれかの半導体装置において、
     前記頂面露出リード端子の最上面は、前記封止樹脂部の上面と同じ高さである
    ことを特徴とする半導体装置。
    The semiconductor device according to any one of claims 3 and 4,
    The top surface of the top surface exposed lead terminal is the same height as the top surface of the sealing resin portion.
  12.  請求項1から11のいずれか1つの半導体装置と、
     配線パターンを有するプリント基板と、
     前記半導体装置の前記複数のリード端子と前記配線パターンとを接続するハンダ材料とを備え、
     前記ハンダ材料は、前記半導体装置の前記頂面露出リード端子の頂面にも配置されている
    ことを特徴とする半導体装置の実装体。
    A semiconductor device according to any one of claims 1 to 11,
    A printed circuit board having a wiring pattern;
    A solder material for connecting the plurality of lead terminals of the semiconductor device and the wiring pattern;
    The mounting body of a semiconductor device, wherein the solder material is also disposed on a top surface of the top surface exposed lead terminal of the semiconductor device.
  13.  複数のリード端子と半導体チップとを準備する第1の工程と、
     前記半導体チップと前記複数のリード端子とを金属細線により接合する第2の工程と、
     前記複数のリード端子の少なくとも1つの頂面の一部に樹脂付着防止材料を載置する第3の工程と、
     前記複数のリード端子および前記半導体チップおよび前記金属細線を封止樹脂により封止する第4の工程と、
     前記樹脂付着防止材料を除去して、封止樹脂体を得る第5の工程と、
     前記封止樹脂体を個別に分割することによって、半導体装置を得る第6の工程とを備えている
    ことを特徴とする半導体装置の製造方法。
    A first step of preparing a plurality of lead terminals and a semiconductor chip;
    A second step of joining the semiconductor chip and the plurality of lead terminals with fine metal wires;
    A third step of placing a resin adhesion preventing material on a part of at least one top surface of the plurality of lead terminals;
    A fourth step of sealing the plurality of lead terminals, the semiconductor chip, and the fine metal wires with a sealing resin;
    A fifth step of removing the resin adhesion preventing material to obtain a sealing resin body;
    A semiconductor device manufacturing method comprising: a sixth step of obtaining a semiconductor device by dividing the sealing resin body individually.
  14.  複数のリード端子と半導体チップとを準備する第1の工程と、
     前記半導体チップと前記複数のリード端子とを金属細線により接合する第2の工程と、
     前記複数のリード端子の少なくとも1つの頂面の一部に樹脂付着防止材料を載置する第3の工程と、
     前記複数のリード端子および前記半導体チップおよび前記金属細線を封止樹脂で封止することによって成型される封止樹脂体を得る第4の工程と、
     前記封止樹脂体を個別に分割する第5の工程と、
     前記樹脂付着防止材料を除去することによって、半導体装置を得る第6の工程とを備えている
    ことを特徴とする半導体装置の製造方法。
    A first step of preparing a plurality of lead terminals and a semiconductor chip;
    A second step of joining the semiconductor chip and the plurality of lead terminals with fine metal wires;
    A third step of placing a resin adhesion preventing material on a part of at least one top surface of the plurality of lead terminals;
    A fourth step of obtaining a sealing resin body molded by sealing the plurality of lead terminals, the semiconductor chip and the fine metal wires with a sealing resin;
    A fifth step of individually dividing the sealing resin body;
    A semiconductor device manufacturing method comprising: a sixth step of obtaining a semiconductor device by removing the resin adhesion preventing material.
  15.  請求項13および14のいずれかの半導体装置の製造方法において、
     前記第1の工程では、前記複数のリード端子と、前記半導体チップを載置するダイパッドと、前記ダイパッドを支持する吊りリードとを有するリードフレームを準備し、
     前記第1の工程と前記第2の工程との間において、前記半導体チップを前記ダイパッド上に載置する第7の工程を備えている
    ことを特徴とする半導体装置の製造方法。
    In the manufacturing method of the semiconductor device in any one of Claim 13 and 14,
    In the first step, a lead frame having the plurality of lead terminals, a die pad for mounting the semiconductor chip, and a suspension lead for supporting the die pad is prepared,
    A semiconductor device manufacturing method comprising a seventh step of placing the semiconductor chip on the die pad between the first step and the second step.
PCT/JP2015/000653 2014-02-27 2015-02-13 Resin-sealed semiconductor device, production method therefor, and mounting body therefor WO2015129185A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014036610A JP2017079215A (en) 2014-02-27 2014-02-27 Resin-sealed semiconductor device, and manufacturing method thereof, and implementation body thereof
JP2014-036610 2014-02-27

Publications (1)

Publication Number Publication Date
WO2015129185A1 true WO2015129185A1 (en) 2015-09-03

Family

ID=54008523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000653 WO2015129185A1 (en) 2014-02-27 2015-02-13 Resin-sealed semiconductor device, production method therefor, and mounting body therefor

Country Status (2)

Country Link
JP (1) JP2017079215A (en)
WO (1) WO2015129185A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023140046A1 (en) * 2022-01-20 2023-07-27 ローム株式会社 Semiconductor device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01208849A (en) * 1988-02-17 1989-08-22 Hitachi Ltd Semiconductor device
JPH09330999A (en) * 1996-06-10 1997-12-22 New Japan Radio Co Ltd Lead deformation preventing package
JPH10163376A (en) * 1996-10-02 1998-06-19 Matsushita Electric Ind Co Ltd Semiconductor device for high-frequency power
JP2001035961A (en) * 1999-07-21 2001-02-09 Sony Corp Semiconductor and manufacture thereof
JP2001094006A (en) * 1999-09-22 2001-04-06 Hitachi Cable Ltd Substrate for packaging semiconductor element and semiconductor device
JP2003249604A (en) * 2002-02-25 2003-09-05 Kato Denki Seisakusho:Kk Resin-sealed semiconductor device and method of the same, lead frame used in resin-sealed semiconductor device, and semiconductor module device
JP2005317814A (en) * 2004-04-30 2005-11-10 Renesas Technology Corp Semiconductor device and its manufacturing method
JP2006229243A (en) * 2006-03-23 2006-08-31 Sanyo Electric Co Ltd Semiconductor device
WO2013015327A1 (en) * 2011-07-25 2013-01-31 京セラ株式会社 Wiring substrate, electronic device, and electronic module
JP2014067750A (en) * 2012-09-24 2014-04-17 Seiko Instruments Inc Resin-encapsulated semiconductor device and method of manufacturing the same
JP2014154785A (en) * 2013-02-12 2014-08-25 Seiko Instruments Inc Resin-sealed semiconductor device and manufacturing method thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01208849A (en) * 1988-02-17 1989-08-22 Hitachi Ltd Semiconductor device
JPH09330999A (en) * 1996-06-10 1997-12-22 New Japan Radio Co Ltd Lead deformation preventing package
JPH10163376A (en) * 1996-10-02 1998-06-19 Matsushita Electric Ind Co Ltd Semiconductor device for high-frequency power
JP2001035961A (en) * 1999-07-21 2001-02-09 Sony Corp Semiconductor and manufacture thereof
JP2001094006A (en) * 1999-09-22 2001-04-06 Hitachi Cable Ltd Substrate for packaging semiconductor element and semiconductor device
JP2003249604A (en) * 2002-02-25 2003-09-05 Kato Denki Seisakusho:Kk Resin-sealed semiconductor device and method of the same, lead frame used in resin-sealed semiconductor device, and semiconductor module device
JP2005317814A (en) * 2004-04-30 2005-11-10 Renesas Technology Corp Semiconductor device and its manufacturing method
JP2006229243A (en) * 2006-03-23 2006-08-31 Sanyo Electric Co Ltd Semiconductor device
WO2013015327A1 (en) * 2011-07-25 2013-01-31 京セラ株式会社 Wiring substrate, electronic device, and electronic module
JP2014067750A (en) * 2012-09-24 2014-04-17 Seiko Instruments Inc Resin-encapsulated semiconductor device and method of manufacturing the same
JP2014154785A (en) * 2013-02-12 2014-08-25 Seiko Instruments Inc Resin-sealed semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2017079215A (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP4312766B2 (en) Semiconductor device
JP3971433B2 (en) Manufacturing method of semiconductor integrated circuit device and semiconductor integrated circuit device
TWI408785B (en) Semiconductor package
JP3619773B2 (en) Manufacturing method of semiconductor device
US7662672B2 (en) Manufacturing process of leadframe-based BGA packages
US8072770B2 (en) Semiconductor package with a mold material encapsulating a chip and a portion of a lead frame
TWI404175B (en) Semiconductor package having electrical connecting structures and fabrication method thereof
JP2007503721A (en) Reversible leadless package and its manufacture and use
JP3436159B2 (en) Method for manufacturing resin-encapsulated semiconductor device
TW200824060A (en) Semiconductor package and fabrication method thereof
WO2006014418A2 (en) Encapsulated semiconductor device with reliable down bonds
CN102456648B (en) Method for manufacturing package substrate
KR20120079325A (en) Semiconductor package and methods of fabricating the same
WO2009130958A1 (en) Wiring board, semiconductor device and method for manufacturing semiconductor device
JP4777692B2 (en) Semiconductor device
US9018761B2 (en) Semiconductor device
WO2015129185A1 (en) Resin-sealed semiconductor device, production method therefor, and mounting body therefor
JP2005109088A (en) Semiconductor device and its manufacturing method, circuit substrate, and electronic equipment
JP2008098285A (en) Semiconductor device
JP2008235492A (en) Semiconductor device and method of manufacturing the same
JP2010050288A (en) Resin-sealed semiconductor device and method of manufacturing the same
US20140284803A1 (en) Semiconductor package and fabrication method thereof
JP5587464B2 (en) Manufacturing method of semiconductor device
KR20070103591A (en) Semiconductor package having insulator interposed between leads and method of fabricating semiconductor device having the same
KR20050019664A (en) Semiconductor package having solder balls

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15756058

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15756058

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP