WO2015128594A1 - Unité robotique de transport de charges longues - Google Patents
Unité robotique de transport de charges longues Download PDFInfo
- Publication number
- WO2015128594A1 WO2015128594A1 PCT/FR2015/050483 FR2015050483W WO2015128594A1 WO 2015128594 A1 WO2015128594 A1 WO 2015128594A1 FR 2015050483 W FR2015050483 W FR 2015050483W WO 2015128594 A1 WO2015128594 A1 WO 2015128594A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- robot
- mono
- load
- obstacle
- poly
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D57/00—Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
- B62D57/02—Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
- B62D57/024—Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members specially adapted for moving on inclined or vertical surfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J5/00—Manipulators mounted on wheels or on carriages
- B25J5/007—Manipulators mounted on wheels or on carriages mounted on wheels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/02—Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
- B25J9/023—Cartesian coordinate type
- B25J9/026—Gantry-type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60P—VEHICLES ADAPTED FOR LOAD TRANSPORTATION OR TO TRANSPORT, TO CARRY, OR TO COMPRISE SPECIAL LOADS OR OBJECTS
- B60P3/00—Vehicles adapted to transport, to carry or to comprise special loads or objects
- B60P3/40—Vehicles adapted to transport, to carry or to comprise special loads or objects for carrying long loads, e.g. with separate wheeled load supporting elements
Definitions
- the present invention relates to a mono-robot for transporting long charges and a method for transporting long charges using this mono-robot.
- a long load such as, for example, a pipeline section, a wind turbine blade, a stretcher or a beam or site rubble can be difficult because of the very length of the charge.
- the vehicles of the prior art are most often standardized and can not adapt to the load to be transported. Moreover, because of the presence of a long chassis and the length of the load to be transported, the vehicles of the prior art can progress only with difficulty on rough terrain.
- an object of the present invention is to provide a long load transport solution easy to load, adaptable to the type of load to be transported and able to overcome obstacles.
- the invention relates to a load transport mono-robot which comprises a gantry with two lateral uprights connected at their upper ends by a transverse beam, each of the lower ends being equipped with propulsion means connected to the upright by a motorized pivot.
- the mono-robot further comprises means for gripping a load positioned between the lateral uprights, and connected to the transverse beam by a kinematic chain positioning and orientation.
- the kinematic positioning and orientation chain is configured to allow the rotation of the gripping means of a load around an axis substantially normal to the transverse beam and substantially belonging to the plane defined by the gantry, and the rotation of the means of gripping a load about an axis substantially normal to the plane defined by the gantry.
- the invention thus proposes a mono-robot, allowing a ventral seizure of an object to be transported. This is an important point of the invention because the ventral transport of a load allows the assembly consisting of a single robot and a load to maintain a high stability by having a center of gravity close to the ground.
- the mono-robot according to the invention is, moreover, easily configurable to carry the transport of any type of loads.
- the invention can thus adapt to a wide variety of geometries and masses of charges to be transported because the mono-robot can be fixed at any point of the load. It is possible to combine several mono-robots on the same load to distribute the mechanical forces.
- each mono-robot can perform complex movements that allow it to overcome obstacles when it is implemented with other mono-robot for transporting a load.
- the mono-robot is thus of great agility which distinguishes it from the long-load transport vehicles of the prior art.
- the kinematic positioning and orientation chain linking the gripping means to the transverse beam can be configured to allow the translation of the gripping means of a load in a direction substantially normal to the plane defined by the gantry.
- the mono-robot can move along a load in order to cross an obstacle or to optimize the position of the center of gravity of the load relative to the supports of the mono-robot.
- the kinematic positioning and orientation chain may be configured to allow the translation of the gripping means of a load in the plane defined by the gantry in a direction normal to the transverse beam.
- the mono-robot according to the invention has a fast loading mode and easy implementation.
- the kinematic chain positioning and orientation allows the gripping means to grasp the load on the ground and lift for transport.
- the mono-robot can therefore grab a load placed on the ground by placing itself directly overhanging the load in question and without the use of ancillary lifting equipment.
- the means for gripping a load are connected to the transverse beam by the kinematic positioning and orientation chain comprising kinematic links of the cylindrical, rotoid, prismatic or universal group.
- the spherical finger connection has the same degrees of freedom as a universal type connection and can be substituted for it. It is stated that the positioning and orientation chain may have a serial or parallel architecture (open or closed) with one or more contours.
- the gripping means have all the degrees of freedom and all the movements necessary for gripping the load.
- the kinematic chain positioning and orientation allows displacements of the monorobot relative to the load transported to better adjust the position of its center of gravity.
- the kinematic positioning and orientation chain also allows the mono-robot to move one of the propulsion means in the three dimensions of the space by resting on the other means of propulsion.
- the propulsion means belong to the group comprising: a wheel, a track and an omnidirectional wheel.
- each lower end of the gantry is equipped with a single wheel connected to the upright by a motorized pivot.
- Other embodiments are possible by equipping each lower end of the gantry with an omnidirectional wheel or a crawler.
- the gripping means of a load comprise a gripper having one or more jaws configured to grip and hold a load, each jaw being equipped with a mobile end roller rotatable relative to the jaw and allowing the translation of a load relative to the jaw, and at least one lock adapted to immobilize in rotation one or more of the rollers relative to the jaw.
- This technical arrangement makes it possible to move the mono-robot with respect to the load gripped by the gripping means.
- the locks make it possible to precisely adjust the position of a mono-robot along the input load and to lock said position.
- the present invention also relates to a method of transporting a load by a charge transport poly-robot, which comprises the following steps:
- the invention allows the transport of a long load by several mono-robots whose movements are coordinated.
- the load fulfills the chassis function that connects at least two mono-robots.
- the invention thus becomes a poly-robot devoid of chassis since the chassis function is performed by the load to be transported itself. This provision of the invention is quite advantageous insofar as it makes it possible to save a chassis that is expensive and heavy.
- the invention provides a method of transporting a load by a load transport poly-robot which comprises the following obstacle crossing phases:
- the reconfiguration of the poly-robot before crossing the obstacle by a wheel allows the invention to remain stable throughout the duration of the crossing of the obstacle.
- the invention allows the crossing of an obstacle by at least two mono-robots carrying a load.
- the combination of a ventral grip and mono-robots with a complex linkage kinematics allows the crossing of significant obstacles.
- the reconfiguration phase includes one or more subsequent steps for stabilization: - Translation substantially longitudinal axis of a mono-robot m relative to the load so as to bring said mono-robot center of gravity of the load;
- the mono-robots - whose number is at least two - allow the poly-robot to increase its stability when lifting a wheel.
- the crossing phase of an obstacle according to the invention allows a mono-robot to overcome obstacles having a high height by taking support both on its first wheel and on the rest of the robot to lift its second wheel.
- the invention proposes a method of transporting a load by a load transport poly-robot comprising two mono-robots. Said method comprises the following frontal crossing phases of an obstacle:
- the invention relates to a method of transporting a load by a load transport poly-robot comprising at least three mono-robots, presenting the frontal crossing phases of an obstacle comprising the steps of:
- a frontal crossing phase in three stages: - Translation of substantially vertical axis of the considered mono-robot at an altitude greater than the altitude of the obstacle;
- the frontal crossing phase of an obstacle according to the invention allows a poly-robot comprising at least three mono-robots to overcome obstacles having a high height by taking support on at least two mono-robots in ground support.
- Figure 1 is a schematic perspective view of a single robot according to the invention.
- FIG. 2 is a perspective view of a long load transport poly-robot according to the invention in an implementation of the invention with two mono-robots;
- FIG. 3 is a schematic perspective view of another embodiment of a long load transport poly-robot using a means for longitudinal translation of the load by a specific wheel-roller gripper, in an implementation with two mono-robots;
- Figure 4 is a schematic perspective view of a poly-robot carrying a flexible load stiffened by an intermediate frame
- Figures 5 to 55 show in top view, in perspective and side, a way of crossing an obstacle by a poly-robot comprising two monorobots.
- Figures 56 to 79 illustrate in top view and side, a way of crossing an obstacle by a poly-robot comprising at least three monorobots.
- axes are conventionally defined: longitudinal axis, an axis substantially normal to the plane defined by the gantry;
- - Vertical axis an axis substantially in the plane defined by the gantry and perpendicular to the transverse beam
- - Transverse axis an axis substantially belonging to the plane defined by the gantry and parallel to the transverse beam.
- the transport mono-robot 10 has an inverted U-shaped general structure and comprises two lateral uprights 11 and a transverse beam 12 forming a gantry 19.
- each lateral upright 11 comprises a propulsion means, for example a wheel 17 connected to the upright 11 by a motorized pivot 18.
- the mono-robot 10 is here represented schematically.
- the gantry can be composed of mechanically welded metal elements or suitably assembled composite elements.
- the mono-robot 10 comprises gripping means positioned in the gantry 19, between the lateral uprights 11, so as to capture a load.
- the gripping means are connected to the beam 12 by a kinematic positioning and orientation chain comprising a prismatic connection (or slideway) P with a substantially longitudinal axis, a rotoid link RI (or pivot). of substantially longitudinal axis and a cylindrical connection C (or sliding pivot) of substantially vertical axis.
- the stabilization of the mono-robot 10 during its displacement can be provided by sensors controlling the acceleration, rotations and translations of the mono-robot 10.
- the stabilization of the mono-robot 10 can be performed by an additional rolling element connected to the gripping means 15 or linked to a pole attached to the frame 19.
- the gripping means may comprise a gripper comprising two jaws 15A and 15B linked for example by a pivot R2 so as to be able to grip a long load 300.
- the clamp 15 may have a jaw which exerts a restraint on a fixed surface; it may also be envisaged to provide the clamps with more than two jaws (3, 4 or more).
- each jaw 15A-15B of the clamp 15 may be connected to a roller 16 that is mobile in rotation.
- the rotation of the rollers 16 allows the translation of the load 300 and can then perform the function of the prismatic connection P.
- rollers 16 can be locked in rotation to block the position of a mono-robot 10A-10B relative to the load 300.
- the gripper 15 When gripping a load 300, the gripper 15 descends by making a vertical translation through the cylindrical connection C. Then when the gripper 15 grips the load 300, the load 300 is lifted by a vertical translation of the gripper 15 through to the cylindrical connection C.
- the poly-robot 100 as described in Figures 2 and 3 can handle indifferently two types of loads: on the one hand, the load only if it is sufficiently rigid; on the other hand an assembly consisting of an intermediate frame 200 on which is fixed a load 300 in the case where the latter is too flexible to ensure the mechanical connection between the single robots 10 of the poly-robot 100 (FIG. 4).
- a long charge transport poly-robot 100 can be realized using at least two single-robots 10A and 10B.
- Two mono-robots 10A and 10B are positioned along the load 300. It can be seen that the load 300 performs the intermediate chassis function of the poly-robot 100 while being locked in the gripping means 15 of each single-robot 10A and 10B.
- the load 300 fulfills the function of connecting element between the mono-robots 10.
- this implementation dispenses with the use of a frame that is commonly found in the devices of the prior art, which is an important advantage of the invention.
- This embodiment therefore allows a weight saving and allows the poly-robot to carry a long load on uneven ground difficult to access the devices of the prior art.
- the intermediate frame is formed by a profile 200.
- the profile 200 may comprise a series of fasteners 210 which allow the connection of the long load 300 to the profile 200.
- fasteners 210 are mechanical, but it is possible to envisage, for example, electromagnetic or pneumatic fasteners 210 to adapt to any type of load 300.
- the motorized pivots 18 allow the poly-robot 100 to roll in a straight line, and to make a turn by acting on the rotational speeds of each of the wheels, for example by differentiating the speed of rotation of two wheels 17 of the same single robot 10 selected according to the desired trajectory.
- the control and coordination of the kinematic chain of positioning and orientation of the wheels 17 can be achieved by a control electronics such as, for example, a microcontroller.
- a control electronics such as, for example, a microcontroller.
- An on-board console can be provided, or a remote system with wireless control can also be provided.
- each single-robot 10A and 10B enables the poly-robot 100 to overcome an obstacle.
- the invention can be implemented by a poly-robot 100 which comprises at least two mono-robots 10.
- the crossing of an obstacle can be carried out by adjusting the position of the center of gravity of the poly-robot 100 to optimize the equilibrium so as to lift each of the wheels 17 successively while guaranteeing the permanent quasi-static equilibrium of the system. .
- the poly-robot 100 may encounter an obstacle as shown in FIGS. 5-6-7.
- the crossing of an obstacle is done according to a series of sequences comprising the phases of: reconfiguration, crossing, reconfiguration, crossing, rolling, and this as many times as necessary for each of the M mono-robots of the poly-robot.
- a poly-robot 100 comprising two mono-robots 10. It is understood that the invention applies to a poly-robot 100 which can include M (with M greater than or equal to 2) mono-robots depending on the load to be transported.
- M with M greater than or equal to 2
- the poly-robot 100 begins a reconfiguration phase (FIGS. 9-10).
- the mono-robot 10B is oriented to position the projection of the center of gravity of the poly-robot 100 in the triangle of levitation formed by the wheels 17b, 17c and 17d, as far as possible from the edges of said triangle of levitation.
- Mono-robot 10B performs a translation substantially longitudinal axis along the load 300 by means of the prismatic connection Pb, and a rotation about the substantially vertical axis through the cylindrical connection Cb. The robot 100 is then in the position shown in FIGS. 8-9-10.
- the crossing of the obstacle is initiated by the lifting of the wheel 17a.
- the wheel 17a is raised by a rotation of substantially longitudinal axis of the single robot 10A around the load 300 through the rotoid connection Rla or Rlb.
- the mono-robot 10B is oriented to position the projection of the center of gravity of the poly-robot 100 in the support triangle formed by the wheels 17a, 17c and 17d, the most far from the edges of the triangle of levitation.
- the orientation of the mono-robot 10B is performed as previously described.
- the wheel 17b is then positioned above the obstacle, as visible in FIGS. 26-27-28, and then placed on the obstacle as shown in FIGS. 29-30-31. Thus the wheel 17b can cross the obstacle.
- the poly-robot 100 then performs a rolling phase.
- the mono-robots 10A and 10B each rotate substantially vertically in order to be positioned in a straight-line driving position.
- the poly-robot 100 then advances so as to position the mono-robot 10B against the obstacle.
- the poly-robot performs a reconfiguration phase.
- the mono-robot 10A is oriented so as to position the projection of the center of gravity of the robot 100 in the support triangle formed by the wheels 17a, 17b and 17d, as far as possible from the edges of said support triangle.
- the wheel 17c can thus begin to cross the obstacle. For this, the wheel 17c is raised as can be seen in FIGS. 38-39-40.
- the wheel 17c is positioned above the obstacle, then is placed on the obstacle as shown in FIGS. 41-42-43.
- the poly-robot 100 performs a reconfiguration phase.
- the mono-robot 10A is displaced so as to position the projection of the center of gravity of the poly-robot 100 in the lift triangle formed by the wheels 17a, 17b and 17c, as far as possible from the edges of the triangle of levitation.
- the wheel 17d is then ready to cross the obstacle.
- the single robot 10B raises the wheel 17d. Then, the wheel 17d is positioned above the obstacle and placed on the obstacle as shown in FIGS. 50-51-52.
- the poly-robot 100 then having crossed the obstacle, the mono-robots 10A and 10B are oriented in rolling position in a straight line as can be seen in FIGS. 53-54-55.
- the invention can also be implemented by a poly-robot 100 which comprises at least three mono-robots 10, the crossing of an obstacle can be performed by raising successively each of the three mono-robots 10.
- the invention is not limited to the three-robot poly-robot illustrated in FIGS. 56 to 79.
- the invention can be implemented with more than three mono-robots.
- the poly-robot 100 is supported on the other mono-robots 10 in contact with the ground or the obstacle.
- the poly-robot 100 may encounter an obstacle as shown in FIGS. 56-57.
- the mono-robot 10D by means of the prismatic link Pd, moves along the load 300 to reconfigure the equilibrium of the poly-robot 100 for the purpose of lifting the mono- 10C robot.
- the single-robot 10C then performs a translation of a substantially vertical axis, thanks to the cylindrical connection Ce, so as to be raised to an altitude greater than the altitude of the obstacle.
- the two mono-robots 10D-10E which serve as support for the poly-robot 100, advance to position the mono-robot 10C above the obstacle.
- the single-robot 10C performs a translation of a substantially vertical axis to be placed on the obstacle.
- the poly-robot 100 advances to position the mono-robot 10D against the obstacle, as can be seen in FIGS. 64-65.
- the single robot 10D is raised and then placed on the obstacle, as can be seen in FIGS. 66 to 71.
- the poly-robot 100 advances to position the mono-robot 10E against the obstacle.
- the mono-robot 10D In order to lift the mono-robot 10E, the mono-robot 10D translates along the load 300 to ensure the stability of the poly-robot 100, as can be seen in FIGS. 72-73.
- the monorobot 10E is raised and then placed on the obstacle, as can be seen in FIGS. 74 to 79.
- the invention is not limited to the embodiments represented above, but on the contrary embraces all the variants, in particular the case where the poly-robot comprises a number M of monorobots greater than three and alternative propulsion means, such as omnidirectional wheels or tracks in place of the wheels shown.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Robotics (AREA)
- Transportation (AREA)
- Health & Medical Sciences (AREA)
- Public Health (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Manipulator (AREA)
Abstract
L'invention concerne un mono-robot (10) de transport de charge comprenant (i) un portique (19) avec deux montants latéraux (11) reliés à leurs extrémités supérieures par une poutre transversale (12), chacune des extrémités inférieures étant équipée de moyens de propulsion liés au montant (11) par un pivot motorisé (18), et (ii) des moyens de préhension d'une charge positionnés entre les montants latéraux (11) liés à la poutre transversale (12) par une chaîne cinématique de positionnement et d'orientation configurée pour permettre la rotation des moyens de préhension d'une charge autour d'un axe sensiblement normal à la poutre transversale (12) et appartenant sensiblement au plan défini par le portique (19), et la rotation des moyens de préhension d'une charge autour d'un axe sensiblement normal au plan défini par le portique (19). L'invention concerne également un procédé de transport d'une charge utilisant plusieurs mono-robots (10) ainsi que deux procédés de franchissement d'obstacles assurant la stabilité d'un poly-robot et de sa charge.
Description
UNITE ROBOTIQUE DE TRANSPORT DE CHARGES LONGUES
La présente invention concerne un mono-robot de transport de charges longues et un procédé de transport de charges longues utilisant ce mono-robot.
Le transport d'une charge longue telle, par exemple, qu'un tronçon d'oléoduc, une pale d'éolienne, un brancard ou une poutre ou des ferraillages de chantier, peut s'avérer difficile du fait de la longueur même de la charge.
Traditionnellement, le transport mécanisé d'une charge longue est effectué par un véhicule possédant un châssis sur lequel est positionnée la charge comme cela est le cas des véhicules présentés dans les brevets EP 1465789 et EP 2328795.
Cependant, le positionnement de la charge sur ce type de véhicule nécessite l'usage d'une machine externe telle qu'un chariot élévateur ou une grue.
En outre, les véhicules de l'art antérieur sont le plus souvent standardisés et ne peuvent s'adapter à la charge à transporter. Par ailleurs, du fait de la présence d'un long châssis et de la longueur de la charge à transporter, les véhicules de l'art antérieur ne peuvent progresser que difficilement sur des terrains accidentés.
Dans ce contexte technique, un but de la présente invention est de fournir une solution de transport de charges longues aisée à charger, adaptable au type de charge à transporter et pouvant franchir des obstacles.
Dans le présent document on définit par mono-robot, un robot unitaire, et par poly-robot, la combinaison de plusieurs mono-robots travaillant ensemble.
Selon une définition générale, l'invention porte sur un mono-robot de transport de charge qui comprend un portique avec deux montants latéraux reliés à leurs extrémités supérieures par une poutre transversale, chacune des extrémités inférieures étant équipée de moyens de propulsion liés au montant par un pivot motorisé. Le mono-robot comprend, de plus, des moyens de préhension d'une charge positionnés entre les montants latéraux, et liés à la poutre transversale par une chaîne cinématique de positionnement et d'orientation. La chaîne cinématique de positionnement et d'orientation est configurée pour permettre la rotation des moyens de préhension d'une charge autour d'un axe sensiblement normal à la poutre transversale et appartenant sensiblement au plan défini par le portique, et la rotation des moyens de préhension d'une charge autour d'un axe sensiblement normal au plan défini par le portique.
L'invention propose donc un mono-robot, permettant un saisissement ventral d'un objet à transporter. Il s'agit d'un point important de l'invention car le transport ventral d'une charge permet à l'ensemble constitué d'un mono-robot et
d'une charge de conserver une grande stabilité en présentant un centre de gravité proche du sol.
Le mono-robot selon l'invention est, par ailleurs, aisément configurable pour effectuer le transport de tout type de charges.
L'invention peut ainsi s'adapter à une grande variété de géométries et masses des charges à transporter car le mono-robot peut se fixer en n'importe quel point de la charge. Il est possible de combiner plusieurs mono-robots sur une même charge pour répartir les efforts mécaniques.
En outre, chaque mono-robot peut effectuer des mouvements complexes qui lui permettent de franchir des obstacles lorsqu'il est mis en œuvre avec d'autre mono-robot pour le transport d'une charge. Le mono-robot est ainsi d'une grande agilité ce qui le distingue des véhicules de transport de charges longues de l'art antérieur.
De plus, la chaîne cinématique de positionnement et d'orientation liant les moyens de préhension à la poutre transversale peut être configurée pour permettre la translation des moyens de préhension d'une charge suivant une direction sensiblement normale au plan défini par le portique.
De la sorte, le mono-robot peut se déplacer le long d'une charge afin de franchir un obstacle ou d'optimiser la position du centre de gravité de la charge par rapport aux appuis du mono-robot.
Préférentiellement, la chaîne cinématique de positionnement et d'orientation peut être configurée pour permettre la translation des moyens de préhension d'une charge dans le plan défini par le portique suivant une direction normale à la poutre transversale.
Ainsi le mono-robot selon l'invention présente un mode de chargement rapide et de mise en œuvre aisée. En effet, la chaîne cinématique de positionnement et d'orientation permet aux moyens de préhension de saisir la charge au sol et de la soulever en vue du transport. Le mono-robot peut donc saisir une charge posée au sol en se plaçant directement en surplomb de la charge en question et ce, sans recours à un équipement de levage annexe.
De plus, les moyens de préhension d'une charge sont reliés à la poutre transversale par la chaîne cinématique de positionnement et d'orientation comprenant des liaisons cinématiques du groupe cylindrique, rotoïde, prismatique ou universelle. En outre, la liaison sphérique à doigt offre les mêmes degrés de liberté qu'une liaison de type universelle et peut lui être substituée. Il est précisé que la
chaîne de positionnement et d'orientation peut présenter une architecture sérielle ou parallèle (ouverte ou fermée) avec un ou plusieurs contours.
Ainsi, les moyens de préhension disposent de tous les degrés de libertés et de tous les mouvements nécessaires à la saisie de la charge. En outre, la chaîne cinématique de positionnement et d'orientation permet des déplacements du monorobot par rapport à la charge transportée pour ajuster au mieux la position de son centre de gravité. La chaîne cinématique de positionnement et d'orientation permet également au mono-robot de déplacer un des moyens de propulsion dans les trois dimensions de l'espace en prenant appui sur l'autre moyen de propulsion.
Selon un mode de réalisation préférentiel, les moyens de propulsion appartiennent au groupe comprenant : une roue, une chenille et une roue omnidirectionnelle.
Selon un mode de réalisation, chaque extrémité inférieure du portique est équipée d'une unique roue liée au montant par un pivot motorisé. D'autres modes de réalisation sont possibles en équipant chaque extrémité inférieure du portique d'une roue omnidirectionnelle ou d'une chenille.
De plus, les moyens de préhension d'une charge comprennent une pince présentant un ou plusieurs mors configurés pour saisir et retenir une charge, chaque mors étant équipé d'un galet terminal mobile en rotation par rapport au mors et permettant la translation d'une charge par rapport au mors, et au moins un verrou adapté pour immobiliser en rotation un ou plusieurs des galets par rapport au mors.
Cette disposition technique permet de déplacer le mono-robot par rapport à la charge saisie par les moyens de préhension. De plus, les verrous permettent d'ajuster précisément la position d'un mono-robot le long de la charge saisie et de verrouiller ladite position.
La présente invention concerne aussi un procédé de transport d'une charge par un poly-robot de transport de charge, qui comprend les étapes suivantes :
- Fourniture d'un nombre M de mono-robots avec M supérieur ou égal à 2 ;
- Répartition des mono-robots le long d'une charge ;
- Préhension par les moyens de préhension de chaque mono-robot de ladite charge ou d'un châssis intermédiaire lié à une charge ;
- Soulèvement de la charge ;
- Mise en action des moyens de propulsion de chaque mono-robot.
Ainsi l'invention permet le transport d'une charge longue par plusieurs mono-robots dont les déplacements sont coordonnés. Selon cet aspect de l'invention,
la charge remplit la fonction de châssis qui relie au moins deux mono-robots. L'invention devient ainsi un poly-robot dépourvu de châssis puisque la fonction de châssis est réalisée par la charge à transporter elle-même. Cette disposition de l'invention est tout à fait avantageuse dans la mesure où elle permet de faire l'économie d'un châssis qui est coûteux et lourd.
De plus, l'invention propose un procédé de transport d'une charge par un poly-robot de transport de charge qui comprend les phases de franchissement d'un obstacle suivantes :
- Positionnement du poly-robot contre un obstacle ;
- Pour chaque mono-robot m (m=l...M) du poly-robot :
- Phase de reconfiguration de l'ensemble du poly-robot pour maximiser sa stabilité en prévision de l'élévation d'un moyen de propulsion du mono-robot m ;
- Élévation d'un premier moyen de propulsion du mono-robot m à une altitude supérieure à l'altitude de l'obstacle ;
- Phase de franchissement de l'obstacle par le premier moyen de propulsion du mono-robot m ;
- Phase d'atterrissage sur l'obstacle du premier moyen de propulsion du mono-robot m ;
- Phase de reconfiguration de l'ensemble du poly-robot pour maximiser sa stabilité en prévision de l'élévation du second moyen de propulsion du mono-robot m ;
- Élévation du second moyen de propulsion du mono-robot m à une altitude supérieure à l'altitude de l'obstacle ;
- Phase de franchissement de l'obstacle par le second moyen de propulsion du mono-robot m ;
- Phase d'atterrissage sur l'obstacle du second moyen de propulsion du mono-robot m.
Avantageusement, la reconfiguration du poly-robot avant le franchissement de l'obstacle par une roue permet à l'invention de rester stable durant toute la durée du franchissement de l'obstacle. Ainsi, l'invention permet le franchissement d'un obstacle par au moins deux mono-robots transportant une charge. La combinaison d'une préhension ventrale et de mono-robots dotés d'une cinématique de liaison complexe permet le franchissement d'obstacles importants.
De plus, la phase de reconfiguration comporte une ou plusieurs étapes suivantes et destinées à la stabilisation :
- Translation d'axe sensiblement longitudinal d'un mono-robot m par rapport à la charge de manière à rapprocher ledit mono-robot du centre de gravité de la charge ;
- Rotation d'axe sensiblement vertical d'un mono-robot m par rapport à la charge de manière à rapprocher un moyen de propulsion en appui au sol du mono-robot m de la position du moyen de propulsion qui sera levé ultérieurement par un mono-robot m+1.
En étant ainsi positionnés, les mono-robots - dont le nombre est d'au moins deux - permettent au poly-robot d'accroître sa stabilité lors du levage d'une roue.
Avantageusement, la phase de franchissement d'un obstacle selon l'invention permet à un mono-robot de franchir des obstacles présentant une hauteur importante en prenant appui à la fois sur sa première roue et sur le reste du poly- robot afin de lever sa seconde roue.
Selon un autre mode de réalisation, l'invention propose un procédé de transport d'une charge par un poly-robot de transport de charge comprenant deux mono-robots. Ledit procédé comprend les phases de franchissement frontal d'un obstacle suivantes :
- Rotation d'axe sensiblement longitudinal d'un mono-robot permettant le positionnement à une altitude supérieure à l'altitude de l'obstacle du moyen de propulsion qui franchit l'obstacle ;
- Rotation d'axe sensiblement vertical du mono-robot, permettant de positionner le moyen de propulsion levé au dessus de l'obstacle ;
- Rotation d'axe sensiblement longitudinal du mono-robot permettant au moyen de propulsion d'être posé sur l'obstacle.
Dans une autre forme de d'exécution, l'invention concerne un procédé de transport d'une charge par un poly-robot de transport de charge comprenant au moins trois mono-robots, présentant les phases de franchissement frontal d'un obstacle comprenant les étapes de :
- Positionnement du poly-robot de transport de charge contre un obstacle ;
-Pour chacun des mono-robots successifs du poly-robot, une phase de franchissement frontal en trois étapes :
- Translation d'axe sensiblement vertical du mono-robot considéré à une altitude supérieure à l'altitude de l'obstacle ;
- Avancée du poly-robot et de la charge au-dessus de l'obstacle jusqu'à amener le mono-robot suivant contre l'obstacle ;
- Translation d'axe sensiblement vertical du mono-robot considéré pour lui permettre de poser ses moyens de propulsions sur l'obstacle.
La phase de franchissement frontal d'un obstacle selon l'invention permet à un poly-robot comportant au moins trois mono-robots de franchir des obstacles présentant une hauteur importante en prenant appui sur au moins deux mono-robots en appuis au sol.
D'autres caractéristiques et avantages de l'invention se dégageront de la description qui va suivre en regard des dessins annexés qui représentent plusieurs formes de réalisation de l'invention.
La figure 1 est une vue schématique en perspective d'un mono-robot selon l'invention ;
La figure 2 est une vue en perspective d'un poly-robot de transport de charges longues selon l'invention dans une mise en œuvre de l'invention à deux mono-robots ;
La figure 3 est une vue schématique en perspective d'un autre mode de réalisation d'un poly-robot de transport de charges longues utilisant un moyen de translation longitudinale de la charge par un préhenseur spécifique à galets roulants, dans une mise en œuvre à deux mono-robots ;
La figure 4 est une vue schématique en perspective d'un poly-robot transportant une charge souple rigidifiée par un châssis intermédiaire;
Les figures 5 à 55 présentent en vue de dessus, en perspective et de côté, un mode de franchissement d'un obstacle par un poly-robot comprenant deux monorobots.
Les figures 56 à 79 illustrent en vue de dessus et de côté, un mode de franchissement d'un obstacle par un poly-robot comprenant au moins trois monorobots.
Dans le présent document, on définit par convention les axes suivants : - Axe longitudinal, un axe sensiblement normal au plan défini par le portique ;
- Axe vertical, un axe sensiblement compris dans le plan défini par le portique et perpendiculaire à la poutre transversale ;
- Axe transversal, un axe appartenant sensiblement au plan défini par le portique et parallèle à la poutre transversale.
Comme cela apparaît sur la figure 1, le mono-robot 10 de transport présente une structure générale en U inversé et comprend deux montants latéraux 11 et une poutre transversale 12, formant un portique 19.
L'extrémité de chaque montant latéral 11 comprend un moyen de propulsion, par exemple une roue 17 liée au montant 11 par un pivot motorisé 18.
Il pourrait aussi être envisagé de remplacer les roues par des roues omnidirectionnelles, chenilles ou tout autre moyen de propulsion.
Le mono-robot 10 est ici représenté de manière schématique. Le portique peut être composé d'éléments métalliques mécano-soudés ou d'éléments composites assemblés de manière appropriée.
En outre, le mono-robot 10 comprend des moyens de préhension positionnés dans le portique 19, entre les montants latéraux 11, de manière à pouvoir saisir une charge.
Selon le mode de réalisation ici présenté les moyens de préhension sont liés à la poutre 12 par une chaîne cinématique de positionnement et d'orientation comprenant une liaison prismatique (ou glissière) P d'axe sensiblement longitudinal, une liaison rotoïde RI (ou pivot) d'axe sensiblement longitudinal et une liaison cylindrique C (ou pivot glissant) d'axe sensiblement vertical.
Ces orientations sont précisées dans la position neutre représentée par la figure 1.
Il est précisé que certaines ou l'ensemble des liaisons P, RI et C peuvent être motorisées.
Il doit être précisé que les liaisons P, RI ou C sont décrites à titre d'exemple et que d'autres chaînes à structures sérielles ou parallèles peuvent être envisagées.
De plus, la stabilisation du mono-robot 10 lors de son déplacement peut être assurée par des capteurs contrôlant l'accélération, les rotations et les translations du mono-robot 10. Selon d'autres modes de réalisation, la stabilisation du mono-robot 10 peut être effectuée par un élément roulant supplémentaire lié aux moyens de préhension 15 ou lié à une perche fixée au portique 19.
Comme on peut le voir sur la figure 3, les moyens de préhension peuvent comprendre une pince 15 comprenant deux mors 15A et 15B liés par exemple par un pivot R2 pour pouvoir saisir une charge longue 300. Dans d'autres formes de réalisation non illustrées de l'invention, la pince 15 peut présenter un mors qui exerce
une retenue sur une surface fixe ; il peut également être envisagé de doter la pinces de plus de deux mors (3, 4 ou plus).
De plus, tel que cela est visible sur la figure 3, chaque mors 15A-15B de la pince 15 peut être lié à un galet 16 mobile en rotation. Lorsque la pince 15 supporte une charge 300, la rotation des galets 16 permet la translation de la charge 300 et peut alors assurer la fonction de la liaison prismatique P.
En outre, les galets 16 peuvent être verrouillés en rotation pour bloquer la position d'un mono-robot 10A - 10B par rapport à la charge 300.
Lors de la saisie d'une charge 300, la pince 15 descend en effectuant une translation verticale grâce à la liaison cylindrique C. Puis lorsque la pince 15 enserre la charge 300, la charge 300 est soulevée par une translation verticale de la pince 15 grâce à la liaison cylindrique C.
Le poly-robot 100 tel qu'il est décrit en figures 2 et 3 peut manipuler indifféremment deux types de charges : d'une part, la charge seule si elle est suffisamment rigide ; d'autre part un ensemble constitué d'un châssis intermédiaire 200 sur lequel vient se fixer une charge 300 dans le cas où cette dernière s'avère trop souple pour assurer la liaison mécanique entre les mono-robots 10 du poly-robot 100 (figure 4).
Tel que cela est présenté sur la figure 2, un poly-robot 100 de transport de charge longue 300 peut être réalisé en utilisant au moins deux mono-robots 10A et 10B.
Deux mono-robots 10A et 10B sont positionnés le long de la charge 300. On voit ainsi que la charge 300 assure la fonction de châssis intermédiaire du poly- robot 100 en étant bloquée dans les moyens de préhension 15 de chaque mono-robot 10A et 10B.
Dans cette forme de réalisation, on peut apprécier que la charge 300 remplit la fonction d'élément de liaison entre les mono-robots 10. Ainsi cette mise en œuvre dispense de l'utilisation d'un châssis que l'on trouve couramment dans les dispositifs de l'art antérieur, ce qui est un avantage important de l'invention. Cette forme de réalisation permet donc un gain de poids et permet au poly-robot de transporter une charge longue sur un terrain accidenté difficilement accessible aux dispositifs de l'art antérieur.
Dans une autre forme de réalisation montrée sur la figure 4, lorsque la charge longue 300 ne présente pas une tenue mécanique suffisante pour assurer la fonction de châssis intermédiaire entre les deux mono-robots 10A-10B, il peut être prévu d'adjoindre à la charge un châssis intermédiaire de rigidification. Dans l'exemple
montré sur les figures, le châssis intermédiaire est formé par un profilé 200. Le profilé 200 peut comprendre une série d'attaches 210 qui permettent la liaison de la charge longue 300 au profilé 200.
Dans le cas présent, les attaches 210 sont mécaniques, mais on peut envisager par exemple des attaches 210 électromagnétiques ou pneumatiques pour s'adapter à tout type de charge 300.
Les pivots motorisés 18 permettent au poly-robot 100 de rouler en ligne droite, et d'effectuer un virage en agissant sur les vitesses de rotation de chacune des roues, par exemple en différenciant la vitesse de rotation de deux roues 17 d'un même mono-robot 10 choisies en fonction de la trajectoire désirée.
La commande et la coordination de la chaîne cinématique de positionnement et d'orientation des roues 17 peut être réalisée par une électronique de pilotage telle que, par exemple, un microcontrôleur. On peut prévoir un pupitre de commande embarqué, ou il peut également être prévu un système déporté avec commande sans fil.
De plus la chaîne cinématique de positionnement et d'orientation de chaque mono-robot 10A et 10B permet au poly-robot 100 de franchir un obstacle.
L'invention peut être mise en œuvre par un poly-robot 100 qui comprend au moins deux mono-robots 10.
Le franchissement d'un obstacle peut être effectué en ajustant la position du centre de gravité du poly-robot 100 pour optimiser l'équilibre de façon à permettre de lever successivement chacune des roues 17 tout en garantissant l'équilibre quasi- statique permanent du système.
Pour sa meilleure compréhension, le procédé de franchissement d'un obstacle par un poly-robot 100 comprenant au moins deux mono-robots 10 est détaillé ci-dessous.
Lors du roulage, le poly-robot 100 peut rencontrer un obstacle tel que cela est illustré sur les figures 5-6-7.
Le franchissement d'un obstacle se fait selon un enchaînement de séquences comprenant les phases de : reconfiguration, franchissement, reconfiguration, franchissement, roulage, et ceci autant de fois que nécessaire pour chacun des M mono-robots du poly-robot.
Par souci de simplification, la suite de la description est faite en relation avec un poly-robot 100 comprenant deux mono-robots 10. Il est entendu que l'invention s'applique à un poly-robot 100 qui peut comprendre M (avec M supérieur ou égal à 2) mono-robots selon la charge à transporter.
Dans l'exemple d'un poly-robot à deux mono-robots 10A et 10B, pour que le poly-robot 100 soit stable lors du levage de la roue 17a, le poly-robot 100 entame une phase de reconfiguration (figures 8-9-10). Le mono-robot 10B est orienté pour positionner la projection du centre de gravité du poly-robot 100 dans le triangle de sustentation formé par les roues 17b, 17c et 17d, le plus loin possible des bords dudit triangle de sustentation.
Le mono-robot 10B effectue une translation d'axe sensiblement longitudinal le long de la charge 300 au moyen de la liaison prismatique Pb, et une rotation autour de l'axe sensiblement vertical grâce à la liaison cylindrique Cb. Le poly- robot 100 se trouve alors dans la position illustrée sur les figures 8-9-10.
Comme le montrent les figures 11-12-13, le franchissement de l'obstacle est entamé par le soulèvement de la roue 17a. La roue 17a est soulevée par une rotation d'axe sensiblement longitudinal du mono-robot 10A autour de la charge 300 grâce à la liaison rotoïde Rla ou Rlb.
La poussée du mono-robot 10b et des roues 17c-17d provoque alors une rotation d'axe sensiblement vertical de la liaison cylindrique Ca du mono-robot 10A et le positionnement de la roue 17a au dessus de l'obstacle, tel que cela est visible sur les figures 14-15-16.
Puis une rotation d'axe sensiblement longitudinal du mono-robot 10A permet l'appui de la roue 17a sur l'obstacle, tel que cela est représenté sur les figures 17-18-19.
Comme on le voit sur les figures 20-21-22, le mono-robot 10B est orienté pour positionner la projection du centre de gravité du poly-robot 100 dans le triangle de sustentation formé par les roues 17a, 17c et 17d, le plus loin possible des bords dudit triangle de sustentation. L'orientation du mono-robot 10B est réalisée telle que précédemment décrite.
De manière analogue à ce que la roue 17a a subi, la roue 17b est soulevée comme cela est représenté sur les figures 23-24-25.
La roue 17b est ensuite positionnée au dessus de l'obstacle, tel que visible sur les figures 26-27-28, puis posée sur l'obstacle tel que cela est illustré sur les figures 29-30-31. Ainsi la roue 17b peut franchir l'obstacle. Le poly-robot 100 effectue ensuite une phase de roulage.
Comme cela est observable sur les figures 32-33-34, les mono-robots 10A et 10B effectuent chacun une rotation d'axe sensiblement vertical afin d'être positionnés en position de roulage en ligne droite. Le poly-robot 100 avance alors de manière à positionner le mono-robot 10B contre l'obstacle.
Tel que cela est illustré sur les figures 35-36-37, avant de lever la roue 17c du poly-robot 100, le poly-robot réalise une phase de reconfiguration. Le mono-robot 10A est orienté de manière à positionner la projection du centre de gravité du poly- robot 100 dans le triangle de sustentation formé par les roues 17a, 17b et 17d, le plus loin possible des bords dudit triangle de sustentation.
La roue 17c peut ainsi entamer le franchissement de l'obstacle. Pour cela, la roue 17c est levée comme cela est visible sur les figures 38-39-40.
La roue 17c est positionnée au dessus de l'obstacle, puis est posée sur l'obstacle tel que cela est représenté les figures 41-42-43.
Comme cela est représenté sur les figures 44-45-46, afin de lever la roue 17d, le poly-robot 100 réalise une phase de reconfiguration.
Comme on le voit sur les figures 44-45-46, le mono-robot 10A est déplacé de manière à positionner la projection du centre de gravité du poly-robot 100 dans le triangle de sustentation formé par les roues 17a, 17b et 17c, le plus loin possible des bords dudit triangle de sustentation.
La roue 17d est alors prête pour franchir l'obstacle.
Comme cela est visible sur les figures 47-48-49, le mono-robot 10B lève la roue 17d. Puis, la roue 17d est positionnée au dessus de l'obstacle et posée sur l'obstacle tel que cela est représenté sur les figures 50-51-52.
Le poly-robot 100 ayant alors franchi l'obstacle, les mono-robots 10A et 10B sont orientés en position de roulage en ligne droite tel que cela est visible sur les figures 53-54-55.
L'invention peut aussi être mise en œuvre par un poly-robot 100 qui comprend au moins trois mono-robots 10, le franchissement d'un obstacle peut être effectué en levant successivement chacun des trois mono-robots 10.
Il doit être précisé que l'invention n'est pas limitée au poly-robot à trois mono-robots illustré aux figures 56 à 79. L'invention peut être mise en œuvre avec plus de trois mono-robots.
Durant l'élévation de l'un des mono-robots 10, le poly-robot 100 prend appui sur les autres mono-robots 10 en contact avec le sol ou l'obstacle.
Pour sa bonne compréhension, le procédé de franchissement d'un obstacle par un poly-robot 100 comprenant au moins trois mono-robots 10 est décrit ci-dessous.
Lors du roulage, le poly-robot 100 peut rencontrer un obstacle tel que cela est illustré sur les figures 56-57.
Comme on le voit sur les figures 58-59, le mono-robot 10D, au moyen de la liaison prismatique Pd, se déplace le long de la charge 300 pour reconfigurer l'équilibre du poly-robot 100 en vue du levage du mono-robot 10C.
Tel que visible sur les figures 60-61, le mono-robot 10C effectue ensuite une translation d'axe sensiblement vertical, grâce à la liaison cylindrique Ce, de manière à être élevé à une altitude supérieure à l'altitude de l'obstacle.
Comme on le voit sur les figure 62-63, les deux mono-robots 10D-10E qui servent d'appui au poly-robot 100, avancent pour positionner le mono-robot 10C au dessus de l'obstacle.
Tel que cela est visible sur les figures 64-65 le mono-robot 10C effectue une translation d'axe sensiblement vertical pour être posé sur l'obstacle.
Le poly-robot 100 avance pour positionner le mono-robot 10D contre l'obstacle, tel que cela est observable sur les figures 64-65.
De la même manière que pour le mono-robot 10C, le mono-robot 10D est soulevé puis posé sur l'obstacle, comme on peut le voir sur les figures 66 à 71.
Le poly-robot 100 avance pour positionner le mono-robot 10E contre l'obstacle.
Afin de lever le mono-robot 10E, le mono-robot 10D effectue une translation le long de la charge 300 assurer la stabilité du poly-robot 100, comme on peut le voir sur les figures 72-73.
De la même manière que pour les mono-robots 10C et 10D, le monorobot 10E est soulevé puis posé sur l'obstacle, tel que cela est observable sur les figures 74 à 79.
Bien entendu, l'invention ne se limite pas aux formes d'exécution représentées ci-dessus, mais elle embrasse au contraire toutes les variantes de réalisation, notamment le cas où le poly-robot comporte un nombre M de monorobots supérieur à trois et des moyens de propulsion alternatifs, tels que roues omnidirectionnelles ou chenilles en lieu et place des roues représentées.
Claims
1. Mono-robot (10) de transport de charge comprenant (i) un portique (19) avec deux montants latéraux (11) reliés à leurs extrémités supérieures par une poutre transversale (12), chacune des extrémités inférieures étant équipée de moyens de propulsion liés au montant (11) par un pivot motorisé (18), et (ii) des moyens de préhension d'une charge positionnés entre les montants latéraux (11) liés à la poutre transversale (12) par une chaîne cinématique de positionnement et d'orientation configurée pour permettre la rotation des moyens de préhension d'une charge autour d'un axe sensiblement normal à la poutre transversale (12) et appartenant sensiblement au plan défini par le portique (19), et la rotation des moyens de préhension d'une charge autour d'un axe sensiblement normal au plan défini par le portique (19).
2. Mono-robot (10) de transport de charge selon la revendication 1, caractérisé en ce que la chaîne cinématique de positionnement et d'orientation liant les moyens de préhension à la poutre transversale (12) est configurée pour permettre la translation des moyens de préhension d'une charge suivant une direction sensiblement normale au plan défini par le portique (19).
3. Mono-robot (10) de transport de charge selon la revendication 1 ou la revendication 2, caractérisé en ce que la chaîne cinématique de positionnement et d'orientation liant les moyens de préhension à la poutre transversale (12) est configurée pour permettre la translation des moyens de préhension d'une charge suivant une direction sensiblement normale à la poutre transversale (12) et appartenant sensiblement au plan défini par le portique (19).
4. Mono-robot (10) selon l'une des revendications 1 à 3, caractérisé en ce que les moyens de préhension d'une charge sont reliés à la poutre transversale (12) par une chaîne cinématique de positionnement et d'orientation comprenant les liaisons : cylindrique (C), rotoïde (RI), prismatique (P) ou universelle (U).
5. Mono-robot (10) selon les revendications 1 à 4, caractérisé en ce que les moyens de propulsion appartiennent au groupe comprenant : une roue (17), une chenille et une roue omnidirectionnelle.
6. Mono-robot (10) selon l'une des revendications 1 à 5, caractérisé en ce les moyens de préhension d'une charge comprennent une pince présentant un ou plusieurs mors (15A,15B) configurés pour saisir et retenir une charge, chaque mors (15A, 15B) étant équipé d'un galet (16A, 16B) terminal mobile en rotation par rapport au mors (15A, 15B) et permettant la translation d'une charge par rapport au mors, et au moins un verrou adapté pour immobiliser en rotation un ou plusieurs des galets par rapport au mors correspondant (15A,15B).
7. Procédé de transport d'une charge par un poly-robot (100) de transport de charge, caractérisé en ce que le procédé comprend les étapes suivantes :
- Fourniture d'un nombre M de mono-robots (10) avec M supérieur ou égal à 2, selon l'une des revendications 1 à 6;
- Répartition des mono-robots (10) le long de d'une charge ; - Préhension par les moyens de préhension de chaque mono-robot (10) d'une charge ou d'un châssis intermédiaire lié à une charge ;
- Soulèvement de la charge ;
- Mise en action des moyens de propulsion de chaque mono-robot (10).
8. Procédé de transport d'une charge selon la revendication 7, caractérisé en ce qu'il comprend les phases de franchissement d'un obstacle suivantes :
- Positionnement du poly-robot contre un obstacle ;
- Pour chaque mono-robot m (m=l...M) du poly-robot :
- Phase de reconfiguration de l'ensemble du poly-robot pour maximiser sa stabilité en prévision de l'élévation d'un moyen de propulsion du mono-robot m ;
- Élévation d'un premier moyen de propulsion du mono-robot m à une altitude supérieure à l'altitude de l'obstacle ;
- Phase de franchissement de l'obstacle par le premier moyen de propulsion du mono-robot m ;
- Phase d'atterrissage sur l'obstacle du premier moyen de propulsion du mono-robot m ;
- Phase de reconfiguration de l'ensemble du poly-robot pour maximiser sa stabilité en prévision de l'élévation du second moyen de propulsion du mono-robot m ;
- Élévation du second moyen de propulsion du mono-robot m à une altitude supérieure à l'altitude de l'obstacle ;
- Phase de franchissement de l'obstacle par le second moyen de propulsion du mono-robot m ;
- Phase d'atterrissage sur l'obstacle du second moyen de propulsion du mono-robot m.
9. Procédé de transport d'une charge selon l'une des revendications 7 à 8, caractérisé en ce que la phase de reconfiguration comprend une ou plusieurs des étapes suivantes et destinées à la stabilisation :
- Translation d'axe sensiblement longitudinal d'un mono-robot par rapport à la charge de manière à rapprocher ledit mono-robot du centre de gravité de la charge ;
- Rotation d'axe sensiblement vertical d'un mono-robot m par rapport à la charge de manière à rapprocher un moyen de propulsion en appui au sol du mono-robot m de la position du moyen de propulsion qui sera levée ultérieurement par un mono-robot m+1.
10. Procédé de transport d'une charge par un poly-robot (100) de transport de charge comprenant deux mono-robots selon les revendications 7 à 9 caractérisé en ce que la phase de franchissement d'un obstacle comprend les étapes suivantes :
- Rotation d'axe sensiblement longitudinal d'un mono-robot (10) permettant le positionnement à une altitude supérieure à l'altitude de l'obstacle du moyen de propulsion qui franchit l'obstacle ;
- Rotation d'axe sensiblement vertical du mono-robot (10), permettant de positionner le moyen de propulsion levé au dessus de l'obstacle ;
- Rotation d'axe sensiblement longitudinal du mono-robot (10) permettant au moyen de propulsion d'être posé sur l'obstacle.
11. Procédé de transport d'une charge par un poly-robot (100) de transport de charge selon la revendication 7 comprenant au moins trois monorobots (10), caractérisé en ce qu'il comprend les phases de franchissement frontal d'un obstacle comprenant :
- Positionnement du poly-robot de transport de charge contre un obstacle ;
- Pour chacun des mono-robots successifs du poly-robot, une phase de franchissement frontal en trois étapes :
Reconfiguration du poly-robot en vue d'assurer la stabilité lors de la stabilité lors d'une prochaine élévation du mono-robot m ;
Translation d'axe sensiblement vertical d'un mono-robot m à une altitude supérieure à l'altitude de l'obstacle ;
Avancée du poly-robot et de la charge au-dessus de l'obstacle jusqu'à amener le mono-robot m+1 suivant contre l'obstacle ;
Translation d'axe sensiblement vertical du mono-robot m pour lui permettre de poser ses moyens de propulsions sur l'obstacle.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15710833.3A EP3110595A1 (fr) | 2014-02-28 | 2015-02-27 | Unité robotique de transport de charges longues |
US15/122,084 US20170066490A1 (en) | 2014-02-28 | 2015-02-27 | Robot unit for transporting long loads |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1451661A FR3018047A1 (fr) | 2014-02-28 | 2014-02-28 | Unite robotique de transport de charges longues |
FR14/51661 | 2014-02-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015128594A1 true WO2015128594A1 (fr) | 2015-09-03 |
Family
ID=51417334
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2015/050483 WO2015128594A1 (fr) | 2014-02-28 | 2015-02-27 | Unité robotique de transport de charges longues |
Country Status (4)
Country | Link |
---|---|
US (1) | US20170066490A1 (fr) |
EP (1) | EP3110595A1 (fr) |
FR (1) | FR3018047A1 (fr) |
WO (1) | WO2015128594A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106428274A (zh) * | 2016-09-28 | 2017-02-22 | 山东科技大学 | 管外行走机器人抱紧机构及其参数优化设计方法 |
FR3089445A1 (fr) | 2018-12-11 | 2020-06-12 | Sigma Clermont | Module manipulateur mobile et système robotique constitué d’au moins deux module manipulateurs mobiles |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170364073A1 (en) * | 2016-06-21 | 2017-12-21 | Keith Alan Guy | Modular Robotic System |
US10947036B2 (en) * | 2017-01-11 | 2021-03-16 | Biosphere Aerospace, Llc | Modular container transport systems |
US11167682B2 (en) | 2017-01-11 | 2021-11-09 | Biosphere Aerospace, Llc | Modular container transport systems |
US10967973B2 (en) | 2017-01-11 | 2021-04-06 | Biosphere Aerospace, Llc | Modular container transport systems |
US11009886B2 (en) | 2017-05-12 | 2021-05-18 | Autonomy Squared Llc | Robot pickup method |
CN108638111A (zh) * | 2018-05-18 | 2018-10-12 | 繁昌县亘通智能装备有限公司 | 一种便于固定的机械手用夹持装置 |
KR102070575B1 (ko) * | 2018-06-01 | 2020-01-29 | 주식회사 로보쓰리 | 계단 승월형 구동장치의 승월 구동방법 |
CN110825086A (zh) * | 2019-11-27 | 2020-02-21 | 北京云迹科技有限公司 | 一种机器人越障容错方法及装置 |
CN111106570B (zh) * | 2020-02-25 | 2020-11-06 | 燕山大学 | 一种用于高压线上的除冰越障机器人 |
CN114537257B (zh) * | 2022-01-18 | 2023-06-02 | 浙江工业大学 | 自行式模块化运输车夹具系统及协作运输方法 |
CN115230818A (zh) * | 2022-08-18 | 2022-10-25 | 徐向伟 | 一种载重汽车车架 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1465789A1 (fr) | 2002-01-08 | 2004-10-13 | Aloys Wobben | Vehicule de transport pour une pale de rotor d'eolienne |
EP2328795A1 (fr) | 2008-09-29 | 2011-06-08 | Vestas Wind Systems A/S | Véhicule télescopique et procédé pour transporter un objet long |
US20130226340A1 (en) * | 2012-02-23 | 2013-08-29 | Kuka Roboter Gmbh | Mobile Robot |
-
2014
- 2014-02-28 FR FR1451661A patent/FR3018047A1/fr active Pending
-
2015
- 2015-02-27 WO PCT/FR2015/050483 patent/WO2015128594A1/fr active Application Filing
- 2015-02-27 EP EP15710833.3A patent/EP3110595A1/fr not_active Withdrawn
- 2015-02-27 US US15/122,084 patent/US20170066490A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1465789A1 (fr) | 2002-01-08 | 2004-10-13 | Aloys Wobben | Vehicule de transport pour une pale de rotor d'eolienne |
EP2328795A1 (fr) | 2008-09-29 | 2011-06-08 | Vestas Wind Systems A/S | Véhicule télescopique et procédé pour transporter un objet long |
US20130226340A1 (en) * | 2012-02-23 | 2013-08-29 | Kuka Roboter Gmbh | Mobile Robot |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106428274A (zh) * | 2016-09-28 | 2017-02-22 | 山东科技大学 | 管外行走机器人抱紧机构及其参数优化设计方法 |
CN106428274B (zh) * | 2016-09-28 | 2020-04-28 | 山东科技大学 | 管外行走机器人抱紧机构及其参数优化设计方法 |
FR3089445A1 (fr) | 2018-12-11 | 2020-06-12 | Sigma Clermont | Module manipulateur mobile et système robotique constitué d’au moins deux module manipulateurs mobiles |
WO2020120447A1 (fr) | 2018-12-11 | 2020-06-18 | Sigma Clermont | Module manipulateur mobile et systeme robotique constitue d'au moins deux modules manipulateurs mobiles |
Also Published As
Publication number | Publication date |
---|---|
US20170066490A1 (en) | 2017-03-09 |
FR3018047A1 (fr) | 2015-09-04 |
EP3110595A1 (fr) | 2017-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015128594A1 (fr) | Unité robotique de transport de charges longues | |
EP2814640B1 (fr) | Outillage pour le montage d'une lame de ressort de suspension au chassis et aux supports de roues d'un train roulant d'un vehicule automobile et pour son demontage | |
FR2503065A1 (fr) | Dispositif destine a equiper un marbre de controle et/ou de reparation de carrosseries de voitures automobiles | |
EP3247610B1 (fr) | Chariot pour transporter ou ranger une bicyclette | |
FR3071209B1 (fr) | Systeme de manutention d’element de construction longitudinal, vehicule de manutation equipe d’un tel systeme | |
EP3421409A1 (fr) | Portique de manutention et système de manutention comprenant un tel portique | |
EP3377397B1 (fr) | Véhicule de transport d'une charge | |
FR2909364A1 (fr) | Sabot de calage d'une roue et installation de calage motorisee | |
EP3937873B1 (fr) | Dispositif d'aide a la conduite de roue de systeme de propulsion electrique amovible pour un objet roulant | |
EP3177467B1 (fr) | Ensemble de chariots configuré pour être remorqué | |
FR2889108A1 (fr) | Chariot pour la manutention de roues | |
WO2020187516A1 (fr) | Dispositif de levage de roue de systeme de propulsion electrique amovible pour un objet roulant | |
EP3949925B1 (fr) | Systeme de propulsion electrique amovible pour un objet roulant - prehension et levage des roues silmultanes et combines dans la direction longitudinale | |
EP4015313B1 (fr) | Dispositif de maintien et dépose d'un équipement par rapport à une paroi externe d'un véhicule et procédé mettant en oeuvre un tel dispositif | |
EP2836413A1 (fr) | Véhicule de transport ou porte-outil articule avec conduite au sol | |
WO2013139689A1 (fr) | Systeme de traction pour un vehicule et procede pour assurer une traction securisee d'un vehicule sur un sol | |
FR2889109A1 (fr) | Chariot perfectionne pour la manutention de roues | |
CA3177934A1 (fr) | Systeme de propulsion electrique amovible pour un objet roulant avec un moyen de prehension et de levage combines et simultanes | |
WO2020187499A1 (fr) | Dispositif de prehension de roue de systeme de propulsion electrique amovible pour un objet roulant | |
WO2020187515A1 (fr) | Dispositif d'immobilisation de roue de systeme de propulsion electrique amovible pour un objet roulant | |
FR2490166A1 (fr) | Vehicule equipe de dispositifs de transbordement lateral de conteneurs | |
BE1011735A3 (fr) | Appareil transportable pour demonter et remonter une roue de vehicule. | |
FR2845639A1 (fr) | Chariot pour la mise en place de roues sur un vehicule lourd, notamment poids lourd | |
FR2994156A1 (fr) | Systeme et procede de placement d'une roue de secours dans un coffre de vehicule automobile. | |
FR2637884A1 (fr) | Dispositif de manutention de charges, en particulier d'un treuil pour cables electriques ou telephoniques |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
REEP | Request for entry into the european phase |
Ref document number: 2015710833 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015710833 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15122084 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15710833 Country of ref document: EP Kind code of ref document: A1 |