WO2015127881A1 - 一种传输卫星报文的方法、系统和设备 - Google Patents

一种传输卫星报文的方法、系统和设备 Download PDF

Info

Publication number
WO2015127881A1
WO2015127881A1 PCT/CN2015/073155 CN2015073155W WO2015127881A1 WO 2015127881 A1 WO2015127881 A1 WO 2015127881A1 CN 2015073155 W CN2015073155 W CN 2015073155W WO 2015127881 A1 WO2015127881 A1 WO 2015127881A1
Authority
WO
WIPO (PCT)
Prior art keywords
satellite
terminal
message
satellite signal
server
Prior art date
Application number
PCT/CN2015/073155
Other languages
English (en)
French (fr)
Inventor
全海洋
周燕飞
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Publication of WO2015127881A1 publication Critical patent/WO2015127881A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a method, system and device for transmitting satellite messages.
  • the current Beidou satellite navigation system can provide short message service.
  • the short message in the Beidou satellite navigation system supports the transmission of 120 Chinese characters, 1680 bits.
  • Each user machine has a unique identification number (ID) and uses a one-to-one encryption method. Communication must be forwarded through the ground center station. The process is as follows:
  • the short message sender first encrypts the receiver ID and the communication request number and then forwards the inbound through the satellite.
  • the ground center station After receiving the communication request signal, the ground center station is added to the outbound broadcast message of the continuous broadcast after being de-densified and re-encrypted, and broadcasted to the user via satellite.
  • the receiving user machine receives the outbound signal, demodulates and decrypts the outbound message, and completes a communication.
  • the short message communication has a transmission delay of about 0.5 seconds and a communication frequency of up to 1 second/time.
  • the terminal when the terminal is indoors and cannot receive satellite signals, but wants to interact with a terminal that can receive the Beidou signal, it must be outdoors or on the communication vehicle.
  • the command can be sent directly to the front line through the Beidou terminal directly through the command, and the front line feeds back the information to the command.
  • such scenes may also occur in the face of natural disasters, earthquake relief, and the like.
  • the present invention provides a method, system and device for transmitting a satellite message, which is used to receive a short message in a scenario in which the terminal cannot receive the satellite signal.
  • the satellite server After the satellite server needs to send the satellite message to the terminal, the satellite server checks the satellite signal receiving status of the terminal;
  • the satellite server transmits a satellite message to the terminal through the wireless mobile communication network after determining that the satellite signal cannot be transmitted through the satellite according to the satellite signal receiving status of the terminal.
  • the satellite server checks the satellite signal receiving status of the terminal, including:
  • the satellite server transmits a satellite message to the terminal through the satellite after determining that the satellite signal can be transmitted through the satellite according to the satellite signal receiving state of the terminal.
  • the method further includes:
  • the satellite server receives a satellite signal reception status from the terminal.
  • the satellite server receives the satellite signal receiving status of the terminal, including:
  • the satellite server receives a satellite signal reception status of the terminal through a wireless mobile communication network or a wired network.
  • the satellite server sends a satellite message to the terminal through a wireless mobile communication network, including:
  • the satellite server transmits the satellite message to the wireless mobile communication network through the satellite gateway, so that the wireless mobile communication network sends the satellite message to the terminal by one of broadcast, multicast, multicast, and short message. .
  • the satellite signal reception status determined by the terminal The satellite signal reception status determined by the terminal
  • the method further includes:
  • the terminal determines that the satellite signal reception status changes.
  • the terminal sends the currently determined satellite signal receiving status to the satellite server, including:
  • the terminal transmits the currently determined satellite signal reception status to the satellite server via the wireless mobile communication network or the wired network.
  • the terminal sends the currently determined satellite signal receiving status to the satellite server through the wireless mobile communication network, the terminal specifically includes:
  • the terminal sends the currently determined satellite signal receiving status to the satellite server through the wired network
  • the terminal specifically includes:
  • the terminal encapsulates the currently determined satellite signal reception status and transmits it to the satellite server as a user data through a wired network.
  • the satellite signal receiving status determined by the terminal includes:
  • the terminal determines that the satellite signal receiving state is not transmitted through the satellite when the satellite signal receiving state of the last determined satellite signal transmission state is capable of being transmitted through the satellite, and the current satellite signal quality value is lower than the first threshold value;
  • the satellite signal receiving state is not transmitted through the satellite, and the current satellite signal quality value is higher than the second threshold, the satellite signal receiving state is determined to be transmitted through the satellite, wherein the first threshold is lower than the second threshold ;
  • the terminal determines that the satellite signal receiving state is not transmitted through the satellite when the satellite signal receiving state determined last time is capable of being transmitted through the satellite, and the currently detected number of satellites is lower than the third threshold; When the satellite signal receiving state is not transmitted through the satellite, and the number of currently detected satellites is higher than the fourth threshold, it is determined that the satellite signal receiving state is capable of being transmitted through the satellite, wherein the third threshold is lower than the fourth threshold. .
  • the terminal determines each threshold value by one of the following methods:
  • the terminal determines each threshold value by a preset setting
  • the terminal determines each threshold by using a radio resource control protocol RRC signaling
  • the terminal determines each threshold value through an access network discovery and selection function ANDSF or an open mobile alliance device management OMA-DM protocol.
  • a processing module configured to check a satellite signal receiving status of the terminal after the satellite message needs to be sent to the terminal;
  • a transmission module configured to send a satellite message to the terminal through the wireless mobile communication network after determining that the satellite signal cannot be transmitted through the satellite according to the satellite signal receiving status of the terminal.
  • the processing module is specifically configured to:
  • the satellite message is transmitted to the terminal through the satellite.
  • the processing module is further configured to:
  • the satellite signal reception status of the terminal After receiving the satellite signal reception status from the terminal, the satellite signal reception status of the terminal is viewed.
  • the transmission module is specifically configured to:
  • the satellite signal reception status of the terminal is received through a wireless mobile communication network or a wired network.
  • the transmission module is specifically configured to:
  • a terminal for transmitting a satellite message which is provided by the embodiment of the present invention, includes:
  • a determining module for determining a satellite signal receiving state
  • a notification module configured to send the currently determined satellite signal receiving status to the satellite server, so that the satellite server according to the satellite signal receiving status of the terminal, after determining that the satellite signal cannot be transmitted, the wireless mobile communication network is used to The terminal sends a satellite message.
  • the notification module is further configured to:
  • the currently determined satellite signal reception status is transmitted to the satellite server.
  • the notification module is specifically configured to:
  • the currently determined satellite signal reception status is transmitted to the satellite server via a wireless mobile communication network or a wired network.
  • the notification module is specifically configured to:
  • the wireless mobile communication network If the currently determined satellite signal reception status is transmitted to the satellite server through the wireless mobile communication network, transmitting the currently determined satellite signal reception status to the wireless mobile communication network, so that the wireless mobile communication network receives the currently determined satellite signal reception status, Sent to the satellite server via a satellite gateway; or,
  • the currently determined satellite signal reception status is transmitted to the satellite server via the wired network
  • the currently determined satellite signal reception status is encapsulated and transmitted as a user data to the satellite server via the wired network.
  • the determining module is specifically configured to:
  • the satellite signal receiving state determined last time is capable of transmitting through satellite, and the current satellite signal quality value is lower than the first threshold, it is determined that the satellite signal receiving state is not transmitted through the satellite; the satellite signal receiving is determined last time.
  • the state is not transmitted by satellite, and the current satellite signal quality value is higher than the second threshold, it is determined that the satellite signal receiving state is capable of being transmitted through the satellite, wherein the first threshold is lower than the second threshold; or
  • the satellite signal reception status determined last time is capable of transmission through satellite, and the number of currently detected satellites is lower than the third threshold, it is determined that the satellite signal reception status is not transmitted through the satellite; the satellite signal reception is determined last time.
  • the status is that it cannot be transmitted by satellite, and the number of currently detected satellites is higher than the fourth threshold, it is determined that the satellite signal receiving state is capable of being transmitted through the satellite, wherein the third threshold is lower than the fourth threshold.
  • the determining module is specifically configured to determine each threshold value by one of the following methods:
  • the threshold values are determined by the access network discovery and selection function ANDSF or the Open Mobile Alliance device management OMA-DM protocol.
  • the satellite server is configured to check the satellite signal receiving state of the terminal after the satellite message needs to be sent to the terminal, and according to the satellite signal receiving state of the terminal, after determining that the satellite signal cannot be transmitted through the wireless mobile communication network
  • the terminal sends a satellite message
  • the terminal is configured to determine a satellite signal receiving status, and send the currently determined satellite signal receiving status to the satellite server, so that the satellite server transmits the wireless signal according to the satellite signal receiving status of the terminal after determining that the satellite signal cannot be transmitted through the satellite.
  • the communication network transmits a satellite message to the terminal.
  • the satellite server sends a satellite message to the terminal through the wireless mobile communication network after determining that the satellite signal cannot be transmitted through the satellite, so that the satellite message is sent to the terminal through the mobile communication network. Therefore, the system performance is improved; further, since the satellite message can be selected according to the quality of the satellite signal received by the user equipment, the resource utilization rate of the mobile communication network is also improved.
  • the satellite server transmits a satellite message to the terminal through the wireless mobile communication network according to the satellite signal receiving state of the terminal, and after determining that the satellite signal cannot be transmitted, the satellite server transmits the satellite message to the terminal through the mobile communication network, thereby
  • the system performance is improved; further, since the satellite message can be selected according to the quality of the satellite signal received by the user equipment, the resource utilization rate of the mobile communication network is also improved.
  • FIG. 1 is a schematic diagram of a network architecture according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram of a method for transmitting downlink data on a satellite gateway side according to Embodiment 2 of the present invention
  • FIG. 3 is a schematic diagram of a method for transmitting downlink data on an intermediate node side according to Embodiment 3 of the present invention
  • FIG. 4 is a schematic diagram of a method for receiving downlink data on a terminal side according to Embodiment 4 of the present invention.
  • Figure 5 is a schematic diagram of Embodiment 5 of the present invention.
  • Figure 6 is a schematic view of Embodiment 6 of the present invention.
  • Figure 7 is a schematic diagram of Embodiment 7 of the present invention.
  • Figure 8 is a schematic diagram of Embodiment 8 of the present invention.
  • Embodiment 9 is a schematic structural diagram of a system for transmitting a satellite message according to Embodiment 9 of the present invention.
  • FIG. 10 is a schematic structural diagram of a satellite server in a system for transmitting satellite messages according to Embodiment 10 of the present invention.
  • FIG. 11 is a schematic structural diagram of user equipment in a system for transmitting satellite messages according to Embodiment 11 of the present invention.
  • FIG. 12 is a schematic structural diagram of a satellite server in a system for transmitting satellite messages according to Embodiment 12 of the present invention.
  • FIG. 13 is a schematic structural diagram of user equipment in a system for transmitting satellite messages according to Embodiment 13 of the present invention.
  • FIG. 14 is a schematic structural diagram of a system for transmitting a satellite message according to Embodiment 14 of the present invention.
  • FIG. 15 is a schematic structural diagram of a system for transmitting a satellite message according to Embodiment 15 of the present invention.
  • the satellite server transmits the satellite message to the terminal through the wireless mobile communication network after determining that the satellite signal cannot be transmitted through the satellite, thereby realizing the transmission of the satellite message to the terminal through the mobile communication network, thereby improving the satellite message.
  • System performance since the satellite message can be selected according to the quality of the satellite signal received by the user equipment, the resource utilization rate of the mobile communication network is also improved.
  • the satellite message in the embodiment of the present invention may be a short satellite message or a satellite message of other length.
  • each terminal there is a satellite communication identity for satellite communications and a mobile communication identity for mobile communications.
  • the terminal of the embodiment of the present invention is a terminal capable of operating in a satellite communication network and a mobile communication network.
  • a satellite gateway is added to the mobile communication network.
  • the network architecture of the satellite gateway is shown in FIG. 1 , and the short message gateway and/or the broadcast/multicast service center in the mobile communication network (Broadcast- Multicast Service Centre, BM-SC) is connected, specific:
  • the satellite gateway and the short message are sent.
  • a gateway connection the satellite gateway capable of directly encapsulating a satellite message received from a satellite earth station or a satellite server (such as a Beidou satellite server) into a short message format, and transmitting the short message to the short message gateway; and the satellite gateway can Receiving a short message from the short message gateway and parsing the short message, and transmitting the satellite message carried in the short message to a satellite earth station or a satellite server;
  • RNTI Radio Network Temporary Identity
  • the satellite gateway is connected to the BM-SC, and the satellite gateway can directly send the satellite message received from the satellite ground station or the satellite server to the BM. -SC; and the satellite gateway is capable of receiving satellite messages transmitted from the BM-SC and transmitting the satellite messages to a satellite earth station or satellite server.
  • the satellite gateway and the short message gateway can be connected through an existing interface (such as a reference point 1 interface, etc.).
  • an existing interface such as a reference point 1 interface, etc.
  • the address information corresponding to the satellite gateway can be identified by using an encoding rule defined by the international public telecommunication numbering plan E.164, and other network nodes (such as network nodes and satellite communication networks in the mobile communication network)
  • the network node in the network node can address the satellite gateway according to the address information corresponding to the satellite gateway.
  • the intermediate node in the mobile communication network refers to a network device that transmits data in the mobile communication network, and is used for transmitting based on different network technologies (such as 2G/3G network, LTE network) and different message sending methods.
  • the mobile communication network for data may vary.
  • the LTE network is used as an example in the embodiments of the present invention. Other networks are similar, and are not listed here.
  • the LTE network is used as an example in the embodiments of the present invention. Other networks are similar, and are not listed here.
  • a method for transmitting downlink data on a satellite gateway side includes the following steps:
  • Step 21 The satellite gateway receives a satellite message sent by a terminal in the satellite communication network
  • the satellite message carries the satellite communication identifier of the terminal (ie, the sender of the satellite message) and the satellite communication identifier of the receiver of the satellite message.
  • the satellite gateway receives satellite messages transmitted by the terminal through a satellite earth station or a satellite server (such as a Beidou satellite server) in the satellite communication network.
  • a satellite earth station such as a Beidou satellite server
  • the terminal when the terminal needs to send a satellite message to the terminal, the terminal generates a corresponding satellite message by using one household and one secret, and sends the satellite message to the satellite ground station or the satellite server to send to the satellite gateway, where
  • the satellite message carries the satellite communication identifier of the terminal and the satellite communication identifier of the receiver of the satellite message; the satellite ground station or the satellite server decrypts the received satellite message according to the receiver carried in the satellite message
  • the identification information is encrypted and processed by the receiver of the satellite message, and the encrypted satellite message is sent to the satellite gateway.
  • Step 22 The satellite gateway sends the received satellite message to the intermediate node in the mobile communication network to instruct the intermediate node to deliver the satellite message to the terminal in the mobile communication network.
  • the intermediate node when the intermediate node sends the satellite message to the terminal in the mobile communication network, the object to be transmitted is all the terminals in the mobile communication network, and therefore, the terminal having the satellite message receiving capability in the mobile communication network can receive the terminal.
  • the satellite message sent to the intermediate node but because the satellite message is encrypted by means of one household and one secret, only the receiver of the satellite message can correctly decrypt the satellite message to obtain the content of the satellite message.
  • the satellite gateway receives the satellite message sent by the terminal in the satellite communication network, and sends the satellite message to the intermediate node in the mobile communication network to instruct the intermediate node to deliver the message to the terminal in the mobile communication network.
  • the satellite message is implemented, and the satellite message sent by the terminal is sent to the terminal in the mobile communication network.
  • the satellite gateway sends the received satellite message to the intermediate node in the mobile communication network in any of the following ways:
  • the satellite gateway directly encapsulates the received satellite message as a short message of the mobile communication network into a short message format, and sends the short message to the short message gateway, and instructs the short message gateway to receive the short message.
  • satellite messages There are satellite messages.
  • the satellite gateway after receiving the satellite message from the satellite ground station or the satellite server, the satellite gateway directly encapsulates the received satellite message as a short message payload of the mobile communication network into a short message format, that is, during the encapsulation process, the satellite The gateway does not parse the content of the satellite message, directly encapsulates it into a short message format of the mobile communication network, and sends the short message to the short message gateway.
  • the satellite gateway may indicate that the short message received by the short message gateway carries the satellite message in any of the following ways:
  • Method A1 The satellite gateway directly encapsulates the received satellite message as the payload of the short message of the mobile communication network as The short message format carries the first indication information in the message that is sent to the short message gateway and carries the short message, and is used to indicate that the short message received by the short message gateway carries the satellite message;
  • the satellite gateway sets the first indication information in the message carrying the short message sent to the short message gateway, to indicate that the short message received by the short message gateway carries the satellite message, therefore, no additional letter is needed. Make the cost.
  • Mode B1 The satellite gateway sends the indication signaling to the short message gateway to indicate that the short message received by the short message gateway carries the satellite message.
  • the satellite gateway may send indication signaling to the short message gateway before the receiving terminal transmits the satellite message through the satellite ground station or the satellite server, to indicate that the short message gateway subsequently receives the short message sent by the satellite gateway.
  • the satellite message carries the satellite message, that is, the satellite gateway only needs to send the indication signaling to the short message gateway; the satellite gateway can also carry and carry the satellite message after receiving the satellite message sent by the terminal through the satellite ground station or the satellite server.
  • the indication message is sent to the short message gateway to indicate that the short message received by the short message gateway carries the satellite message, that is, the satellite gateway sends the short message carrying the satellite message every time.
  • the indication signaling was sent to the intermediate node once.
  • the intermediate node (including the short message gateway and the core network control node) can use the pre-configured RNTI for satellite communication to perform the method of scrambling to the mobile communication.
  • the terminal in the network sends the short message sent by the satellite gateway.
  • the short message sent by the satellite gateway can also be sent to the terminal in the mobile communication network by using a broadcast method. Which method is used to send a short message, which can be pre-configured to the intermediate node.
  • the satellite gateway Before the short message is sent to the short message gateway, the method further includes:
  • the satellite gateway obtains the issuance area of the satellite message according to the pre-configured information, determines the addressing information of the core network control node in the issuance area of the satellite message, and carries the addressing information in the message carrying the short message.
  • the information of the area in the mobile communication network that the satellite gateway can transmit the satellite message (ie, the distribution area of the satellite message) is configured, and the satellite gateway can determine the area in the distribution area according to the information of the distribution area.
  • the core network control node further obtains the determined addressing information of the core network control node.
  • the short message gateway after receiving the message that is sent by the satellite gateway and carrying the short message, the short message gateway sends the short message to the core network control node corresponding to the addressing information according to the addressing information carried in the message carrying the short message.
  • the intermediate node uses the pre-configured RNTI for satellite communication to scramble the downlink control channel for carrying the satellite message, and the network side sends all the satellite messages in the mobile communication network.
  • the terminal of the satellite message receiving capability fixedly allocates an RNTI for satellite communication, that is, all terminals with satellite message receiving capability are fixedly assigned the same RNTI, and each terminal monitors the downlink control channel, and detects the pre-configured use.
  • the short message sent by the intermediate node is received on the shared channel scheduled by the downlink control channel, and it can be seen that the short message is received by all terminals preconfigured with the RNTI for satellite communication;
  • the network side only needs to allocate a RNTI for satellite communication to all terminals with satellite message receiving capability, which reduces network processing complexity and saves network resources.
  • the network side temporarily allocates a Cell Radio Network Temporary Identifier (C-RNTI) for each terminal, that is, each terminal temporarily allocates a different one.
  • C-RNTI Cell Radio Network Temporary Identifier
  • each terminal listens to the downlink control channel, and when detecting the C-RNTI allocated by the network side, the short message is received on the shared channel scheduled by the downlink control channel, and it can be seen that the short message is only short.
  • the network side in the existing short message receiving mechanism, the network side temporarily allocates one C-RNTI for each terminal, and when transmitting the short message, the network side needs to adopt the C-RNTI corresponding to the receiver of the short message.
  • the scrambling is performed to increase the network processing complexity, and the network side needs to save the mapping relationship between each terminal and the C-RNTI, which increases the overhead of network resources.
  • the RNTI configured in advance and used for satellite communication may be defined as a BDS-RNTI.
  • the satellite gateway directly encapsulates the received satellite message as a short message payload of the mobile communication network into a short message format, and sends the short message to the short message gateway, and indicates that the short message gateway receives the short message.
  • the message carries the satellite message. Because the satellite gateway does not analyze the content of the received satellite message in the process, the processing complexity of the satellite gateway is reduced, and the transmission efficiency of the satellite message is also improved.
  • the satellite gateway directly transmits the received satellite message as a multimedia broadcast multicast service (MBMS) service content to the BM-SC, and indicates that the message received by the BM-SC carries the satellite message.
  • MBMS multimedia broadcast multicast service
  • the satellite gateway after receiving the satellite message from the satellite ground station or the satellite server, the satellite gateway directly transmits the received satellite message as the MBMS service content to the BM-SC, that is, the satellite gateway does not have the satellite message in the process.
  • the content is parsed and the received satellite message is sent directly to the BM-SC.
  • Mode 2 further includes the following two preferred implementations:
  • the satellite gateway sends a first request message to the BM-SC, where the first request message is used to request the BM-SC to initiate a process of allocating dedicated MBMS resources for all satellite messages sent by the satellite gateway; After receiving the BM-SC return response message, the satellite gateway directly sends the received satellite message to the BM-SC, and the response message is used to notify the satellite gateway that the allocation of the dedicated MBMS resource has been completed.
  • the BM-SC after receiving the first request message sent by the satellite gateway, the BM-SC initiates an allocation process of the dedicated MBMS resource for carrying all the satellite messages sent by the satellite gateway according to the first request message; After completing the allocation of the dedicated MBMS resources, the BM-SC sends a response message to the satellite gateway to notify the satellite gateway that the allocation of the dedicated MBMS resources has been completed; after that, the BM-SC receives the satellite messages sent by the satellite gateway; further, the intermediate node ( The BM-SC, the MBMS gateway, and the core network control node are configured to send satellite messages to the terminals in the mobile communication network by using the multicast mode, that is, the intermediate node uses the dedicated MBMS resources to send satellite messages to the terminals in the mobile communication network.
  • the satellite gateway first sends a first request message to the BM-SC, and the intermediate node (including the BM-SC, the MBMS gateway, and the core network control node) completes all the satellite messages used for carrying the satellite gateway.
  • the satellite message is sent to the BM-SC, so that the intermediate node transmits the satellite message using the allocated dedicated MBMS resource.
  • the satellite gateway sends a first request message to the BM-SC before transmitting the satellite message, and the BM-SC only needs to initiate a process of establishing a dedicated MBMS resource, and the intermediate node uses the allocated dedicated MBMS resource to the mobile communication network.
  • the terminal in the middle sends each satellite message sent by the satellite gateway.
  • the satellite gateway sends a second request message to the BM-SC, where the second request message is used to request the BM-SC to initiate allocation of temporary MBMS resources for the satellite message carried in the second request message.
  • the process uses a temporary MBMS resource to deliver satellite messages to terminals in the mobile communication network.
  • the BM-SC after receiving the second request message sent by the satellite gateway, the BM-SC initiates an allocation process of the temporary MBMS resource for carrying the satellite message transmitted in this transmission according to the second request message; further, The intermediate nodes (including the BM-SC, the MBMS gateway, and the core network control node) use the multicast mode to deliver the satellite packets to the terminals in the mobile communication network, that is, the intermediate nodes use the temporary MBMS resources to deliver the terminals to the terminals in the mobile communication network.
  • the satellite message carried in the second request message after receiving the second request message sent by the satellite gateway, the BM-SC initiates an allocation process of the temporary MBMS resource for carrying the satellite message transmitted in this transmission according to the second request message; further, The intermediate nodes (including the BM-SC, the MBMS gateway, and the core network control node) use the multicast mode to deliver the satellite packets to the terminals in the mobile communication network, that is, the intermediate nodes use the temporary MBMS resources to deliver the terminals to the
  • the satellite gateway sends a second request message to the BM-SC, where the second request message carries a satellite message, and the intermediate node (including the BM-SC, the MBMS gateway, and the core network control node) is used for carrying After the temporary MBMS resource of the transmitted satellite message is allocated, the temporary MBMS resource is directly used to send the satellite message carried in the second request message to the terminal in the mobile communication network.
  • the satellite gateway after receiving the satellite message, the satellite gateway sends a second request message to the BM-SC, and carries the satellite message in the second request message, and the BM-SC receives the second request each time.
  • the process needs to initiate a process to establish a temporary MBMS resource, and the intermediate node uses the temporary MBMS resource to send the satellite message carried in the second request message to the terminal in the mobile communication network.
  • the process of the BM-SC initiating the establishment of the MBMS resource is specifically referred to the protocol TS 23.246, and details are not described herein again.
  • the satellite gateway sends the received satellite message directly to the MBMS service content.
  • BM-SC and indicates that the message received by the BM-SC carries a satellite message. Since the satellite gateway does not parse the content of the received satellite message in the process, the processing complexity of the satellite gateway is reduced, and at the same time It also improves the transmission efficiency of satellite messages.
  • FIG. 3 a method for transmitting downlink data on an intermediate node side in a mobile communication network according to an embodiment of the present invention is shown in FIG. 3, and the method includes:
  • Step 31 The intermediate node receives the satellite message sent by the satellite gateway.
  • Step 32 The intermediate node sends the satellite message to the terminal in the mobile communication network.
  • the embodiment of the present invention implements the method of transmitting the satellite message of the terminal to the terminal in the mobile communication network.
  • step 32 further includes the following three implementations:
  • Manner 1 The intermediate node sends a satellite message to the terminal in the mobile communication network by using a pre-configured RNTI for satellite communication to scramble the downlink control channel for carrying the satellite message.
  • the satellite gateway sends the satellite message to the short message gateway by using the above manner 1, that is, the satellite gateway directly encapsulates the received satellite message as the short message of the mobile communication network into a short message format, and sends the short message.
  • the short message gateway instructing the short message gateway to receive the short message carrying the satellite message, then:
  • Step 31 is specifically: the short message gateway receives the short message encapsulated by the satellite gateway and encapsulated by the satellite message;
  • the short message received by the short message gateway is that the satellite gateway directly encapsulates the received satellite message as a short message of the mobile communication network into a short message format, in which the satellite gateway does not receive the received satellite.
  • the content of the message is parsed.
  • Step 32 is specifically: the short message gateway sends the received short message to the core network control node, and indicates that the short message received by the core network control node carries the satellite message; and the short message received by the core network control node
  • the base station is sent to the subordinate base station, and the base station is instructed to send the received short message to the terminal in the mobile communication network by using the pre-configured and RNTI for satellite communication to perform scrambling.
  • the short message gateway after receiving the message carrying the short message sent by the satellite gateway, the short message gateway does not parse the content of the short message, sends the short message to the core network control node, and instructs the core network control node to receive the message.
  • the short message carries a satellite message; after receiving the message carrying the short message sent by the short message gateway, the core network control node does not parse the content of the short message, and sends the short message to the subordinate base station. And instructing the base station to send the received short message to the terminal in the mobile communication network by using a pre-configured and RNTI for satellite communication to perform scrambling.
  • the short message gateway receives the short message from the satellite gateway and carries the addressing information, the short message gateway sends the received short message to the core network control node, specifically:
  • the short message gateway sends the received short message to the core network control node corresponding to the addressing information according to the received addressing information carried in the message carrying the short message sent by the satellite gateway.
  • the short message gateway Since the message carrying the short message carries the addressing information of the control node of the core network, the short message gateway does not need to obtain routing information from the subscription server, and directly sends and receives to the corresponding core network control node according to the addressing information of the control node of the core network. Short message to.
  • the core network control node sends the received short message to the subordinate base station, which specifically includes:
  • the core network control node directly sends the received short message to all base stations of its subordinate;
  • the core network control node sends the received short message to its subordinate base station by means of polling; or
  • the core network control node sends the received short message to its subordinate base station based on the busy time of each of its subordinate base stations.
  • the base station After receiving the short message sent by the core network control node, the base station uses the pre-configured RNTI for satellite communication to scramble the downlink control channel for carrying the satellite message, and performs pre-configured transmission.
  • the short message is sent to all terminals serving by the time and the downlink shared channel scheduled by the downlink control channel.
  • the base station and each terminal are pre-configured with an RNTI for satellite communication. Therefore, each terminal monitors the downlink control channel to detect whether the RNTI for satellite communication is used, and if so, receives the short message sent by the base station on the downlink resource scheduled by the downlink control channel, and then performs short message solution. Encapsulation to obtain satellite messages, Since the satellite message adopts the "one household, one secret" encryption method, only the receiver of the satellite message can correctly decrypt the satellite message. In this mode, when transmitting downlink data, the satellite gateway and the intermediate node do not need to know the mobile communication identifier of the receiver of the satellite message. Therefore, in this mode, the satellite gateway does not need to save the satellite communication identifier and movement of the receiver. The correspondence between the communication identifiers, and thus the coordination of the identification between the mobile communication network and the satellite communication network, also reduces the processing complexity of the satellite gateway.
  • the pre-configured RNTI for satellite communication can be pre-configured to a base station in the mobile communication network by a protocol.
  • the pre-configured RNTI for satellite communication may be defined as a BDS-RNTI.
  • Manner 2 The intermediate node sends a satellite message to the terminal in the mobile communication network by using a broadcast mode.
  • the satellite gateway adopts the above manner 1, that is, the satellite gateway directly encapsulates the received satellite message as a short message payload of the mobile communication network into a short message format, and sends the short message to the short message gateway, and indicates the short If the short message received by the message gateway carries a satellite message, then:
  • Step 31 is specifically: the short message gateway receives the short message encapsulated by the satellite gateway and encapsulated by the satellite message;
  • the short message received by the short message gateway is that the satellite gateway directly encapsulates the received satellite message as a short message of the mobile communication network into a short message format, in which the satellite gateway does not receive the received satellite.
  • the content of the message is parsed.
  • Step 32 is specifically: the short message gateway sends the received short message to the core network control node, and instructs the core network control node to carry the satellite message in the short message; the core network control node sends the received short message to the subordinate
  • the base station is instructed to send a received short message by using a system information block (SIB) for transmitting a satellite message.
  • SIB system information block
  • the short message gateway after receiving the message carrying the short message sent by the satellite gateway, the short message gateway does not parse the content of the short message, sends the short message to the core network control node, and instructs the core network control node to receive the message.
  • the short message carries a satellite message; after receiving the message carrying the short message sent by the short message gateway, the core network control node does not parse the content of the short message, and sends the short message to the subordinate base station. And instructing the base station to send the received short message by using the defined SIB for transmitting the satellite message.
  • the core network control node sends the received short message to the subordinate base station, which specifically includes:
  • the core network control node directly sends the received short message to all base stations of its subordinate;
  • the core network control node sends the received short message to its subordinate base station by means of polling; or
  • the core network control node sends the received short message to its subordinate base station based on the busy time of each of its subordinate base stations.
  • the base station after receiving the short message sent by the control node of the core network, the base station sends the received short message to the terminal in the mobile network by using the SIB for transmitting the satellite message.
  • Manner 3 The intermediate node sends a satellite message to the terminal in the mobile communication network by using a multicast mode.
  • the satellite gateway sends the satellite message in the above manner 3, that is, the satellite gateway directly transmits the received satellite message as the MBMS service content to the BM-SC, and instructs the BM-SC to receive the satellite message in the message received.
  • Text specific:
  • the satellite gateway sends a first request message to the BM-SC, the first request message is used to request the BM-SC to initiate a process of allocating dedicated MBMS resources for all satellite messages sent by the satellite gateway, then:
  • Step 31 is specifically: the BM-SC receives the first request message sent by the satellite gateway, and initiates an allocation process of the dedicated MBMS resource for carrying all the satellite messages sent by the satellite gateway according to the first request message; the BM-SC is completed. After the allocation of the dedicated MBMS resource, a response message is sent to the satellite gateway to notify the satellite gateway that the allocation of the dedicated MBMS resource has been completed; and the BM-SC receives the satellite message sent by the satellite gateway;
  • Step 32 is specifically: the BM-SC sends the received satellite message sent by the satellite gateway to the MBMS gateway; the MBMS gateway sends the satellite message to the core network control node by using the dedicated MBMS resource; the core network control node uses the dedicated MBMS resource to The satellite message is sent to the subordinate base station, and the base station is instructed to use the dedicated MBMS resource to send a satellite message to the terminal in the mobile communication network.
  • the BM-SC after receiving the satellite message sent by the satellite gateway, the BM-SC does not parse the content of the satellite message, and sends the satellite message to the MBMS gateway; the MBMS gateway receives the satellite message sent by the BM-SC. After that, the content of the satellite message is not parsed, and the satellite message is sent to the core network control node by using the dedicated MBMS resource; after receiving the satellite message sent by the MBMS gateway, the core network control node does not perform the content of the satellite message. Parsing, using the dedicated MBMS resource to send the satellite message to the subordinate base station, and instructing the base station to use the dedicated MBMS resource to deliver the satellite message to the terminal in the mobile communication network.
  • the satellite gateway sends a second request message to the BM-SC, the second request message is used to request the BM-SC to initiate a process of allocating temporary MBMS resources for the satellite message carried in the second request message and use the temporary MBMS resource.
  • Step 31 is specifically: the BM-SC receives the second request message sent by the satellite gateway, and initiates a process for allocating the temporary MBMS resource for carrying the satellite message transmitted according to the satellite message carried in the second request message;
  • Step 32 is specifically: the BM-SC sends the satellite message carried in the second request message to the MBMS gateway; the MBMS gateway sends the satellite message to the core network control node by using the temporary MBMS resource; the core network control node uses the temporary MBMS resource.
  • the received satellite message is sent to the subordinate base station, and the base station is instructed to use the temporary MBMS resource to send a satellite message to the terminal in the mobile communication network.
  • the BM-SC does not parse the content of the satellite message carried in the second request message, and sends the satellite message to the MBMS gateway; after receiving the satellite message sent by the BM-SC, the MBMS gateway does not The content of the message is parsed, and the satellite message is sent to the core network control node by using the temporary MBMS resource; after receiving the satellite message sent by the MBMS gateway, the core network control node does not parse the content of the satellite message, and uses the temporary MBMS.
  • the resource sends the satellite message to the subordinate base station, and instructs the base station to use the temporary MBMS resource to send a satellite message to the terminal in the mobile communication network.
  • the embodiment of the present invention provides a method for receiving downlink data on the terminal side.
  • the method includes the following steps:
  • Step 41 The terminal having the satellite message receiving capability in the mobile communication network receives the satellite message sent by the satellite gateway through the intermediate node in the mobile communication network;
  • Step 42 The terminal uses the key used for satellite communication to decrypt the received satellite message to obtain the content of the satellite message.
  • the embodiment of the invention implements the satellite message of the terminal receiving terminal in the mobile communication network by the above method.
  • step 41 the terminal receiving the satellite message receiving capability in the mobile communication network receives the satellite message delivered by the satellite gateway through the intermediate node in the mobile communication network, which is specifically:
  • the intermediate node sends the satellite message to the terminal in the mobile communication network in the above manner, the intermediate node uses the pre-configured RNTI for satellite communication to scramble the downlink control channel for carrying the satellite message.
  • the terminal having the satellite message receiving capability in the mobile communication network receives the short message sent by the satellite gateway through the intermediate node in the mobile communication network, and the short message carries the satellite message.
  • the terminal monitors the downlink control channel, and receives the short message encapsulated by the intermediate node and encapsulates the satellite message when the downlink control channel that is pre-configured and used for the RNTI for satellite communication is monitored.
  • the terminal receives the short message sent by the intermediate node on the pre-configured receiving time and the downlink shared channel scheduled by the downlink control channel.
  • step 42 is specifically: the terminal decapsulates the received short message to obtain the satellite message in the short message, and uses the key used for satellite communication to decrypt the obtained satellite message. To obtain the content of the satellite message.
  • the terminal discards the short message.
  • each terminal listens to the downlink control channel, and receives the short message sent by the satellite gateway through the intermediate node when listening to the downlink control channel that is scrambled by using the pre-configured RNTI for satellite communication.
  • the receiver of the satellite message can correctly decrypt the satellite message carried in the short message.
  • the intermediate node sends a satellite message to the terminal in the two-way mobile communication network in the above manner, that is, the intermediate node broadcasts the short message encapsulated with the satellite message to the terminal in the mobile communication network by using the broadcast mode:
  • the terminal having the satellite message receiving capability in the mobile communication network receives the short message sent by the intermediate node through the pre-defined SIB for transmitting the satellite message.
  • step 42 is specifically: the terminal decapsulates the received short message to obtain the satellite message in the short message, and uses the key used for satellite communication to decrypt the obtained satellite message. To obtain the content of the satellite message.
  • the terminal discards the short message.
  • the intermediate node sends a satellite message to the terminal in the three-way mobile communication network in the above manner, that is, the intermediate node uses the dedicated MBMS resource for carrying all the satellite messages sent by the satellite gateway or the satellite used to carry the current transmission.
  • the temporary MBMS resource of the message directly sends a satellite message to the terminal in the mobile communication network, then:
  • a terminal having a satellite message receiving capability in a mobile communication network receives a satellite message delivered by an intermediate node through a dedicated MBMS resource or a temporary MBMS resource.
  • step 42 is specifically: the terminal decrypts the received satellite message by using a key used by the terminal for satellite communication to obtain the content of the satellite message.
  • the terminal discards the satellite message.
  • the core network control node in the mobile communication network in this embodiment is an MME, where the MME supports the "SMS in MME" (short message in the mobility management entity) feature, and the MME and the short message gateway in the mobile communication network Directly connected.
  • the intermediate node sends a satellite message to the terminal in the mobile communication network by using a pre-configured RNTI for satellite communication, and as shown in FIG. 5, the downlink data is transmitted in this embodiment.
  • the process is as follows:
  • Step 1 The satellite gateway directly encapsulates the satellite message from the satellite ground station or the satellite server (such as the Beidou satellite server) into a short message format, and sends the short message to the short message gateway.
  • the satellite gateway directly encapsulates the satellite message from the satellite ground station or the satellite server (such as the Beidou satellite server) into a short message format, and sends the short message to the short message gateway.
  • the satellite gateway does not parse the content of the satellite message.
  • the satellite gateway determines the core network control node in the release area, and carries the determined addressing information of the core network control node in the short message. Sent to the short message gateway.
  • the satellite gateway also sets the first indication information in the message carrying the short message sent by the short message gateway to indicate that the short message gateway carries the satellite message in the short message.
  • Step 2 After receiving the short message sent by the satellite gateway, the short message gateway sends the short message to the corresponding core network control node according to the addressing information carried in the message carrying the short message, and instructs the core network control node to receive the short message.
  • the short message carries a satellite message.
  • the short message gateway may set the first indication information in the message carrying the short message sent by the core network control node, to indicate that the short message received by the core network control node carries the satellite message.
  • the short message gateway does not process the content of the received short message.
  • Step 3 After receiving the short message sent by the short message gateway, the core network control node sends the short message to all the base stations of the subordinate base station because the received message carrying the short message carries the first indication information. And instructing the base station to send the short message by using a BDS-RNTI scrambling method.
  • the core network control node may set the second indication information in the message carrying the short message sent to the base station, to indicate that the base station sends the short message by using the BDS-RNTI scrambling method.
  • the core network control node does not process the content of the received short message.
  • Step 4 After receiving the short message sent by the control node of the core network, the base station receives the short message The message carries the second indication information, and the base station scrambles the downlink control channel for carrying the satellite message on the downlink control channel by using the pre-configured BDS-RNTI, and performs the pre-configured transmission time and the downlink control channel. A short message encapsulating a satellite message is transmitted on the scheduled shared channel.
  • the base station does not process the content of the received short message.
  • Step 5 The terminal having the satellite message receiving capability listens to the downlink control channel.
  • the BDS-RNTI When the BDS-RNTI is monitored, the short message sent by the base station is received on the shared channel scheduled by the downlink control channel, and the received short message is performed.
  • Decapsulation to obtain a satellite message, decrypting the acquired satellite message using the key used for satellite communication to obtain the content of the satellite message.
  • the terminal cannot correctly decrypt the acquired satellite message, the short message is discarded.
  • the intermediate node sends a satellite message to the terminal in the mobile communication network by using a broadcast mode.
  • the downlink data transmission process in this embodiment is as follows:
  • Step 1 The satellite gateway directly encapsulates the satellite message from the satellite ground station or the satellite server (such as the Beidou satellite server) into a short message format, and sends the short message to the short message gateway.
  • the satellite gateway directly encapsulates the satellite message from the satellite ground station or the satellite server (such as the Beidou satellite server) into a short message format, and sends the short message to the short message gateway.
  • the satellite gateway does not parse the content of the received satellite message.
  • the satellite gateway also sets the first indication information in the message that is sent to the short message gateway and carries the short message, to indicate that the message received by the short message gateway carries the satellite message.
  • Step 2 After receiving the short message sent by the satellite gateway, the short message gateway sends the short message to the control node of the subordinate network, and instructs the short message received by the control node of the core network to carry the satellite message.
  • the short message gateway may carry the first indication information in the message carrying the short message sent to the core network control node, to indicate that the short message received by the core network control node carries the satellite message.
  • the short message gateway does not process the content of the received short message.
  • Step 3 After receiving the short message sent by the short message gateway, the core network control node sends the short message carrying the first indication information, so the core network control node sends to all the base stations of the subordinate The short message is sent to the base station to send the received short message in a broadcast manner.
  • the core network control node may carry the second indication information in the message that is sent to the base station and that carries the short message, to indicate that the base station sends the received short message in a broadcast manner.
  • the core network control node does not process the content of the received short message.
  • Step 4 After receiving the short message sent by the control node of the core network, the base station carries the second indication information in the message carrying the short message, and therefore, the base station adopts a predefined SIB downlink movement for transmitting the satellite message. The terminal in the network sends the received short message.
  • the base station does not process the content of the received short message.
  • Step 5 The terminal having the satellite message receiving capability receives the short message sent by the base station through the predefined SIB, and decapsulates the received short message to obtain the satellite message, and uses the key pair used for satellite communication. The obtained satellite message is decrypted to obtain the content of the satellite message.
  • the terminal cannot correctly decrypt the acquired satellite message, the short message is discarded.
  • the intermediate node sends a satellite message to the terminal in the mobile communication network by using the multicast mode.
  • the downlink data transmission process in this embodiment is as follows:
  • Step 1 The satellite gateway receives a satellite message from a satellite ground station or a satellite server (such as a Beidou satellite server), and sends a satellite message transmission request to the BS-SC, and the satellite message transmission request is used to request the BM-SC to be a satellite gateway. All satellite messages sent are assigned dedicated MBMS resources.
  • Step 2 After receiving the satellite message sending request, the BM-SC initiates a process to establish a dedicated MBMS resource.
  • the BM-SC After receiving the satellite message sending request, the BM-SC initiates a process to establish a dedicated MBMS resource.
  • the establishment process of the MBMS resource in the protocol TS23.246.
  • Step 3 The BM-SC sends a satellite message transmission response to the satellite gateway to notify the satellite gateway that the allocation of the dedicated MBMS resource has been completed.
  • Step 4 After receiving the satellite message sending response, the satellite gateway sends the satellite message from the satellite ground station or the satellite server to the BM-SC.
  • Step 5 The BM-SC sends the satellite message to the MBMS gateway.
  • Step 6 The MBMS gateway sends the satellite message to the MME (Mobility Management Entity) using the dedicated MBMS resource.
  • MME Mobility Management Entity
  • Step 7 The MME sends the satellite message to the eNodeB by using the dedicated MBMS resource.
  • Step 8 The evolved base station (eNodeB) uses the dedicated MBMS resource to transmit the satellite message to the terminal in the mobile communication network.
  • eNodeB uses the dedicated MBMS resource to transmit the satellite message to the terminal in the mobile communication network.
  • Step 9 The terminal having the satellite message receiving capability receives the satellite message sent by the eNodeB through the dedicated MBMS resource, and uses the key used for the satellite communication to decrypt the acquired satellite message to obtain the satellite message. Content.
  • the terminal cannot correctly decrypt the acquired satellite message, the short message is discarded.
  • the intermediate node also sends a satellite message to the terminal in the mobile communication network by using the multicast mode.
  • the downlink data transmission process in this embodiment is as follows:
  • Step 1 The satellite gateway receives a satellite message from a satellite ground station or a satellite server (such as a Beidou satellite server), and sends a satellite message transmission request to the BS-SC, where the satellite message transmission request carries the received satellite message.
  • a satellite gateway receives a satellite message from a satellite ground station or a satellite server (such as a Beidou satellite server), and sends a satellite message transmission request to the BS-SC, where the satellite message transmission request carries the received satellite message.
  • Step 2 After receiving the satellite message sending request, the BM-SC initiates a process to establish a temporary MBMS resource.
  • the BM-SC After receiving the satellite message sending request, the BM-SC initiates a process to establish a temporary MBMS resource.
  • the establishment process of the MBMS resource in the protocol TS23.246.
  • Step 3 The BM-SC sends the satellite message carried in the satellite message sending request to the MBMS gateway.
  • Step 4 The MBMS gateway sends the satellite message to the MME by using the temporary MBMS resource.
  • Step 5 The MME sends the satellite message to the eNodeB by using the temporary MBMS resource.
  • Step 6 The eNodeB sends the satellite message to the terminal in the mobile communication network by using the temporary MBMS resource.
  • Step 7 The terminal having the satellite message receiving capability receives the satellite message sent by the eNodeB through the temporary MBMS resource, and uses the key used for the satellite communication to decrypt the acquired satellite message to obtain the satellite message. Content.
  • the above method processing flow can be implemented by a software program, which can be stored in a storage medium, and when the stored software program is called, the above method steps are performed.
  • the satellite gateway directly forwards the satellite message to the mobile communication network. Since the terminal is mobile, it may be within the satellite signal receiving range, or it may not be within the satellite signal receiving range. In order to avoid losing information, the satellite gateway needs to forward all satellite messages to the mobile communication network, which will cause the network. Waste of resources and reduce resource utilization.
  • the embodiment of the present invention can also select a method for transmitting a satellite message according to the quality of the satellite signal received by the user equipment, which can reduce the waste of network resources and improve the resource utilization rate of the mobile communication network.
  • the system for transmitting satellite messages in Embodiment 9 of the present invention includes: a satellite server 90 and a terminal 91.
  • the satellite server 90 is connected to the terminal 91 through a satellite network management system, an intermediate node, and a base station.
  • the satellite server 90 is configured to check the satellite signal receiving state of the terminal after the satellite message needs to be sent to the terminal; and according to the satellite signal receiving state of the terminal, after determining that the satellite signal cannot be transmitted, the terminal transmits the signal to the terminal through the wireless mobile communication network. Satellite message;
  • the terminal 91 is configured to determine a satellite signal receiving state, and send the currently determined satellite signal receiving state to the satellite server.
  • the satellite signal receiving state is used to indicate whether the current terminal can be received by satellite, for example, it can be 1-bit information, 1 means that it cannot be transmitted by satellite, 0 means that it can be transmitted by satellite, or it can be information bit stream, etc., can indicate whether the current terminal is Information that can be received via satellite.
  • the terminal after determining that the satellite signal reception status changes, transmits the currently determined satellite signal reception status to the satellite server.
  • the satellite signal receiving state determined before the terminal can be received by the satellite, but the currently determined satellite signal receiving state cannot be received by the satellite, and the satellite signal receiving state changes, and the satellite server needs to be notified.
  • the satellite signal reception status determined by the terminal including:
  • the terminal determines that the satellite signal receiving state is not transmitted by satellite when the satellite signal receiving state is determined to be transmitted by satellite and the current satellite signal quality value is lower than the first threshold; the satellite signal is determined last time.
  • the receiving state is that the satellite signal quality cannot be transmitted through the satellite, and the current satellite signal quality value is higher than the second threshold, determining that the satellite signal receiving state is capable of being transmitted through the satellite, wherein the first threshold is lower than the second threshold; or
  • the terminal When the terminal has recently determined that the satellite signal reception state is capable of being transmitted through the satellite, and the number of currently detected satellites is lower than the third threshold, it is determined that the satellite signal reception state is not transmitted through the satellite; the satellite signal is determined last time.
  • the receiving state is that the satellite cannot be transmitted through the satellite, and the number of currently detected satellites is higher than the fourth threshold, it is determined that the satellite signal receiving state is capable of being transmitted through the satellite, wherein the third threshold is lower than the fourth threshold.
  • the satellite in order to save power, in the case that positioning is not required, the satellite can no longer use the satellite to receive the satellite message, but receive the satellite message through the wireless mobile network.
  • the terminal does not need to perform measurement but directly determines that the current satellite signal quality value is 0 or the number of currently detected satellites is zero. If the terminal is off-network and is currently connected to the satellite, the terminal does not need to perform measurements but directly determines that the current satellite signal quality value is higher than the second threshold or the number of currently detected satellites is higher than the fourth gate. Limit.
  • the satellite signal reception status is determined to be capable of being transmitted by satellite and notified to the satellite server;
  • the satellite signal reception status is determined to be capable of being transmitted by satellite and notified to the satellite server;
  • the terminal that first measures the satellite signal reception state when the number of detected satellites is lower than the third threshold, it is determined that the satellite signal reception state is not transmitted through the satellite and notified to the satellite server, and the number of detected satellites is not low.
  • the satellite signal reception status is determined to be capable of being transmitted by satellite and notified to the satellite server; or
  • the satellite signal reception status is determined to be capable of transmission via satellite and to notify the satellite server.
  • the default initial reception state is satellite reception, and then the state adjustment is performed according to the measurement result or the satellite reception condition.
  • the initial default state is satellite reception, and then state adjustments.
  • the terminal determines each threshold value by one of the following methods:
  • the terminal determines each threshold by a preset setting, such as specified in the agreement;
  • the terminal determines each threshold by using Radio Resource Control (RRC) signaling, for example, by the network side;
  • RRC Radio Resource Control
  • the terminal determines each threshold by using an Access Network Discovery and Selection Function (ANDSF) or an open mobile alliance device management (OMA-DM).
  • ANDSF Access Network Discovery and Selection Function
  • OMA-DM open mobile alliance device management
  • the core network has The functional entity of the ANDSF can issue some policies and thresholds to the terminal, which can include the threshold of satellite communication; for example, for OMA-DM, some configuration management of the core network to the terminal can be implemented in this way, such as updating Some parameters in the Subscriber Identity Module (SIM) card, etc., which can also issue satellite related parameters.
  • SIM Subscriber Identity Module
  • the network side may notify the terminal to update the threshold value as needed.
  • the reason for setting the two thresholds above is to reduce the frequency reported by the UE.
  • the satellite server updates the satellite signal receiving status of the terminal.
  • the terminal can transmit its own identity (which can be a satellite communication identifier for satellite communication or a mobile communication identifier for mobile communication) while transmitting the satellite signal reception status, so that the satellite server can recognize the receipt. Which terminal corresponds to the satellite signal reception status.
  • its own identity which can be a satellite communication identifier for satellite communication or a mobile communication identifier for mobile communication
  • the satellite signal reception status from the terminal is received.
  • the terminal when the terminal sends the satellite signal receiving status to the satellite server, the terminal may send the currently determined satellite signal receiving status to the satellite server through the wireless mobile communication network or the wired network;
  • the satellite server receives the satellite signal reception status of the terminal through the wireless mobile communication network or the wired network.
  • the terminal sends the currently determined satellite signal receiving status to the satellite server through the wireless mobile communication network, including:
  • the terminal transmits the currently determined satellite signal reception status to the satellite server through the wired network, including:
  • the terminal encapsulates the currently determined satellite signal reception status and transmits it to the satellite server as a user data through a wired network.
  • the terminal encapsulates the satellite signal reception status through the application layer and forwards it as user data to the satellite ground server via the internet.
  • the satellite server For the satellite server, according to the satellite signal receiving state of the terminal, after determining that the satellite signal can be transmitted, the satellite message is transmitted to the terminal through the satellite.
  • the satellite server When the satellite server determines that it needs to send satellite messages to the terminal through the wireless mobile communication network, it can transmit to the wireless mobile communication network through the satellite gateway, so that the wireless mobile communication network passes one of broadcast, multicast, multicast and short messages.
  • the method sends a satellite message to the terminal.
  • the manner in which the wireless mobile communication network sends the satellite message to the terminal is not limited to the foregoing, and the method for transmitting the satellite message to the terminal is applicable to the embodiment of the present invention, for example, The satellite message is sent to the terminal in RRC signaling.
  • the network broadcasts the threshold of the satellite signal through RRC signaling, and transfers to the wireless mobile network threshold th1 (ie, the first threshold) and the wireless mobile network threshold th2 (ie, the second threshold).
  • the satellite terminal measures the satellite signal. When the measurement result is lower than th1, the terminal reports that its satellite signal receiving status is “received through the wireless mobile communication network” (can be represented by 1 bit, 1 means received by the wireless mobile communication network, 0 Indicates reception via satellite).
  • the information and the subscriber identity are forwarded together to the satellite gateway via the wireless mobile communication network and forwarded by the satellite network management to the satellite ground server.
  • the satellite ground server updates the storage mode of the user.
  • the satellite ground server When there is a satellite message sent to the user, the satellite ground server is not transmitted by satellite, but is directly forwarded to the satellite gateway and delivered through the wireless mobile communication network.
  • the satellite gateway receives the satellite message sent by the satellite terminal in the satellite communication network; the satellite gateway transmits the received satellite message to the intermediate node in the mobile communication network to indicate the intermediate node to the mobile terminal in the mobile communication network Satellite messages are sent.
  • the full text of the satellite message can be sent by means of broadcast, multicast, or short message delivery. If the terminal can receive the decoding after receiving it, it will be its own satellite message, otherwise it will be discarded by others.
  • the user When the terminal turns on satellite reception and the measurement of the satellite signal is higher than the threshold th2, the user receives the satellite message reception status as "received by satellite", and reports the information to the network and forwards it to the satellite through the wireless mobile network. Ground server. If there is a satellite message sent to the terminal, it will be sent by the satellite.
  • the th1, th2 is not delivered by the RRC signaling, but is sent to the terminal through the ANDSF or OMA-DM mechanism deployed by the operator.
  • th1, th2 is not issued by the network, but is performed by the factory preset of the terminal, that is, depending on the implementation of the manufacturer.
  • Satellites are no longer used to receive satellite messages, but satellite telegrams are received over wireless mobile networks.
  • the terminal reports its own satellite signal reception status as “received through the wireless mobile communication network”.
  • the terminal leaves the wireless mobile communication network, it notifies the network that its satellite signal reception status is "received by satellite”. If the terminal is out of the network without notifying the network for status update, the core network detects that the user is out of the network, updates its status to "received via satellite” and sends this information to the satellite ground server through the satellite gateway.
  • the terminal may report its own receiving status information by using RRC signaling (for example, UE capability) or by using Non-Access Stratum (NAS) signaling (for example, Tracking Area Update (TAU), attaching. (attach), etc.).
  • RRC signaling for example, UE capability
  • NAS Non-Access Stratum
  • TAU Tracking Area Update
  • attach attach
  • the satellite receiving status information of the terminal can also be sent to the satellite ground server through the application layer.
  • the client of the application P1 of an application layer is installed in the terminal, and interacts with the underlying through an open Application Programming Interface (API) interface.
  • API Application Programming Interface
  • the bottom layer of the terminal determines its own receiving state according to the signal strength of the wireless mobile communication network and the situation of the satellite receiving.
  • the receiving state is forwarded to the application layer program P1 through the API interface, and the information is encapsulated by the client of the application and used as user data. Forwarded to the server side of the application on the satellite ground server via the internet.
  • the encapsulated information is then extracted and saved to the satellite ground server through this application.
  • the satellite server in the system for transmitting satellite messages in the tenth embodiment of the present invention includes:
  • the processing module 1000 is configured to check the satellite signal receiving status of the terminal after the satellite message needs to be sent to the terminal;
  • the transmission module 1010 is configured to send a satellite message to the terminal through the wireless mobile communication network after determining that the satellite signal cannot be transmitted through the satellite according to the satellite signal receiving status of the terminal.
  • the processing module 1000 is specifically configured to:
  • the satellite message is transmitted to the terminal through the satellite.
  • processing module 1000 is further configured to:
  • the satellite signal reception status of the terminal After receiving the satellite signal reception status from the terminal, the satellite signal reception status of the terminal is checked.
  • the transmission module 1010 is specifically configured to:
  • the satellite signal reception status of the terminal is received through a wireless mobile communication network or a wired network.
  • the transmission module 1010 is specifically configured to:
  • the satellite message is transmitted to the wireless mobile communication network through the satellite gateway, so that the wireless mobile communication network transmits the satellite message to the terminal through one of broadcast, multicast, multicast, and short message.
  • the user equipment in the system for transmitting satellite messages in the eleventh embodiment of the present invention includes:
  • a determining module 1100 configured to determine a satellite signal receiving state
  • the notification module 1110 is configured to send the currently determined satellite signal receiving status to the satellite server, so that the satellite server sends the satellite message to the terminal through the wireless mobile communication network after determining that the satellite signal cannot be transmitted through the satellite according to the satellite signal receiving status of the terminal. .
  • the notification module 1110 is further configured to:
  • the currently determined satellite signal reception status is transmitted to the satellite server.
  • the notification module 1110 is specifically configured to:
  • the currently determined satellite signal reception status is transmitted to the satellite server via a wireless mobile communication network or a wired network.
  • the notification module 1110 is specifically configured to:
  • the mobile communication network transmits the currently determined satellite signal reception status, so that the wireless mobile communication network transmits the currently determined satellite signal reception status to the satellite server through the satellite gateway;
  • the currently determined satellite signal reception status is transmitted to the satellite server through the wired network
  • the currently determined satellite signal reception status is encapsulated and transmitted as a user data to the satellite server through the wired network.
  • the determining module 1100 is specifically configured to:
  • the satellite signal receiving state determined last time is capable of transmitting through satellite, and the current satellite signal quality value is lower than the first threshold, it is determined that the satellite signal receiving state is not transmitted through the satellite; the satellite signal receiving is determined last time.
  • the state is not transmitted by satellite, and the current satellite signal quality value is higher than the second threshold, it is determined that the satellite signal receiving state is capable of being transmitted through the satellite, wherein the first threshold is lower than the second threshold; or
  • the satellite signal reception status determined last time is capable of transmission through satellite, and the number of currently detected satellites is lower than the third threshold, it is determined that the satellite signal reception status is not transmitted through the satellite; the satellite signal reception is determined last time.
  • the status is that it cannot be transmitted by satellite, and the number of currently detected satellites is higher than the fourth threshold, it is determined that the satellite signal receiving state is capable of being transmitted through the satellite, wherein the third threshold is lower than the fourth threshold.
  • the determining module 1100 is specifically configured to determine each threshold value by one of the following methods:
  • the threshold values are determined by ANDSF or OMA-DM.
  • the satellite server in the system for transmitting satellite messages according to Embodiment 12 of the present invention includes:
  • the processor 1200 is configured to check the satellite signal receiving status of the terminal after the satellite message needs to be sent to the terminal, and send the status to the terminal through the wireless mobile communication network after determining that the satellite signal reception status of the terminal cannot be transmitted through the satellite. Satellite message;
  • the transceiver 1210 is configured to receive and transmit data under the control of the processor 1200.
  • the transceiver 1210 may be a wireless network card, a wired network card, or the like having an entity that transmits and receives data.
  • the transceiver 1210 is specifically configured to:
  • the satellite message is transmitted to the terminal through the satellite.
  • the transceiver 1210 is further configured to:
  • the satellite signal reception status of the terminal After receiving the satellite signal reception status from the terminal, the satellite signal reception status of the terminal is checked.
  • the transceiver 1210 is specifically configured to:
  • the satellite signal reception status of the terminal is received through a wireless mobile communication network or a wired network.
  • the transceiver 1210 is specifically configured to:
  • the satellite message is transmitted to the wireless mobile communication network through the satellite gateway, so that the wireless mobile communication network transmits the satellite message to the terminal through one of broadcast, multicast, multicast, and short message.
  • the bus architecture can include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 1200 and various circuits of memory represented by memory 1220.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the transceiver 1210 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 1200 is responsible for managing the bus architecture and general processing, and the memory 1220 can store data used by the processor 1200 in performing operations.
  • the processor 1200 is responsible for managing the bus architecture and general processing, and the memory 1220 can store data used by the processor 1200 in performing operations.
  • the user equipment in the system for transmitting satellite messages in the thirteenth embodiment of the present invention includes:
  • the processor 1300 is configured to determine a satellite signal receiving status, and send, by the transceiver 1310, the currently determined satellite signal receiving status to the satellite server, so that the satellite server passes the satellite signal receiving status of the terminal, and after determining that the satellite signal cannot be transmitted through the satellite,
  • the wireless mobile communication network sends a satellite message to the terminal;
  • the transceiver 1310 is configured to receive and transmit data under the control of the processor 1300.
  • the processor 1300 is further configured to:
  • the currently determined satellite signal reception status is transmitted to the satellite server.
  • the processor 1300 is specifically configured to:
  • the currently determined satellite signal reception status is transmitted to the satellite server via a wireless mobile communication network or a wired network.
  • the processor 1300 is specifically configured to:
  • the currently determined satellite signal reception status is transmitted to the satellite server via the wireless mobile communication network
  • the currently determined satellite signal reception status is transmitted to the wireless mobile communication network, so that the wireless mobile communication network passes the currently determined satellite signal reception status through the satellite gateway. Sent to the satellite server;
  • the currently determined satellite signal reception status is transmitted to the satellite server through the wired network
  • the currently determined satellite signal reception status is encapsulated and transmitted as a user data to the satellite server through the wired network.
  • the processor 1300 is specifically configured to:
  • the satellite signal receiving state determined last time is capable of transmitting through satellite, and the current satellite signal quality value is lower than the first threshold, it is determined that the satellite signal receiving state is not transmitted through the satellite; the satellite signal receiving is determined last time.
  • the state is not transmitted by satellite, and the current satellite signal quality value is higher than the second threshold, it is determined that the satellite signal receiving state is capable of being transmitted through the satellite, wherein the first threshold is lower than the second threshold; or
  • the satellite signal reception status determined last time is capable of transmission through satellite, and the number of currently detected satellites is lower than the third threshold, it is determined that the satellite signal reception status is not transmitted through the satellite; the satellite signal reception is determined last time.
  • the status is that it cannot be transmitted by satellite, and the number of currently detected satellites is higher than the fourth threshold, it is determined that the satellite signal receiving state is capable of being transmitted through the satellite, wherein the third threshold is lower than the fourth threshold.
  • the processor 1300 is specifically configured to determine each threshold by one of the following methods:
  • the threshold values are determined by ANDSF or OMA-DM.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 1300 and various circuits of memory represented by memory 1320.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 1310 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 1330 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 1300 is responsible for managing the bus architecture and general processing, and the memory 1320 can store data used by the processor 1300 in performing operations.
  • the method for transmitting a satellite message is also provided in the embodiment of the present invention.
  • the principle of solving the problem is similar to the system for transmitting a satellite message in the system of the embodiment of the present invention. Therefore, the implementation of the method can be referred to the system. Implementation, repetition will not be repeated.
  • the method for transmitting a satellite message in Embodiment 14 of the present invention includes:
  • Step 1401 After the satellite server needs to send the satellite message to the terminal, check the satellite signal receiving status of the terminal.
  • Step 1402 The satellite server sends a satellite message to the terminal through the wireless mobile communication network after determining that the satellite signal cannot be transmitted through the satellite according to the satellite signal receiving status of the terminal.
  • the satellite server checks the satellite signal receiving status of the terminal, including:
  • the satellite server transmits a satellite message to the terminal through the satellite after determining that it can transmit through the satellite according to the satellite signal receiving state of the terminal.
  • the method further includes:
  • the satellite server receives the satellite signal reception status from the terminal.
  • the satellite server receives the satellite signal receiving status of the terminal, including:
  • the satellite server receives the satellite signal reception status of the terminal through a wireless mobile communication network or a wired network.
  • the satellite server transmits the satellite message to the terminal through the wireless mobile communication network, including:
  • the satellite server transmits the satellite message to the wireless mobile communication network through the satellite gateway, so that the wireless mobile communication network transmits the satellite message to the terminal through one of broadcast, multicast, multicast and short message.
  • the method for transmitting a satellite message in the fifteenth embodiment of the present invention includes:
  • Step 1501 Receive a satellite signal receiving status determined by the terminal
  • Step 1502 The terminal sends the currently determined satellite signal receiving status to the satellite server, so that the satellite server sends the satellite message to the terminal through the wireless mobile communication network after determining that the satellite signal cannot be transmitted through the satellite according to the satellite signal receiving status of the terminal.
  • the method further includes:
  • the terminal determines that the satellite signal reception status changes.
  • the terminal sends the currently determined satellite signal reception status to the satellite server, including:
  • the terminal transmits the currently determined satellite signal reception status to the satellite server via the wireless mobile communication network or the wired network.
  • the terminal transmits the currently determined satellite signal reception status to the satellite server via the wireless mobile communication network, including:
  • the terminal transmits the currently determined satellite signal reception status to the satellite server through the wired network, including:
  • the terminal encapsulates the currently determined satellite signal reception status and transmits it to the satellite server as a user data through a wired network.
  • the satellite signal receiving status determined by the terminal includes:
  • the terminal determines that the satellite signal receiving state is not transmitted by satellite when the satellite signal receiving state is determined to be transmitted by satellite and the current satellite signal quality value is lower than the first threshold; the satellite signal is determined last time.
  • the receiving state is that the satellite signal quality cannot be transmitted through the satellite, and the current satellite signal quality value is higher than the second threshold, determining that the satellite signal receiving state is capable of being transmitted through the satellite, wherein the first threshold is lower than the second threshold; or
  • the terminal When the terminal has recently determined that the satellite signal reception state is capable of being transmitted through the satellite, and the number of currently detected satellites is lower than the third threshold, it is determined that the satellite signal reception state is not transmitted through the satellite; the satellite signal is determined last time.
  • the receiving state is that the satellite cannot be transmitted through the satellite, and the number of currently detected satellites is higher than the fourth threshold, it is determined that the satellite signal receiving state is capable of being transmitted through the satellite, wherein the third threshold is lower than the fourth threshold.
  • the terminal determines each threshold value by one of the following methods:
  • the terminal determines each threshold value through a preset setting
  • the terminal determines each threshold by using a radio resource control protocol RRC signaling
  • the terminal determines each threshold value through the access network discovery and selection function ANDSF or OMA-DM.
  • the satellite server transmits the satellite message to the terminal through the wireless mobile communication network after determining that the satellite signal cannot be transmitted through the satellite, thereby realizing the transmission of the satellite message to the terminal through the mobile communication network, thereby improving the satellite message.
  • System performance since the satellite message can be selected according to the quality of the satellite signal received by the user equipment, the resource utilization rate of the mobile communication network is also improved.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the present invention may employ computer programs implemented on one or more computer usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) in which computer usable program code is embodied. The form of the product.
  • computer usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

涉及无线通信技术领域,特别涉及一种传输卫星报文的方法、系统和设备,用以实现在终端无法收到卫星信号的场景下接收短报文。本发明实施例的方法包括:卫星服务器在有需要发送给终端的卫星报文后,查看终端的卫星信号接收状态;所述卫星服务器根据所述终端的卫星信号接收状态,在确定无法通过卫星传输后,通过无线移动通信网络向所述终端发送卫星报文。采用本发明实施例能够实现通过移动通信网络向终端发送卫星报文,从而提高了系统性能;进一步的,由于可以根据用户设备接收卫星信号的质量选择通过哪种方式发送卫星报文,还提高了移动通信网络的资源利用率。

Description

一种传输卫星报文的方法、系统和设备
本申请要求在2014年2月28日提交中国专利局、申请号为201410073389.2、发明名称为“一种传输卫星报文的方法、系统和设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无线通信技术领域,特别涉及一种传输卫星报文的方法、系统和设备。
背景技术
当前北斗卫星导航系统可以提供短报文服务。
北斗卫星导航系统中的短报文支持传输120个汉字,1680比特。每个用户机都有唯一的标识号(ID),并采用一户一密的加密方式。通信均需经过地面中心站转发。其过程如下:
短报文发送方首先将包含接收方ID和通信申请号加密后通过卫星转发入站
地面中心站接收到通信申请信号后,经脱密和再加密后加入持续广播的出站广播电文中,经卫星广播给用户
接收方用户机接收出站信号,解调解密出站电文,完成一次通信。
短报文通信的传输时延约为0.5秒,通信频度最高1秒/次。
但当终端处于室内,无法收到卫星信号,但希望与某个可以接收北斗信号的终端进行信息交互时,必须到室外或者在通讯车上才能进行。例如:在战争中,可以通过指挥部直接通过北斗终端发送作战命令给前线,前线反馈前方的信息给指挥部。在现代,对抗自然灾害,地震救援等也都可能出现这样的场景。
目前还没有公开在终端无法收到卫星信号的场景下短报文的接收方案。
发明内容
本发明提供一种传输卫星报文的方法、系统和设备,用以实现在终端无法收到卫星信号的场景下接收短报文。
本发明实施例提供的一种传输卫星报文的方法,包括:
卫星服务器在有需要发送给终端的卫星报文后,查看终端的卫星信号接收状态;
所述卫星服务器根据所述终端的卫星信号接收状态,在确定无法通过卫星传输后,通过无线移动通信网络向所述终端发送卫星报文。
较佳地,所述卫星服务器查看终端的卫星信号接收状态,包括:
所述卫星服务器根据所述终端的卫星信号接收状态,在确定能够通过卫星传输后,通过卫星向所述终端发送卫星报文。
较佳地,所述卫星服务器查看终端的卫星信号接收状态之前,还包括:
所述卫星服务器接收来自所述终端的卫星信号接收状态。
较佳地,所述卫星服务器接收所述终端的卫星信号接收状态,包括:
所述卫星服务器通过无线移动通信网络或有线网络接收所述终端的卫星信号接收状态。
较佳地,所述卫星服务器通过无线移动通信网络向所述终端发送卫星报文,包括:
所述卫星服务器将卫星报文通过卫星网关发送给无线移动通信网络,以使所述无线移动通信网络通过广播、多播、组播和短消息中的一种方式向所述终端发送卫星报文。
本发明实施例提供的另一种传输卫星报文的方法,包括:
终端确定的卫星信号接收状态;
所述终端将当前确定的卫星信号接收状态发送给卫星服务器,以使所述卫星服务器根据所述终端的卫星信号接收状态,在确定无法通过卫星传输后,通过无线移动通信网络向所述终端发送卫星报文。
较佳地,所述终端确定的卫星信号接收状态之后,将当前确定的卫星信号接收状态发送给卫星服务器之前,还包括:
所述终端确定卫星信号接收状态发生变化。
较佳地,所述终端将当前确定的卫星信号接收状态发送给卫星服务器,包括:
所述终端通过无线移动通信网络或有线网络向卫星服务器发送当前确定的卫星信号接收状态。
较佳地,若所述终端通过无线移动通信网络向卫星服务器发送当前确定的卫星信号接收状态,则具体包括:
所述终端向无线移动通信网络发送当前确定的卫星信号接收状态,以使所述无线移动通信网络将当前确定的卫星信号接收状态,通过卫星网关发送给卫星服务器;或者,
若所述终端通过有线网络向卫星服务器发送当前确定的卫星信号接收状态,则具体包括:
所述终端将当前确定的卫星信号接收状态进行信息封装,并作为用户数据通过有线网络发送给卫星服务器。
较佳地,所述终端确定的卫星信号接收状态,包括:
所述终端在最近一次确定的卫星信号接收状态为能够通过卫星传输,且当前的卫星信号质量值低于第一门限值时,确定卫星信号接收状态为无法通过卫星传输;在最近一次确定的卫星信号接收状态为无法通过卫星传输,且当前的卫星信号质量值高于第二门限值时,确定卫星信号接收状态为能够通过卫星传输,其中第一门限值低于第二门限值;或
所述终端在最近一次确定的卫星信号接收状态为能够通过卫星传输,且当前检测到的卫星数量低于第三门限值时,确定卫星信号接收状态为无法通过卫星传输;在最近一次确定的卫星信号接收状态为无法通过卫星传输,且当前检测到的卫星数量高于第四门限值时,确定卫星信号接收状态为能够通过卫星传输,其中第三门限值低于第四门限值。
较佳地,所述终端通过下列方式中的一种确定各门限值:
所述终端通过预先的设定确定各门限值;
所述终端通过无线资源控制协议RRC信令确定各门限值;
所述终端通过接入网发现和选择功能ANDSF或者开放移动联盟设备管理OMA-DM协议确定各门限值。
本发明实施例提供的一种传输卫星报文的卫星服务器,包括:
处理模块,用于在有需要发送给终端的卫星报文后,查看终端的卫星信号接收状态;
传输模块,用于根据所述终端的卫星信号接收状态,在确定无法通过卫星传输后,通过无线移动通信网络向所述终端发送卫星报文。
较佳地,所述处理模块具体用于:
根据所述终端的卫星信号接收状态,在确定能够通过卫星传输后,通过卫星向所述终端发送卫星报文。
较佳地,所述处理模块还用于:
在接收来自所述终端的卫星信号接收状态之后,查看终端的卫星信号接收状态。
较佳地,所述传输模块具体用于:
通过无线移动通信网络或有线网络接收所述终端的卫星信号接收状态。
较佳地,所述传输模块具体用于:
将卫星报文通过卫星网关发送给无线移动通信网络,以使所述无线移动通信网络通过 广播、多播、组播和短消息中的一种方式向所述终端发送卫星报文。
本发明实施例提供的一种传输卫星报文的终端,包括:
确定模块,用于确定卫星信号接收状态;
通知模块,用于将当前确定的卫星信号接收状态发送给卫星服务器,以使所述卫星服务器根据所述终端的卫星信号接收状态,在确定无法通过卫星传输后,通过无线移动通信网络向所述终端发送卫星报文。
较佳地,所述通知模块还用于:
在确定卫星信号接收状态发生变化后,将当前确定的卫星信号接收状态发送给卫星服务器。
较佳地,所述通知模块具体用于:
通过无线移动通信网络或有线网络向卫星服务器发送当前确定的卫星信号接收状态。
较佳地,所述通知模块具体用于:
若通过无线移动通信网络向卫星服务器发送当前确定的卫星信号接收状态,则向无线移动通信网络发送当前确定的卫星信号接收状态,以使所述无线移动通信网络将当前确定的卫星信号接收状态,通过卫星网关发送给卫星服务器;或者,
若通过有线网络向卫星服务器发送当前确定的卫星信号接收状态,则将当前确定的卫星信号接收状态进行信息封装,并作为用户数据通过有线网络发送给卫星服务器。
较佳地,所述确定模块具体用于:
在最近一次确定的卫星信号接收状态为能够通过卫星传输,且当前的卫星信号质量值低于第一门限值时,确定卫星信号接收状态为无法通过卫星传输;在最近一次确定的卫星信号接收状态为无法通过卫星传输,且当前的卫星信号质量值高于第二门限值时,确定卫星信号接收状态为能够通过卫星传输,其中第一门限值低于第二门限值;或
在最近一次确定的卫星信号接收状态为能够通过卫星传输,且当前检测到的卫星数量低于第三门限值时,确定卫星信号接收状态为无法通过卫星传输;在最近一次确定的卫星信号接收状态为无法通过卫星传输,且当前检测到的卫星数量高于第四门限值时,确定卫星信号接收状态为能够通过卫星传输,其中第三门限值低于第四门限值。
较佳地,所述确定模块具体用于,通过下列方式中的一种确定各门限值:
通过预先的设定确定各门限值;
通过RRC信令确定各门限值;
通过接入网发现和选择功能ANDSF或者开放移动联盟设备管理OMA-DM协议确定各门限值。
本发明实施例提供的一种传输卫星报文的系统,包括:
卫星服务器,用于在有需要发送给终端的卫星报文后,查看终端的卫星信号接收状态,根据所述终端的卫星信号接收状态,在确定无法通过卫星传输后,通过无线移动通信网络向所述终端发送卫星报文;
终端,用于确定卫星信号接收状态,将当前确定的卫星信号接收状态发送给卫星服务器,以使所述卫星服务器根据所述终端的卫星信号接收状态,在确定无法通过卫星传输后,通过无线移动通信网络向所述终端发送卫星报文。
本发明实施例卫星服务器根据所述终端的卫星信号接收状态,在确定无法通过卫星传输后,通过无线移动通信网络向所述终端发送卫星报文,实现了通过移动通信网络向终端发送卫星报文,从而提高了系统性能;进一步的,由于可以根据用户设备接收卫星信号的质量选择通过哪种方式发送卫星报文,还提高了移动通信网络的资源利用率。
本发明实施例中,卫星服务器根据终端的卫星信号接收状态,在确定无法通过卫星传输后,通过无线移动通信网络向终端发送卫星报文,实现了通过移动通信网络向终端发送卫星报文,从而提高了系统性能;进一步的,由于可以根据用户设备接收卫星信号的质量选择通过哪种方式发送卫星报文,还提高了移动通信网络的资源利用率。
附图说明
图1为本发明实施例一的网络架构示意图;
图2为本发明实施例二的卫星网关侧的下行数据的发送方法示意图;
图3为本发明实施例三的中间节点侧的下行数据的发送方法示意图;
图4为本发明实施例四的终端侧的下行数据的接收方法示意图;
图5为本发明实施例五的示意图;
图6为本发明实施例六的示意图;
图7为本发明实施例七的示意图;
图8为本发明实施例八的示意图;
图9为本发明实施例九传输卫星报文的系统结构示意图;
图10为本发明实施例十传输卫星报文的系统中卫星服务器的结构示意图;
图11为本发明实施例十一传输卫星报文的系统中用户设备的结构示意图;
图12为本发明实施例十二传输卫星报文的系统中卫星服务器的结构示意图;
图13为本发明实施例十三传输卫星报文的系统中用户设备的结构示意图;
图14为本发明实施例十四传输卫星报文的系统结构示意图;
图15为本发明实施例十五传输卫星报文的系统结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例卫星服务器根据终端的卫星信号接收状态,在确定无法通过卫星传输后,通过无线移动通信网络向终端发送卫星报文,实现了通过移动通信网络向终端发送卫星报文,从而提高了系统性能;进一步的,由于可以根据用户设备接收卫星信号的质量选择通过哪种方式发送卫星报文,还提高了移动通信网络的资源利用率。
其中,本发明实施例的卫星报文可以是卫星短报文,也可以是其他长度的卫星报文。
对于每个终端都有用于卫星通信的卫星通信标识和用于移动通信的移动通信标识。
本发明实施例的终端是能够工作在卫星通信网络和移动通信网络中的终端。
本发明实施例在移动通信网络中增加了卫星网关,该卫星网关的网络架构参见图1所示,该卫星网关与移动通信网络中的短消息网关和/或广播/多播业务中心(Broadcast-Multicast Service Centre,BM-SC)相连,具体的:
若采用预先配置且用于卫星通信的无线网络临时标识(Radio Network Temporary Identity,RNTI)进行加扰的方式或广播方式向移动通信网络中的终端下发卫星报文,则该卫星网关与短消息网关连接,该卫星网关能够将从卫星地面站或卫星服务器(如北斗卫星服务器)接收到的卫星报文直接封装为短消息格式,并将该短消息发送给短消息网关;以及该卫星网关能够接收来自短消息网关的短消息和解析该短消息,并将该短消息中携带的卫星报文传递给卫星地面站或卫星服务器;
若采用组播方式向移动通信网络中的终端下发卫星报文,则该卫星网关与BM-SC连接,该卫星网关能够将从卫星地面站或卫星服务器接收到的卫星报文直接发送给BM-SC;以及该卫星网关能够接收来自BM-SC发送的卫星报文,并将该卫星报文传递给卫星地面站或卫星服务器。
优选的,卫星网关与短消息网关可以通过现有接口(如参考点1接口等)相连。
优选的,卫星网关对应的地址信息可以采用国际公共电信编号计划(the international public telecommunication numbering plan)E.164定义的编码规则进行标识,其他网络节点(如移动通信网络中的网络节点、卫星通信网络中的网络节点)能够根据卫星网关对应的地址信息对该卫星网关进行寻址。
本发明实施例中,移动通信网络中的中间节点是指移动通信网络中传递数据的网络设备,基于不同的网络技术(如2G/3G网络、LTE网络)以及不同的消息发送方式,用于传递数据的移动通信网络可能有所不同。
下面结合说明书附图对本发明实施例作进一步详细描述,本发明实施例中均以LTE网络为例进行说明,其他网络与此类似,此处不再一一列举。
下面结合说明书附图对本发明实施例作进一步详细描述,本发明实施例中均以LTE网络为例进行说明,其他网络与此类似,此处不再一一列举。
参见图2所示,本发明实施例提供的卫星网关侧的下行数据的发送方法,该方法包括以下步骤:
步骤21、卫星网关接收卫星通信网络中的终端发送的卫星报文;
本步骤中,卫星报文中携带有终端(即卫星报文的发送方)的卫星通信标识以及卫星报文的接收方的卫星通信标识。
在实施中,卫星网关通过卫星通信网络中的卫星地面站或卫星服务器(如北斗卫星服务器),接收终端发送的卫星报文。
具体的,终端在需要向终端发送卫星报文时,采用一户一密的方式产生相应的卫星报文,并将该卫星报文发送给卫星地面站或卫星服务器发送给卫星网关,其中,该卫星报文中携带有该终端的卫星通信标识以及卫星报文的接收方的卫星通信标识;卫星地面站或卫星服务器对接收到的卫星报文进行解密处理,根据卫星报文中携带的接收方的标识信息,采用该卫星报文的接收方使用的加解密方式,对该卫星报文进行加密处理,并将加密处理后的卫星报文发送给卫星网关。
步骤22、卫星网关将接收到的卫星报文发送给移动通信网络中的中间节点,以指示中间节点向移动通信网络中的终端下发该卫星报文。
本步骤中,中间节点向移动通信网络中的终端下发该卫星报文时,发送的对象为移动通信网络中的所有终端,因此,移动通信网络中具有卫星报文接收能力的终端均能接收到中间节点下发的卫星报文,但由于卫星报文采用一户一密的方式进行加密,只有该卫星报文的接收方才能正确解密该卫星报文,以获取该卫星报文的内容。
本发明实施例中,卫星网关接收卫星通信网络中的终端发送的卫星报文,并将该卫星报文发送给移动通信网络中的中间节点,以指示中间节点向移动通信网络中的终端下发该卫星报文,从而实现了将终端发送的卫星报文下发给移动通信网络中的终端。
在实施中,步骤22中卫星网关将接收到的卫星报文发送给移动通信网络中的中间节点可以采用以下任一方式:
方式1、卫星网关将接收到的卫星报文作为移动通信网络的短消息的载荷直接封装为短消息格式,将该短消息发送给短消息网关,并指示短消息网关接收到的短消息中携带有卫星报文。
具体的,卫星网关从卫星地面站或卫星服务器接收到卫星报文后,将接收到的卫星报文作为移动通信网络的短消息的载荷直接封装为短消息格式,即:该封装过程中,卫星网关不对该卫星报文的内容进行解析,直接封装为移动通信网络的短消息格式,并将该短消息发送给短消息网关。
该方式下,卫星网关可以采用以下任一方式指示短消息网关接收到的短消息中携带有卫星报文:
方式A1、卫星网关将接收到的卫星报文作为移动通信网络的短消息的载荷直接封装为 短消息格式时,在向短消息网关发送的携带该短消息的消息中携带第一指示信息,用以指示短消息网关接收到的短消息中携带有卫星报文;
该方式中,由于卫星网关在向短消息网关发送的携带短消息的消息中设置第一指示信息,以指示短消息网关接收到的短消息中携带有卫星报文,因此,不需要额外的信令开销。
方式B1、卫星网关通过向短消息网关发送指示信令,以指示短消息网关接收到的短消息中携带有卫星报文。
该方式下,卫星网关可以在接收终端通过卫星地面站或卫星服务器发送的卫星报文之前,先向短消息网关发送指示信令,以指示短消息网关后续接收到来自该卫星网关发送的短消息中均携带有卫星报文,即卫星网关只需向短消息网关发送一次指示信令;卫星网关也可以在每次接收到终端通过卫星地面站或卫星服务器发送的卫星报文之后,在发送携带该卫星报文的短消息之前,都向短消息网关发送指示信令,以指示短消息网关接收到的短消息中携带有卫星报文,即卫星网关在每次发送携带卫星报文的短消息之前,都向中间节点发送一次指示信令。
基于上述方式1,短消息网关接收到卫星网关发送的短消息后,中间节点(包括短消息网关和核心网控制节点)可以采用预先配置且用于卫星通信的RNTI进行加扰的方式向移动通信网络中的终端下发来自卫星网关发送的短消息;也可以采用广播方式向移动通信网络中的终端下发来自卫星网关发送的短消息。具体采用哪种方式下发短消息,可以预先配置给中间节点。
基于上述方式1,若中间节点采用预先配置且用于卫星通信的RNTI对用于承载卫星报文的下行控制信道进行加扰的方式向移动通信网络中的终端下发短消息,则卫星网关将短消息发送给短消息网关之前,该方法还包括:
卫星网关根据预先配置的信息,获取该卫星报文的发放区域,确定该卫星报文的发放区域内的核心网控制节点的寻址信息,并在携带短消息的消息中携带该寻址信息。
例如,卫星网关中配置了移动通信网络中该卫星网关能够发送卫星报文的区域(即卫星报文的发放区域)的信息,则该卫星网关可以根据该发放区域的信息确定该发放区域内的核心网控制节点,进一步获取所确定的核心网控制节点的寻址信息。
相应的,短消息网关在接收到卫星网关发送的携带有该短消息的消息后,根据携带该短消息的消息中携带的寻址信息,向该寻址信息对应的核心网控制节点发送该短消息,其中,该短消息网关不对短消息的内容进行解析。
基于上述方式1,对于中间节点采用预先配置的且用于卫星通信的RNTI对用于承载卫星报文的下行控制信道进行加扰的方式下发卫星报文,网络侧为移动通信网络中所有具有卫星报文接收能力的终端固定分配一个用于卫星通信的RNTI,即所有具有卫星报文接收能力的终端固定分配一个相同的RNTI,每个终端监听下行控制信道,在检测到该预先配置的用于卫星通信的RNTI时,在该下行控制信道所调度的共享信道上接收来自中间节点发送的短消息,可见,短消息会被所有预先配置了该用于卫星通信的RNTI的终端接收到;由于本发明实施例中,网络侧仅需要为所有具有卫星报文接收能力的终端固定分配一个用于卫星通信的RNTI,降低了网络处理复杂度,节省了网络资源。
需要说明的是,目前终端接收短消息的机制中,网络侧为每个终端临时分配一个小区无线网络临时标识符(Cell Radio Network Temporary Identifier,C-RNTI),即每个终端临时分配一个不同的C-RNTI,每个终端监听下行控制信道,在检测到网络侧为自身分配的C-RNTI时,在该下行控制信道所调度的共享信道上接收短消息,可见,短消息只会被该短消息的接收方接收到;现有短消息接收机制中,由于网络侧为每个终端临时分配一个C-RNTI,在发送短消息时,网络侧需要采用该短消息的接收方对应的C-RNTI进行加扰,增加了网络处理复杂度,并且网络侧需要保存每个终端与C-RNTI的映射关系,增加了网络资源的开销。
优选的,预先配置且用于卫星通信的RNTI可以定义为BDS-RNTI。
由于方式1中,卫星网关将接收到的卫星报文作为移动通信网络的短消息的载荷直接封装为短消息格式,并将该短消息发送给短消息网关,并指示短消息网关接收到的短消息中携带有卫星报文,由于该过程中,卫星网关不对接收到的卫星报文的内容进行解析,从而降低了卫星网关的处理复杂度,同时也提高了卫星报文的传输效率。
方式2、卫星网关将接收到的卫星报文作为多媒体广播多播业务(Multimedia Broadcast Multicast Service,MBMS)业务内容直接发送给BM-SC,并指示BM-SC接收到的消息中携带有卫星报文。
具体的,卫星网关从卫星地面站或卫星服务器接收到卫星报文后,将接收到的卫星报文作为MBMS业务内容直接发送给BM-SC,即:该过程中,卫星网关不对卫星报文的内容进行解析,直接将接收到的卫星报文发送给BM-SC。
在实施中,方式2进一步包括以下两种优选的实现方式:
作为一种优选的实现方式,卫星网关向BM-SC发送第一请求消息,该第一请求消息用于请求BM-SC发起为卫星网关发送的所有卫星报文分配专用MBMS资源的过程;以及,卫星网关在接收到BM-SC返回响应消息后,将接收到的卫星报文直接发送给BM-SC,该响应消息用于通知卫星网关专用MBMS资源的分配已完成。
基于上述优选的实现方式,BM-SC接收到卫星网关发送的第一请求消息后,根据该第一请求消息,发起用于承载卫星网关发送的所有卫星报文的专用MBMS资源的分配过程;该BM-SC在完成专用MBMS资源的分配后,向卫星网关发送响应消息,以通知卫星网关专用MBMS资源的分配已完成;之后,BM-SC接收卫星网关发送的卫星报文;进一步,中间节点(包括BM-SC、MBMS网关和核心网控制节点)采用组播方式向移动通信网络中的终端下发卫星报文,即中间节点使用专用MBMS资源向移动通信网络中的终端下发卫星报文。
该优选的实现方式下,卫星网关先向BM-SC发送第一请求消息,待中间节点(包括BM-SC、MBMS网关和核心网控制节点)完成用于承载卫星网关发送的所有卫星报文的专用MBMS资源的分配后,再向BM-SC发送卫星报文,以使中间节点使用已分配的专用MBMS资源发送该卫星报文。该方式下,卫星网关在发送卫星报文前,向BM-SC发送第一请求消息,BM-SC只需发起一次建立专用MBMS资源的流程,中间节点使用已分配的专用MBMS资源向移动通信网络中的终端下发卫星网关后续发送的每条卫星报文。
作为另一种优选的实现方式,卫星网关向BM-SC发送第二请求消息,该第二请求消息用于请求BM-SC发起为该第二请求消息中携带的卫星报文分配临时MBMS资源的过程并使用临时MBMS资源向移动通信网络中的终端下发卫星报文。
基于上述优选的实现方式,BM-SC接收到卫星网关发送的第二请求消息后,根据该第二请求消息,发起用于承载本次传输的卫星报文的临时MBMS资源的分配过程;进一步,中间节点(包括BM-SC、MBMS网关和核心网控制节点)采用组播方式向移动通信网络中的终端下发卫星报文,即中间节点使用临时MBMS资源向移动通信网络中的终端下发第二请求消息中携带的卫星报文。
该优选的实现方式下,卫星网关向BM-SC发送第二请求消息,该第二请求消息中携带卫星报文,中间节点(包括BM-SC、MBMS网关和核心网控制节点)完成用于承载本次传输的卫星报文的临时MBMS资源的分配后,直接使用该临时MBMS资源向移动通信网络中的终端下发第二请求消息中携带的卫星报文。该方式下,卫星网关每次接收到卫星报文后,都向BM-SC发送第二请求消息,并在该第二请求消息中携带该卫星报文,BM-SC每次接收到第二请求消息后,都需要发起流程建立临时MBMS资源,中间节点使用该临时MBMS资源向移动通信网络中的终端下发该第二请求消息中携带的卫星报文。
需要说明的是,BM-SC发起建立MBMS资源(专用MBMS资源或临时MBMS资源)的流程具体参见协议TS 23.246,此处不再赘述。
由于方式2中,卫星网关将接收到的卫星报文作为MBMS业务内容直接发送给 BM-SC,并指示BM-SC接收到的消息中携带有卫星报文,由于该过程中,卫星网关不对接收到的卫星报文的内容进行解析,从而降低了卫星网关的处理复杂度,同时也提高了卫星报文的传输效率。
基于同一发明构思,本发明实施例提供的移动通信网络中的中间节点侧的下行数据的发送方法,参见图3所示,该方法包括:
步骤31、中间节点接收卫星网关发送的卫星报文;
步骤32、中间节点向移动通信网络中的终端下发该卫星报文。
本发明实施例通过上述方法实现了将终端的卫星报文下发给移动通信网络中的终端。
在实施中,步骤32进一步包括以下三种实现方式:
方式一、中间节点采用预先配置且用于卫星通信的RNTI对用于承载卫星报文的下行控制信道进行加扰的方式向移动通信网络中的终端下发卫星报文。
该方式下,卫星网关采用上述方式1向短消息网关发送卫星报文,即卫星网关将接收到的卫星报文作为移动通信网络的短消息的载荷直接封装为短消息格式,将该短消息发送给短消息网关,并指示短消息网关接收到的短消息中携带有卫星报文,则:
步骤31具体为:短消息网关接收卫星网关发送的封装有卫星报文的短消息;
本步骤中,短消息网关接收到的短消息是卫星网关将接收到的卫星报文作为移动通信网络的短消息的载荷直接封装为短消息格式的,该过程中,卫星网关不对接收到的卫星报文的内容进行解析。
步骤32具体为:短消息网关将接收到的短消息发送给核心网控制节点,并指示核心网控制节点接收到的短消息中携带有卫星报文;以及核心网控制节点将接收到的短消息发送给下属的基站,并指示基站采用预先配置且用于卫星通信的RNTI进行加扰的方式向移动通信网络中的终端下发接收到的短消息。
具体的,短消息网关在接收到卫星网关发送的携带有短消息的消息后,不对其中的短消息的内容进行解析,将该短消息发送给核心网控制节点,并指示核心网控制节点接收到的短消息中携带有卫星报文;核心网控制节点在接收到短消息网关发送的携带有短消息的消息后,不对其中的短消息的内容进行解析,将该短消息发送给下属的基站,并指示基站采用预先配置且用于卫星通信的RNTI进行加扰的方式向移动通信网络中的终端下发接收到的短消息。
进一步,若短消息网关接收到的来自卫星网关的携带有短消息的消息中携带有寻址信息,短消息网关将接收到的短消息发送给核心网控制节点具体为:
短消息网关根据接收到的来自卫星网关发送的携带短消息的消息中携带的寻址信息,向该寻址信息对应的核心网控制节点发送接收到的短消息。
由于携带短消息的消息中携带了核心网控制节点的寻址信息,短消息网关无需向签约服务器获取路由信息,直接根据该核心网控制节点的寻址信息,向相应的核心网控制节点发送接收到的短消息。
该方式下,核心网控制节点将接收到的短消息发送给下属的基站,具体包括:
核心网控制节点将接收到的短消息直接发送给其下属的所有基站;或者,
核心网控制节点采用轮询的方式,将接收到的短消息发送给其下属的基站;或者,
核心网控制节点基于其下属的各基站的闲忙时间,将接收到的短消息发送给其下属的基站。
该方式下,基站在接收到核心网控制节点发送的短消息后,采用预先配置的且用于卫星通信的RNTI对用于承载卫星报文的下行控制信道进行加扰,并在预先配置的发送时刻以及该下行控制信道所调度的下行共享信道上向自身服务的所有终端发送该短消息。
该方式下,基站与每个终端都预先配置了用于卫星通信的RNTI。因此,每个终端均监听下行控制信道以检测是否使用了该用于卫星通信的RNTI,若是,则在该下行控制信道所调度的下行资源上接收基站发送的短消息,之后,进行短消息解封装获得卫星报文, 由于卫星报文采用“一户一密”的加密方式,因此只有该卫星报文的接收方才能正确解密该卫星报文。该方式下,在发送下行数据时,卫星网关及中间节点都可以无需知道卫星报文的接收方的移动通信标识,因此,该方式下,卫星网关也无需保存该接收方的卫星通信标识与移动通信标识的对应关系,从而也不需要在移动通信网络与卫星通信网络间进行标识的协同,也降低了卫星网关的处理复杂度。
优选的,该预先配置的且用于卫星通信的RNTI可以通过协议预先配置给移动通信网络中的基站。
优选的,预先配置的用于卫星通信的RNTI可以定义为BDS-RNTI。
方式二、中间节点采用广播方式向移动通信网络中的终端下发卫星报文。
该方式下,卫星网关采用上述方式1,即卫星网关将接收到的卫星报文作为移动通信网络的短消息的载荷直接封装为短消息格式,将该短消息发送给短消息网关,并指示短消息网关接收到的短消息中携带有卫星报文,则:
步骤31具体为:短消息网关接收卫星网关发送的封装有卫星报文的短消息;
本步骤中,短消息网关接收到的短消息是卫星网关将接收到的卫星报文作为移动通信网络的短消息的载荷直接封装为短消息格式的,该过程中,卫星网关不对接收到的卫星报文的内容进行解析。
步骤32具体为:短消息网关将接收到的短消息发送给核心网控制节点,并指示核心网控制节点该短消息中携带有卫星报文;核心网控制节点将接收到的短消息发送给下属的基站,并指示基站采用预先定义的用于传输卫星报文的系统消息块(System Information Block,SIB)下发接收到的短消息。
具体的,短消息网关在接收到卫星网关发送的携带有短消息的消息后,不对其中的短消息的内容进行解析,将该短消息发送给核心网控制节点,并指示核心网控制节点接收到的短消息中携带有卫星报文;核心网控制节点在接收到短消息网关发送的携带有短消息的消息后,不对其中的短消息的内容进行解析,将该短消息发送给下属的基站,并指示基站采用定义的用于传输卫星报文的SIB下发接收到的短消息。
该方式下,核心网控制节点将接收到的短消息发送给下属的基站,具体包括:
核心网控制节点将接收到的短消息直接发送给其下属的所有基站;或者,
核心网控制节点采用轮询的方式,将接收到的短消息发送给其下属的基站;或者,
核心网控制节点基于其下属的各基站的闲忙时间,将接收到的短消息发送给其下属的基站。
该方式下,基站在接收到核心网控制节点发送的短消息后,采用预先定义的用于传输卫星报文的SIB向移动网络中的终端下发接收到的短消息。
方式三、中间节点采用组播方式向移动通信网络中的终端下发卫星报文。
该方式下,卫星网关采用上述方式3发送卫星报文,即卫星网关将接收到的卫星报文作为MBMS业务内容直接发送给BM-SC,并指示BM-SC接收到的消息中携带有卫星报文,具体的:
一、若卫星网关向BM-SC发送第一请求消息,该第一请求消息用于请求BM-SC发起为卫星网关发送的所有卫星报文分配专用MBMS资源的过程,则:
步骤31具体为:BM-SC接收卫星网关发送的第一请求消息,并根据第一请求消息,发起用于承载卫星网关发送的所有卫星报文的专用MBMS资源的分配过程;BM-SC在完成专用MBMS资源的分配后,向卫星网关发送响应消息,以通知卫星网关专用MBMS资源的分配已完成;以及,BM-SC接收卫星网关发送的卫星报文;
步骤32具体为:BM-SC将接收到的卫星网关发送的卫星报文发送给MBMS网关;MBMS网关使用专用MBMS资源将卫星报文发送给核心网控制节点;核心网控制节点使用专用MBMS资源将卫星报文发送给下属的基站,并指示基站使用专用MBMS资源向移动通信网络中的终端下发卫星报文。
具体的,BM-SC在接收到卫星网关发送的卫星报文后,不对该卫星报文的内容进行解析,将该卫星报文发送给MBMS网关;MBMS网关接收到BM-SC发送的卫星报文后,不对该卫星报文的内容进行解析,使用专用MBMS资源将卫星报文发送给核心网控制节点;核心网控制节点接收到MBMS网关发送的卫星报文后,不对该卫星报文的内容进行解析,使用专用MBMS资源将卫星报文发送给下属的基站,并指示基站使用专用MBMS资源向移动通信网络中的终端下发卫星报文。
二、若卫星网关向BM-SC发送第二请求消息,该第二请求消息用于请求BM-SC发起为该第二请求消息中携带的卫星报文分配临时MBMS资源的过程并使用临时MBMS资源向移动通信网络中的终端下发卫星报文,则:
步骤31具体为:BM-SC接收卫星网关发送的第二请求消息,并根据第二请求消息中携带的卫星报文,发起用于承载本次传输的卫星报文的临时MBMS资源的分配过程;
步骤32具体为:BM-SC将该第二请求消息中携带的卫星报文发送给MBMS网关;MBMS网关使用临时MBMS资源将卫星报文发送给核心网控制节点;核心网控制节点使用临时MBMS资源将接收到的卫星报文发送给下属的基站,并指示基站使用临时MBMS资源向移动通信网络中的终端下发卫星报文。
具体的,BM-SC不对该第二请求消息中携带的卫星报文的内容进行解析,将该卫星报文发送给MBMS网关;MBMS网关接收到BM-SC发送的卫星报文后,不对该卫星报文的内容进行解析,使用临时MBMS资源将卫星报文发送给核心网控制节点;核心网控制节点接收到MBMS网关发送的卫星报文后,不对该卫星报文的内容进行解析,使用临时MBMS资源将卫星报文发送给下属的基站,并指示基站使用临时MBMS资源向移动通信网络中的终端下发卫星报文。
基于同一发明构思,本发明实施例提供了终端侧的下行数据的接收方法,参见图4所示,该方法包括以下步骤:
步骤41、移动通信网络中具有卫星报文接收能力的终端接收卫星网关通过移动通信网络中的中间节点下发的卫星报文;
步骤42、终端使用自身用于卫星通信的密钥,对接收到的卫星报文进行解密处理,以获取该卫星报文的内容。
本发明实施例通过上述方法实现了移动通信网络中的终端接收终端的卫星报文。
在实施中,步骤41中,移动通信网络中具有卫星报文接收能力的终端接收卫星网关通过移动通信网络中的中间节点下发的卫星报文具体为:
一、若中间节点采用上述方式一向移动通信网络中的终端下发卫星报文,即中间节点采用预先配置且用于卫星通信的RNTI对用于承载卫星报文的下行控制信道进行加扰的方式向移动通信网络中的终端下发封装有卫星报文的短消息,则:
移动通信网络中具有卫星报文接收能力的终端接收卫星网关通过移动通信网络中的中间节点下发的短消息,该短消息中携带有卫星报文。
具体的:终端监听下行控制信道,并在监听到采用预先配置的且用于卫星通信的RNTI进行加扰的下行控制信道时,接收中间节点下发的封装有卫星报文的短消息。
进一步,终端在预先配置的接收时刻以及该下行控制信道所调度的下行共享信道上,接收中间节点下发的短消息。
进一步,步骤42具体为:终端对接收到的短消息进行解封装处理,以获取该短消息中的卫星报文,使用自身用于卫星通信的密钥,对获取到的卫星报文进行解密处理,以获取该卫星报文的内容。
进一步,若终端使用自身用于卫星通信的密钥,不能对获取到的卫星报文进行正确解密,则该终端丢弃本条短消息。
需要说明的是,每个终端均监听下行控制信道,并在监听到采用预先配置的且用于卫星通信的RNTI进行加扰的下行控制信道时,接收卫星网关通过中间节点发送的短消息, 但只有该卫星报文的接收方才能正确解密短消息中携带的卫星报文。
二、若中间节点采用上述方式二向移动通信网络中的终端下发卫星报文,即中间节点采用广播方式向移动通信网络中的终端下发封装有卫星报文的短消息,则:
移动通信网络中具有卫星报文接收能力的终端通过预先定义的用于传输卫星报文的SIB,接收中间节点下发的短消息。
进一步,步骤42具体为:终端对接收到的短消息进行解封装处理,以获取该短消息中的卫星报文,使用自身用于卫星通信的密钥,对获取到的卫星报文进行解密处理,以获取该卫星报文的内容。
进一步,若终端使用自身用于卫星通信的密钥,不能对获取到的卫星报文进行正确解密,则该终端丢弃本条短消息。
三、若中间节点采用上述方式三向移动通信网络中的终端下发卫星报文,即中间节点使用用于承载卫星网关发送的所有卫星报文的专用MBMS资源或者用于承载本次传输的卫星报文的临时MBMS资源向移动通信网络中的终端直接下发卫星报文,则:
移动通信网络中具有卫星报文接收能力的终端通过专用MBMS资源或者临时MBMS资源,接收中间节点下发的卫星报文。
进一步,步骤42具体为:终端使用自身用于卫星通信的密钥,对接收到的卫星报文进行解密处理,以获取该卫星报文的内容。
进一步,若终端使用自身用于卫星通信的密钥,不能对获取到的卫星报文进行正确解密,则该终端丢弃本条卫星报文。
下面结合几个具体实施例对本发明实施例中下行数据的传输过程进行详细说明。
一、本实施例中移动通信网络中的核心网控制节点为MME,其中,MME支持“SMS in MME”(移动性管理实体中的短消息)特性,且该MME与移动通信网络中的短消息网关直接相连。本实施例中,中间节点采用预先配置的且用于卫星通信的RNTI进行加扰的方式向移动通信网络中的终端下发卫星报文,参见图5所示,本实施例中下行数据的传输过程如下:
步骤1、卫星网关将来自卫星地面站或卫星服务器(如北斗卫星服务器)的卫星报文直接封装为短消息格式,并将该短消息发送给短消息网关。
本步骤中,卫星网关不对卫星报文的内容进行解析。
本实施例中,假设卫星网关中配置了卫星报文发放区域的信息,则卫星网关确定该发放区域内的核心网控制节点,并将所确定的核心网控制节点的寻址信息携带在短消息中发送给短消息网关。
本步骤中,卫星网关还在向短消息网关发送的携带有短消息的消息中设置第一指示信息,以指示短消息网关该短消息中携带有卫星报文。
步骤2、短消息网关收到卫星网关发送的短消息后,根据携带该短消息的消息中携带的寻址信息,将短消息发送给相应的核心网控制节点,并指示核心网控制节点接收到的短消息中携带有卫星报文。
本步骤中,短消息网关可以在向核心网控制节点发送的携带短消息的消息中设置第一指示信息,以指示核心网控制节点接收到的短消息中携带有卫星报文。
本步骤中,短消息网关不对接收到的短消息的内容进行处理。
步骤3、核心网控制节点接收到短消息网关发送的短消息后,由于接收到的携带该短消息的消息中携带有第一指示信息,该核心网控制节点向其下属的所有基站发送短消息,并指示基站采用BDS-RNTI加扰的方式下发该短消息。
本步骤中,核心网控制节点可以在向基站发送的携带短消息的消息中设置第二指示信息,以指示基站采用BDS-RNTI加扰的方式下发该短消息。
本步骤中,核心网控制节点不对接收到的短消息的内容进行处理。
步骤4、基站接收到核心网控制节点发送的短消息后,由于接收到的携带该短消息的 消息中携带有第二指示信息,该基站在下行控制信道使用预先配置的BDS-RNTI对用于承载卫星报文的下行控制信道进行加扰,并在预先配置的发送时刻以及该下行控制信道所调度的共享信道上发送封装有卫星报文的短消息。
本步骤中,基站不对接收到的短消息的内容进行处理。
步骤5、具有卫星报文接收能力的终端监听下行控制信道,当监听到BDS-RNTI时,在该下行控制信道所调度的共享信道上接收基站发送的短消息,并对接收到的短消息进行解封装,以获取卫星报文,使用自身用于卫星通信的密钥对获取到的卫星报文进行解密处理,以获取该卫星报文的内容。
进一步,若该终端不能正确解密获取到的卫星报文,则丢弃本条短消息。
二、本实施例中,中间节点采用广播方式向移动通信网络中的终端下发卫星报文,参见图6所示,本实施例中下行数据的传输过程如下:
步骤1、卫星网关将来自卫星地面站或卫星服务器(如北斗卫星服务器)的卫星报文直接封装为短消息格式,并将该短消息发送给短消息网关。
本步骤中,卫星网关不对接收到的卫星报文的内容进行解析。
本步骤中,卫星网关还在向短消息网关发送的携带有短消息的消息中设置第一指示信息,以指示短消息网关接收到的消息中携带有卫星报文。
步骤2、短消息网关收到卫星网关发送的短消息后,将该短消息发送给其下属的核心网控制节点,并指示核心网控制节点接收到的短消息中携带有卫星报文。
本步骤中,短消息网关可以在向核心网控制节点发送的携带该短消息的消息中携带第一指示信息,以指示核心网控制节点接收到的短消息中携带有卫星报文。
本步骤中,短消息网关不对接收到的短消息的内容进行处理。
步骤3、核心网控制节点收到短消息网关发送的短消息后,由于接收到的携带该短消息的消息中携带有第一指示信息,因此,该核心网控制节点向其下属的所有基站发送该短消息,并指示基站采用广播方式下发接收到的短消息。
本步骤中,核心网控制节点可以在向基站发送的携带该短消息的消息中携带第二指示信息,以指示基站采用广播方式下发接收到的短消息。
本步骤中,核心网控制节点不对接收到的短消息的内容进行处理。
步骤4、基站接收到核心网控制节点发送的短消息后,由于携带该短消息的消息中携带有第二指示信息,因此,该基站采用预先定义的用于传输卫星报文的SIB下向移动网络中的终端发送接收到的短消息。
本步骤中,基站不对接收到的短消息的内容进行处理。
步骤5、具有卫星报文接收能力的终端通过预先定义的SIB接收基站发送的短消息,并对接收到的短消息进行解封装,以获取卫星报文,使用自身用于卫星通信的密钥对获取到的卫星报文进行解密处理,以获取该卫星报文的内容。
进一步,若该终端不能正确解密获取到的卫星报文,则丢弃本条短消息。
三、本实施例中,中间节点采用组播方式向移动通信网络中的终端下发卫星报文,参见图7所示,本实施例中下行数据的传输过程如下:
步骤1、卫星网关接收来自卫星地面站或卫星服务器(如北斗卫星服务器)的卫星报文,向BS-SC发送卫星报文发送请求,该卫星报文发送请求用于请求BM-SC为卫星网关发送的所有卫星报文分配专用MBMS资源。
步骤2、BM-SC接收到卫星报文发送请求后,发起流程建立专用MBMS资源,详见协议TS23.246中MBMS资源的建立流程。
步骤3、BM-SC向卫星网关发送卫星报文发送响应,以通知卫星网关专用MBMS资源的分配已完成。
步骤4、卫星网关接收到卫星报文发送响应后,将来自卫星地面站或卫星服务器的卫星报文发送给BM-SC。
步骤5、BM-SC将卫星报文发送给MBMS网关。
步骤6、MBMS网关使用专用MBMS资源将卫星报文发送给MME(Mobility Management Entity,移动性管理实体)。
步骤7、MME使用专用MBMS资源将卫星报文发送给eNodeB。
步骤8、演进型基站(eNodeB)使用专用MBMS资源将卫星报文发送给移动通信网络中的终端。
步骤9、具有卫星报文接收能力的终端通过专用MBMS资源接收eNodeB发送的卫星报文,使用自身用于卫星通信的密钥,对获取到的卫星报文进行解密处理,以获取该卫星报文的内容。
进一步,若该终端不能正确解密获取到的卫星报文,则丢弃本条短消息。
四、本实施例中,中间节点也采用组播方式向移动通信网络中的终端下发卫星报文,参见图8所示,本实施例中下行数据的传输过程如下:
步骤1、卫星网关接收来自卫星地面站或卫星服务器(如北斗卫星服务器)的卫星报文,向BS-SC发送卫星报文发送请求,该卫星报文发送请求中携带接收到的卫星报文。
步骤2、BM-SC接收到卫星报文发送请求后,发起流程建立临时MBMS资源,详见协议TS23.246中MBMS资源的建立流程。
步骤3、BM-SC将卫星报文发送请求中携带的卫星报文发送给MBMS网关。
步骤4、MBMS网关使用临时MBMS资源将卫星报文发送给MME。
步骤5、MME使用临时MBMS资源将卫星报文发送给eNodeB。
步骤6、eNodeB使用临时MBMS资源将卫星报文发送给移动通信网络中的终端。
步骤7、具有卫星报文接收能力的终端通过临时MBMS资源接收eNodeB发送的卫星报文,使用自身用于卫星通信的密钥,对获取到的卫星报文进行解密处理,以获取该卫星报文的内容。
上述方法处理流程可以用软件程序实现,该软件程序可以存储在存储介质中,当存储的软件程序被调用时,执行上述方法步骤。
在上述实施例中,卫星网关接收到卫星报文后直接转发给移动通信网络。由于终端是可以移动的,可能处于卫星信号接收范围内,也可能不处于卫星信号接受范围内,为了避免丢失信息,卫星网关需要将所有的卫星报文转发给移动通信网络,这样就会造成网络资源的浪费,降低资源利用率。
针对这种情况,本发明实施例还可以根据用户设备接收卫星信号的质量选择通过哪种方式发送卫星报文,能够减少网络资源的浪费,提高了移动通信网络的资源利用率。
如图9所示,本发明实施例九传输卫星报文的系统包括:卫星服务器90和终端91。
其中,卫星服务器90通过卫星网管、中间节点和基站,与终端91连接。
卫星服务器90,用于在有需要发送给终端的卫星报文后,查看终端的卫星信号接收状态;根据终端的卫星信号接收状态,在确定无法通过卫星传输后,通过无线移动通信网络向终端发送卫星报文;
终端91,用于确定卫星信号接收状态;将当前确定的卫星信号接收状态发送给卫星服务器。
其中,卫星信号接收状态用于表示当前终端是否能够通过卫星接收,比如可以是1比特信息,1表示无法通过卫星传输,0表示能够通过卫星传输;也可以是信息比特流等能够表示当前终端是否能够通过卫星接收的信息。
在实施中,终端在确定卫星信号接收状态发生变化后,将当前确定的卫星信号接收状态发送给卫星服务器。
比如终端之前确定的卫星信号接收状态是能够通过卫星接收,但是当前确定的卫星信号接收状态是不能够通过卫星接收,则卫星信号接收状态发生改变,需要通知卫星服务器。
终端确定的卫星信号接收状态,包括:
终端在最近一次确定的卫星信号接收状态为能够通过卫星传输,且当前的卫星信号质量值低于第一门限值时,确定卫星信号接收状态为无法通过卫星传输;在最近一次确定的卫星信号接收状态为无法通过卫星传输,且当前的卫星信号质量值高于第二门限值时,确定卫星信号接收状态为能够通过卫星传输,其中第一门限值低于第二门限值;或
终端在最近一次确定的卫星信号接收状态为能够通过卫星传输,且当前检测到的卫星数量低于第三门限值时,确定卫星信号接收状态为无法通过卫星传输;在最近一次确定的卫星信号接收状态为无法通过卫星传输,且当前检测到的卫星数量高于第四门限值时,确定卫星信号接收状态为能够通过卫星传输,其中第三门限值低于第四门限值。
在实施中,为了省电,在不需要进行定位的情况下,可以不再使用卫星接收卫星报文,而是通过无线移动网络接收卫星报文。此时,终端不需要再进行测量而是直接可以确定当前的卫星信号质量值为0或当前检测到的卫星数量为0。如果终端脱网,且当前与卫星连接,则终端不需要再进行测量而是直接可以确定当前的卫星信号质量值为高于第二门限值或当前检测到的卫星数量为高于第四门限值。
对于首次进行卫星信号接收状态测量的终端,可以在卫星信号质量值低于第一门限值时,确定卫星信号接收状态为无法通过卫星传输并通知卫星服务器,在卫星信号质量值不低于第一门限值时,确定卫星信号接收状态为能够通过卫星传输并通知卫星服务器;或
对于首次进行卫星信号接收状态测量的终端,可以在卫星信号质量值低于第二门限值时,确定卫星信号接收状态为无法通过卫星传输并通知卫星服务器,在卫星信号质量值不低于第二门限值时,确定卫星信号接收状态为能够通过卫星传输并通知卫星服务器;或
对于首次进行卫星信号接收状态测量的终端,可以在检测到的卫星数量低于第三门限值时,确定卫星信号接收状态为无法通过卫星传输并通知卫星服务器,在检测到的卫星数量不低于第三门限值时,确定卫星信号接收状态为能够通过卫星传输并通知卫星服务器;或
对于首次进行卫星信号接收状态测量的终端,可以在检测到的卫星数量低于第四门限值时,确定卫星信号接收状态为无法通过卫星传输并通知卫星服务器,在检测到的卫星数量不低于第四门限值时,确定卫星信号接收状态为能够通过卫星传输并通知卫星服务器。
除了上述方式,还可以在网络中进行开机注册的时候,默认初始接收状态为卫星接收,之后再根据测量结果或者卫星接收情况进行状态调整。在卫星服务器端也是如此,初始默认状态为卫星接收,之后再进行状态调整。
较佳地,终端通过下列方式中的一种确定各门限值:
终端通过预先的设定确定各门限值,比如在协议中规定;
终端通过无线资源控制协议(Radio Resource Control,RRC)信令确定各门限值,比如由网络侧通知;
终端通过接入网发现和选择功能(Access Network Discovery and Selection Function,ANDSF)或者开放移动联盟设备管理协议(open mobile alliance device management,OMA-DM)确定各门限值,比如对于ANDSF,核心网有ANDSF的功能实体,可以下发一些策略和门限值给终端,其中可以包含卫星通信方面的门限值;比如对于OMA-DM,可以通过该方式实现核心网对终端的一些配置管理,比如更新客户识别模块(Subscriber Identity Module,SIM)卡中的一些参数等等,该方式也可以下发卫星相关参数。
在通过上述方式确定各门限值后,也可以根据需要由网络侧通知终端对门限值进行更新。
上述设置两个门限的原因是降低UE上报的频率。
对应的,卫星服务器在收到终端的卫星信号接收状态后,更新该终端的卫星信号接收状态。
在实施中,终端在发送卫星信号接收状态的同时可以将自身的标识(可以是用于卫星通信的卫星通信标识或用于移动通信的移动通信标识),这样卫星服务器就可以识别收到 的卫星信号接收状态对应哪个终端。
相应的,接收来自终端的卫星信号接收状态。
较佳地,终端在向卫星服务器发送卫星信号接收状态时,可以通过无线移动通信网络或有线网络向卫星服务器发送当前确定的卫星信号接收状态;
相应的,卫星服务器通过无线移动通信网络或有线网络接收终端的卫星信号接收状态。
具体的,终端通过无线移动通信网络向卫星服务器发送当前确定的卫星信号接收状态,包括:
终端向无线移动通信网络发送当前确定的卫星信号接收状态,以使无线移动通信网络将当前确定的卫星信号接收状态,通过卫星网关发送给卫星服务器;
终端通过有线网络向卫星服务器发送当前确定的卫星信号接收状态,包括:
终端将当前确定的卫星信号接收状态进行信息封装,并作为用户数据通过有线网络发送给卫星服务器。比如,终端将卫星信号接收状态通过应用层进行信息封装并作为用户数据通过internet转发给卫星地面服务器。
对于卫星服务器,根据终端的卫星信号接收状态,在确定能够通过卫星传输后,通过卫星向终端发送卫星报文。
卫星服务器在确定需要通过无线移动通信网络向终端发送卫星报文时,可以通过卫星网关发送给无线移动通信网络,以使无线移动通信网络通过广播、多播、组播和短消息中的一种方式向终端发送卫星报文。
需要说明的是,本发明实施例无线移动通信网络发送给终端发送卫星报文的方式并不局限与上述几种,只要能够将卫星报文发送给终端的方式都适用本发明实施例,比如将卫星报文置于RRC信令中发送给终端。
下面列举几个例子,对本发明方案进行说明。
实施例1:
网络通过RRC信令广播卫星信号的门限,转入无线移动网门限值th1(即第一门限值)以及转出无线移动网门限值th2(即第二门限值)。卫星终端对卫星信号进行测量,当测量结果低于th1时,终端上报自己的卫星信号接收状态为“通过无线移动通信网接收”(可以用1比特表示,1表示通过无线移动通信网接收,0表示通过卫星接收)。该信息以及该用户标识一起通过无线移动通信网络转发给卫星网关,并由卫星网管转发给卫星地面服务器。卫星地面服务器更新该用户的存储方式。当有发给该用户的卫星报文时,卫星地面服务器不通过卫星发送,而是直接转发到卫星网关,通过无线移动通信网络进行下发。具体地,卫星网关接收卫星通信网络中的卫星终端发送的卫星报文;卫星网关将接收到的卫星报文发送给移动通信网络中的中间节点,以指示中间节点向移动通信网络中的移动终端下发卫星报文。其中可以采用广播,组播,或者短消息下发的方式进行卫星报文全文发送。终端接收后如果能够解码,则为自己的卫星报文,否则为他人的,丢弃。
当该终端开启卫星接收,并且对卫星信号的测量高于门限th2,则用户对卫星报文的接收状态改为“通过卫星接收”,并上报该信息给网络,并通过无线移动网络转发给卫星地面服务器。后续如果有发给该终端的卫星报文,则由卫星进行下发。
实施例2:
与实施例1类似,但th1,th2并不是通过RRC信令下发,而是通过运营商部署的ANDSF或者OMA-DM机制下发给终端。
实施例3:
与实施例1和实施例2类似,但th1,th2并不是由网络下发,而是通过终端的出厂预设进行,即取决于厂家的实现。
实施例4:
终端在进入无线移动通信网络的时候,为了省电,在不需要进行定位的情况下,可以 不再使用卫星接收卫星报文,而是通过无线移动网络接收卫星报文。此时,终端在该网络驻留时,即上报自己的卫星信号接收状态为“通过无线移动通信网接收”。当终端离开无线移动通信网络时,通知网络自己的卫星信号接收状态为“通过卫星接收”。如果终端脱网,而未通知网络进行状态更新,核心网检测发现该用户脱网,则将其状态更新为“通过卫星接收”并将此信息通过卫星网关发给卫星地面服务器。
实施例5:
终端上报自身接收状态信息可以通过RRC信令发送(例如UE能力),也可以通过非接入层(Non-Access Stratum,NAS)信令发送(例如跟踪区更新(Tracking Area Update,TAU),附着(attach)等)。如果使用RRC信令发送,相关信息需要通过接入网与核心网之间的接口转发给核心网控制节点(例如:MME),再由核心网控制节点转发给卫星网关。如果使用NAS信令发送,相关信息通过核心网控制节点(例如:MME)转发给卫星网关。
实施例6:
终端的卫星接收状态信息还可以通过应用层发给卫星地面服务器。例如某个应用层的应用程序P1的客户端安装在终端中,与底层通过开放的应用程序编程接口(Application Programming Interface,API)接口进行信息交互。终端底层根据无线移动通信网络的信号强度以及卫星接收的情况确定了自己的接收状态,将此接收状态通过API接口转发给该应用层程序P1,通过该应用的客户端进行信息封装并作为用户数据通过internet转发给卫星地面服务器上该应用程序的服务器端。再通过此应用将封装的信息提取并保存到卫星地面服务器上。
如图10所示,本发明实施例十传输卫星报文的系统中卫星服务器包括:
处理模块1000,用于在有需要发送给终端的卫星报文后,查看终端的卫星信号接收状态;
传输模块1010,用于根据终端的卫星信号接收状态,在确定无法通过卫星传输后,通过无线移动通信网络向终端发送卫星报文。
较佳地,处理模块1000具体用于:
根据终端的卫星信号接收状态,在确定能够通过卫星传输后,通过卫星向终端发送卫星报文。
较佳地,处理模块1000还用于:
在接收来自终端的卫星信号接收状态之后,查看终端的卫星信号接收状态。
较佳地,传输模块1010具体用于:
通过无线移动通信网络或有线网络接收终端的卫星信号接收状态。
较佳地,传输模块1010具体用于:
将卫星报文通过卫星网关发送给无线移动通信网络,以使无线移动通信网络通过广播、多播、组播和短消息中的一种方式向终端发送卫星报文。
如图11所示,本发明实施例十一传输卫星报文的系统中的用户设备包括:
确定模块1100,用于确定卫星信号接收状态;
通知模块1110,用于将当前确定的卫星信号接收状态发送给卫星服务器,以使卫星服务器根据终端的卫星信号接收状态,在确定无法通过卫星传输后,通过无线移动通信网络向终端发送卫星报文。
较佳地,通知模块1110还用于:
在确定卫星信号接收状态发生变化后,将当前确定的卫星信号接收状态发送给卫星服务器。
较佳地,通知模块1110具体用于:
通过无线移动通信网络或有线网络向卫星服务器发送当前确定的卫星信号接收状态。
较佳地,通知模块1110具体用于:
通过无线移动通信网络向卫星服务器发送当前确定的卫星信号接收状态时,向无线移 动通信网络发送当前确定的卫星信号接收状态,以使无线移动通信网络将当前确定的卫星信号接收状态,通过卫星网关发送给卫星服务器;
通过有线网络向卫星服务器发送当前确定的卫星信号接收状态时,将当前确定的卫星信号接收状态进行信息封装,并作为用户数据通过有线网络发送给卫星服务器。
较佳地,确定模块1100具体用于:
在最近一次确定的卫星信号接收状态为能够通过卫星传输,且当前的卫星信号质量值低于第一门限值时,确定卫星信号接收状态为无法通过卫星传输;在最近一次确定的卫星信号接收状态为无法通过卫星传输,且当前的卫星信号质量值高于第二门限值时,确定卫星信号接收状态为能够通过卫星传输,其中第一门限值低于第二门限值;或
在最近一次确定的卫星信号接收状态为能够通过卫星传输,且当前检测到的卫星数量低于第三门限值时,确定卫星信号接收状态为无法通过卫星传输;在最近一次确定的卫星信号接收状态为无法通过卫星传输,且当前检测到的卫星数量高于第四门限值时,确定卫星信号接收状态为能够通过卫星传输,其中第三门限值低于第四门限值。
较佳地,确定模块1100具体用于,通过下列方式中的一种确定各门限值:
通过预先的设定确定各门限值;
通过RRC信令确定各门限值;
通过ANDSF或者OMA-DM确定各门限值。
如图12所示,本发明实施例十二传输卫星报文的系统中的卫星服务器包括:
处理器1200,用于在有需要发送给终端的卫星报文后,查看终端的卫星信号接收状态,根据终端的卫星信号接收状态,在确定无法通过卫星传输后,通过无线移动通信网络向终端发送卫星报文;
收发器1210,用于在处理器1200的控制下接收和发送数据。
收发器1210可以是无线网卡、有线网卡等具备发送和接收数据的实体。
较佳地,收发器1210具体用于:
根据终端的卫星信号接收状态,在确定能够通过卫星传输后,通过卫星向终端发送卫星报文。
较佳地,收发器1210还用于:
在接收来自终端的卫星信号接收状态之后,查看终端的卫星信号接收状态。
较佳地,收发器1210具体用于:
通过无线移动通信网络或有线网络接收终端的卫星信号接收状态。
较佳地,收发器1210具体用于:
将卫星报文通过卫星网关发送给无线移动通信网络,以使无线移动通信网络通过广播、多播、组播和短消息中的一种方式向终端发送卫星报文。
其中,在图12中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1200代表的一个或多个处理器和存储器1220代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发器1210可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。处理器1200负责管理总线架构和通常的处理,存储器1220可以存储处理器1200在执行操作时所使用的数据。
处理器1200负责管理总线架构和通常的处理,存储器1220可以存储处理器1200在执行操作时所使用的数据。
如图13所示,本发明实施例十三传输卫星报文的系统中的用户设备包括:
处理器1300,用于确定卫星信号接收状态,通过收发机1310将当前确定的卫星信号接收状态发送给卫星服务器,以使卫星服务器根据终端的卫星信号接收状态,在确定无法通过卫星传输后,通过无线移动通信网络向终端发送卫星报文;
收发机1310,用于在处理器1300的控制下接收和发送数据。
较佳地,处理器1300还用于:
在确定卫星信号接收状态发生变化后,将当前确定的卫星信号接收状态发送给卫星服务器。
较佳地,处理器1300具体用于:
通过无线移动通信网络或有线网络向卫星服务器发送当前确定的卫星信号接收状态。
较佳地,处理器1300具体用于:
通过无线移动通信网络向卫星服务器发送当前确定的卫星信号接收状态时,向无线移动通信网络发送当前确定的卫星信号接收状态,以使无线移动通信网络将当前确定的卫星信号接收状态,通过卫星网关发送给卫星服务器;
通过有线网络向卫星服务器发送当前确定的卫星信号接收状态时,将当前确定的卫星信号接收状态进行信息封装,并作为用户数据通过有线网络发送给卫星服务器。
较佳地,处理器1300具体用于:
在最近一次确定的卫星信号接收状态为能够通过卫星传输,且当前的卫星信号质量值低于第一门限值时,确定卫星信号接收状态为无法通过卫星传输;在最近一次确定的卫星信号接收状态为无法通过卫星传输,且当前的卫星信号质量值高于第二门限值时,确定卫星信号接收状态为能够通过卫星传输,其中第一门限值低于第二门限值;或
在最近一次确定的卫星信号接收状态为能够通过卫星传输,且当前检测到的卫星数量低于第三门限值时,确定卫星信号接收状态为无法通过卫星传输;在最近一次确定的卫星信号接收状态为无法通过卫星传输,且当前检测到的卫星数量高于第四门限值时,确定卫星信号接收状态为能够通过卫星传输,其中第三门限值低于第四门限值。
较佳地,处理器1300具体用于,通过下列方式中的一种确定各门限值:
通过预先的设定确定各门限值;
通过RRC信令确定各门限值;
通过ANDSF或者OMA-DM确定各门限值。
其中,在图13中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1300代表的一个或多个处理器和存储器1320代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1310可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口1330还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1300负责管理总线架构和通常的处理,存储器1320可以存储处理器1300在执行操作时所使用的数据。
基于同一发明构思,本发明实施例中还提供了传输卫星报文的方法,由于该方法解决问题的原理与本发明实施例系统传输卫星报文的系统相似,因此该方法的实施可以参见系统的实施,重复之处不再赘述。
如图14所示,本发明实施例十四传输卫星报文的方法包括:
步骤1401、卫星服务器在有需要发送给终端的卫星报文后,查看终端的卫星信号接收状态;
步骤1402、卫星服务器根据终端的卫星信号接收状态,在确定无法通过卫星传输后,通过无线移动通信网络向终端发送卫星报文。
较佳地,卫星服务器查看终端的卫星信号接收状态,包括:
卫星服务器根据终端的卫星信号接收状态,在确定能够通过卫星传输后,通过卫星向终端发送卫星报文。
较佳地,卫星服务器查看终端的卫星信号接收状态之前,还包括:
卫星服务器接收来自终端的卫星信号接收状态。
较佳地,卫星服务器接收终端的卫星信号接收状态,包括:
卫星服务器通过无线移动通信网络或有线网络接收终端的卫星信号接收状态。
较佳地,卫星服务器通过无线移动通信网络向终端发送卫星报文,包括:
卫星服务器将卫星报文通过卫星网关发送给无线移动通信网络,以使无线移动通信网络通过广播、多播、组播和短消息中的一种方式向终端发送卫星报文。
如图15所示,本发明实施例十五传输卫星报文的方法包括:
步骤1501、终端确定的卫星信号接收状态;
步骤1502、终端将当前确定的卫星信号接收状态发送给卫星服务器,以使卫星服务器根据终端的卫星信号接收状态,在确定无法通过卫星传输后,通过无线移动通信网络向终端发送卫星报文。
较佳地,终端确定的卫星信号接收状态之后,将当前确定的卫星信号接收状态发送给卫星服务器之前,还包括:
终端确定卫星信号接收状态发生变化。
较佳地,终端将当前确定的卫星信号接收状态发送给卫星服务器,包括:
终端通过无线移动通信网络或有线网络向卫星服务器发送当前确定的卫星信号接收状态。
较佳地,终端通过无线移动通信网络向卫星服务器发送当前确定的卫星信号接收状态,包括:
终端向无线移动通信网络发送当前确定的卫星信号接收状态,以使无线移动通信网络将当前确定的卫星信号接收状态,通过卫星网关发送给卫星服务器;
终端通过有线网络向卫星服务器发送当前确定的卫星信号接收状态,包括:
终端将当前确定的卫星信号接收状态进行信息封装,并作为用户数据通过有线网络发送给卫星服务器。
较佳地,终端确定的卫星信号接收状态,包括:
终端在最近一次确定的卫星信号接收状态为能够通过卫星传输,且当前的卫星信号质量值低于第一门限值时,确定卫星信号接收状态为无法通过卫星传输;在最近一次确定的卫星信号接收状态为无法通过卫星传输,且当前的卫星信号质量值高于第二门限值时,确定卫星信号接收状态为能够通过卫星传输,其中第一门限值低于第二门限值;或
终端在最近一次确定的卫星信号接收状态为能够通过卫星传输,且当前检测到的卫星数量低于第三门限值时,确定卫星信号接收状态为无法通过卫星传输;在最近一次确定的卫星信号接收状态为无法通过卫星传输,且当前检测到的卫星数量高于第四门限值时,确定卫星信号接收状态为能够通过卫星传输,其中第三门限值低于第四门限值。
较佳地,终端通过下列方式中的一种确定各门限值:
终端通过预先的设定确定各门限值;
终端通过无线资源控制协议RRC信令确定各门限值;
终端通过接入网发现和选择功能ANDSF或者OMA-DM确定各门限值。
从上述内容可以看出:
本发明实施例卫星服务器根据终端的卫星信号接收状态,在确定无法通过卫星传输后,通过无线移动通信网络向终端发送卫星报文,实现了通过移动通信网络向终端发送卫星报文,从而提高了系统性能;进一步的,由于可以根据用户设备接收卫星信号的质量选择通过哪种方式发送卫星报文,还提高了移动通信网络的资源利用率。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程 序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (23)

  1. 一种传输卫星报文的方法,其特征在于,该方法包括:
    卫星服务器在有需要发送给终端的卫星报文后,查看终端的卫星信号接收状态;
    所述卫星服务器根据所述终端的卫星信号接收状态,在确定无法通过卫星传输后,通过无线移动通信网络向所述终端发送卫星报文。
  2. 如权利要求1所述的方法,其特征在于,所述卫星服务器查看终端的卫星信号接收状态,包括:
    所述卫星服务器根据所述终端的卫星信号接收状态,在确定能够通过卫星传输后,通过卫星向所述终端发送卫星报文。
  3. 如权利要求1所述的方法,其特征在于,所述卫星服务器查看终端的卫星信号接收状态之前,还包括:
    所述卫星服务器接收来自所述终端的卫星信号接收状态。
  4. 如权利要求3所述的方法,其特征在于,所述卫星服务器接收所述终端的卫星信号接收状态,包括:
    所述卫星服务器通过无线移动通信网络或有线网络接收所述终端的卫星信号接收状态。
  5. 如权利要求1~4任一所述的方法,其特征在于,所述卫星服务器通过无线移动通信网络向所述终端发送卫星报文,包括:
    所述卫星服务器将卫星报文通过卫星网关发送给无线移动通信网络,以使所述无线移动通信网络通过广播、多播、组播和短消息中的一种方式向所述终端发送卫星报文。
  6. 一种传输卫星报文的方法,其特征在于,该方法包括:
    终端确定的卫星信号接收状态;
    所述终端将当前确定的卫星信号接收状态发送给卫星服务器,以使所述卫星服务器根据所述终端的卫星信号接收状态,在确定无法通过卫星传输后,通过无线移动通信网络向所述终端发送卫星报文。
  7. 如权利要求6所述的方法,其特征在于,所述终端确定的卫星信号接收状态之后,将当前确定的卫星信号接收状态发送给卫星服务器之前,还包括:
    所述终端确定卫星信号接收状态发生变化。
  8. 如权利要求6所述的方法,其特征在于,所述终端将当前确定的卫星信号接收状态发送给卫星服务器,包括:
    所述终端通过无线移动通信网络或有线网络向卫星服务器发送当前确定的卫星信号接收状态。
  9. 如权利要求8所述的方法,其特征在于,若所述终端通过无线移动通信网络向卫星服务器发送当前确定的卫星信号接收状态,则具体包括:
    所述终端向无线移动通信网络发送当前确定的卫星信号接收状态,以使所述无线移动通信网络将当前确定的卫星信号接收状态,通过卫星网关发送给卫星服务器;或者,
    若所述终端通过有线网络向卫星服务器发送当前确定的卫星信号接收状态,则具体包括:
    所述终端将当前确定的卫星信号接收状态进行信息封装,并作为用户数据通过有线网络发送给卫星服务器。
  10. 如权利要求6~9任一所述的方法,其特征在于,所述终端确定的卫星信号接收状态,包括:
    所述终端在最近一次确定的卫星信号接收状态为能够通过卫星传输,且当前的卫星信号质量值低于第一门限值时,确定卫星信号接收状态为无法通过卫星传输;在最近一次确定的卫星信号接收状态为无法通过卫星传输,且当前的卫星信号质量值高于第二门限值 时,确定卫星信号接收状态为能够通过卫星传输,其中第一门限值低于第二门限值;或
    所述终端在最近一次确定的卫星信号接收状态为能够通过卫星传输,且当前检测到的卫星数量低于第三门限值时,确定卫星信号接收状态为无法通过卫星传输;在最近一次确定的卫星信号接收状态为无法通过卫星传输,且当前检测到的卫星数量高于第四门限值时,确定卫星信号接收状态为能够通过卫星传输,其中第三门限值低于第四门限值。
  11. 如权利要求10所述的方法,其特征在于,所述终端通过下列方式中的一种确定各门限值:
    所述终端通过预先的设定确定各门限值;
    所述终端通过无线资源控制协议RRC信令确定各门限值;
    所述终端通过接入网发现和选择功能ANDSF或者开放移动联盟设备管理OMA-DM协议确定各门限值。
  12. 一种传输卫星报文的卫星服务器,其特征在于,该卫星服务器包括:
    处理模块,用于在有需要发送给终端的卫星报文后,查看终端的卫星信号接收状态;
    传输模块,用于根据所述终端的卫星信号接收状态,在确定无法通过卫星传输后,通过无线移动通信网络向所述终端发送卫星报文。
  13. 如权利要求12所述的卫星服务器,其特征在于,所述处理模块具体用于:
    根据所述终端的卫星信号接收状态,在确定能够通过卫星传输后,通过卫星向所述终端发送卫星报文。
  14. 如权利要求12所述的卫星服务器,其特征在于,所述处理模块还用于:
    在接收来自所述终端的卫星信号接收状态之后,查看终端的卫星信号接收状态。
  15. 如权利要求14所述的卫星服务器,其特征在于,所述传输模块具体用于:
    通过无线移动通信网络或有线网络接收所述终端的卫星信号接收状态。
  16. 如权利要求12~15任一所述的卫星服务器,其特征在于,所述传输模块具体用于:
    将卫星报文通过卫星网关发送给无线移动通信网络,以使所述无线移动通信网络通过广播、多播、组播和短消息中的一种方式向所述终端发送卫星报文。
  17. 一种传输卫星报文的终端,其特征在于,该方法包括:
    确定模块,用于确定卫星信号接收状态;
    通知模块,用于将当前确定的卫星信号接收状态发送给卫星服务器,以使所述卫星服务器根据所述终端的卫星信号接收状态,在确定无法通过卫星传输后,通过无线移动通信网络向所述终端发送卫星报文。
  18. 如权利要求17所述的终端,其特征在于,所述通知模块还用于:
    在确定卫星信号接收状态发生变化后,将当前确定的卫星信号接收状态发送给卫星服务器。
  19. 如权利要求17所述的终端,其特征在于,所述通知模块具体用于:
    通过无线移动通信网络或有线网络向卫星服务器发送当前确定的卫星信号接收状态。
  20. 如权利要求19所述的终端,其特征在于,所述通知模块具体用于:
    若通过无线移动通信网络向卫星服务器发送当前确定的卫星信号接收状态,则向无线移动通信网络发送当前确定的卫星信号接收状态,以使所述无线移动通信网络将当前确定的卫星信号接收状态,通过卫星网关发送给卫星服务器;或者,
    若通过有线网络向卫星服务器发送当前确定的卫星信号接收状态,则将当前确定的卫星信号接收状态进行信息封装,并作为用户数据通过有线网络发送给卫星服务器。
  21. 如权利要求17~20任一所述的终端,其特征在于,所述确定模块具体用于:
    在最近一次确定的卫星信号接收状态为能够通过卫星传输,且当前的卫星信号质量值低于第一门限值时,确定卫星信号接收状态为无法通过卫星传输;在最近一次确定的卫星信号接收状态为无法通过卫星传输,且当前的卫星信号质量值高于第二门限值时,确定卫星信号接收状态为能够通过卫星传输,其中第一门限值低于第二门限值;或
    在最近一次确定的卫星信号接收状态为能够通过卫星传输,且当前检测到的卫星数量低于第三门限值时,确定卫星信号接收状态为无法通过卫星传输;在最近一次确定的卫星信号接收状态为无法通过卫星传输,且当前检测到的卫星数量高于第四门限值时,确定卫星信号接收状态为能够通过卫星传输,其中第三门限值低于第四门限值。
  22. 如权利要求21所述的终端,其特征在于,所述确定模块具体用于,通过下列方式中的一种确定各门限值:
    通过预先的设定确定各门限值;
    通过RRC信令确定各门限值;
    通过接入网发现和选择功能ANDSF或者开放移动联盟设备管理OMA-DM协议确定各门限值。
  23. 一种传输卫星报文的系统,其特征在于,该系统包括:
    卫星服务器,用于在有需要发送给终端的卫星报文后,查看终端的卫星信号接收状态,根据所述终端的卫星信号接收状态,在确定无法通过卫星传输后,通过无线移动通信网络向所述终端发送卫星报文;
    终端,用于确定卫星信号接收状态,将当前确定的卫星信号接收状态发送给卫星服务器,以使所述卫星服务器根据所述终端的卫星信号接收状态,在确定无法通过卫星传输后,通过无线移动通信网络向所述终端发送卫星报文。
PCT/CN2015/073155 2014-02-28 2015-02-16 一种传输卫星报文的方法、系统和设备 WO2015127881A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410073389.2 2014-02-28
CN201410073389.2A CN104883217B (zh) 2014-02-28 2014-02-28 一种传输卫星报文的方法、系统和设备

Publications (1)

Publication Number Publication Date
WO2015127881A1 true WO2015127881A1 (zh) 2015-09-03

Family

ID=53950562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/073155 WO2015127881A1 (zh) 2014-02-28 2015-02-16 一种传输卫星报文的方法、系统和设备

Country Status (2)

Country Link
CN (1) CN104883217B (zh)
WO (1) WO2015127881A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107979531A (zh) * 2017-12-15 2018-05-01 中国人民解放军32039部队 空间异构网络一体化组网方法及系统
CN110830941A (zh) * 2018-08-10 2020-02-21 奥的斯电梯公司 系统中的无线数据通信
CN111929719A (zh) * 2020-07-16 2020-11-13 中国科学院微小卫星创新研究院 低轨科学卫星全球捷联系统及方法
CN113115237A (zh) * 2021-03-17 2021-07-13 中国人民解放军国防科技大学 移动通信网与北斗rdss卫星通信网融合系统与方法
CN114337784A (zh) * 2021-12-30 2022-04-12 中国电信股份有限公司卫星通信分公司 一种基于卫星移动通信系统短报文精准发送的方法
WO2023174161A1 (zh) * 2022-03-18 2023-09-21 华为技术有限公司 一种消息传输的方法及相应终端

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106714120A (zh) * 2015-11-12 2017-05-24 中国移动通信集团公司 移动通信和北斗通信之间相互通信的方法、系统、服务器
CN109510659A (zh) * 2019-01-11 2019-03-22 北京华力创通科技股份有限公司 短报文传输方法及装置
WO2023011386A1 (zh) * 2021-08-06 2023-02-09 华为技术有限公司 一种北斗通信系统中白名单控制方法及相关装置
CN113936416A (zh) * 2021-09-07 2022-01-14 西安烽火电子科技有限责任公司 一种基于北斗卫星救生系统的搜救通信方法
CN114640389B (zh) * 2022-05-10 2023-03-28 中移(上海)信息通信科技有限公司 信息传输处理方法、装置、电子设备和可读存储介质
CN116095664B (zh) * 2023-04-10 2023-06-16 商飞软件有限公司 一种新增北斗用户机在系统中实现服务注册的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102625268A (zh) * 2012-03-21 2012-08-01 广东省北斗应用技术支持中心 一种实现北斗终端与手机双向短信通讯的系统及方法
CN103369475A (zh) * 2013-06-26 2013-10-23 成都天奥电子股份有限公司 一种基于北斗卫星的预警信息发布系统
CN103476094A (zh) * 2012-06-06 2013-12-25 中兴通讯股份有限公司 一种接入网络的方法、终端及互通网关

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3624826B2 (ja) * 2000-12-20 2005-03-02 日本電気株式会社 Gps受信装置及びgps測位システム
US6995708B2 (en) * 2002-07-17 2006-02-07 Gallitzin Allegheny Llc Local positioning system
EP1844558B1 (en) * 2005-01-05 2018-02-14 ATC Technologies, LLC Adaptive beam forming with multi-user detection and interference reduction in satellite communication systems and methods
CN101095353B (zh) * 2005-10-26 2011-02-16 汤姆森许可贸易公司 用于将节目标识符分组为组播组的系统和方法
CN102223413A (zh) * 2011-06-20 2011-10-19 北京航天控制仪器研究所 一种船舶运输危险品集装箱智能监测系统
CN102694855B (zh) * 2012-05-21 2014-11-19 南京信息工程大学 基于北斗卫星的气象灾害预警信息发布系统及方法
CN202873065U (zh) * 2012-11-06 2013-04-10 北京和协芯宇科技有限公司 一种北斗基站

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102625268A (zh) * 2012-03-21 2012-08-01 广东省北斗应用技术支持中心 一种实现北斗终端与手机双向短信通讯的系统及方法
CN103476094A (zh) * 2012-06-06 2013-12-25 中兴通讯股份有限公司 一种接入网络的方法、终端及互通网关
CN103369475A (zh) * 2013-06-26 2013-10-23 成都天奥电子股份有限公司 一种基于北斗卫星的预警信息发布系统

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107979531A (zh) * 2017-12-15 2018-05-01 中国人民解放军32039部队 空间异构网络一体化组网方法及系统
CN107979531B (zh) * 2017-12-15 2020-07-24 中国人民解放军32039部队 空间异构网络一体化组网方法及系统
CN110830941A (zh) * 2018-08-10 2020-02-21 奥的斯电梯公司 系统中的无线数据通信
CN110830941B (zh) * 2018-08-10 2022-07-19 奥的斯电梯公司 系统中的无线数据通信
CN111929719A (zh) * 2020-07-16 2020-11-13 中国科学院微小卫星创新研究院 低轨科学卫星全球捷联系统及方法
CN113115237A (zh) * 2021-03-17 2021-07-13 中国人民解放军国防科技大学 移动通信网与北斗rdss卫星通信网融合系统与方法
CN114337784A (zh) * 2021-12-30 2022-04-12 中国电信股份有限公司卫星通信分公司 一种基于卫星移动通信系统短报文精准发送的方法
CN114337784B (zh) * 2021-12-30 2023-10-31 中国电信股份有限公司卫星通信分公司 一种基于卫星移动通信系统短报文精准发送的方法
WO2023174161A1 (zh) * 2022-03-18 2023-09-21 华为技术有限公司 一种消息传输的方法及相应终端

Also Published As

Publication number Publication date
CN104883217A (zh) 2015-09-02
CN104883217B (zh) 2019-03-05

Similar Documents

Publication Publication Date Title
WO2015127881A1 (zh) 一种传输卫星报文的方法、系统和设备
US20220248184A1 (en) Communication Method And Apparatus
JP7287431B2 (ja) ユーザ装置、通信装置、及び通信方法
US20180124598A1 (en) Grant-free transmission method, user equipment, access network device, and core network device
US20140126489A1 (en) Managing operating parameters for communication bearers in a wireless network
EP2903322B1 (en) Security management method and apparatus for group communication in mobile communication system
JP6568585B2 (ja) 無線リソース制御rrcメッセージ処理方法、装置、及びシステム
EP2928220B1 (en) Method, system, base station and cluster epc for establishing group call context
KR102089983B1 (ko) 근접 서비스들 사용자 장비-네트워크 릴레이 시나리오에서 멀티캐스트 트래픽에 대한 근접 서비스들 우선순위 제어
US9992109B2 (en) Data transmission method, apparatus and system
WO2019076243A1 (en) SYSTEM AND METHOD FOR COMMUNICATION WITH SECURITY PROTECTION COMMISSIONING
CN104661184A (zh) 一种进行卫星通信的方法和设备
JP6097757B2 (ja) 無線通信システムにおいてマルチキャストデータを伝送及び受信する方法とそのための装置
US20140286221A1 (en) Activation of multicast service
US20230073658A1 (en) Privacy protection for sidelink communications
US20150148074A1 (en) Method and apparatus for proximity-based service
KR102088848B1 (ko) 이동 통신에서 ProSe그룹 통신 또는 공공 안전을 지원하기 위한 보안 방안 및 시스템
US20230067900A1 (en) Communication method and apparatus, and storage medium
US11546887B2 (en) Information transmission method and apparatus, and computer storage medium
WO2019011181A1 (zh) 数据传输方法、装置和系统
TW201446030A (zh) 動態停用公眾示警系統
JP6672460B2 (ja) グループ通信システムにおけるページング
WO2014162691A1 (ja) セルラ通信システム、移動局、基地局、及び制御ノード、並びにこれらに関する方法
WO2024037210A1 (zh) 广播安全通信的方法和装置
CN115551082A (zh) 一种多播业务的通信方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15754421

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15754421

Country of ref document: EP

Kind code of ref document: A1