WO2015129084A1 - 電力系統監視装置、電力系統制御装置及び電力系統監視方法 - Google Patents

電力系統監視装置、電力系統制御装置及び電力系統監視方法 Download PDF

Info

Publication number
WO2015129084A1
WO2015129084A1 PCT/JP2014/074773 JP2014074773W WO2015129084A1 WO 2015129084 A1 WO2015129084 A1 WO 2015129084A1 JP 2014074773 W JP2014074773 W JP 2014074773W WO 2015129084 A1 WO2015129084 A1 WO 2015129084A1
Authority
WO
WIPO (PCT)
Prior art keywords
power system
assumed
output change
monitoring device
failure
Prior art date
Application number
PCT/JP2014/074773
Other languages
English (en)
French (fr)
Inventor
佐藤 康生
昌洋 谷津
弘一 原
英佑 黒田
友部 修
山崎 潤
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US15/116,524 priority Critical patent/US10193385B2/en
Publication of WO2015129084A1 publication Critical patent/WO2015129084A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00002Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/30State monitoring, e.g. fault, temperature monitoring, insulator monitoring, corona discharge

Definitions

  • the present invention relates to a power system monitoring apparatus and method for monitoring a commercial power system and planning a control plan, and a power system control apparatus for issuing a control command based on the control plan.
  • the basic idea of maintaining reliability is preventive planning based on prior analysis. After presuming the factor of supply trouble that may occur in the power system, the state where the supply trouble factor has occurred is evaluated on the basis of analysis calculation to determine whether or not the power supply can be continued. Develop a power system operation plan on condition that any of the possible supply hindrances will not occur.
  • An example of the power system operation technology is stability maintenance control.
  • it has been proposed to devise an optimal stability maintenance policy by collecting power system observation information online.
  • the reliability of the power system is being improved by the advancement of computer technology and communication technology.
  • renewable energy utilizing natural energy are also called output-variable power sources, and have the character of generating power with uncertainty.
  • output-variable power sources While being a distributed power source, there is a geographical uneven distribution of natural energy resources. For example, in a form called a mega solar or wind farm, solar power generation facilities and wind power generation facilities are gathered and connected to a system like a large-capacity power source corresponding to a large generator represented by conventional thermal power generation.
  • a condition that combines the event of the assumed failure and the assumed output change is generated based on the input frequency of the assumption output change data including the occurrence frequency of And an output unit for outputting a control plan for each condition.
  • a power system control device that performs a control command to the generator based on the control plan output from the power system monitoring device.
  • monitoring control apparatus a method for creating a power system stabilization control plan using a power system monitoring apparatus and a power system control apparatus (hereinafter, monitoring control apparatus) adopting the present invention.
  • monitoring control apparatus In addition to large power generation facilities such as thermal power, large-scale wind power generation facilities and solar power generation are connected to the power system.
  • stabilization control plan that targets these power sources, etc., prior planning of emergency control such as power shutdown that should be performed immediately after a system failure occurs, and suppression of wind power generation to reduce the need for emergency control, etc. It implements preventive control planning and presents it to the operator.
  • FIG. 1 is a diagram showing a configuration and a processing flow of a power system monitoring apparatus to which the present application is applied. The outline of the processing procedure will be described below.
  • the monitoring control device includes monitoring control devices 0205 and 0206 for monitoring and controlling a large-scale thermal power supply 0203 and a renewable energy power supply 0204 that are connected to the power system 0202, and the monitoring control device 0201 in FIG. Data can be transmitted and received via a communication network 0209 and a monitoring terminal 0208 that monitors a measuring device 0207 that measures the current distribution of the current.
  • the assumed failure database 0101 is a storage unit that stores detailed contents relating to an assumed event that causes supply trouble such as a lightning strike in the main part of the power system. As shown in FIG. 3, for each symbol 0301 indicating an assumed failure ID, a number 0302 indicating an assumed occurrence location on the power system, a symbol 0303 indicating the failure state, and the frequency thereof are shown in FIG. The symbol 0304 is stored.
  • the number 0302 indicating the assumed occurrence location is associated with separately defined power system point information. For example, it is possible to point out a power transmission end or a power reception end, a bus, or the like.
  • the failure mode is defined in accordance with a general expression, for example, a two-phase three-wire failure in a two-line parallel three-phase three-wire transmission line.
  • the frequency 0304 is also associated with occurrence frequency class information defined separately.
  • the definition can be made from class A, which can occur continuously for 50 minutes or more for one minute or more, to occurrence frequency class E, which has a probability of occurrence of 0.1 times or less per year and a short duration.
  • the assumed output change database 0102 is a storage unit that stores detailed contents regarding the output change of the power generation equipment group that can affect the main power flow of the power system, such as simultaneous cutout of a large-scale wind farm.
  • a number 0402 indicating a generated power source a character string 0403 indicating its output change aspect, and a symbol 0404 indicating its frequency of occurrence are shown in FIG. Is stored.
  • the number 0402 indicating the assumed generated power source is linked to separately defined power system point information. For example, a bus that links large-scale wind farms is pointed out.
  • the output change aspect is defined separately. For example, with regard to the cut-out of wind power generation, as shown in FIG.
  • a shape is defined in which the power generation output indicated by the vertical axis 0502 decreases from the rated value to 0 within t1 seconds after the output change indicated by the horizontal axis 0501 occurs. ing. Similarly, it is defined that the solar power generation facility or the wind power generation facility is stopped or stopped due to malfunction.
  • the frequency 0404 is associated with the occurrence frequency class information in the same manner as the frequency 0304 in the assumed failure database 0101. These assumed output changes are defined as events that can occur more frequently than expected failures.
  • the condition combination means 0103 refers to the contents of the assumed failure database 0101 and the assumed output change database 0102 and generates a system condition group to be evaluated in the stabilization control planning.
  • the evaluation target system condition means a combination of a plurality of assumed failures and assumed output changes.
  • processing is performed in which combinations are created step by step in consideration of the frequency of occurrence of each assumed failure and assumed output fluctuation.
  • the combination is generated by the following processing based on the point information of the assumed failure and the assumed output change. For example, if the geographical correlation is high due to the geographical proximity, there is a possibility of simultaneous occurrence.
  • level 1 a combination that assumes an event in which a single output change overlaps a single contingency is generated.
  • the combination is created by extracting only the events for which a class having a high occurrence frequency is specified for both the assumed failure and the assumed output change.
  • level 2 a combination that assumes an event in which two output changes overlap a single contingency is generated.
  • a combination is generated for each assumed level in accordance with the concept of operation rules separately defined.
  • a probability value is given for each class indicating the occurrence frequency, and a combination in which the probability of multiple occurrences of multiple assumed failures and assumed output changes is less than a certain value is automatically generated.
  • a method is also conceivable.
  • the results of such condition combination means are stored in the evaluation target system condition group database 0104 as shown in FIG.
  • a character string 0602 indicating an assumed failure group, a character string 0603 indicating an assumed output change adopted for the system condition, and a symbol 0604 indicating an assumed level are stored for each condition number number 0601 assigned a serial number.
  • the expression of the character string 0602 and the character string 0603 is a character string indicating one or a plurality of events according to the expression of the assumed failure ID in the assumed failure database and the assumed output change ID in the assumed output change database, respectively. Yes.
  • a simulation for simulating the time series response of the power system is repeatedly performed, so that the stabilization control content necessary when the above system condition occurs is planned in advance.
  • a simulation is performed in order to grasp the response of the internal phase difference angle of each large thermal power generator with the vertical axis 0702 with respect to the time axis 0701. Based on the time T0 when the power system changes from the normal state to the system state, the time T1 at which the fault is removed and the behavior after that are simulated. For the generator whose internal phase difference angle becomes larger than the threshold value 0703 at time T2, it is determined that an urgent power cut-off is necessary as the power control.
  • the transient stability is maintained, that is, whether the transition 0704 of the internal phase difference angle of the other generator converges. If this is unstable, a generator to be subjected to additional power control is selected from the behavior of the internal phase difference angle.
  • a control plan such as a combination of power control necessary for maintaining transient stability is appropriately changed.
  • the system stabilization control planning means 0105 pre-plans the control for maintaining the system voltage. As a vertical axis 0705 with respect to the time axis, a simulation is performed to grasp the response of the node voltage at the main node in the power system.
  • a system stabilization control plan group database 0107 as shown in FIG. 8 is generated.
  • the number 0801 is a condition number common to the evaluation target system condition group database 0104.
  • a numerical sequence 0802 indicating the control target power ID group and a numerical value 0803 indicating the power control time thereof, a numerical sequence 0804 indicating the control target load ID group, and a numerical value 0805 indicating the load control time are stored.
  • the power control time and load control time are based on the time when the normal state changes to the system state.
  • the system stabilization control planning means 0105 also evaluates the stability improvement measures. Stability improvement measures are planned in advance and stored in the assumed stability improvement measure database 0106 as shown in FIG. For each numerical value 0901 managed by a serial number through a stability improvement measure, a numerical value 0902 indicating a power supply ID to be controlled and a symbol 0903 indicating its control type are stored.
  • the control type is the control content for the generator defined in advance, and for example, a command for suppressing the power generation output at a specified ratio with respect to the wind power generation facility is expressed. Assuming the case where one or more of these stability improvement measures are implemented, the stabilization control content is planned in advance in the same manner as the procedure described in FIG.
  • the response of the internal phase difference angle of each large thermal power generator is simulated with the vertical axis 1002 with respect to the time axis 1001. For example, it is confirmed that the generator whose internal phase difference angle is larger than the threshold 1003 disappears due to the stability improvement measure, and the transition 1004 of the internal phase difference angle of all the generators converges.
  • the threshold value 1003 as in the operation of FIG. 7, by repeating the process of selecting the generator to be the target of power control, the power control necessary for maintaining the transient stability is performed. Create a combination.
  • the system voltage is processed in the same manner as in FIG.
  • the voltage compensator for voltage recovery of the voltage drop node is repeatedly turned on until the node whose voltage falls below a certain level 1006 does not occur, and the transition of each node voltage 1007 Develop system stabilization control that converges to the appropriate range.
  • Stabilization control contents assuming a stability improvement measure are also stored in the system stabilization control plan group database 0107.
  • the system stabilization control planning result for each stability improvement measure is stored as a data table having the same configuration as in FIG.
  • the operation screen provided by the means includes, for example, a display as shown in FIG.
  • the horizontal axis 1101 quantifies the level indicating the occurrence frequency of the evaluation target system condition.
  • the occurrence frequency of the evaluation target system condition obtained by combining the occurrence frequencies of the plurality of assumed failures and assumed output changes is quantified and expressed as a probability value.
  • level 1 events are a combination group assuming an event in which a single output change overlaps with a single contingency failure.
  • the vertical axis 1102 represents the power supply control amount in the system stabilization control designed in the evaluation target system condition for each level.
  • a plurality of evaluation target system conditions belong to one of the above levels, and the sum value of the power supply control amount is adopted for the system stabilization control planning result group necessary for these evaluation target system condition groups.
  • a line-shaped graph can be obtained by obtaining and plotting this for each level. For example, a broken line 1103 indicates a level-specific change in the power control amount when the stability improvement measure is not implemented. Similarly, a polygonal line 1104 and a polygonal line 1105 indicate power control amounts when different stability improvement measures are assumed. Using a separately specified allowable power control amount 1106 as a criterion, it is possible to determine which level of system change is allowed when there is no stability improvement measure.
  • the hardware configuration of the power system monitoring apparatus can be divided into a storage medium such as a memory and a CPU, and an assumed failure database 0101 for storing data to be input to a processing unit to be described later.
  • the evaluation target system condition group database 0104, the assumed stability improvement measure database 0106, and the system stabilization control plan group database 0107 are used as the storage unit 0109, and a control plan is created and presented based on the data input from the storage unit.
  • the condition combination means 0103, the system stabilization control planning means 0105, and the control plan presentation means 0108, which are the processing functions of the CPU to be output, are classified from the processing unit 0110.
  • the contents of power control and load control required by referring to the system stabilization control plan group database when the system state changes greatly. Can be immediately grasped.
  • Promptly implement a control plan according to the system status by providing an online monitoring function for the power system status including power fluctuation type power sources such as wind power generation, an online judgment mechanism for the system status change, and a control command mechanism.
  • This control plan is evaluated not only for system failures according to the conventional (N-1) reliability standard, but also for frequent output changes such as cut-out of wind power generation. Compared to the stabilization control plan set in advance based on off-line analysis, it contributes to system stabilization while suppressing excessive control.
  • control effects can be pre-evaluated for grid stabilization control plans that can be planned in advance, such as wind power generation output suppression, making it possible to employ appropriate preventive control in power system operations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

 従来の(N-1)信頼度基準に基づいた運用では、再生可能エネルギーが増加した電力系統において、適切な運用計画立案を行うことができない。そこで本発明は、電力系統を監視する電力系統監視装置において、前記電力系統の想定故障の発生頻度を含む想定系統故障データと、前記電力系統に接続する発電機の想定出力変化の発生頻度を含む想定出力変化データとを入力する入力部と、前記想定故障及び前記想定出力変化の発生頻度に基づいて、前記想定故障及び前記想定出力変化の各事象を組合せた条件を生成し、前記条件ごとに制御計画を出力する出力部とを備える。

Description

電力系統監視装置、電力系統制御装置及び電力系統監視方法
 本発明は、商用電力系統の監視及び制御計画の立案を行う電力系統監視装置及び方法、また前記制御計画に基づいて制御指令を行う電力系統制御装置に関する。
 電力系統の運用においては、供給信頼度を維持するための計画立案が重要となる。電力系統の設備に不具合が発生した場合においても、電力系統の運用を維持して電力供給を継続する必要がある。電力系統は重要な社会インフラのひとつであり、電力系統における供給信頼度の維持は電力系統運用者の責務のひとつである。
 信頼度維持の基本的な考え方は、事前解析による予防的な計画立案である。電力系統に発生しうる供給支障の要因を事前に想定した上で、解析計算の上で前記供給支障要因が発生した状態を評価して電力供給が継続できるか否かを判定する。想定される供給支障要因のいずれが発生しても問題ないことを条件として、電力系統運用計画を立案する。
 上記電力系統運用技術の一例として、安定度維持制御が挙げられる。例えば、特許文献1、2などのように、オンラインで電力系統の観測情報を収集することで、最適な安定度維持方策を立案することが提案されている。このように、計算機技術および通信技術の進展によって、電力系統の信頼度が向上されつつある。
特開2000-92714号公報 特開2000-341856号公報
 しかしながら、上記特許文献を含め旧来の電力系統運用においては、重大な系統故障は単一でしか発生しないことを想定していた。電力系統の基幹部分における落雷などに起因する供給支障もしくは大型発電機における設備故障による供給支障などは、発生頻度が低く相関性も低いため、重複で発生することは考えてこなかった。いわゆる(N-1)信頼度基準である。
 今後、太陽光や風力に代表される再生可能エネルギーの普及に伴って、異なった考え方が求められている。上記に挙げた自然エネルギーを活用した再生可能エネルギーの類は、出力変動型電源とも呼ばれており、発電出力に不確実性が伴う性格を持つ。また、分散型電源でありながら、自然エネルギーのリソースに地理的な偏在も伴う。例えばメガソーラやウィンドファームと呼ばれる形態では、太陽光発電設備や風力発電設備が集合して、従来の火力発電に代表される大型発電機に相当する大容量電源のように系統に連系する。
 この場合、天候急変に起因して、大きな状態変化が同時多発する恐れがある。例えば、風力発電の場合、風力ブレードに当たる風速が一定値以上に高まった場合には、機械的な安全性を確保するために、ブレードを停止させて発電出力をゼロとするカットアウトと呼ばれる自動動作が行われる。このような天候急変の事象は、従来の信頼度維持において想定していた前記の供給支障原因に比較して発生頻度が多く、また、気象的に相関性を持つ地域においては同時発生する確率も高いことが懸念される。
 よって、従来の(N-1)信頼度基準に基づいた運用では、再生可能エネルギーが増加した電力系統において、適切な運用計画立案を行うことができないという課題が生じる。
 上記課題を解決する為本発明では、電力系統を監視する電力系統監視装置において、前記電力系統の想定故障の発生頻度を含む想定系統故障データと、前記電力系統に接続する発電機の想定出力変化の発生頻度を含む想定出力変化データとを入力する入力部と、前記想定故障及び前記想定出力変化の発生頻度に基づいて、前記想定故障及び前記想定出力変化の各事象を組合せた条件を生成し、前記条件ごとに制御計画を出力する出力部とを備える。
 また、前記電力系統監視装置から出力された前記制御計画に基づいて、前記発電機に対して制御指令を行うことを特徴とする電力系統制御装置も含まれる。
 本願によって、再生可能エネルギーなどの出力変動型電源が増加した電力系統において、複数の故障及び出力変動が発生した場合でも、適切に信頼度維持を図る電力系統の運用計画を作成できる。
 また、再生可能エネルギーの普及に対して過剰な設備対策を求めることはなくなり、再生可能エネルギーの普及促進にも寄与できる。
本発明を用いた電力系統監視装置の構成及び処理フローの一例である。 本発明を用いた電力系統監視装置及び電力系統制御装置の設置例である。 想定故障を示すデータを格納するデータベース構成の一例である。 想定出力変化を示すデータを格納するデータベース構成の一例である。 想定出力変化を示す表現の一例である。 評価対象系統条件データを格納するデータベース構成の一例である。 電力系統の過渡安定度評価の一例である。 系統安定度維持のための制御計画を格納するデータベース構成の一例である。 想定安定度向上策を示すデータを格納するデータベース構成の一例である。 想定安定度向上策を伴う電力系統の過渡安定度評価の一例である。 制御計画提示手段の画面構成の一例である。
 以下、実施例について図面を用いて説明する。尚、下記はあくまでも実施の例に過ぎず、下記具体的内容に発明自体が限定されることを意図する趣旨ではない。
 本実施例では、本発明を採用した電力系統監視装置及び電力系統制御装置(以下、監視制御装置)によって、電力系統の安定化制御計画を立案する方法を説明する。電力系統には、火力などの大型発電設備に加えて、大規模な風力発電設備と太陽光発電が連系されている。これら電源などを制御対象とした安定化制御計画として、系統故障発生後に直ちに実施すべき電源遮断などの緊急制御の事前立案、および、上記緊急制御の必要性を低減させるための風力発電量抑制などの予防制御の立案を実施して、運用者に提示する機能を有している。
 図1は本願を適用した電力系統監視装置の構成及び処理フローを示した図である。以下に処理手順の概略を説明していく。
 当該監視制御装置は、図2の監視制御装置0201のように、電力系統0202に連系する大型火力電源0203や再生可能エネルギー電源0204を監視制御する監視制御装置0205,0206、および、電力系統内の潮流分布を測定する計測装置0207を監視する監視端末0208と、通信網0209を介してデータ送受できる。
 想定故障データベース0101は、電力系統の基幹部分における落雷など、供給支障を引き起こす想定事象に関する詳細内容を格納する記憶部である。このデータベースの構成としては、図3のように、想定故障IDを示す記号0301毎に、電力系統上での想定発生箇所を示す番号0302、および、その故障様相を示す記号0303、その頻度を示す記号0304が格納されている。ここで、想定される発生箇所を示す番号0302は、別途定義されている電力系統地点情報と紐づけられている。例えば、送電線送電端もしくは受電端、母線などを指摘できる。故障様相は、一般的な表現に従って、例えば二回線併架の三相三線式送電線における2相3線故障などが定義されている。また、頻度0304についても、別途定義されている発生頻度クラス情報と紐づけられている。例えば、年間50回以上の一分以上継続して発生し得るクラスAから、年間0.1回以下の発生確率で継続時間も短い発生頻度クラスE等のような定義ができる。
 想定出力変化データベース0102は、大規模な風力ファームの一斉カットアウトのように、電力系統の基幹潮流に影響し得る発電設備群の出力変化に関する詳細内容を格納する記憶部である。このデータベースの構成としては、図4のように、想定出力変化IDを示す記号0401毎に、発生電源を示す番号0402、および、その出力変化様相を示す文字列0403、その発生頻度を示す記号0404が格納されている。ここで、想定される発生電源を示す番号0402は、別途定義されている電力系統地点情報と紐づけられている。例えば、大規模風力ファームが連系する母線が指摘される。出力変化様相については、別途定義されている。例えば風力発電のカットアウトについては、図5のように、横軸0501が示す出力変化発生後t1秒までの間に、縦軸0502が示す発電出力が定格から0まで出力低下する形状が定義されている。同様に、太陽光発電設備や風力発電設備の故障停止や不具合による出力抑制なども定義されている。また、頻度0404については、想定故障データベース0101における頻度0304と同様に発生頻度クラス情報と紐づけられる。これら想定出力変化は、想定故障に比較して、より高頻度に発生し得る事象として定義されている。
 条件組合せ手段0103は、想定故障データベース0101と想定出力変化データベース0102の内容を参照して、安定化制御立案において評価対象とすべき系統条件群を生成する。ここで、評価対象系統条件とは、複数の想定故障と想定出力変化の組合せを意味している。条件組合せ手段における組合せ方法については、多様な処理方法が存在するが、本実施例では想定故障および想定出力変動それぞれの発生頻度を考慮しながら段階的に組合せを作成していく処理を行う。また当該組合せを作成する際に、想定故障と想定出力変化の地点情報に基づいて以下の処理で組合せを生成する。例えば地理的に近い位置にあることから地理的相関が高く、同時発生する可能性がある場合等適宜考慮する。まず、レベル1として、単一の想定故障に単一の出力変化が重複した事象を想定した組合せを生成する。想定故障および想定出力変化の両方について発生頻度に高いクラスが指定されている事象のみに抽出して、前記組合せを作成する。次に、レベル2として、単一の想定故障に二つの出力変化が重複した事象を想定した組合せを生成する。同様に、別途定められる運用規定の考え方に従って、想定レベル毎に組合せを生成していく。このような段階的な組合せ作成方法のほかにも、発生頻度を示すクラス別に確率値を与えて、複数の想定故障および想定出力変化の多重発生の確率が一定値以下になる組合せを自動生成する方法も考えられる。組合せ数が膨大となるため、意味のある組合せを高速に作成するために、動的計画法などの数理計画手法を適用する。さらには、想定出力変化データベースの中で、出力変化事象の間の地理的相関を示すデータも格納することで、上記自動生成において条件付き確率を算出する方法も考えられる。
 このような条件組合せ手段の結果は、図6のような評価対象系統条件群データベース0104に格納される。通し番号が振られた条件Noの番号0601毎に、その系統条件に採用した想定故障群を示す文字列0602および想定出力変化を示す文字列0603、そして、その想定レベルを示す記号0604が格納されている。文字列0602と文字列0603の表現はそれぞれ、上記想定故障データベース内の想定故障IDと上記想定出力変化データベース内の想定出力変化IDの表現に従っていて、ひとつもしくは複数の事象を示す文字列となっている。
 次に、系統安定化制御立案手段0105では、電力系統の時系列応動を模擬するシミュレーションを繰り返し実施することによって、上記系統条件が発生した場合に必要な安定化制御内容を事前立案する。過渡安定度を維持するために、例えば、図7のように、時間軸0701に対して縦軸0702として、大型火力発電機個々の内部相差角の応動を把握するためにシミュレーションを行う。電力系統が平常状態から上記系統状態に変化した際の時刻T0を基準として、故障が除去される時刻T1、さらにその後の挙動をシミュレーションする。そして、時刻T2において内部相差角が閾値0703よりも大きくなってしまう発電機については、電源制御として緊急的な電源遮断が必要と判断する。その上で、この電源制御を実行した場合について更にシミュレーションで評価することによって、過渡安定度が維持されるか、つまり、他発電機の内部相差角の推移0704が収束していくのか判断する。これが不安定な場合には、内部相差角の挙動から、追加の電源制御の対象となる発電機を選択する。このような処理を繰り返すことによって、過渡安定度維持のために必要となる電源制御の組合せ等の制御計画を適宜変更する。また、系統安定化制御立案手段0105では、系統電圧を維持するための制御に関しても事前立案する。時間軸に対する縦軸0705として、電力系統内の主要ノードにおけるノード電圧の応動を把握するためにシミュレーションを行う。電圧が一定レベル0706を下回るノードが発生する場合には、電圧低下ノードの電圧回復を図るための電圧補償装置の投入を立案して、これら制御を想定した場合について再度シミュレーション評価する。この動作を繰り返すことによって、各ノード電圧の推移0707が適正範囲に収束させる系統安定化制御計画を適宜変更して立案する。
 このような系統安定化制御立案手段の結果、図8のような系統安定化制御計画群データベース0107が生成される。番号0801は、評価対象系統条件群データベース0104と共通の条件Noである。この条件No毎に、制御対象電源ID群を示す数列0802およびその電源制御時間を示す数値0803、制御対象負荷ID群を示す数列0804およびその負荷制御時間を示す数値0805を格納している。なお、上記電源制御時間および負荷制御時間は、平常状態から上記系統状態に変化した時を基準としている。
 また、系統安定化制御立案手段0105においては、安定度向上策についても合わせて評価する。安定度向上策は事前に立案されて、図9のような想定安定度向上策データベース0106に格納されている。安定度向上策を通し番号で管理する数値0901毎に、制御対象とする電源IDを示す数値0902、および、その制御種別を示す記号0903が格納されている。制御種別は事前に定義された発電機に対する制御内容であり、例えば、風力発電設備に対して規定比率で発電出力を抑制する指令などが表現されている。これら安定度向上策の一つもしくは複数が実施された場合を想定して、図7で説明した手順と同様に、安定化制御内容を事前立案する。まず、過渡安定度に関する評価として、時間軸1001に対して縦軸1002として、大型火力発電機個々の内部相差角の応動をシミュレーションする。例えば、安定度向上策に依って、内部相差角が閾値1003よりも大きくなる発電機は無くなり、全ての発電機の内部相差角の推移1004が収束していくことが確認される。閾値1003を超える発電機がある場合には、図7の動作と同様に、電源制御の対象となる発電機を選択する処理を繰り返すことによって、過渡安定度維持のために必要となる電源制御の組合せを作成する。系統電圧に関しても図7と同様に処理する。主要ノードにおけるノード電圧を縦軸1005として、電圧が一定レベル1006を下回るノードが発生しなくなるまで、電圧低下ノードの電圧回復を図るための電圧補償装置の投入を繰り返して、各ノード電圧の推移1007が適正範囲に収束させる系統安定化制御を立案する。
 安定度向上策を想定した場合の安定化制御内容についても、系統安定化制御計画群データベース0107に格納される。安定度向上策毎の系統安定化制御立案結果が、図8と同様構成のデータテーブルとして格納される。
 最後に、制御計画提示手段0108を説明する。同手段が提供する操作画面としては、例えば、図11のような表示を含む。横軸1101は、評価対象系統条件の発生頻度を示すレベルを数値化している。上記条件組合せ手段0103に関する説明で前述した通り、複数の想定故障と想定出力変化それぞれの発生頻度から、それらを組み合わせた評価対象系統条件の発生頻度についても確率値として定量化して表現している。本実施例では、レベル1の事象は、単一の想定故障に単一の出力変化が重複した事象を想定した組合せ群となっている。縦軸1102は、レベル毎の評価対象系統条件において立案された系統安定化制御のうちの電源制御量を示している。上記レベルの一つには複数の評価対象系統条件が属しており、これら評価対象系統条件群で必要となる系統安定化制御立案結果群について電源制御量の合算値を採用する。これをレベル毎に求めてプロットすることによって、折れ線形状のグラフを得ることができる。例えば、折れ線1103は、安定度向上策を実施しない場合の電源制御量について、レベル別の変化を示している。同様に、折れ線1104と折れ線1105はそれぞれ異なった安定度向上策を想定した場合の電源制御量を示している。別途規定された許容電源制御量1106を判定基準として、安定度向上策が無い場合にはどのレベルの系統変化まで許容されるか判断できる。また、安定度維持で目的とするレベルが存在する場合には、どの安定度向上策を実施することによって許容電源制御量以下に想定制御量が抑制できるかも判断できる。同様に、別グラフ1107としては、負荷制御量についてもレベル別に必要負荷制御量を可視化している。上述した許容電源制御量の考え方と同様に、同画面の操作者は、現時点の系統状態からどのレベルの系統変化が許容されるかまた、どの安定度向上施策が必要かを判断する材料を得ることができる。
 なお、図1において、電力系統監視装置のハードウェアの主構成として、メモリ等の記憶媒体及びCPUに区分でき、後述する処理部へ入力するデータを格納する想定故障データベース0101, 想定出力変化データベース0102,評価対象系統条件群データベース0104、想定安定度向上策データベース0106、系統安定化制御計画群データベース0107を記憶部0109とし、前記記憶部から入力されたデータに基づいて制御計画を作成及び提示して出力する当該CPUの処理機能である条件組合せ手段0103,系統安定化制御立案手段0105,制御計画提示手段0108を処理部0110と区分する。
 以上のような本願を適用した監視制御装置を利用することによって、系統状態が大きく変化した場合には、系統安定化制御計画群データベースを参照することによって、必要となる電源制御および負荷制御の内容を直ちに把握することが可能となる。風力発電などの出力変動型電源を含む電力系統状況をオンライン監視する機能、および、系統状態変化のオンライン判定機構、制御指令機構を設けることによって、系統状況に応じた制御計画を迅速に実施することが可能となる。この制御計画は、従来の(N-1)信頼度基準に従った系統故障に対する評価だけでなく、風力発電のカットアウトなど頻度の高い出力変化も合わせて評価されている。オフライン解析に基づいて事前整定した安定化制御計画に比較して、過剰な制御を抑制しつつ系統安定化に寄与する。
 さらに、同技術によって、風力発電の出力抑制など、事前立案できる系統安定化制御計画についても制御効果を事前評価できるため、電力系統運用の業務において適切な予防制御を採用することも可能になる。
 この結果、風力発電や太陽光発電の不確実性に対して、電力系統の信頼度上で適切な対応が可能となる。再生可能エネルギーの普及に対して過剰な設備対策を求めることはなくなり、再生可能エネルギーの普及促進にも寄与できる。
0101 想定故障データベース
0102 想定出力変化データベース
0103 条件組合せ手段
0104 評価対象系統条件群データベース
0105 系統安定化制御立案手段
0106 想定安定度向上策データベース
0107 系統安定化制御計画群データベース
0108 制御計画提示手段
0109 記憶部
0110 処理部
0201 監視制御装置
0202 電力系統
0203 大型火力電源
0204 再生可能エネルギー電源
0205,0206 監視制御端末
0207  計測装置
0208  監視端末
0209 通信網

Claims (13)

  1.  電力系統を監視する電力系統監視装置において、
     前記電力系統の想定故障の発生頻度を含む想定系統故障データと、前記電力系統に接続する発電機の想定出力変化の発生頻度を含む想定出力変化データとを入力する入力部と、
     前記想定故障及び前記想定出力変化の発生頻度に基づいて、前記想定故障及び前記想定出力変化の各事象を組合せた条件を生成し、前記条件ごとに制御計画を出力する出力部とを備えることを特徴とする電力系統監視装置。
  2.  請求項1記載の電力系統監視装置において、
     前記出力部は、前記条件において、前記発電機の内部相差角及び前記電力系統における所定ノードの電圧が所定範囲内に収束するか模擬し、前記模擬の結果に基づいて前記制御計画を変更することを特徴とする電力系統監視装置。
  3.  請求項1記載の電力系統監視装置において、
     前記出力部は、前記条件ごとの制御計画を前記発生頻度と制御量の相関で表示することを特徴とする電力系統監視装置。
  4.  請求項1記載の電力系統監視装置において、
     前記想定系統故障データには前記想定故障の地点情報を含み、かつ前記想定出力変化データには前記想定出力変化の地点情報を含み、それらの地点情報に基づいて、前記条件を生成することを特徴とする電力系統監視装置。
  5.  請求項4記載の電力系統監視装置において、
     前記条件は、前記地点情報に基づいて前記想定出力変化の事象間で重み付けを行うことを特徴とする電力系統監視装置。
  6.  請求項1記載の電力系統監視装置において、
     前記条件は、前記発生頻度が所定の範囲内となる前記想定故障及び前記想定出力変化の事象間の組合せで生成することを特徴とする電力系統監視装置。
  7.  請求項1記載の電力系統監視装置において、
     前記想定系統故障データは、故障発生箇所に応じた故障様相のデータを含むことを特徴とする電力系統監視装置。
  8.  請求項1記載の電力系統監視装置において、
     前記想定出力変化データは、前記発電機ごとの出力変化様相のデータを含むことを特徴とする電力系統監視装置。
  9.  請求項8記載の電力系統監視装置において、
     前記出力変化様相のデータは、出力変化量及び出力変化速度を含むことを特徴とする電力系統監視装置。
  10.  請求項8記載の電力系統監視装置において、
     前記出力変化様相のデータは、風力発電のカットアウト事象を含むことを特徴とする電力系統監視装置。
  11.  請求項1記載の電力系統監視装置において、
     前記入力部に更に事前設定した発電機ごとの制御策を入力し、前記出力部で制御計画を作成することを特徴とする電力系統監視装置。
  12.  請求項1記載の電力系統監視装置から出力された前記制御計画に基
    づいて、
     前記発電機に対して制御指令を行うことを特徴とする電力系統制御装置。
  13.  電力系統を監視する電力系統監視方法において、
     前記電力系統の想定故障の発生頻度を含む想定系統故障データと、前記電力系統に接続する発電機の想定出力変化の発生頻度を含む想定出力変化データとを入力し、
     前記想定故障及び前記想定出力変化の発生頻度に基づいて、前記想定故障及び前記想定出力変化の各事象を組合せた条件を生成し、前記条件ごとに制御計画を出力することを特徴とする電力系統監視装置。
PCT/JP2014/074773 2014-02-28 2014-09-19 電力系統監視装置、電力系統制御装置及び電力系統監視方法 WO2015129084A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/116,524 US10193385B2 (en) 2014-02-28 2014-09-19 Power system monitoring apparatus, power system control apparatus, and power system monitoring method employing events of assumable breakdowns and assumable output changes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-037685 2014-02-28
JP2014037685A JP6173946B2 (ja) 2014-02-28 2014-02-28 電力系統監視装置、電力系統制御装置及び電力系統監視方法

Publications (1)

Publication Number Publication Date
WO2015129084A1 true WO2015129084A1 (ja) 2015-09-03

Family

ID=54008432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074773 WO2015129084A1 (ja) 2014-02-28 2014-09-19 電力系統監視装置、電力系統制御装置及び電力系統監視方法

Country Status (3)

Country Link
US (1) US10193385B2 (ja)
JP (1) JP6173946B2 (ja)
WO (1) WO2015129084A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110943480A (zh) * 2019-11-25 2020-03-31 深圳大学 电力系统调频方法、装置、计算机设备及存储介质

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6397759B2 (ja) * 2014-12-26 2018-09-26 株式会社日立製作所 電力系統安定化装置及び方法
CN107045548B (zh) * 2017-04-13 2021-02-09 南京南瑞继保电气有限公司 一种计算风电能量利用率的系统及方法
JP2019030065A (ja) * 2017-07-26 2019-02-21 株式会社東芝 電力系統信頼度評価システム
JP7048472B2 (ja) * 2018-10-17 2022-04-05 株式会社東芝 発電計画決定システム、発電計画決定方法、およびプログラム
JP7098515B2 (ja) * 2018-12-14 2022-07-11 株式会社東芝 電力系統安定化装置
CN109617122B (zh) * 2018-12-26 2022-02-15 南方电网科学研究院有限责任公司 一种分布式电源出力预测的方法和装置
CN109799732B (zh) * 2019-02-21 2022-02-01 三峡大学 一种数据驱动的梯级水电和新能源联合运行实验系统
JP7477440B2 (ja) * 2020-12-15 2024-05-01 株式会社日立製作所 電力系統監視制御装置、電力系統監視制御システム、ならびに電力系統監視制御方法
CN112865073B (zh) * 2021-01-11 2023-01-03 南方电网科学研究院有限责任公司 功率速降故障的安全稳定控制系统切机方法、装置及设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000092714A (ja) * 1998-09-11 2000-03-31 Hitachi Ltd 電力系統安定化装置及びその電源制限方法
JP2000341856A (ja) * 1999-05-27 2000-12-08 Mitsubishi Electric Corp 系統安定化装置
JP2004282878A (ja) * 2003-03-14 2004-10-07 Hitachi Ltd 分散電源出力変動模擬システム及びその方法
JP2012034444A (ja) * 2010-07-28 2012-02-16 Toshiba Corp 電力需給計画装置及びその方法
JP2013208042A (ja) * 2012-03-29 2013-10-07 Toshiba Corp 電力系統監視システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6218853B1 (en) * 1998-12-11 2001-04-17 Daniel Liu Circuit arrangement for simulating alternating current load
EP2634420B1 (en) * 2010-10-29 2016-05-25 Mitsubishi Heavy Industries, Ltd. Control device for wind-powered electricity-generating device, wind farm, and control method for wind-powered electricity generating device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000092714A (ja) * 1998-09-11 2000-03-31 Hitachi Ltd 電力系統安定化装置及びその電源制限方法
JP2000341856A (ja) * 1999-05-27 2000-12-08 Mitsubishi Electric Corp 系統安定化装置
JP2004282878A (ja) * 2003-03-14 2004-10-07 Hitachi Ltd 分散電源出力変動模擬システム及びその方法
JP2012034444A (ja) * 2010-07-28 2012-02-16 Toshiba Corp 電力需給計画装置及びその方法
JP2013208042A (ja) * 2012-03-29 2013-10-07 Toshiba Corp 電力系統監視システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110943480A (zh) * 2019-11-25 2020-03-31 深圳大学 电力系统调频方法、装置、计算机设备及存储介质

Also Published As

Publication number Publication date
US10193385B2 (en) 2019-01-29
JP2015162997A (ja) 2015-09-07
US20160359363A1 (en) 2016-12-08
JP6173946B2 (ja) 2017-08-02

Similar Documents

Publication Publication Date Title
JP6173946B2 (ja) 電力系統監視装置、電力系統制御装置及び電力系統監視方法
US20230335991A1 (en) Proactive intelligent load shedding
Rhodes et al. Balancing wildfire risk and power outages through optimized power shut-offs
US10372569B2 (en) Methods and system for detecting false data injection attacks
Hoseinzadeh et al. Adaptive tuning of frequency thresholds using voltage drop data in decentralized load shedding
Park et al. Development of a novel power curve monitoring method for wind turbines and its field tests
WO2019226853A1 (en) System and method for anomaly and cyber-threat detection in a wind turbine
Kopsidas et al. Power network reliability evaluation framework considering OHL electro-thermal design
EP2779350B1 (en) Direct current transmission and distribution system and method of operating the same
EP2381094A1 (en) Energy network and control thereof
Kamboj et al. Mathematical model of reliability assessment for generation system
JP2017099269A (ja) 電力資産を制御および監視するためのシステムおよび方法
CN112578232B (zh) 风力发电机组的雷电预警方法和雷电预警设备
US11916394B2 (en) Renewable energy system stabilization system and system stabilization support method
KR101338125B1 (ko) 계통환경 적응/지능형 과도 안정도 고장파급방지 시스템
Monica Transient stability analysis of tngt power system
Shokooh et al. A Model-Driven Approach for Situational Intelligence & Operational Awareness
Boroczky et al. Voltage Stability and Transient Stability Assessment Tools to Manage the National Electricity Market in Australia
JP7068209B2 (ja) 系統安定化装置
Yosia et al. Real Time Simulation of New Defense Scheme Based on Centralized Remedial Action Scheme For Batam-Bintan Electrical System Implementation
Duggan et al. Active power control from wind farms for damping very low-frequency oscillations
Melo et al. Thermoelectric generation re-dispatch through Online Stability Assessment in altered grid conditions
Du System Inertia Trend and Critical Inertia
Salim et al. Determination of severe loading condition at critical system cascading collapse considering the effect of protection system hidden failure
Blake et al. Quantifying the contribution of wind farms to distribution network reliability

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14883760

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15116524

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14883760

Country of ref document: EP

Kind code of ref document: A1