WO2015128993A1 - 倍加半数体トウモロコシの作出方法、およびトウモロコシ変異系統の分離方法 - Google Patents

倍加半数体トウモロコシの作出方法、およびトウモロコシ変異系統の分離方法 Download PDF

Info

Publication number
WO2015128993A1
WO2015128993A1 PCT/JP2014/054884 JP2014054884W WO2015128993A1 WO 2015128993 A1 WO2015128993 A1 WO 2015128993A1 JP 2014054884 W JP2014054884 W JP 2014054884W WO 2015128993 A1 WO2015128993 A1 WO 2015128993A1
Authority
WO
WIPO (PCT)
Prior art keywords
haploid
individual
corn
mutation
individuals
Prior art date
Application number
PCT/JP2014/054884
Other languages
English (en)
French (fr)
Inventor
章夫 加藤
Original Assignee
章夫 加藤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 章夫 加藤 filed Critical 章夫 加藤
Priority to PCT/JP2014/054884 priority Critical patent/WO2015128993A1/ja
Publication of WO2015128993A1 publication Critical patent/WO2015128993A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/06Processes for producing mutations, e.g. treatment with chemicals or with radiation
    • A01H1/08Methods for producing changes in chromosome number
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • A01H5/10Seeds

Definitions

  • the present invention relates to a haploid breeding method that is one of the methods for producing a self-breeding corn line.
  • haploid breeding is known in which a haploid individual is created from the haploid and the chromosomes of the haploid individual are doubled and self-bred.
  • haploid breeding has been in full swing since 2002 when the haploid induction line called RWS began to be used.
  • a spindle formation inhibitor such as colchicine treatment is currently most widely used.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a method for producing a doubled haploid with high frequency.
  • a method for producing a doubled haploid corn according to the present invention is a gene mutation in a single gene, which is capable of forming a gamete gamete on a haploid individual.
  • Crossing a maize mutant line having a mutation with a maize haploid inducing line to produce a haploid individual carrying the gene mutation; and allowing the haploid individual carrying the gene mutation to self-breed It is characterized by including.
  • the method for separating a corn mutant strain comprises a step of selecting a haploid individual forming a flexible gamete from a plurality of corn haploid individuals, and the above-described flexible of the haploid individuals. Isolating a maize mutant line having a single gene mutation that enables the formation of a fertile gamete on a haploid individual from a progeny that is a fertilized product of a gamete.
  • a doubling haploid can be obtained at a high frequency without treating a haploid individual with a spindle formation inhibitor such as colchicine.
  • One embodiment of the method for producing a doubled haploid corn according to the present invention is a corn having a genetic mutation in a single gene that allows for the formation of a flexible gamete on a haploid individual.
  • the maize mutant line in this embodiment is a maize mutant line having a gene mutation that enables the formation of a flexible gamete on an haploid individual.
  • the gene mutation is a mutation that enables the formation of a flexible gamete on a haploid individual. More specifically, the gene mutation is a gene mutation that shows a change due to the mutation only in the haploid individual.
  • “a change appears only in an haploid individual” means that in a diploid individual having the gene mutation in homo or hetero, a doubling sector (tetraploid sector, 8 Is intended to be able to grow and maintain as a normal diploid individual, and in the most preferred embodiment, no change due to mutation appears in the diploid individual. Intended. In this respect, it differs from genetic mutations that cause doubling found in diploid individuals.
  • a diploid plant individual is intended unless otherwise specified.
  • the gene mutation that enables the formation of a flexible gamete on a haploid individual enables the formation of a flexible gamete on a haploid individual by gene mutation in a single gene.
  • gene mutation in a single gene refers to a mutation occurring in one specific gene. It suffices if a mutation occurs in one specific gene, and the mutation is not limited to one in one gene.
  • the gene mutation in a single gene is preferably a gene mutation having a main gene action in a single gene.
  • a “gene mutation having a dominant gene action in a single gene” refers to a mutation that occurs in one specific gene whose action is quantitatively or qualitatively clear.
  • strains that have increased fertility in haploid individuals due to accumulation of microtremor genes are known (eg, Wu, Penghao et. Al., 55th Annual Maize Genetics Conference, Program and Abstracts, p148, 2013.).
  • factors contributing to fertility in haploid individuals are dispersed during backcrossing, and as a result, high fertility cannot be maintained in haploid individuals.
  • the haploid individual's fertility is increased by mutation in a single gene. Therefore, since the gene mutation can be introduced in the backcross, it is possible to maintain high fertility in the haploid individual.
  • the gene mutation in a single gene is a gene mutation having a main gene action, the evaluation of the trait becomes easy.
  • gene mutation in a single gene enables flexible gamete formation on an haploid individual, it may further include other gene mutations, or a flexible gamete.
  • Quantitative traits related to offspring formation may be affected by other genes. For example, it may include a case where a gene or gene mutation that increases the number of beautiful pods that scatter pollen is included, but is not limited thereto.
  • a generative gamete is formed on an haploid individual in addition to a gene mutation that allows the formation of a generative gamete. Regardless of the case, a cute gamete may be formed accidentally.
  • the case where the formation of a flexible gamete is enabled by the mutation of the gene is intended, and more specifically, the mutation occurs in a single gene. Intended for the case.
  • a flexible gamete is formed on a haploid individual, that if a normal haploid individual, a large number of cocoons are extracted on the ears that do not extract cocoons at all, or Since the number of grains in the ear is large, it can be easily identified.
  • a haploid individual in which a flexible gamete is formed by mutation of a single gene and a haploid individual in which a flexible gamete is accidentally formed can be easily distinguished by the following method.
  • seeds having diploid embryos are obtained by self-propagating haploid individuals in which a flexible gamete is formed.
  • a diploid individual formed from the seed is crossed with pollen of a haploid induction line to obtain a seed having a haploid embryo.
  • a haploid individual is grown from the obtained seeds, and the separation ratio between the fertile haploid individual and the sterile haploid individual is confirmed.
  • the formation of the flexible gamete in the haploid individual used in step (i) is due to a gene mutation in a single gene
  • in the diploid individual used in step (ii) Will hold the gene mutation in homo. Therefore, the haploid individuals obtained in step (iii) theoretically have the gene mutation in all haploid individuals. Therefore, all haploid individuals are pretty.
  • step (i) crossing pollen obtained from a haploid individual in which a flexible gamete was formed to another diploid line to obtain a seed having a diploid embryo.
  • a diploid individual formed from the seed is crossed with pollen of a haploid induction line to obtain a seed having a haploid embryo.
  • a haploid individual is grown from the obtained seeds, and the separation ratio between the fertile haploid individual and the sterile haploid individual is confirmed.
  • the formation of the flexible gamete in the haploid individual used in step (i) is due to a gene mutation in a single gene
  • in the diploid individual used in step (ii) Will retain the gene mutation in heterogeneity. Therefore, in theory, the haploid individuals obtained in the step (iii) have the gene mutation in half of the haploid individuals. For this reason, the flexible haploid individual and the sterile haploid individual are separated into 1: 1.
  • the formation of the flexible gamete in the haploid individual used in the step (i) is an accidental occurrence not caused by the gene mutation
  • in the haploid individual obtained in the step (iii) In all cases, all haploid individuals remain sterilized, except when accidental feasible parts are formed (about 5%).
  • a haploid individual in which a flexible gamete is formed it is a haploid individual in which a flexible gamete is formed by a single gene mutation, or it is accidentally feasible. It is possible to easily determine whether a gametite is formed or a haploid individual.
  • an existing mutant line may be used, or the above-described gene mutation enables the formation of a flexible gamete on a haploid individual.
  • the mutant haploid individuals may be self-bred, or may be newly created by crossing the mutant haploid individuals with other diploid individuals or other haploid individuals. Or when the said gene mutation is specified, you may make it newly by introduce
  • the method for obtaining the mutant haploid individual is not particularly limited.
  • the mutant haploid individual may be newly separated or already separated.
  • the mutant haploid individual may be obtained or prepared. Alternatively, it may be produced from a mutant diploid individual.
  • a method for newly isolating mutant haploid individuals natural haploid populations derived from native species, F 1 hybrids, inbred lines or inbred lines that have not been subjected to mutagen treatment may be used.
  • a method for isolating haploid individuals that are capable of forming germinating gametes by mutation, and half derived from native species, F 1 hybrids, inbred lines, or inbred lines that have been subjected to mutagen treatment Any of the methods for separating a haploid individual capable of forming a gamete gamete from a body individual population may be used.
  • the “haploid individual that has been subjected to mutagen treatment” refers to either the case where the haploid individual itself has been subjected to mutagen treatment, or the case where mutagen processing has been performed on the parent individual of the haploid individual. Is also intended.
  • the present invention is derived from a step of selecting a haploid individual forming a malleable gamete from a plurality of maize haploid individuals, and a fertilized product of the haploid gamet of the haploid individual.
  • a method for isolating maize mutant lines including the step of isolating maize mutant lines having a single gene mutation that enables the formation of a flexible gamete on a haploid individual. is there.
  • the mutagen treatment may be a conventionally used treatment, for example, Seed or pollen treatment with EMS (methane (sulfonate methyl ester), seed treatment with sodium azide, radiation or transposon mutagenesis (Mutator and Ac-Ds etc.), and Agrobacterium Ti plasmid
  • EMS methane (sulfonate methyl ester)
  • seed treatment with sodium azide, radiation or transposon mutagenesis (Mutator and Ac-Ds etc.)
  • Agrobacterium Ti plasmid There are various methods such as a gene disruption method used.
  • mutant haploid individuals having the gene mutation appear at a certain frequency by performing a mutagen treatment and inducing a gene mutation.
  • cocoons are extracted from the entire male ear in a haploid individual in which a flexible gamete was formed by gene mutation.
  • a malleable gamete is accidentally formed, a cocoon is extracted only from a part of the ears (in many cases, 1 branch raft). For this reason, it is possible to easily distinguish between a gene mutation and an accidental one.
  • an ear in the case of accidental doubling, there are about 2 grains per one, but in the case of gene mutation, 6 or more grains are granulated, so it can be easily distinguished. it can.
  • those determined to be accidental doubling include those that have been made feasible by natural mutation at a very low frequency.
  • a haploid individual carrying the above gene mutation can be produced by crossing pollen of the corn haploid induction line with the above corn mutant lines.
  • the “haploid induction line” is a line that can form seeds having haploid embryos by mating with other diploid individuals.
  • Examples of maize haploid induction lines include RWS, UH-400, Stock6, WS14, and ig gene lines. Among them, a line capable of inducing a haploid individual of a seed parent origin by using pollen such as RWS, UH-400, Stock6 and WS14 is preferable.
  • a haploid is obtained by using a color marker (eg, R1-scm2 gene, R1-nj gene, etc.) of a matured seed. Seeds having embryos can be identified, and the seeds can be separated.
  • a color marker eg, R1-scm2 gene, R1-nj gene, etc.
  • the haploid individuals obtained in this way can form feasible gametes, so they can self-breed at a high frequency and, as a result, obtain a doubled haploid at a high frequency. Can do.
  • chromosome doubling is caused in the haploid individual's somatic cell, thereby forming a diploid pollen mother cell and embryo sac mother cell.
  • meiosis is performed, or after the formation of haploid pollen mother cells and embryo sac mother cells, for example, meiosis abnormalities such as omission of the first meiosis may occur.
  • meiosis abnormalities such as omission of the first meiosis may occur.
  • a gamete is formed is mentioned. In the present embodiment, both cases are included.
  • Chromosome doubling is caused in the haploid individual somatic cells, thereby forming diploid pollen mother cells and the like, and normal meiosis resulting in the formation of a flexible gamete (hereinafter, (Referred to as “somatic cell doubling type”), and after the formation of haploid pollen mother cells, etc., meiotic abnormalities such as omission of the first meiosis occurred, resulting in the formation of a flexible gamete. (Hereinafter referred to as “meiosis-reduced type”) can be easily distinguished as follows. When the size of the cocoon produced on the haploid individual is approximately the same as the size of the cocoon of a normal diploid individual, it is a somatic doubling type. On the other hand, when the size of the cocoon produced on the haploid individual is about half the size of the cocoon of a normal diploid individual, the meiosis omission type is used.
  • Methods for determining whether chromosomal doubling has occurred include methods of observing an increase in the number of grains in the ears by extracting cocoons by restoring fertility, and a method of examining the ploidy of flower organ cells using a flow cytometer And a method for examining the number of chromosomes of a flower organ cell and a method for performing DNA fluorescence staining on a flower organ cell.
  • the simplest method is to observe the increase of the number of grains in the ear or the extraction of the cocoon by recovery of fertility.
  • the method for producing a doubled haploid corn according to the present invention is a corn having a gene mutation in a single gene, which enables the formation of a flexible gamete on a haploid individual.
  • the mutant line is crossed with a maize haploid induction line to produce a haploid individual carrying the gene mutation, and the self-breding the haploid individual carrying the gene mutation.
  • doubling haploids can be obtained at high frequency without treating haploid individuals with spindle formation inhibitors such as colchicine.
  • the gene mutation is a mutation that causes chromosome doubling in a somatic cell of a corn haploid individual.
  • the gene mutation is a mutation that forms a flexible gamete due to a meiotic abnormality in a maize haploid individual.
  • the method for separating a corn mutant strain comprises a step of selecting a haploid individual forming a flexible gamete from a plurality of corn haploid individuals, and the above-described flexible of the haploid individuals. Separating a maize mutant line having a single gene mutation that enables the formation of a delicate gamete on a haploid individual from a progeny derived from a fertilized product of the gamete.
  • ⁇ Normal mutant screening is carried out in the progeny of diploid individuals.
  • the method for separating maize mutant lines according to the present invention since the haploid gametes of haploid individuals are used, the above problem can be avoided.
  • colchicine is used in general haploid breeding of corn, a large number of haploid individuals in which doubling sectors are generated by colchicine appear. For this reason, it is difficult to screen for a mutant line desired in the present invention in general corn haploid breeding.
  • the gene mutation is a mutation that causes chromosome doubling in a somatic cell of a corn haploid individual.
  • the gene mutation is a mutation that forms a flexible gamete due to a meiotic abnormality in a corn haploid individual.
  • the target mutation One haploid individual was obtained. Since this mutant haploid individual is derived from a plant that has not been subjected to mutagen treatment, it is caused by an accidental spontaneous mutation.
  • 2500 maize haploid individuals derived from the F 1 population (Oh43 ⁇ B55) treated with sodium azide were planted, and the ears were fragile due to the mutation of a single gene.
  • five target mutant haploid individuals were obtained.
  • a corn mutant line which is a diploid individual having the gene mutation of the present invention homozygously, was produced for three mutant haploid individuals and subjected to the following tests.
  • Inbred lines of maize Oh43, B55 and B73, corn mutant lines PP1-42 with genetic mutations present invention a homopolymer, PP1-50 and PP1-100, and each of the F 1 hybrids between B73 and PP1-100
  • the RWS lines were crossed as pollen parents as seed parents, and haploid individuals were derived from each.
  • Mutant lines PP1-42 are derived from mutant haploid individuals generated by accidental spontaneous mutation, and mutant lines PP1-50 and PP1-100 are derived from individuals treated with sodium azide.
  • Mutant lines PP1-42 and PP1-50 are meiotic omission mutant lines, and mutant line PP1-100 is a somatic doubling mutant line.
  • the induced haploid individuals were planted in the field, and the ears before flowering were bagged.
  • pollen was collected and mated with the extracted silk thread of the individual. The results are shown in Table 1 and FIGS.
  • PP1-50 and PP1-42 are both individuals having a single active gene mutation and have different loci.
  • the segregation ratio between the haploid individual and the sterile haploid individual among the haploid individuals derived from the progeny by crossing with other strains was 1: 1. It became clear that it was an individual with a single dominant gene-acting mutation. However, the number of wrinkles in haploid individuals derived from progeny of diploids obtained by crossing with other strains is less than that of haploid individuals derived from PP1-100. Distributed continuously. Thus, for PP1-100, other genes also affect its phenotype.
  • FIG. 1 shows the flowering status of PP1-100 haploid individuals (left photo) and the flowering status of B55 haploid individuals (right photo).
  • FIG. 1 shows the flowering status of PP1-100 haploid individuals (left photo) and the flowering status of B55 haploid individuals (right photo).
  • PP1-100 haploid individuals a large number of fertile cocoons are extracted, whereas in B55 haploid individuals are sterile, and cocoons are not extracted at all. I understand that there is no.
  • FIG. 2 is an enlarged photograph of PP1-100 haploid individuals during flowering.
  • soot is extracted, and large and small soot are mixed.
  • Large cocoons are the same size as the cocoons observed in maize diploid individuals. This also indicates that in PP1-100 haploid individuals, chromosome doubling occurs in somatic cells before sputum formation, and diploid tissues (large spiders) and haploid tissues (small spiders) are distributed in a chimeric form. I understand that.
  • haploid individuals Preparation of haploid individuals from haploid individuals (0.5 cm) derived from PP1-100, and FISH by fluorescently labeling the Knob-DNA sequence, The ploidy in primordial cells was investigated. As a result, 13.5% (203 of 1500) of the cells were diploid, and 86.5% of the cells were haploid. On the other hand, when B55 haploid individuals were examined in the same manner, the haploid primordium of B55 haploid individuals contained only 0.3% (4 out of 1500) of diploid cells. 99.7% of the cells were haploid.
  • FIG. 3 shows the buds of the haploid individuals of the self-propagating PP1-100 (left column), the panicles of the haploid individuals of the Oh43 that could not be bred because of no pollen (middle row), and pollen.
  • the haploid individuals of PP1-100 can self-propagate, and about 6 seeds grow per ear.
  • the haploid individuals of Oh43 and B55 are sterile and self-propagating seeds cannot be obtained.
  • PP1-100 haploid individuals have about 6 seeds per ear, which is 3 times the number of grains when haploid individuals such as Oh43 and B55 are sufficiently pollinated. Is double. Therefore, it can be seen that the gene mutation retained by PP1-100 has the effect of increasing the number of ear spikes on a haploid individual.
  • haploid individuals of PP1-42 and PP1-50 were susceptible to changes in fertility depending on the environment, and no pollen was scattered on cloudy days or in winter greenhouse cultivation.
  • the graining of the self-propagating ear in a diploid individual is normal, and occurs when a tetraploid sector or diploid pollen is present. There was no growth failure grain, or even 1 grain per ear. This is the same as the frequency of occurrence of a growth-deficient grain that occurs in a spiked self-bred diploid. That is, these strains can be maintained as normal diploid individuals without causing doubling sectors in the diploid individuals, and have completely normal fertility like normal diploid individuals. is doing.
  • Preparations were prepared from immature male ears of diploid individuals of PP1-100, and the ploidy of 1500 cells was examined by fluorescently labeling the Knob-DNA sequence and performing FISH. As a result, all the cells were diploid and tetraploid cells were not included. In addition, the meiosis of pollen mother cells in PP1-42 and PP1-50 diploid individuals is normal, and normal four molecules are formed.
  • the present invention can be used for breeding corn.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Botany (AREA)
  • Developmental Biology & Embryology (AREA)
  • Environmental Sciences (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physiology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

 高頻度で倍加半数体を作出するため、本発明の倍加半数体トウモロコシの作出方法は、単一遺伝子における遺伝子突然変異であって、半数体個体上での可稔配偶子形成を可能とする該遺伝子突然変異を有するトウモロコシ変異系統を、トウモロコシ半数体誘導系統と交配させ、上記遺伝子突然変異を保持する半数体個体を作出する工程と、上記遺伝子突然変異を保持する上記半数体個体を自殖させる工程とを含んでいる。

Description

倍加半数体トウモロコシの作出方法、およびトウモロコシ変異系統の分離方法
 本発明は、トウモロコシの自殖系統の作出法の一つである半数体育種法に関するものである。
 トウモロコシの品種開発では、2種の自殖系統(純系)を掛け合わせたF利用の雑種強勢育種が行われている。従来、7~10世代にわたって自家受粉を繰り返すことにより、トウモロコシの自殖系統を育成していた。トウモロコシでは、冬期に温室または温暖地で次世代個体を栽培するとしても、年2回の採種が限度であるため、自家受粉を繰り返すことによる自殖系統の育成には、4~5年の年月が必要である。
 自殖系統の育成には、在来種または一代雑種(F品種、系統間交配により得られる雑種)を数世代にわたって自殖させて作出する方法の他にも、在来種またはF品種から半数体個体を作成し、この半数体個体の染色体を倍加して自殖させる半数体育種と呼ばれる方法が知られている。トウモロコシにおいては、2002年にRWSという半数体誘導系統が使われ始めてから、半数体育種が本格化した。半数体個体の染色体を倍加させる方法としては、コルヒチン処理など、紡錘糸形成阻害剤にて処理する方法が現在最も広く用いられている。
Eder J, Chalyk S (2002) In vivo haploid induction in maize. Theor. Appl. Genet. 104:703-708. Geiger HH, Gordillo GA (2009) Doubled haploids in hybrid maize breeding. Maydica 54:485-499. Kato A (2002) Chromosome doubling of haploid maize seedlings using nitrous oxide gas at the flower primordial stage. Plant Breed. 121:370-377. Kleiberab D, Priggeac V, Melchinger AE, Burkarda F, Vicentec FS,Palominod G, Gordillob GA (2012) Haploid fertility in temperate and tropical maize germplasm. Crop Sci. 52:623-630.
 しかしながら、トウモロコシ半数体を倍加することは難しく、コルヒチン処理を行っても、倍加半数体が得られる頻度は、3~7%ほどである。また、コルヒチンは高価であり、さらに人体に対する毒性も高い。コルヒチン処理に替わる方法として笑気ガス処理による方法もある。しかしながら、笑気ガス処理を行う場合には、6葉期のポット苗を金属製の大きな耐圧容器の中で600kPaにて2日間処理した後、移植栽培する必要がある。そのため、トウモロコシ育種の現場で行われているような大規模な純系の作出には用いることができない。
 そこで、本発明は上記の問題点に鑑みてなされたものであり、その目的は、高頻度で倍加半数体を作出する方法を提供することにある。
 本発明に係る倍加半数体トウモロコシの作出方法は、上記課題を解決するために、単一遺伝子における遺伝子突然変異であって、半数体個体上での可稔配偶子形成を可能とする該遺伝子突然変異を有するトウモロコシ変異系統を、トウモロコシ半数体誘導系統と交配させ、上記遺伝子突然変異を保持する半数体個体を作出する工程と、上記遺伝子突然変異を保持する上記半数体個体を自殖させる工程とを含むことを特徴とする。
 また、本発明に係るトウモロコシ変異系統の分離方法は、複数のトウモロコシ半数体個体の中から、可稔配偶子を形成している半数体個体を選別する工程と、上記半数体個体の上記可稔配偶子による受精産物である後代から、半数体個体上での可稔配偶子形成を可能とする単一遺伝子の遺伝子突然変異を有するトウモロコシ変異系統を分離する工程とを含むことを特徴とする。
 本発明によれば、半数体個体をコルヒチンなどの紡錘糸形成阻害剤で処理することなく、高頻度で倍加半数体を得ることができる。
PP1-100の半数体個体の開花状況(左写真)、およびB55の半数体個体の開花状況(右写真)を示す図である。 開花中のPP1-100の半数体個体を示す図である。 自殖したPP1-100の半数体個体の雌穂(左列)、花粉が得られず自殖できなかったOh43の半数体個体の雌穂(中央列)、および花粉が得られず自殖できなかったB55の半数体個体の雌穂(右列)を示す図である。
 本発明に係る倍加半数体トウモロコシの作出方法の一実施形態は、単一遺伝子における遺伝子突然変異であって、半数体個体上での可稔配偶子形成を可能とする該遺伝子突然変異を有するトウモロコシ変異系統を、トウモロコシ半数体誘導系統と交配させ、上記遺伝子突然変異を保持する半数体個体を作出する工程と、上記遺伝子突然変異を保持する上記半数体個体を自殖させる工程とを含む構成を有している。
 本実施形態におけるトウモロコシ変異系統は、半数体個体上での可稔配偶子形成を可能とする遺伝子突然変異を有するトウモロコシ変異系統である。当該遺伝子突然変異は、半数体個体上での可稔配偶子形成を可能とさせる変異であり、より詳細には、半数体個体においてのみ変異による変化が表れる遺伝子突然変異である。ここで「半数体個体においてのみ変化が表れる」とは、当該遺伝子突然変異をホモまたはヘテロで有している2倍体個体においては、通常の栽培条件下において倍加セクター(4倍体セクター、8倍体セクター等)を生じることはなく、正常な2倍体個体として増殖維持することができることを意図しており、最も好ましい態様では、2倍体個体においては変異による変化が一切表れないことを意図している。この点において、2倍体個体において見出される倍加を引き起こす遺伝子突然変異とは相違する。なお、本明細書において「系統」と用いる場合、特に断りのない限りは、2倍体の植物個体を意図している。
 本実施形態において、半数体個体上での可稔配偶子形成を可能とする該遺伝子突然変異は、単一遺伝子における遺伝子突然変異により、半数体個体上での可稔配偶子形成を可能にしている。本明細書において「単一遺伝子における遺伝子突然変異」とは、ある特定の一遺伝子において生じている突然変異のことを指す。ある特定の一遺伝子に変異が生じていればよく、一遺伝子中の変異箇所が一か所であるものに限定されるわけではない。
 また、単一遺伝子における遺伝子突然変異は、単一遺伝子における主動遺伝子作用を有する遺伝子突然変異であることが好ましい。「単一遺伝子における主働遺伝子作用を有する遺伝子突然変異」とは、ある特定の一遺伝子において生じている突然変異でその作用が量的あるいは質的に明確であることを指す。
 従来、微動遺伝子が集積することで半数体個体における稔性が高くなっている系統が、知られている(例えば、Wu, Penghao et. al., 55th Annual Maize Genetics Conference, Program and Abstracts, p148, 2013.)。しかしながらこのような系統の場合には、戻し交雑の途中で、半数体個体での稔性に寄与する因子が分散してしまい、その結果、半数体個体において高い稔性を維持することができない。しかしながら、本発明によれば、単一の遺伝子における突然変異により半数体個体の稔性が高まっている。そのため、戻し交雑において、当該遺伝子突然変異を導入できるため、半数体個体において高い稔性を維持することが可能である。また、単一遺伝子における遺伝子突然変異が、主動遺伝子作用を有する遺伝子突然変異であれば、形質の評価が容易となる。
 本実施形態においては、単一遺伝子における遺伝子突然変異により半数体個体上での可稔配偶子形成が可能になっている限り、他の遺伝子突然変異をさらに含んでいてもよく、あるいは可稔配偶子形成に関する量的形質が他の遺伝子の影響を受けるものであってもよい。例えば、花粉を飛散する可稔の葯の数を増加させる遺伝子または遺伝子突然変異がさらに含まれている場合などを挙げることができるが、これに限定されるものではない。
 半数体個体上で可稔配偶子が形成されるようになる場合としては、遺伝子の突然変異により、可稔配偶子の形成が可能になっている場合のほかにも、遺伝子の突然変異とは関係なく偶発的に可稔配偶子が形成される場合もある。本実施形態においては、上記の通り、遺伝子の突然変異により、可稔配偶子の形成が可能になっている場合を意図しており、より具体的には、単一遺伝子における遺伝子突然変異により生じる場合を意図している。
 なお、半数体個体上で可稔配偶子が形成されるようになっていることは、通常の半数体個体であれば葯を全く抽出しない雄穂上に多数の葯を抽出すること、あるいは、雌穂における着粒数が多くなることから、容易に識別することができる。
 また、単一遺伝子の突然変異により可稔配偶子が形成された半数体個体と偶発的に可稔配偶子が形成された半数体個体とは、以下の方法により容易に判別することができる。
 まず、(i)可稔配偶子が形成された半数体個体を自殖させることにより、2倍体胚を有する種子を得る。(ii)当該種子から形成された2倍体個体に、半数体誘導系統の花粉を交配して、半数体胚を有する種子を得る。(iii)得られた種子から半数体個体を育成し、可稔性半数体個体と不稔性半数体個体との分離比を確認する。(i)のステップで用いた半数体個体における可稔配偶子の形成が、単一遺伝子における遺伝子突然変異に起因するものである場合には、(ii)のステップで用いた2倍体個体においては、当該遺伝子突然変異をホモで保持していることになる。そのため、(iii)のステップで得られる半数体個体においては、理論上、全ての半数体個体において当該遺伝子突然変異を有している。そのため、全ての半数体個体が可稔となる。
 あるいは、(i)可稔配偶子が形成された半数体個体から得られた花粉を他の2倍体系統に交配することにより、2倍体胚を有する種子を得る。(ii)当該種子から形成された2倍体個体に、半数体誘導系統の花粉を交配して、半数体胚を有する種子を得る。(iii)得られた種子から半数体個体を育成し、可稔性半数体個体と不稔性半数体個体との分離比を確認する。(i)のステップで用いた半数体個体における可稔配偶子の形成が、単一遺伝子における遺伝子突然変異に起因するものである場合には、(ii)のステップで用いた2倍体個体においては、当該遺伝子突然変異をヘテロで保持していることになる。そのため、(iii)のステップで得られる半数体個体においては、理論上、半数の半数体個体において当該遺伝子突然変異を有している。そのため、可稔性半数体個体と不稔性半数体個体とが1:1に分離する。
 一方、(i)のステップで用いた半数体個体における可稔配偶子の形成が、遺伝子突然変異に起因しない偶発的なものである場合には、(iii)のステップで得られる半数体個体においては、偶発的に可稔部分が形成される場合(5%程度)を除いて、全ての半数体個体が不稔のままである。
 以上のようにして、可稔配偶子が形成された半数体個体において、それが、単一の遺伝子突然変異により可稔配偶子が形成された半数体個体であるか、あるいは偶発的に可稔配偶子が形成された半数体個体であるかを容易に判別することができる。
 本実施形態における遺伝子突然変異を有するトウモロコシ変異系統としては、既に存在している変異系統を用いてもよく、あるいは、上記遺伝子突然変異により半数体個体上での可稔配偶子形成が可能となっている変異半数体個体の自殖、または上記変異半数体個体と他の2倍体個体もしくは他の半数体個体との交配により、新たに作出してもよい。または、上記遺伝子突然変異が特定されている場合には、公知の手法により部位特異的突然変異をトウモロコシの個体に導入することで、新たに作出してもよい。あるいは、上記遺伝子突然変異を有する2倍体変異個体の自殖または当該2倍体変異個体と他の2倍体個体との交配により得るものであってもよい。なお、通常の半数体個体においても、雌穂に関しては、稔性の程度は非常に低いものの、外部から花粉をかけると1-4粒の種子が結実する場合がある。よって、通常の半数体個体の雌穂でも、戻し交雑が可能な程度の稔性を有している。よって、上記変異半数体個体を花粉親とし、他の半数体個体を種子親として交配することは可能である。このような観点から、遺伝子突然変異により半数体個体上での可稔配偶子形成が可能になることは、半数体個体上に、花粉の採取が可能な雄穂および葯が形成されるようになること、半数体個体上に、通常の半数体個体よりも多い数の正常な胚嚢が存在する高い稔性を有する雌穂が形成されるようになること、またはその両方を意図している。
 変異半数体個体を用いて当該トウモロコシ変異系統を新たに作出する場合において、変異半数体個体の取得方法は特に制限されず、例えば、変異半数体個体を新たに分離してもよく、既に分離済みの変異半数体個体を入手あるいは準備するものであってもよい。あるいは、変異2倍体個体から作出してもよい。
 変異半数体個体を新たに分離する方法としては、変異原処理を施していない在来種、F雑種、自殖系統または自殖途中の系統から誘導した半数体個体集団の中から、自然突然変異により可稔配偶子形成が可能となっている半数体個体を分離する方法、および変異原処理が施された在来種、F雑種、自殖系統または自殖途中の系統から誘導した半数体個体集団の中から、可稔配偶子形成が可能となっている半数体個体を分離する方法の何れであってもよい。なお、「変異原処理が施された半数体個体」とは、半数体個体自体に変異原処理が施された場合、および半数体個体の親個体において変異原処理が施されている場合の何れをも意図している。以上から、本願発明は、複数のトウモロコシ半数体個体の中から、可稔配偶子を形成している半数体個体を選別する工程と、当該半数体個体の可稔配偶子による受精産物に由来する後代から、半数体個体上での可稔配偶子形成を可能とする単一遺伝子の遺伝子突然変異を有する、トウモロコシ変異系統を分離する工程とを含む、トウモロコシ変異系統の分離方法も包含するものである。
 在来種または自殖系統に変異原処理を施し、遺伝子突然変異を誘発させることで、変異半数体個体を新規に作出する方法において、変異原処理は従来用いられている処理でよく、例えば、種子または花粉をEMS(methane sulfonate methyl ester)で処理する方法、種子をアジ化ナトリウムで処理する方法、放射線またはトランスポゾンによる変異誘発(Mutator、およびAc-Dsなど)、およびアグロバクテリウムのTiプラスミドを利用した遺伝子破壊法等、様々な方法が挙げられる。
 本願発明者は、変異原処理を施し、遺伝子突然変異を誘発させることにより、当該遺伝子突然変異を有する変異半数体個体が一定の頻度で出現することを見出している。
 例えば、アジ化ナトリウム水溶液を用いて発芽中の種子に対して変異原処理を施した1000個体のトウモロコシを栽植し、各個体に対して半数体誘導系統であるRWS系統の花粉を交配して種子を得る。この中から半数体胚を有する種子を用いて、3000の半数体個体を形成させ、圃場にて栽植すると、1~6個体の頻度で、遺伝子の突然変異により可稔配偶子が形成された半数体個体を得ることができる。なお、遺伝子の突然変異によらず偶発的に可稔配偶子が形成された半数体個体も、100個体以上生じてくる。この場合、親植物を変異原処理しているため、遺伝子突然変異によって可稔配偶子が形成された半数体個体では、雄穂全体から葯が抽出する。一方、偶発的に可稔配偶子が形成される場合には、雄穂の一部(多くの場合は1枝梗)のみで葯が抽出する。そのため、遺伝子突然変異によるものと、偶発的なものとを容易に区別できる。雌穂の場合も同様に、偶発的な倍加の場合には1本あたり2個程度の着粒であるのに対し、遺伝子突然変異による場合には6個以上着粒することから、容易に区別できる。ただし、偶発的な倍加と判定したものの中に、極低頻度で、自然突然変異で可稔化したものが含まれる場合もある。
 以上のトウモロコシ変異系統に対してトウモロコシ半数体誘導系統の花粉を交配することで、上記遺伝子突然変異を保持する半数体個体を作出することができる。
 本明細書において「半数体誘導系統」とは、他の2倍体個体と交配させることにより、半数体胚を有する種子を形成させることができる系統である。トウモロコシの半数体誘導系統としては、例えば、RWS、UH-400、Stock6、WS14、およびig遺伝子系統などを挙げることができる。中でも、RWS、UH-400、Stock6およびWS14など、半数体誘導系統の花粉を用いることにより、種子親起原の半数体個体を誘導できる系統が好ましい。
 トウモロコシ変異系統を、トウモロコシ半数体誘導系統と交配させて半数体個体を誘導する場合、完熟種子のカラーマーカー(例えば、R1-scm2遺伝子、およびR1-nj遺伝子等)を利用することで、半数体胚を有する種子が識別可能となり、当該種子を分離することができる。
 このようにして得た半数体個体を利用すれば、当該半数体個体では可稔配偶子形成が可能であるため、高頻度で自殖し、その結果、高頻度で倍加半数体を取得することができる。
 半数体個体において可稔配偶子が形成される場合としては、半数体個体の体細胞において染色体倍加が引き起こされ、これにより、2倍体の花粉母細胞および胚嚢母細胞が形成され、正常に減数分裂が行われる場合、あるいは、1倍体の花粉母細胞および胚嚢母細胞が形成された後、例えば、第一減数分裂が省略されるなどの減数分裂異常が生じることにより可稔性の配偶子が形成される場合が挙げられる。本実施形態においては、いずれの場合についても包含するものである。
 半数体個体の体細胞において染色体倍加が引き起こされ、これにより、2倍体の花粉母細胞等が形成されて正常に減数分裂が行われた結果、可稔配偶子が形成される場合(以下、「体細胞倍加型」と称する)と、1倍体の花粉母細胞等が形成された後、第一減数分裂が省略されるなどの減数分裂異常が生じた結果、可稔配偶子が形成される場合(以下、「減数分裂省略型」と称する)とは、次のようにして容易に区別することができる。半数体個体上に生じた葯の大きさが、通常の2倍体個体の葯の大きさとほぼ同じである場合には、体細胞倍加型である。一方、半数体個体上に生じた葯の大きさが、通常の2倍体個体の葯の大きさの半分程度である場合には、減数分裂省略型である。
 染色体倍加が起こっているか否かを判定する方法として、稔性回復による葯の抽出もしくは雌穂における着粒数の増加を観察する方法、フローサイトメーターを用いて花器の細胞の倍数性を調べる方法、花器の細胞の染色体数を調べる方法、および花器の細胞に対してDNA蛍光染色を施す方法などが挙げられる。中でも、稔性回復による葯の抽出もしくは雌穂における着粒数の増加を観察する方法が最も簡便である。
(まとめ)
 以上のとおり、本発明に係る倍加半数体トウモロコシの作出方法は、単一遺伝子における遺伝子突然変異であって、半数体個体上での可稔配偶子形成を可能とする該遺伝子突然変異を有するトウモロコシ変異系統を、トウモロコシ半数体誘導系統と交配させ、上記遺伝子突然変異を保持する半数体個体を作出する工程と、上記遺伝子突然変異を保持する上記半数体個体を自殖させる工程とを含むものである。
 上記構成によれば、半数体個体をコルヒチンなどの紡錘糸形成阻害剤で処理することなく、高頻度で倍加半数体を得ることができる。
 本発明の一態様では、上記遺伝子突然変異は、トウモロコシの半数体個体の体細胞において染色体倍加を引き起こす変異である。
 本発明の別の態様では、上記遺伝子突然変異は、トウモロコシの半数体個体における減数分裂異常により可稔配偶子を形成する変異である。
 本発明のさらに別の態様では、半数体個体上での可稔配偶子形成が可能となっている変異半数体個体を準備する工程と、上記変異半数体個体の自殖、または上記変異半数体個体と他の2倍体個体とを交配させ、上記遺伝子突然変異を有する上記トウモロコシ変異系統を分離する工程とをさらに含んでいる。
 また、本発明に係るトウモロコシ変異系統の分離方法は、複数のトウモロコシ半数体個体の中から、可稔配偶子を形成している半数体個体を選別する工程と、上記半数体個体の上記可稔配偶子による受精産物に由来する後代から、半数体個体上での可稔配偶子形成を可能とする単一遺伝子の遺伝子突然変異を有するトウモロコシ変異系統を分離する工程とを含むものである。
 通常の突然変異体のスクリーニングは、2倍体個体の自殖後代で行うものである。しかしながら、このようなスクリーニングでは、半数体個体上での可稔配偶子形成が可能となる遺伝子突然変異であって、2倍体個体では作用しない遺伝子突然変異を検出することは不可能である。本発明に係るトウモロコシ変異系統の分離方法によれば、半数体個体の可稔配偶子を用いているため、上記の問題を回避することができる。なお、一般的なトウモロコシの半数体育種ではコルヒチンを使用するため、コルヒチンにより倍加セクターが生じた半数体個体が多数出現する。そのため、一般的なトウモロコシの半数体育種において、本願発明で所望する変異系統のスクリーニングは困難である。
 本発明に係るトウモロコシ変異系統の分離方法の一態様では、上記遺伝子突然変異は、トウモロコシの半数体個体の体細胞において染色体倍加を引き起こす変異である。
 本発明に係るトウモロコシ変異系統の分離方法の別の態様では、上記遺伝子突然変異は、トウモロコシの半数体個体における減数分裂異常により可稔配偶子を形成する変異である。
 以下に実施例を示し、本発明の実施の形態についてさらに詳しく説明する。もちろん、本発明は以下の実施例に限定されるものではなく、細部については様々な態様が可能であることはいうまでもない。さらに、本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、それぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された文献の全てが参考として援用される。
 変異原処理が施されていない500本のトウモロコシ半数体個体を栽植し、単一遺伝子の遺伝子突然変異により雄穂が可稔性となっている半数体個体のスクリーニングを実施した結果、目的の変異半数体個体が1個体得られた。この変異半数体個体は、変異原処理が施されていない植物体由来であるため、偶発的な自然突然変異により生じたものである。また、アジ化ナトリウム処理が施されたF集団(Oh43×B55)から誘導された2500本のトウモロコシ半数体個体を栽植し、単一遺伝子の突然変異により雄穂が可稔性となっている半数体個体のスクリーニングを実施した結果、目的の変異半数体個体が5個体得られた。以上の変異半数体個体のうち、3つの変異半数体個体について、本件発明の遺伝子突然変異をホモで有する2倍体個体であるトウモロコシ変異系統を作出し、以下の試験に供した。
 トウモロコシの自殖系統Oh43、B55およびB73、本件発明の遺伝子突然変異をホモで有するトウモロコシ変異系統PP1-42、PP1-50およびPP1-100、ならびにB73とPP1-100とのF雑種のそれぞれを種子親にして、RWS系統を花粉親として交配し、それぞれから半数体個体を誘導した(PP1-50については、非特許文献:Sugihara N., Higashigawa T., Aramoto D., Kato A., 2013 Theor. Appl. Genet. 126:2931-41.参照)。変異系統PP1-42は、偶発的な自然突然変異により生じた変異半数体個体に由来する系統であり、変異系統PP1-50およびPP1-100は、アジ化ナトリウム処理が施された個体から誘導された変異半数体個体に由来する系統である。また、変異系統PP1-42およびPP1-50は、減数分裂省略型の変異系統であり、変異系統PP1-100は、体細胞倍加型の変異系統である。誘導した半数体個体を圃場にて栽植し、開花前の雌穂に袋掛けをした。開花期に葯が抽出した半数体個体については花粉を採取して、抽出してきた自個体の絹糸に交配した。その結果を、表1及び図1~図3に示す。
 なお、表現型の分離比による確認の結果、PP1-50およびPP1-42は何れも、単一の主働遺伝子作用のある突然変異を有する個体であり、遺伝子座が異なることが明らかとなった。また、PP1-100に関しても、他系統との交配による後代から誘導した半数体個体における可稔性の半数体個体と不稔性の半数体個体との分離比が1:1であったことから、単一の主働遺伝子作用のある突然変異を有する個体であることが明らかとなった。しかしながら、他系統との交配により得られる2倍体の後代から誘導した半数体個体における葯の数は、PP1-100から誘導した半数体個体の葯の数と比較すると、少ないものから多いものまで連続的に分布している。したがって、PP1-100に関しては、他の遺伝子もその表現型に影響を与えている。
 図1は、PP1-100の半数体個体の開花状況(左写真)、およびB55の半数体個体の開花状況(右写真)を示している。図1に示されるように、PP1-100の半数体個体では、多数の稔性のある葯が抽出しているのに対し、B55の半数体個体は不稔であり、葯が全く抽出していないことが分かる。
 図2は、開花中のPP1-100の半数体個体の拡大写真を示す図である。図2に示されるように、PP1-100では、葯が抽出しており、大きな葯と小さな葯が混在している。大きな葯はトウモロコシ2倍体個体で観察される葯と同じサイズである。このことからもPP1-100の半数体個体では、葯の形成前に体細胞で染色体倍加が起こり、2倍体組織(大きな葯)と半数体組織(小さな葯)がキメラ状に分布していることが分かる。
 PP1-100から誘導した半数体個体の雄穂原基(0.5cm)からプレパラートを作成し、Knob―DNA配列を蛍光標識してFISHを行うことにより、PP1-100の半数体個体の雄穂原基の細胞における倍数性を調査した。その結果、全体の13.5%(1500個中203個)の細胞が2倍体であり、86.5%の細胞が半数体であった。一方、B55の半数体個体についても同様に調べたところ、B55の半数体個体の雄穂原基においては、2倍体細胞は全体の0.3%(1500個中4個)しか含まれておらず、99.7%の細胞が半数体であった。
Figure JPOXMLDOC01-appb-T000001
 また、表1に示されるように、PP1-100の半数体個体(PP1-100 haploid)では、全ての個体(42個体)が花粉の採取が可能な稔性のある葯を抽出し、そのうち27個体(64%)で自殖種子が得られた。得られた種子数は平均6粒であった。42個体のうち7個体については、生育不良により絹糸が抽出しなかったため、自殖できなかった。
 遺伝子突然変異をヘテロで有するF雑種(B73×PP1-100)の半数体個体(B73×PP1-100 haploid)では、73個体中39個体が稔性のある葯を抽出し、そのうち12個体(16%)で自殖種子が得られた。
 PP1-50の半数体個体(PP1-50 haploid)およびPP1-42の半数体個体(PP1-42 haploid)では、それぞれ全個体の24%および88%の個体で自殖種子が得られた。
 一方、通常の自殖系統に由来する半数体個体(Oh43 haploid、B55 haploid、B73 haploid)では、自殖種子は全く得られないか、得られたとしても極低頻度(5%)であった。
 図3は、自殖したPP1-100の半数体個体の雌穂(左列)、花粉が得られず自殖できなかったOh43の半数体個体の雌穂(中央列)、および花粉が得られず自殖できなかったB55の半数体個体の雌穂(右列)を示す。図3に示されるように、PP1-100の半数体個体は自殖が可能で、1雌穂当たり6粒程度の種子が着生する。一方、Oh43およびB55の半数体個体は不稔であり、自殖種子が得られないことが分かる。
 PP1-100の半数体個体では1雌穂当たり6粒程度の種子が着生し、これはOh43およびB55等の半数体個体に2倍体由来の花粉を十分受粉した場合の着粒数の3倍である。したがって、PP1-100が保持する遺伝子突然変異は、半数体個体上での雌穂の着粒数を増加させる作用があることが分かる。
 また、通常の2倍体個体は開花3日目に300mgの花粉を飛散するが、PP1-100の半数体個体では30mgの花粉を飛散した。この量は1回の自家交配に十分な量である。さらに、開花期間全体では、PP1-100の半数体個体は120mgの花粉を飛散した。この量は4回の自家交配に十分な量である。PP1-100の半数体個体は、晴天時でも曇天時でも花粉をよく飛散した。
 一方、PP1-50の半数体個体においては、花粉は形成されるものの、PP1-100に比べると花粉の飛散量は少なく、その結果、表1に示されるように、自殖種子が得られる頻度が低かった。
 また、PP1-42およびPP1-50それぞれの半数体個体は、環境により稔性が変化しやすく、曇りの日または冬期温室栽培においては花粉が飛散しなかった。
 なお、PP1-42、PP1-50、およびPP1-100何れにおいても、2倍体個体において自殖した雌穂の着粒は正常であり、4倍体セクターまたは2倍体花粉が存在すると発生する発育不全粒は存在しないか、存在しても1穂当たり1粒程度であった。これは、通常の2倍体を自殖した穂に生じる発育不全粒の発生頻度と同じである。すなわち、これらの系統は、その2倍体個体においては倍加セクターを生じさせることなく、正常な2倍体個体として維持可能であり、通常の2倍体個体と同様完全に正常な稔性を有している。PP1-100の2倍体個体の未熟な雄穂からプレパラートを作成し、Knob―DNA配列を蛍光標識してFISHを行うことにより、1500個の細胞の倍数性を調査した。その結果、すべての細胞は2倍体であり、4倍体細胞は含まれていなかった。またPP1-42およびPP1-50の2倍体個体における花粉母細胞の減数分裂は正常であり、正常な四分子が形成される。
 本発明は、トウモロコシの育種に利用することができる。

Claims (7)

  1.  単一遺伝子における遺伝子突然変異であって、半数体個体上での可稔配偶子形成を可能とする該遺伝子突然変異を有するトウモロコシ変異系統を、トウモロコシ半数体誘導系統と交配させ、上記遺伝子突然変異を保持する半数体個体を作出する工程と、
     上記遺伝子突然変異を保持する上記半数体個体を自殖させる工程とを含むことを特徴とする倍加半数体トウモロコシの作出方法。
  2.  上記遺伝子突然変異は、トウモロコシの半数体個体の体細胞において染色体倍加を引き起こす変異であることを特徴とする請求項1に記載の倍加半数体トウモロコシの作出方法。
  3.  上記遺伝子突然変異は、トウモロコシの半数体個体における減数分裂異常により可稔配偶子を形成する変異であることを特徴とする請求項1に記載の倍加半数体トウモロコシの作出方法。
  4.  半数体個体上での可稔配偶子形成が可能となっている変異半数体個体を準備する工程と、
     上記変異半数体個体の自殖、または上記変異半数体個体と他の2倍体個体もしくは他の半数体個体とを交配させ、上記遺伝子突然変異を有する上記トウモロコシ変異系統を分離する工程とをさらに含むことを特徴とする請求項1~3の何れか1項に記載の倍加半数体トウモロコシの作出方法。
  5.  トウモロコシ半数体個体の集団を準備し、当該集団の中から可稔配偶子を形成している半数体個体を選別する工程と、
     上記半数体個体の上記可稔配偶子による受精産物に由来する後代から、半数体個体上での可稔配偶子形成を可能とする単一遺伝子の遺伝子突然変異を有するトウモロコシ変異系統を分離する工程とを含むことを特徴とするトウモロコシ変異系統の分離方法。
  6.  上記遺伝子突然変異は、トウモロコシの半数体個体の体細胞において染色体倍加を引き起こす変異であることを特徴とする請求項5に記載のトウモロコシ変異系統の分離方法。
  7.  上記遺伝子突然変異は、トウモロコシの半数体個体における減数分裂異常により可稔配偶子を形成する変異であることを特徴とする請求項5に記載のトウモロコシ変異系統の分離方法。
PCT/JP2014/054884 2014-02-27 2014-02-27 倍加半数体トウモロコシの作出方法、およびトウモロコシ変異系統の分離方法 WO2015128993A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/054884 WO2015128993A1 (ja) 2014-02-27 2014-02-27 倍加半数体トウモロコシの作出方法、およびトウモロコシ変異系統の分離方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/054884 WO2015128993A1 (ja) 2014-02-27 2014-02-27 倍加半数体トウモロコシの作出方法、およびトウモロコシ変異系統の分離方法

Publications (1)

Publication Number Publication Date
WO2015128993A1 true WO2015128993A1 (ja) 2015-09-03

Family

ID=54008362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054884 WO2015128993A1 (ja) 2014-02-27 2014-02-27 倍加半数体トウモロコシの作出方法、およびトウモロコシ変異系統の分離方法

Country Status (1)

Country Link
WO (1) WO2015128993A1 (ja)

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AKIO KATO ET AL.: "Haploidization of tetraploid maize by bicellular pollen", BREEDING SCIENCE, vol. 44, 2 April 1994 (1994-04-02), pages 180 *
MICHIO MURAKAMI ET AL.: "Induction of haploid plant by another culture in maize I", THE SCIENTIFIC REPORTS OF KYOTO PREFECTURAL UNIVERSITY, AGRICULTURE 24, 15 October 1972 (1972-10-15), pages 1 - 8 *
NAHO SUGIHARA ET AL.: "Hansutai ni yotte Nensei Kafun o Seisan suru Tomorokoshi Keito o Sodium Azide Totsuzen Hen'i Yuhatsuho ni yori Sakushutsu shita", BREEDING RESEARCH, vol. 15, 27 March 2013 (2013-03-27), pages 141 *
SUGIHARA, NAHO. ET AL.: "Haploid plants carrying a sodium azide-induced mutation (fdrl) produce fertile pollen grains due to first division restitution (FDR) in maize (Zea mays L.", THEORETICAL AND APPLIED GENETICS, vol. 126, no. 12, pages 2931 - 2941, XP035332256 *

Similar Documents

Publication Publication Date Title
EP2339911B1 (en) Methods for plant seed production
JP6670008B2 (ja) セイヨウアブラナの倍加半数体誘導系統によりアブラナ科野菜の素材及び品種を選抜育種する方法
BRPI0618023A2 (pt) planta cìbrida do gênero lactuca ou a progênie da mesma e método para sua produção, microcalo, mitocÈndria e genoma mitocondrial da planta cìbrida do gênero lactuca e método para produção da semente de primeira geração filial
JP7386150B2 (ja) 自家和合性ブラシカ・オレラセア植物およびその育成方法
FR2933842A1 (fr) Procede de production de plantes haploides, haploides doublees et/ou dihaploides, par gynogenese
Wu et al. Diploid female gametes induced by colchicine in Oriental lilies
JP4332208B2 (ja) カタランツス種子およびその製造方法
JP5617146B2 (ja) アルギランセマムの属間ハイブリッド植物及び生産方法
Kikuchi et al. Seed formation in triploid loquat (Eriobotrya japonica) through cross-hybridization with pollen of diploid cultivars
JP4169213B2 (ja) 異種由来単一染色体の次世代伝達能を備えた異種染色体添加植物
US9655316B2 (en) Cotton variety ST 5032GLT
US9578839B2 (en) Cotton variety FM 2322GL
WO2015128993A1 (ja) 倍加半数体トウモロコシの作出方法、およびトウモロコシ変異系統の分離方法
Pushpam et al. Production of interspecific hybrids between Gossypium hirsutum and Jassid resistant wild species G. raimondii and G. armourianum
JP2018521668A (ja) 新規の無限型ヘリアンツス植物
Bingham Medicago arborea project at University of Wisconsin, Madison
US9554527B2 (en) Cotton variety FM 1320GL
JP2016136943A (ja) 雌株のみの形質によるジャトロファハイブリッド
Lopez Anido et al. Successful transferring of male sterility from globe artichoke into cultivated cardoon
US11464185B2 (en) Basket type interspecific Pelargonium
Namazova INTERSPECIFIC HYBRIDIZATION BETWEEN BREAD WHEAT AND AEGILOPS TRIUNCIALIS L.
JP2017147975A (ja) 新規トウガラシ植物、該トウガラシ植物から得られた果実及び種子、並びにトウガラシ植物の作出方法
CN107996388B (zh) 一种利用离核木棉创制棉花细胞质雄性不育系的方法
CN107950382B (zh) 一种利用联核木棉创制棉花细胞质雄性不育系的方法
JP6759487B2 (ja) 八重咲ペンタス植物、及びその育成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14884161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC, FORM 1205A DATED 29-11-2016

NENP Non-entry into the national phase

Ref country code: JP

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14884161

Country of ref document: EP

Kind code of ref document: A1