WO2015129013A1 - ダンプトラック - Google Patents
ダンプトラック Download PDFInfo
- Publication number
- WO2015129013A1 WO2015129013A1 PCT/JP2014/054981 JP2014054981W WO2015129013A1 WO 2015129013 A1 WO2015129013 A1 WO 2015129013A1 JP 2014054981 W JP2014054981 W JP 2014054981W WO 2015129013 A1 WO2015129013 A1 WO 2015129013A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- body frame
- radiator
- pair
- dump truck
- vehicle body
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K11/00—Arrangement in connection with cooling of propulsion units
- B60K11/02—Arrangement in connection with cooling of propulsion units with liquid cooling
- B60K11/04—Arrangement or mounting of radiators, radiator shutters, or radiator blinds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G3/00—Resilient suspensions for a single wheel
- B60G3/18—Resilient suspensions for a single wheel with two or more pivoted arms, e.g. parallelogram
- B60G3/20—Resilient suspensions for a single wheel with two or more pivoted arms, e.g. parallelogram all arms being rigid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G7/00—Pivoted suspension arms; Accessories thereof
- B60G7/005—Ball joints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K1/00—Arrangement or mounting of electrical propulsion units
- B60K1/02—Arrangement or mounting of electrical propulsion units comprising more than one electric motor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K13/00—Arrangement in connection with combustion air intake or gas exhaust of propulsion units
- B60K13/02—Arrangement in connection with combustion air intake or gas exhaust of propulsion units concerning intake
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L1/00—Supplying electric power to auxiliary equipment of vehicles
- B60L1/02—Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L7/00—Electrodynamic brake systems for vehicles in general
- B60L7/02—Dynamic electric resistor braking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D21/00—Understructures, i.e. chassis frame on which a vehicle body may be mounted
- B62D21/17—Understructures, i.e. chassis frame on which a vehicle body may be mounted forming fluid or electrical conduit means or having other means to accommodate the transmission of a force or signal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D21/00—Understructures, i.e. chassis frame on which a vehicle body may be mounted
- B62D21/18—Understructures, i.e. chassis frame on which a vehicle body may be mounted characterised by the vehicle type and not provided for in groups B62D21/02 - B62D21/17
- B62D21/186—Understructures, i.e. chassis frame on which a vehicle body may be mounted characterised by the vehicle type and not provided for in groups B62D21/02 - B62D21/17 for building site vehicles or multi-purpose tractors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2200/00—Indexing codes relating to suspension types
- B60G2200/10—Independent suspensions
- B60G2200/14—Independent suspensions with lateral arms
- B60G2200/144—Independent suspensions with lateral arms with two lateral arms forming a parallelogram
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2200/00—Indexing codes relating to suspension types
- B60G2200/40—Indexing codes relating to the wheels in the suspensions
- B60G2200/422—Driving wheels or live axles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2200/00—Indexing codes relating to suspension types
- B60G2200/40—Indexing codes relating to the wheels in the suspensions
- B60G2200/44—Indexing codes relating to the wheels in the suspensions steerable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2300/00—Indexing codes relating to the type of vehicle
- B60G2300/09—Construction vehicles, e.g. graders, excavators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K11/00—Arrangement in connection with cooling of propulsion units
- B60K11/02—Arrangement in connection with cooling of propulsion units with liquid cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K11/00—Arrangement in connection with cooling of propulsion units
- B60K11/06—Arrangement in connection with cooling of propulsion units with air cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K13/00—Arrangement in connection with combustion air intake or gas exhaust of propulsion units
- B60K13/06—Arrangement in connection with combustion air intake or gas exhaust of propulsion units using structural parts of the vehicle as ducts, e.g. frame parts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K17/00—Arrangement or mounting of transmissions in vehicles
- B60K17/04—Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
- B60K17/043—Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel
- B60K17/046—Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel with planetary gearing having orbital motion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K1/00—Arrangement or mounting of electrical propulsion units
- B60K2001/003—Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
- B60K2001/006—Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K5/00—Arrangement or mounting of internal-combustion or jet-propulsion units
- B60K2005/003—Arrangement or mounting of internal-combustion or jet-propulsion units the internal combustion or jet propulsion unit is arranged between the front and the rear axle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K7/00—Disposition of motor in, or adjacent to, traction wheel
- B60K2007/0046—Disposition of motor in, or adjacent to, traction wheel the motor moving together with the vehicle body, i.e. moving independently from the wheel axle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K7/00—Disposition of motor in, or adjacent to, traction wheel
- B60K2007/0092—Disposition of motor in, or adjacent to, traction wheel the motor axle being coaxial to the wheel axle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K5/00—Arrangement or mounting of internal-combustion or jet-propulsion units
- B60K5/02—Arrangement or mounting of internal-combustion or jet-propulsion units with the engine main axis, e.g. crankshaft axis, substantially in or parallel to the longitudinal centre line of the vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K5/00—Arrangement or mounting of internal-combustion or jet-propulsion units
- B60K5/10—Arrangement or mounting of internal-combustion or jet-propulsion units providing for ready detachment of engine
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K7/00—Disposition of motor in, or adjacent to, traction wheel
- B60K7/0007—Disposition of motor in, or adjacent to, traction wheel the motor being electric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/10—Vehicle control parameters
- B60L2240/36—Temperature of vehicle components or parts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/425—Temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/44—Drive Train control parameters related to combustion engines
- B60L2240/445—Temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60P—VEHICLES ADAPTED FOR LOAD TRANSPORTATION OR TO TRANSPORT, TO CARRY, OR TO COMPRISE SPECIAL LOADS OR OBJECTS
- B60P1/00—Vehicles predominantly for transporting loads and modified to facilitate loading, consolidating the load, or unloading
- B60P1/04—Vehicles predominantly for transporting loads and modified to facilitate loading, consolidating the load, or unloading with a tipping movement of load-transporting element
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2200/00—Type of vehicle
- B60Y2200/10—Road Vehicles
- B60Y2200/14—Trucks; Load vehicles, Busses
- B60Y2200/142—Heavy duty trucks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D21/00—Understructures, i.e. chassis frame on which a vehicle body may be mounted
- B62D21/02—Understructures, i.e. chassis frame on which a vehicle body may be mounted comprising longitudinally or transversely arranged frame members
- B62D21/03—Understructures, i.e. chassis frame on which a vehicle body may be mounted comprising longitudinally or transversely arranged frame members transverse members providing body support
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D21/00—Understructures, i.e. chassis frame on which a vehicle body may be mounted
- B62D21/11—Understructures, i.e. chassis frame on which a vehicle body may be mounted with resilient means for suspension, e.g. of wheels or engine; sub-frames for mounting engine or suspensions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D7/00—Steering linkage; Stub axles or their mountings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
Definitions
- the present invention relates to a dump truck, for example, a large off-road dump truck that travels unattended.
- a dump truck has been proposed that has a body that covers the entire length in the running direction of the vehicle body and the entire width in the vehicle width direction, and has an overall shape that is substantially symmetrical with respect to the front and rear and the left and right.
- a dump truck there is no distinction between forward and reverse as in the prior art, and normal traveling is possible in both directions.
- Patent Documents 1 and 2 describe some main devices such as an engine, a generator, and a transmission necessary for operating the dump truck, but do not describe any other devices.
- engine cooling water and radiators that cool the cooling water of a water-cooled aftercooler require a large space to be mounted on the body frame, and the degree of cooling depends on the engine performance.
- the layout is important because it has a big influence.
- An object of the present invention is to provide a dump truck capable of laying out a radiator in a good manner and capable of normal traveling in both directions without distinction between forward and backward.
- the dump truck of the present invention is a dump truck having a vehicle body frame extending along the traveling direction, and at least a pair of radiators that perform heat exchange between cooling water and cooling air that cools the object to be cooled.
- One of the pair of radiators is disposed outside one of the body frames in the width direction, and the other of the pair of radiators is disposed outside the other of the body frames in the width direction.
- the dump truck that can travel in both directions is not limited, but a pair of radiators can be used even when the dump truck travels exclusively in the position direction or in both directions regardless of forward / backward travel.
- a pair of radiators can be used even when the dump truck travels exclusively in the position direction or in both directions regardless of forward / backward travel.
- fresh outside air can be supplied as cooling air to each radiator, and heat exchange at each radiator can be performed. It can be done effectively.
- the pair of radiators is disposed at a substantially center in a traveling direction of the body frame. According to the present invention, by arranging each radiator at the center of the vehicle body frame, the weight balance of the vehicle body can be improved, and the running performance can be improved.
- tires are installed on one side and the other side in the traveling direction of the vehicle body frame and on both sides in the vehicle width direction, and the pair of radiators are disposed on one side and the other side in the traveling direction. It is preferable to arrange
- the radiator can be arranged using the dead space between the tires installed along the traveling direction, and the total length in the traveling direction as the dump truck is compared with the case where the radiator is disposed at the end in the traveling direction. Can be shortened.
- the dump truck of the present invention includes an engine mounted on the vehicle body frame and a water-cooled aftercooler that cools supply air supplied to the engine, and one of the pair of radiators cooled the engine. It is a radiator that exchanges heat between cooling water and cooling air, and the other of the pair of radiators is preferably a radiator that exchanges heat between cooling water and cooling air that has cooled the aftercooler. . According to the present invention, it is not necessary to arrange both radiators in one place, and the heat exchange function can be improved.
- a dump truck includes a vehicle body frame extending along a traveling direction, an engine mounted on the vehicle body frame, a water-cooled aftercooler that cools supply air supplied to the engine, and the engine A first radiator that exchanges heat between the cooling water that has cooled the cooling air and the cooling air; a second radiator that exchanges heat between the cooling water that has cooled the aftercooler and the cooling air; and travel of the vehicle body frame
- the first and second radiators are disposed on one outer side in the width direction of the vehicle body frame, and are disposed on both sides in the vehicle width direction.
- the radiator is disposed on the other outer side in the width direction of the body frame, and the first radiator and the second radiator are substantially in the center of the traveling direction of the body frame, Between the tires arranged in one and the other of the two running directions, the vehicle body side of the first radiator and the vehicle body frame side of the second radiator, the outside air as the cooling air Suction-type cooling fans for sucking inward from the outside of the frame are arranged, respectively.
- the functions and effects exhibited by each of the above-described inventions can be obtained in the same manner, and the cooling air after cooling the first and second radiators is supplied to the engine side by providing a cooling fan.
- the engine can be air-cooled from the outside.
- FIG. 1 is a partially exploded perspective view showing a dump truck according to an embodiment of the present invention.
- the side view which shows the said dump truck. It is a figure which shows the said dump truck from a running direction, and is III arrow directional view of FIG.
- the top view which shows the said dump truck. It is sectional drawing which shows a suspension apparatus, and is the VV arrow directional view of FIG.
- It is sectional drawing which shows a steering mechanism, and is the VII-VII arrow directional view of FIG. Sectional drawing which shows the support structure and cooling structure of an electric motor.
- the top view which shows arrangement
- the whole perspective view which shows a support frame. It is a figure which shows the attachment position of a hoist cylinder from a running direction, and is the XI-XI arrow line view of FIG.
- the side view which shows the attachment position of a hoist cylinder.
- FIGS. 1 to 4 are a partially exploded perspective view, a side view, and a view from one side of the traveling direction, respectively, showing a dump truck 1 according to the present embodiment, as viewed in the direction of arrow III in FIG. 2, and a plan view.
- one of the traveling directions of the dump truck 1 is the arrow direction of the X axis
- the other of the traveling direction is the opposite direction
- one of the vehicle width direction is the Y axis.
- the other direction in the vehicle width direction is the opposite direction
- one in the vertical direction is the arrow direction of the Z axis
- the other in the vertical direction is the opposite direction.
- one of the traveling directions may be referred to as “front”, the other as “rear”, one in the vehicle width direction as “right”, and the other as “left”.
- a dump truck 1 is an off-road dump truck that travels unattended by remote operation, and is configured as a vehicle that operates at a mining site in mine development, for example.
- the remote operation is performed by using information communication technology such as using communication means installed in the management center and the dump truck 1 or using a GPS (Global Positioning System).
- Such a dump truck 1 has a pair of left and right tires 11, 11 installed on both sides in the vehicle width direction on one side in the traveling direction, and a pair of left and right tires 12 disposed on both sides in the vehicle width direction on the other side in the traveling direction.
- 12 is provided with a vehicle body 10 provided so as to be able to travel.
- the vehicle body 10 extends along the traveling direction and is provided with a vehicle body frame 20 on which tires 11 and 12 are installed, and a body 30 for loading that is supported by the vehicle body frame 20 (see a two-dot chain line in FIG. 2).
- the apparatus 41 includes devices 41 to 49 mounted on the vehicle body frame 20, a suspension device 50 for suspending the tires 11 and 12 on the vehicle body frame 20, and a steering mechanism.
- the dump truck 1 is a vehicle dedicated to remote operation, and there is no cab for driving operation provided in a conventional dump truck.
- the vehicle body frame 20 includes a lower cross member 201 on the lower side provided along the vehicle width direction at the positions of the left and right tires 11 in one of the traveling directions, and both ends of the lower cross member 201.
- the pair of vertical members 202 and the upper cross member 203 form a first vertical frame 21 that is vertically erected from the positions of the left and right tires 11 and has a gate shape when viewed from the traveling direction of the vehicle body 10. (See FIG. 3). That is, the vehicle body frame 20 includes a first vertical frame 21 that is erected vertically from the position of the tire 11 that is installed on one side in the traveling direction when viewed laterally.
- the vehicle body frame 20 is also erected upward from the lower cross member 201 on the lower side provided along the vehicle width direction at the position of the left and right tires 12 on the other side in the traveling direction, and from both ends of the lower cross member 201.
- a pair of left and right vertical members 202, 202 and an upper cross member 203 on the upper side provided along the vehicle width direction so as to be bridged between the upper ends of the vertical members 202 are provided.
- the pair of vertical members 202 and the upper cross member 203 form a second vertical frame 22 that is vertically erected from the position of the left and right tires 12 and has a gate shape when viewed from the traveling direction of the vehicle body 10. ing. That is, the vehicle body frame 20 has a second vertical frame 22 that stands vertically from the position of the tire 12 that is installed on the other side in the traveling direction when viewed laterally.
- the first vertical frame 21 and the second vertical frame 22 have substantially the same shape.
- One end and the other end of the pair of front and rear lower cross members 201 in the traveling direction are connected to each other by a pair of left and right lower side members 23 and 23 arranged parallel to the traveling direction and spaced in the vehicle width direction. Yes.
- the upper and lower intermediate positions of the first vertical frame 21 and the second vertical frame 22 are connected by a pair of left and right upper side members 24, 24 positioned above the lower side members 23, 23 (see FIG. 2).
- short side members 25, 25 located on the extension line of the lower side members 23, 23 are extended toward one side in the traveling direction, and the ends of the side members 25, 25 are connected to each other. They are connected by a cross member 26 along the vehicle width direction.
- short side members 27, 27 located on the extension line of the lower side members 23, 23 are extended toward the other side in the traveling direction, and the tips of the side members 27, 27 are connected to each other. They are connected by a cross member 28 along the vehicle width direction (see FIG. 4).
- the lower cross member 201 on which the first vertical frame 21 is erected has a hollow cylindrical shape, and tires 11, 11 are attached to both sides of the lower cross member 201 via a drive shaft 18.
- the individually driven electric motors 43 are accommodated.
- a pair of electric motors 43 and 43 are similarly housed in the lower cross member 201 on which the second vertical frame 22 is erected.
- a final reduction gear 14 using a planetary gear mechanism is disposed between the tip of the drive shaft 18 and the tire wheel.
- the upper surface of the upper cross member 203 that forms the upper part of the first vertical frame 21 and the upper part of the second vertical frame 22 is a mounting part 204 curved in a concave shape with a predetermined curvature. Only the body 30 is placed. At both ends of the upper cross member 203, suspension support portions 205 that support the upper end of the suspension cylinder 53 that is a part of the suspension device 50 are provided. The lower end of the suspension cylinder 53 is connected to an upper arm 51 that is a part of the suspension device 50. Therefore, the mounting portion 204 is located on the axis 53A of the suspension cylinder 53 that transmits the load downward (see FIG. 3). The suspension device 50 will be described later.
- the load transmitted to the road surface through the tires 11 and 12 includes a loaded load and a vehicle body load.
- the loaded load is a load due to the weight of the body 30 including the loaded load.
- the vehicle body load is a load due to the weight of the vehicle body 10 not including the weights of the tires 11 and 12 and the body 30.
- the vehicle body load and the loaded load may be referred to as the total load.
- the loaded load is transmitted from the mounting portion 204 to the road surface through the suspension device 50 immediately below including the suspension cylinder 53 and the tires 11 and 12, and is transmitted through a short and simple transmission path (FIG. 2, (See dotted arrow in FIG. 3). That is, the loaded load is transmitted without acting on the upper side member 24, the lower side member 23, and the like.
- the overall shape of the vehicle body frame 20 is substantially plane-symmetric with respect to a vertical plane including the first center line 10A that passes through the center between the front and rear tires 11 and 12 and extends in the vehicle width direction. It is substantially plane-symmetric with respect to a vertical plane including a second center line 10B that is orthogonal to the first center line 10A and extends along the traveling direction through the center in the vehicle width direction (see FIGS. 1 and 4).
- a support frame 81 is installed on the first center line 10A of the vehicle body frame 20 along the vehicle width direction.
- the support frame 81 is provided to support the devices 44 to 48 on the vehicle body frame 20.
- the support frame 81 has a pair of front and rear subframes 82 that are arranged at intervals along the traveling direction, and is entirely provided in a bowl shape. Both sides of the support frame 81 are provided on the left and right sides of the body frame 20 so as to protrude between the pair of front and rear tires 11 and 12, and the devices 44 to 48 supported by the support frame 81 are also connected to the front and rear tires 11, 12. Between the twelve. The specific arrangement of the devices 48 to 48 will be described later.
- Each sub-frame 82 is fixed to the lower side member 23 and the upper side member 24 both in the vehicle width direction, and from the lower ends of both vertical portions 83 in the vehicle width direction to the outside of the vehicle body frame 20.
- a pair of left and right L-shaped frames 85 formed by extending portions 84 that extend horizontally toward the upper side member 24 are connected to the upper ends of the vertical portions 83 of the pair of left and right L-shaped frames 85 on the upper side member 24.
- the upper connection part 86 and the lower connection part 87 which connects between the lower ends of the vertical parts 83 of the pair of left and right L-shaped frames 85 below the lower side member 23 are provided.
- the L-shaped frame 85 is detachably fixed to the lower side member 23 and the upper side member 24 by fastening means (not shown) such as bolts. Further, the upper end of the vertical portion 83 of the L-shaped frame 85 and the upper connection portion 86 are detachably connected by pin bonding. The connection between the lower end of the vertical portion 83 of the L-shaped frame 85 and the lower connection portion 87 is also by detachable pin bonding. Accordingly, the L-shaped frame 85 and the connecting portions 86 and 87 are connected to each other by pin connection so as to maintain the L-shaped frame 85 fixed to the vehicle body frame 20 more reliably. It is possible to cope with twisting well.
- the body 30 has the deepest central portion in the traveling direction and is shallower toward both sides in the traveling direction and both sides in the vehicle width direction.
- the body 30 includes a bottom surface portion 31 that is inclined so as to become deeper toward the center, and side surface portions 32 and 32 that guard the long side edge along the traveling direction of the bottom surface portion 31.
- lateral slopes 33, 33 are provided on respective slope portions inclined in different directions so as to cross them in the vehicle width direction and whose both ends extend over the outer surface of the side surface portion 32.
- These lateral ribs 33 are also portions that are placed on the placement portions 204 of the first vertical frame 21 and the second vertical frame 22, and are curved with the same curvature as the placement portion 204 so that the abutting portions are in close contact with each other. Yes.
- a pair of vertical ribs 34, 34 parallel to each other are provided on the lower surface of the bottom surface portion 31 along the traveling direction.
- the body 30 is placed on the placement portion 204 at a position where the vertical rib 34 and the horizontal rib 33 intersect (see FIGS. 2 and 3).
- the other slope part of the lower surface of the bottom part 31 is provided with attachment parts 36 and 36 to which the upper ends of the pair of hoist cylinders 35 and 35 are attached (see FIGS. 1, 11, and 12).
- the hoist cylinder 35 is a hydraulic actuator for raising and lowering the body 30.
- the lower end of the hoist cylinder 35 is attached to the lower cross member 201 on which the second vertical frame 22 is erected.
- a pair of pivot portions 37 and 37 (only one is shown in FIGS. 2 and 12) are provided in the middle of the slope portion so that the body 30 is rotatably connected to the vehicle body frame 20. ing.
- the pivot portion 37 is supported by body support portions 206 and 206 provided from the upper portion of each vertical member 202 of the second vertical frame 22 to the upper cross member 203.
- the body 30 Since the second vertical frame 22 is erected at the position of the left and right tires 12 when viewed from the side, the body 30 is connected to the left and right tires via the body support portion 206 in terms of the support position of the body 30 in the traveling direction. It is supported by the body frame 20 at the position 12.
- the overall shape of the body 30 is also substantially plane symmetric with respect to the vertical plane including the first center line 10A and is substantially plane symmetric with respect to the vertical plane including the second center line 10B. (See FIG. 1).
- the body 30 is placed in the center of the body frame 20 whose overall shape is plane-symmetric with respect to a vertical plane including the first and second centerlines 10A and 10B.
- the load distribution transmitted from the mounting portion 204 of the vehicle body frame 20 to the tire 11 and the tire 12 is evenly distributed. That is, the overall load including the vehicle body load and the loaded load is transmitted to each of the tires 11 and 12 with a uniform load distribution.
- FIG. 1 As main equipment, an engine 41, a generator 42 driven by the output of the engine 41, a hydraulic pump (not shown), and an electric motor 43 driven by electric energy generated by the generator 42 (FIG. 2, 3), a first radiator 44 that releases heat of the cooling water of the engine 41, a first cooling fan 45 that supplies cooling air to the first radiator 44, and an air supply that is sent from the air cleaner to the engine 41 through a supercharger.
- the specific arrangement of these devices 41 to 49 will be described later.
- FIG. 5 is a cross-sectional view showing the suspension device 50, and is a view taken along the arrow VV in FIG.
- a double wishbone type independent suspension system is adopted as the suspension device 50.
- the suspension device 50 is connected to a substantially horizontal upper arm 51 and a lower arm 52 whose base ends are supported by the vehicle body frame 20 so as to be swingable up and down, and an upper portion is rotatably connected to the tip of the upper arm 51.
- a cylindrical case 56 whose lower part is rotatably connected to the tip of the lower arm 52, and a suspension cylinder 53 whose upper end is rotatably connected to the vehicle body frame 20 and whose lower end is rotatably connected to the upper arm 51. And.
- the suspension cylinder 53 transmits the vehicle body load and the loaded load to the tires 11 and 12 and absorbs and attenuates the impact on the tires 11 and 12.
- the case 56 rotatably supports the tires 11 and 12 via the final reduction gear 14.
- a pair of base ends of the upper arm 51 which is bifurcated in a plan view is formed on an upper support portion 207 provided on the lower side of the vertical member 202 of the first vertical frame 21 and the second vertical frame 22. It is supported so as to be rotatable.
- a pair of base ends of the bifurcated lower arm 52 in a plan view is a lower support portion 208 provided below the end portion of each lower cross member 201 on which the first vertical frame 21 and the second vertical frame 22 are erected. It is supported so that it can rotate.
- the tip of the upper arm 51 is connected to an upper ball joint 57 provided at the upper portion of the case 56, and the tip of the lower arm 52 is connected to a lower ball joint 58 provided at the lower portion of the case 56.
- the upper part of the upper ball joint 57 is covered with a connection bracket 54 fixed to the upper surface of the upper arm 51, and the connection bracket 54 and the suspension support portions 205 of the first vertical frame 21 and the second vertical frame 22 are suspension cylinders. 53.
- the lower end of the suspension cylinder 53 is connected to the connection bracket 54 at a position in the vicinity of the upper ball joint 57.
- a kingpin shaft 56A that connects the rotation center 57A of the upper ball joint 57 and the rotation center 58A of the lower ball joint 58 has an upper ball joint 57 and an upper arm 51 of the case 56 with respect to the axis 53A of the suspension cylinder 53.
- the upper ball joint 57 and more specifically at the center of rotation 57A of the upper ball joint 57 and the upper arm 51. Accordingly, the vehicle body load and the loaded load transmitted through the suspension cylinder 53 hardly transmit to the upper arm 51 and are transmitted to the tires 11 and 12 through the case 56 provided with the upper ball joint 57. For this reason, since the load is not transmitted to the upper arm 51 and the lower arm 52, the structures of the upper arm 51 and the lower arm 52 can be simplified.
- the drive shaft 18 is connected to the output shaft 43A of the electric motor 43 and the input shaft 14A of the final reduction gear 14 via a universal joint to absorb the deviation of the tires 11 and 12 with respect to the electric motor 43.
- the slide type is configured to be expandable and contractable in the axial direction.
- the drive shaft 18 is drawn horizontally for convenience. Actually, however, the tip of the drive shaft 18 on the tire 11 side of the drive shaft 18 is not loaded as shown in FIG. 6. It is inclined at a crossing angle ⁇ 1 with respect to the horizontal so as to face downward. On the other hand, in the state where the body 30 is loaded to the maximum within the allowable load weight, the drive shaft 18 is inclined at the crossing angle ⁇ 2 with respect to the horizontal so that the tip of the drive shaft 18 on the tire 11 side faces upward.
- the crossing angles ⁇ 1 and ⁇ 2 are preferably 2.5 to 3.5 °, and in this embodiment, both are approximately 3 °.
- Such crossover angles ⁇ 1 and ⁇ 2 are set by adjusting the strength of the suspension cylinder 53 or by adjusting the distance between the connection bracket 54 to which the suspension cylinder 53 is connected and the suspension support portion 205.
- the inclination variation of the drive shaft 18 with respect to the horizontal can be reduced when there is no load and when there is a load, and torsional vibration of the drive shaft 18 during traveling can be suppressed.
- the crossing angle ⁇ 1 0 ° when there is no load and the drive shaft 18 is leveled
- the crossing angle ⁇ 2 approximately 6 ° with respect to the horizontal when the drive shaft 18 is fully loaded will be greatly inclined.
- the torsional vibration at the time increases and the durability decreases.
- the drive shaft 18 when the drive shaft 18 is largely inclined, the drive is driven according to the magnitudes of the crossing angles ⁇ 1 and ⁇ 2 even during constant speed traveling where the angular velocity ⁇ 1 of the output shaft 43A and the angular velocity ⁇ 3 of the input shaft 14A are maintained constant.
- a change occurs in the angular velocity ⁇ 2 of the shaft 18, and torsional vibration is generated.
- the occurrence of such torsional vibration is suppressed, durability can be improved, and an expensive constant velocity joint that can absorb a large inclination angle need not be used. Can be used without any problem.
- the cross angles ⁇ 1 and ⁇ 2 are exaggerated larger than the actual size in order to facilitate understanding of the cross angles ⁇ 1 and ⁇ 2.
- [Description of steering mechanism] 7 is a cross-sectional view showing the steering mechanism, and is a view taken along arrows VII-VII in FIG. 4 and 7, the steering mechanism has a configuration in which all the tires 11 and 12 are operated by the individual steering cylinders 61, and the steering cylinder 61 in which the proximal end is attached to the upper arm 51 and the distal end is attached to the case 56. It has.
- the bifurcated upper arm 51 is integrally provided with an L-shaped cylinder mounting arm 55 in plan view.
- the cylinder mounting arm 55 extends horizontally inward from one base end of the upper arm 51 beyond the upper support portion 207 for the vertical member 202.
- the case 56 is integrally provided with a knuckle arm 56B extending in the same direction as the tip of the cylinder mounting arm 55 in plan view.
- the base end of the steering cylinder 61 is attached to the cylinder attachment arm 55, and the distal end of the steering cylinder 61 is attached to the knuckle arm 56B.
- a steering arm 56C extending along the traveling direction in plan view is integrally provided at the lower portion of the case 56.
- One and the other steering arm 56 ⁇ / b> C in the vehicle width direction are connected by a pair of tie rods 62, 62 on both sides and a central bell crank 63.
- the tires 11 and 12 together with the case 56 are steered around the kingpin shaft 56A via the knuckle arm 56B, and this movement is transmitted to the respective cases 56 via the tie rod 62 and the bell crank 63. Then, both tires 11 and 12 are steered in conjunction with each other.
- the tip side of the knuckle arm 56B is bent upward, and the height position of the connecting portion between the knuckle arm 56B and the steering cylinder 61 is the center of rotation of the upper arm 51 and the case 56, that is, the upper. It is set to be substantially the same as the height position of the rotation center 57A of the ball joint 57. Therefore, the axis 61A of the steering cylinder 61 overlaps the line 51A passing through the rotation center 57A and crossing the swing center 207A of the upper arm 51 at the upper support portion 207 when viewed from the traveling direction.
- the movements of the upper arm 51 and the steering cylinder 61 at the time of swinging are exactly the same, and therefore the swing region required when they swing up and down is the same when viewed from the traveling direction (FIG. 5, (See FIG. 7).
- the steering cylinder 61 is disposed adjacent to the lower cross member 201 along the vehicle width direction.
- the steering cylinder 61 is attached to the hoist cylinder 35 in order to avoid interference with the hoist cylinder 35.
- the lower cross member 201 is disposed on the opposite side of the traveling direction.
- the base end of the steering cylinder 61 is attached to the cylinder mounting arm 55 integral with the upper arm 51 instead of the vehicle body frame 20, so that even if the suspension device 50 including the upper arm 51 operates, the knuckle The distance between the arm 56B and the cylinder mounting arm 55 of the upper arm 51 hardly changes. Therefore, the relationship between the steering amount of the tires 11 and 12 and the advance / retreat amount of the steering cylinder 61 becomes unambiguous, and the advance / retreat control of the steering cylinder 61 for obtaining a desired steering amount can be facilitated.
- FIG. 8 is a cross-sectional view showing the support structure and cooling structure of the electric motor 43.
- electric motors 43 are housed on both sides of the hollow portion of each lower cross member 201 on which the first vertical frame 21 and the second vertical frame 22 are erected. Openings 209 are provided on both sides of the lower cross member 201, and the end of the electric motor 43 main body on the output shaft 43A side is fixed around the opening 209 by appropriate fastening means.
- a protruding portion 210 that protrudes from the inner surface of the hollow portion toward the electric motor 43, and the end of the electric motor 43 opposite to the output shaft 43 ⁇ / b> A is the protruding portion 210. It is supported by the inner surface of the hollow part via. A plurality of protruding portions 210 are provided at intervals along the circumferential direction. Since the electric motor 43 is accommodated in the lower cross member 201 and fixed to the lower cross member 201, the lower cross member 201 itself is reinforced by the electric motor 43, and the rigidity of the lower cross member 201 is improved. It is illustrated.
- an inlet 211 for taking in cooling air is provided, and a cooling blower 71 is attached at a position corresponding to the inlet 211.
- a predetermined gap through which cooling air flows out is formed in the fastening portion with the electric motor 43, although illustration is omitted.
- the cooling air supplied from the cooling blower 71 flows between the pair of electric motors 43 inside the lower cross member 201 from the inlet 211 and then branches to the respective electric motor 43 side.
- the branched cooling air passes between the projecting portions 210 and enters the space between the electric motor 43 and the inner surface of the lower cross member 201 and flows to the end while cooling the electric motor 43 from the outer peripheral side. It flows out from the gap.
- the hollow portion of the lower cross member 201 forms the duct portion 72 for circulating the cooling air.
- the cooling air is not limited to a configuration in which the cooling air flows out from the gap between the fastening portions of the lower cross member 201 and the electric motor 43, and a plurality of outlets are provided on both sides of the lower cross member 201, and the cooling air passes through these circulation ports. May be spilled.
- FIG. 9 is a plan view showing the arrangement of the devices 41-49.
- devices 41 to 49 are arranged on the vehicle body frame 20 as follows. That is, in order from one side of the traveling direction of the body frame 20 (in order from the left side to the right side in FIG. 9), the control device 49, the pair of electric motors 43 and 43 for driving the tire 11, the engine 41, and the generator 42. A pair of electric motors 43 and 43 for driving the tire 12 and another control device 49 are arranged in substantially one row.
- the heaviest device is the engine 41, and the engine 41 is arranged closer to the center of the body frame 20 than the first vertical frame 21.
- a first radiator 44 for the engine 41 as a body to be cooled is disposed at a position away from the body frame 20 on one side in the vehicle width direction at the center position in the traveling direction of the body frame 20.
- the 1st cooling fan 45 is arrange
- a second radiator 46 for a water-cooled aftercooler 41A as a body to be cooled is disposed at a position away from the body frame 20 on the other side in the vehicle width direction.
- a second cooling fan 47 is disposed.
- the first and second radiators 44 and 46 and the first and second cooling fans 45 and 47 have substantially the same size and are arranged at symmetrical positions with the second center line 10B as the center. (See FIG. 4).
- the first and second cooling fans 45 and 47 are suction fans. Heat was exchanged between the cooling air taken in from the outside and heat exchanged with the cooling water of the engine 41 by the first and second radiators 44 and 46 and the cooling water of the aftercooler 41A. The cooling air is sent to the central engine 41 and generator 42 side, and cools them from the outside.
- a pair of brake resistors 48, 48 covered with an exterior cover are disposed on the upper part of the second radiator 46 and the second cooling fan 47 (see FIG. 1).
- a cooling fan for cooling the brake resistor 48 is housed inside each exterior cover, but the illustration thereof is omitted here. Such a cooling fan is a discharge fan.
- the brake resistor 48 is arranged on one side of the body frame 20 in order to give priority to maintainability. Since the brake resistor 48 is lighter than other devices, even when it is arranged only on one side of the vehicle body frame 20, there is little influence on the weight balance of the vehicle body 10.
- the first and second radiators 44 and 46, the first and second cooling fans 45 and 47, and the brake resistor 48 are mounted on a support frame 81, and the support frame 81 is a lower side member of the vehicle body frame 20. 23 and the upper side member 24 are fixed with fasteners such as bolts.
- the first radiator 44 and the first cooling fan 45 are supported across a pair of front and rear L-shaped frames 85 arranged in parallel in the traveling direction, and these are the tires. 11 and 12 are arranged in an area between. And the 1st radiator 44 and the 1st cooling fan 45 are mounted via the support frame 81 in the center of the running direction of the vehicle body frame 20 (refer 1st centerline 10A of FIG. 1).
- the second radiator 46 and the second cooling fan 47 are supported across a pair of L-shaped frames 85 arranged in parallel in the traveling direction, and these are the tires. 11 and 12 are arranged in an area between.
- the second radiator 46 and the second cooling fan 47 are also mounted through the support frame 81 at the center in the traveling direction of the body frame 20 (see the first centerline 10A in FIG. 1).
- FIG. 11 is a diagram illustrating the attachment position of the hoist cylinder 35 from the traveling direction, and is a view taken along the line XI-XI in FIG. 4.
- FIG. 12 is a side view showing the mounting position of the hoist cylinder 35. However, the steering mechanism is not shown in FIG.
- the upper ends of the pair of hoist cylinders 35 are rotatably attached to an attachment portion 36 provided in the middle of the lower surface of the body 30.
- a pair of hoist support portions 212 are juxtaposed along the vehicle width direction on the lower cross member 201 on which the second vertical frame 22 is erected.
- the lower ends of the pair of hoist cylinders 35 are rotatably supported by the hoist support portions 212 and are supported in the vicinity of the rotation axis 12A of the tire 12 in the traveling direction.
- the hoist cylinder 35 in such a position is supported far away from the engine 41 and the generator 42 connected to the hoist cylinder 35 side.
- the hoist support portion 212 is provided at a position where the electric motor 43 is accommodated in the lower cross member 201, that is, a position reinforced by the electric motor 43 in the lower cross member 201.
- the lower cross member 201 is also a member on which the second vertical frame 22 provided with the body support portion 206 is erected. Therefore, the portion receiving the load of the body 30 in the raised state is concentrated on the second vertical frame 22 and the lower cross member 201 located between the left and right tires 12, and the load is applied to the body support portion 206 and the hoist. It is transmitted from the hoist support portion 212 of the cylinder 35 to the road surface directly below through the suspension device 50 and the tire 12, and does not act on the lower side member 23 or the upper side member 24 (see FIG. 12).
- the hoist cylinder 35 is extended to raise the body 30 toward the other side in the traveling direction and perform a discharging operation.
- the hoist cylinder 35 stands up in a substantially vertical state.
- from the first vertical frame 21 side to the center of the vehicle body frame 20, that is, above the portion where the engine 41 is mounted is a large space that extends upward. Since the body 30 and the hoist cylinder 35 do not exist in this space, the engine 41 disposed near the center of the vehicle body frame 20 using this space is hung by a wire or the like, and the engine 41 is attached and detached during maintenance. Sometimes it can be lifted and hung.
- the engine 41 is disposed in an area defined by the first vertical frame 21, the second vertical frame 22, the pair of left and right lower side members 23, and the pair of left and right upper side members 24.
- the lower side member 23 and the upper side member 24 are opened to be accessible from the outside of the vehicle body frame 20 toward the engine 41.
- the dump truck 1 described above travels back and forth between a loading site where the mined mined material is loaded as a load and a discharge site where the load is discharged. At this time, on the outward path to the discharge field, the vehicle 30 travels with the support side of the body 30, that is, the second vertical frame 22 side as the rear and the first vertical frame 21 side as the front. On the return path that returns after the discharge, the dump truck 1 is not turned back and travels with the second vertical frame 22 side as the front and the first vertical frame 21 side as the rear (shuttle travel). However, turning may be performed as necessary, and the vehicle may always travel with the first vertical frame 21 side or the second vertical frame 22 side in front.
- the present invention is not limited to the above-described embodiments, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.
- the first radiator 44 that cools the cooling water of the engine 41 and the second radiator 46 that cools the cooling water of the aftercooler 41A have been described as an example of the pair of radiators according to the present invention.
- Two first radiators 44 for the engine 41 may be provided, and these may be used as a pair of radiators.
- a radiator that cools the cooling water of the water-cooled oil cooler or an air-cooled oil cooler itself may be applied as the radiator.
- the first and second radiators 44 and 46 and the cooling fans 45 and 47 are arranged so that the flowing direction of the flowing cooling air is substantially perpendicular to the traveling direction, that is, in the first and second radiators 44 and 46.
- the inflow surface of the cooling air is arranged so as to be parallel to the traveling direction, when the dump truck 1 travels exclusively in one direction, they may be disposed in the direction in which the traveling wind easily flows.
- the present invention can be applied to an off-road dump truck that includes a cab and travels by manpower.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Power Engineering (AREA)
- Architecture (AREA)
- Structural Engineering (AREA)
- Body Structure For Vehicles (AREA)
- Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
Abstract
Description
本発明によれば、各ラジエータを車体フレームの中央に配置することで、車体の重量バランを良好にでき、走行性能を向上させることができる。
本発明によれば、走行方向に沿って設置されたタイヤ間のデットスペースを利用してラジエータを配置でき、走行方向の端部に配置する場合に比して、ダンプトラックとしての走行方向の全長を短くできる。しかも、それらのラジエータを車体フレームの左右の側方に分けて前後のタイヤ間に搭載することで、前後進の区別なく両方向へ走行する場合でも、同等の冷却性能を発揮できる。
本発明によれば、両方のラジエータを1箇所に重ねて配置する必要がなく、熱交換機能を向上させることができる。
本発明によれば、上述した各発明が奏する作用・効果を同様に得ることができ、また、冷却ファンを備えることで、第1、第2ラジエータを冷却した後の冷却空気をエンジン側に供給して当該エンジンを外部側から空冷できる。
図1~図4はそれぞれ、本実施形態に係るダンプトラック1を示す一部分解の斜視図、側面図、走行方向の一方から示す図で図2のIII矢視図、および平面図である。
図1において、ダンプトラック1は、遠隔操作にて無人で走行するオフロードダンプトラックであり、例えば、鉱山開発での採掘現場にて稼働する車両として構成される。遠隔操作は、管理センターおよびダンプトラック1に設置された通信手段やGPS(Global Positioning System;全地球測位網)を用いる等、情報通信技術を駆使して行われる。
車体フレーム20について以下に詳説する。
図2ないし図4において、車体フレーム20は、走行方向の一方における左右のタイヤ11の位置にて車幅方向に沿って設けられた下部側のロアクロスメンバ201と、ロアクロスメンバ201の両端から上方に向けて立設された左右一対のバーチカルメンバ202,202と、バーチカルメンバ202の上端間に架け渡されるよう車幅方向に沿って設けられた上部側のアッパークロスメンバ203とを有している。これらのうち、一対のバーチカルメンバ202およびアッパークロスメンバ203により、左右のタイヤ11の位置から鉛直に立設され、車体10の走行方向から見て門形状とされた第1鉛直フレーム21が形成されている(図3参照)。
すなわち、車体フレーム20は、側方視で走行方向の一方に設置されたタイヤ11の位置から鉛直に立設される第1鉛直フレーム21を有している。
すなわち、車体フレーム20は、側方視で走行方向の他方に設置されたタイヤ12の位置から鉛直に立設される第2鉛直フレーム22を有している。
第1鉛直フレーム21および第2鉛直フレーム22は、略同一形状である。
なお、懸架装置50については後述する。
機器48~48の具体的な配置については、後述する。
ボディ30は、図1ないし図3に示すように、走行方向の中央部分が最も深く、走行方向の両側および車幅方向の両側に向かうに従って浅くなっている。具体的にボディ30は、中央に向かって深くなるように傾斜した底面部31と、底面部31の走行方向に沿った長辺側の辺縁をガードする側面部32,32とを有する。底面部31の下面において、異なる方向に傾斜したそれぞれの斜面部分には、それらを車幅方向に横切るとともに、両端が側面部32の外側面にわたる横リブ33,33が設けられている。これら横リブ33は、第1鉛直フレーム21および第2鉛直フレーム22の各載置部204に載置される部位でもあり、当接部分が密着するよう載置部204と同じ曲率で湾曲している。また、底面部31の下面には、互いに平行な一対の縦リブ34,34が走行方向に沿って設けられている。ボディ30は、縦リブ34と横リブ33とが交差する位置で載置部204に載置される(図2、図3参照)。
図1において、主な機器としては、エンジン41、エンジン41の出力で駆動される発電機42および図示しない油圧ポンプ、発電機42で発電された電気エネルギで駆動される電動モータ43(図2、図3参照)、エンジン41の冷却水の熱を放出する第1ラジエータ44、第1ラジエータ44に冷却空気を供給する第1冷却ファン45、エアクリーナから過給機を通してエンジン41へ送られる給気を冷却する水冷式アフタークーラ41A(図9参照)用の第2ラジエータ46、第2ラジエータ46に冷却空気を供給する第2冷却ファン47、制動時にタイヤ11,12の運動エネルギを電気エネルギに変換してジュール熱を発生させる一対のブレーキ抵抗器48,48、油圧ポンプから圧送される作動油を貯留する図示しない作動油タンク、そしてダンプトラック1の走行制御全体を司る前後一対の制御装置49,49等である。
これらの機器41~49の具体的な配置については後述する。
図5は、懸架装置50を示す断面図であり、図4のV-V矢視図である。
図3ないし図5に示すように、懸架装置50としては、ダブルウィッシュボーンタイプの独立懸架方式が採用されている。このために懸架装置50は、基端が車体フレーム20に上下に揺動自在に支持された略水平なアッパーアーム51およびロアアーム52と、上部がアッパーアーム51の先端に回動自在に連結され、下部がロアアーム52の先端に回動自在に連結された円筒状のケース56と、上端が車体フレーム20に回動自在に連結され、下端がアッパーアーム51に回動自在に連結されたサスペンションシリンダ53とを備えている。サスペンションシリンダ53は、車体荷重および積載荷重をタイヤ11,12に伝達するとともに、タイヤ11,12への衝撃を吸収、減衰させる。ケース56は、終減速機14を介してタイヤ11、12を回転支持している。
なお、図6では、交叉角α1,α2について理解し易くするため、交叉角α1,α2が実際の大きさよりも大きく誇張して描かれている。
図7は、操舵機構を示す断面図であり、図4のVII-VII矢視図である。
図4および図7において、操舵機構は、全てのタイヤ11,12を個々のステアリングシリンダ61で動作させる構成であり、基端がアッパーアーム51に取り付けられ、先端がケース56に取り付けられるステアリングシリンダ61を備えている。
図8は、電動モータ43の支持構造および冷却構造を示す断面図である。
図8において、第1鉛直フレーム21および第2鉛直フレーム22が立設される各ロアクロスメンバ201の中空部分の両側には、電動モータ43が収容されている。ロアクロスメンバ201の両側には開口部209が設けられ、開口部209回りには適宜な締結手段により電動モータ43本体の出力軸43A側の端部が固定されている。
なお、冷却空気をロアクロスメンバ201と電動モータ43との締結部分の隙間から外部へ流出させる構成に限らず、ロアクロスメンバ201の両側に複数の流出口を設け、これらの流通口を通して冷却空気を流出させてもよい。
図9は、機器41~49の配置を示す平面図である。
図9において、車体フレーム20には、車体10の重量バランスおよび整備性を考慮し、機器41~49が次のように配置されている。すなわち車体フレーム20の走行方向の一方側から順に(図9の左側から右側に向けて順に)、制御装置49、タイヤ11を駆動するための一対の電動モータ43,43、エンジン41、発電機42、タイヤ12を駆動するための一対の電動モータ43,43、および別の制御装置49が略1列に配置されている。これらの中で最も重量の大きい機器がエンジン41であり、エンジン41が第1鉛直フレーム21よりも車体フレーム20の中央寄りに配置される。
図11は、ホイストシリンダ35の取付位置を走行方向から示す図であり、図4のXI-XI矢視図である。図12は、ホイストシリンダ35の取付位置を示す側面図である。ただし、図11では、操舵機構の図示を省略してある。
以上に説明したダンプトラック1は、採掘された採掘物を積荷として積み込む積込場と、積荷を排出する排出場とを往復走行することになる。この際、排出場へ向かう往路にあっては、ボディ30の支承側、すなわち第2鉛直フレーム22側を後とし、第1鉛直フレーム21側を前として走行する。排出後に戻る復路にあっては、ダンプトラック1を切り返すことなく、第2鉛直フレーム22側を前とし、第1鉛直フレーム21側を後として走行する(シャトル走行)。
ただし、必要に応じて切り返しを行い、常時第1鉛直フレーム21側または第2鉛直フレーム22側を前にして走行してもよい。
例えば、前記実施形態では、本発明に係る一対のラジエータとして、エンジン41の冷却水を冷却する第1ラジエータ44およびアフタークーラ41Aの冷却水を冷却する第2ラジエータ46を例にして説明したが、エンジン41用の第1ラジエータ44を2つ備え、これらを一対のラジエータとしてもよい。また、水冷式のオイルクーラの冷却水を冷却するラジエータや、空冷式のオイルクーラ自身もラジエータとして適用してもよい。
Claims (5)
- 走行方向に沿って延設された車体フレームと、被冷却体を冷却した冷却水と冷却空気との間で熱交換を行う少なくとも一対のラジエータとを有するダンプトラックであって、
前記一対のラジエータの一方は、前記車体フレームの幅方向の一方の外側に配置され、
前記一対のラジエータの他方は、前記車体フレームの幅方向の他方の外側に配置されている
ことを特徴とするダンプトラック。 - 請求項1に記載のダンプトラックにおいて、
前記一対のラジエータは、前記車体フレームの走行方向の略中央に配置されている
ことを特徴とするダンプトラック。 - 請求項1または請求項2に記載のダンプトラックにおいて、
前記車体フレームの走行方向の一方および他方で、かつ車幅方向の両側にはタイヤが設置され、
前記一対のラジエータは、走行方向の一方および他方に配置された前記タイヤの間に配置されている
ことを特徴とするダンプトラック。 - 請求項1ないし請求項3のいずれかに記載のダンプトラックにおいて、
前記車体フレームに搭載されたエンジンと、
前記エンジンへ供給される給気を冷却する水冷式のアフタークーラとを備え、
前記一対のラジエータの一方は、前記エンジンを冷却した冷却水と冷却空気との間で熱交換を行うラジエータであり、
前記一対のラジエータの他方は、前記アフタークーラを冷却した冷却水と冷却空気との間で熱交換を行うラジエータである
ことを特徴とするダンプトラック。 - 走行方向に沿って延設された車体フレームと、前記車体フレームに搭載されたエンジンと、前記エンジンへ供給される給気を冷却する水冷式のアフタークーラと、前記エンジンを冷却した冷却水と冷却空気との間で熱交換を行う第1ラジエータと、前記アフタークーラを冷却した冷却水と冷却空気との間で熱交換を行う第2ラジエータと、前記車体フレームの走行方向の一方および他方で、かつ車幅方向の両側に設置されたタイヤとを有するダンプトラックであって、
前記第1ラジエータは、前記車体フレームの幅方向の一方の外側に配置され、
前記第2ラジエータは、前記車体フレームの幅方向の他方の外側に配置され、
前記第1ラジエータおよび前記第2ラジエータは、車体フレームの走行方向の略中央で、かつ走行方向の一方および他方に配置された前記タイヤの間に配置され、
前記第1ラジエータの前記車体フレーム側、および前記第2ラジエータの前記車体フレーム側には、外気を前記冷却空気として前記車体フレームの外方から内方に向けて吸い込む吸込式の冷却ファンがそれぞれ配置されている。
ことを特徴とするダンプトラック。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016504956A JP6243005B2 (ja) | 2014-02-27 | 2014-02-27 | ダンプトラック |
CA2938940A CA2938940C (en) | 2014-02-27 | 2014-02-27 | Dump truck |
PCT/JP2014/054981 WO2015129013A1 (ja) | 2014-02-27 | 2014-02-27 | ダンプトラック |
US15/117,997 US9783041B2 (en) | 2014-02-27 | 2014-02-27 | Dump truck radiator |
CN201480075183.1A CN105980189A (zh) | 2014-02-27 | 2014-02-27 | 自卸车 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/054981 WO2015129013A1 (ja) | 2014-02-27 | 2014-02-27 | ダンプトラック |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015129013A1 true WO2015129013A1 (ja) | 2015-09-03 |
Family
ID=54008379
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/054981 WO2015129013A1 (ja) | 2014-02-27 | 2014-02-27 | ダンプトラック |
Country Status (5)
Country | Link |
---|---|
US (1) | US9783041B2 (ja) |
JP (1) | JP6243005B2 (ja) |
CN (1) | CN105980189A (ja) |
CA (1) | CA2938940C (ja) |
WO (1) | WO2015129013A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018056376A1 (ja) * | 2016-09-23 | 2018-03-29 | 株式会社小松製作所 | 作業車両の管理システム及び作業車両の管理方法 |
JP2020074248A (ja) * | 2020-02-13 | 2020-05-14 | 株式会社小松製作所 | 運搬車両の管理システム |
JP2020157912A (ja) * | 2019-03-26 | 2020-10-01 | 株式会社クボタ | 作業車 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015129005A1 (ja) * | 2014-02-27 | 2015-09-03 | 株式会社小松製作所 | ダンプトラック |
JP6709578B2 (ja) | 2016-09-23 | 2020-06-17 | 株式会社小松製作所 | 作業車両の管理システム及び作業車両の管理方法 |
CN106494510A (zh) * | 2016-12-27 | 2017-03-15 | 云南力帆骏马车辆有限公司 | 一种车架以及载货汽车 |
US10137769B2 (en) * | 2017-01-29 | 2018-11-27 | Stephen Kariniemi | Center mounted air chute for a rear mounted engine |
JP6695305B2 (ja) * | 2017-06-12 | 2020-05-20 | 日立建機株式会社 | 作業車両の走行装置 |
USD827676S1 (en) * | 2017-09-08 | 2018-09-04 | Volvo Construction Equipment Ab | Autonomous dumper |
USD826992S1 (en) * | 2017-09-08 | 2018-08-28 | Volvo Construction Equipment Ab | Dumper body |
USD827675S1 (en) * | 2017-09-08 | 2018-09-04 | Volvo Construction Equipment Ab | Autonomous dumper |
US10633028B2 (en) * | 2017-11-22 | 2020-04-28 | Honda Motor Co., Ltd. | Autonomous all-terrain vehicle frame structure |
CN109296437A (zh) * | 2018-08-31 | 2019-02-01 | 中车大连机车车辆有限公司 | 用于轨道车辆的冷却装置、控制方法及控制器 |
US11292311B2 (en) | 2019-10-25 | 2022-04-05 | Caterpillar Inc. | Space frame front upper suspension connection |
US11420493B2 (en) | 2019-10-25 | 2022-08-23 | Caterpillar Inc. | Space frame front lower suspension connection |
US11370263B2 (en) | 2019-10-25 | 2022-06-28 | Caterpillar Inc. | Space frame front upper body support and frame connection |
CN113497524B (zh) * | 2020-03-18 | 2023-03-24 | 株洲中车时代电气股份有限公司 | 一种矿车用散热系统 |
CN118182012A (zh) * | 2024-05-20 | 2024-06-14 | 质子汽车科技有限公司 | 一种集成式电驱动悬架 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53162234U (ja) * | 1977-05-27 | 1978-12-19 | ||
JPS6256321U (ja) * | 1985-09-30 | 1987-04-08 | ||
JPH0391814U (ja) * | 1990-01-06 | 1991-09-19 | ||
JP2002046485A (ja) * | 2000-07-31 | 2002-02-12 | Nissan Diesel Motor Co Ltd | ガスエンジン車両の燃料容器保護装置 |
WO2003022665A1 (en) * | 1999-10-14 | 2003-03-20 | Gulf Transp Co Pty Ltd | Multi-combination vehicle incorporating a power trailer |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5267676U (ja) * | 1975-11-14 | 1977-05-19 | ||
US4384467A (en) | 1981-06-29 | 1983-05-24 | Raymond International Builders, Inc. | Method of forming rings |
US4898333A (en) * | 1988-08-30 | 1990-02-06 | H.Y.O., Inc. | Hydraulic system for use with snow-ice removal vehicles |
JPH0391814A (ja) | 1989-09-05 | 1991-04-17 | Matsushita Electric Ind Co Ltd | 温水洗浄装置の漏電遮断装置 |
US6578925B1 (en) | 2002-01-15 | 2003-06-17 | Modular Mining Systems, Inc. | Bi-directional autonomous truck |
US6783187B2 (en) | 2002-10-29 | 2004-08-31 | Michael S. Parsons | Vector neutral truck |
JP2012091745A (ja) * | 2010-10-28 | 2012-05-17 | Hitachi Constr Mach Co Ltd | 運搬車両 |
CA2779475C (en) * | 2012-05-29 | 2015-04-07 | Macdon Industries Ltd. | Windrower tractor with parallel heat exchangers for cooling of engine and associated fluids |
DE102012013906A1 (de) * | 2012-07-13 | 2014-01-16 | Man Truck & Bus Ag | Rahmentragstruktur mit Kühlanordnung |
-
2014
- 2014-02-27 CA CA2938940A patent/CA2938940C/en active Active
- 2014-02-27 US US15/117,997 patent/US9783041B2/en active Active
- 2014-02-27 CN CN201480075183.1A patent/CN105980189A/zh active Pending
- 2014-02-27 WO PCT/JP2014/054981 patent/WO2015129013A1/ja active Application Filing
- 2014-02-27 JP JP2016504956A patent/JP6243005B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53162234U (ja) * | 1977-05-27 | 1978-12-19 | ||
JPS6256321U (ja) * | 1985-09-30 | 1987-04-08 | ||
JPH0391814U (ja) * | 1990-01-06 | 1991-09-19 | ||
WO2003022665A1 (en) * | 1999-10-14 | 2003-03-20 | Gulf Transp Co Pty Ltd | Multi-combination vehicle incorporating a power trailer |
JP2002046485A (ja) * | 2000-07-31 | 2002-02-12 | Nissan Diesel Motor Co Ltd | ガスエンジン車両の燃料容器保護装置 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018056376A1 (ja) * | 2016-09-23 | 2018-03-29 | 株式会社小松製作所 | 作業車両の管理システム及び作業車両の管理方法 |
JP2018049571A (ja) * | 2016-09-23 | 2018-03-29 | 株式会社小松製作所 | 作業車両の管理システム及び作業車両の管理方法 |
US11650589B2 (en) | 2016-09-23 | 2023-05-16 | Komatsu Ltd. | Management system for work vehicle and management method for work vehicle |
JP2020157912A (ja) * | 2019-03-26 | 2020-10-01 | 株式会社クボタ | 作業車 |
JP7101632B2 (ja) | 2019-03-26 | 2022-07-15 | 株式会社クボタ | 作業車 |
JP2020074248A (ja) * | 2020-02-13 | 2020-05-14 | 株式会社小松製作所 | 運搬車両の管理システム |
JP7084435B2 (ja) | 2020-02-13 | 2022-06-14 | 株式会社小松製作所 | 運搬車両の管理システム |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015129013A1 (ja) | 2017-03-30 |
CA2938940C (en) | 2017-12-19 |
CA2938940A1 (en) | 2015-09-03 |
CN105980189A (zh) | 2016-09-28 |
US20170008386A1 (en) | 2017-01-12 |
US9783041B2 (en) | 2017-10-10 |
JP6243005B2 (ja) | 2017-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6243005B2 (ja) | ダンプトラック | |
JP6315849B2 (ja) | ダンプトラック | |
JP6469647B2 (ja) | ダンプトラック | |
JP6499641B2 (ja) | ダンプトラック | |
JP6227116B2 (ja) | ダンプトラック | |
JP6272616B2 (ja) | ダンプトラック | |
WO2015129012A1 (ja) | ダンプトラック | |
WO2015129008A1 (ja) | ダンプトラック | |
WO2015129007A1 (ja) | ダンプトラック | |
WO2015129011A1 (ja) | ダンプトラック | |
JP6482797B2 (ja) | 乗用型草刈機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14883620 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016504956 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2938940 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15117997 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14883620 Country of ref document: EP Kind code of ref document: A1 |