WO2015127589A1 - 一种风力发电机传动结构 - Google Patents

一种风力发电机传动结构 Download PDF

Info

Publication number
WO2015127589A1
WO2015127589A1 PCT/CN2014/072512 CN2014072512W WO2015127589A1 WO 2015127589 A1 WO2015127589 A1 WO 2015127589A1 CN 2014072512 W CN2014072512 W CN 2014072512W WO 2015127589 A1 WO2015127589 A1 WO 2015127589A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
spiral bevel
bevel gear
transmission structure
planetary gear
Prior art date
Application number
PCT/CN2014/072512
Other languages
English (en)
French (fr)
Inventor
王小椿
Original Assignee
北京巴付勒传动技术有限公司
天津巴付勒传动技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京巴付勒传动技术有限公司, 天津巴付勒传动技术有限公司 filed Critical 北京巴付勒传动技术有限公司
Priority to PCT/CN2014/072512 priority Critical patent/WO2015127589A1/zh
Publication of WO2015127589A1 publication Critical patent/WO2015127589A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • F03D15/10Transmission of mechanical power using gearing not limited to rotary motion, e.g. with oscillating or reciprocating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/403Transmission of power through the shape of the drive components
    • F05B2260/4031Transmission of power through the shape of the drive components as in toothed gearing
    • F05B2260/40311Transmission of power through the shape of the drive components as in toothed gearing of the epicyclic, planetary or differential type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/46Systems consisting of a plurality of gear trains each with orbital gears, i.e. systems having three or more central gears
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a wind power generator, and more particularly to an easy-to-maintain power split type wind power generator transmission structure.
  • BACKGROUND OF THE INVENTION Transmission chains in wind turbines have the function of transmission and speed increase and are the core of the wind turbine. Wind turbines
  • the transmission chain has a wide variety of structural forms. From the perspective of transmission mode, it can be divided into planetary gear transmission, parallel shaft gear transmission, and hybrid transmission (ie, planetary gear and parallel shaft hybrid transmission).
  • Hybrid transmission is currently the most widely used type of structure; in a hybrid transmission structure, two-stage planetary transmission and one-stage fixed-axis are generally used for transmission and speed increase, and the entire transmission structure is arranged in a machine compartment located above the tower.
  • the transmission structure is required to be small in size, light in weight, excellent in performance, reliable in operation, and low in failure rate; in particular, its reliability and service life are much higher than those of general machinery.
  • the highest failure rate of the wind turbine is the transmission structure.
  • the most prone to failure in the transmission structure are the gearbox, main shaft and main bearing. If the transmission structure fails, the maintenance cost is huge. Due to the structural limitations of the fan itself, it is necessary to remove the impeller and the entire machine compartment to eliminate the fault, and then reinstall it back to the original position after the fault is eliminated; the entire maintenance process is very complicated and requires special lifting equipment and lifting tools to complete; Especially for offshore wind turbines, the cost of disassembly and assembly can reach tens of millions of yuan.
  • the design life of the transmission structure (mainly gearbox) is 20 years, and the actual service life cannot reach the design service life, so that the maintenance and replacement of the transmission structure are frequent.
  • the disassembly and assembly of the transmission structure is very complicated, and it requires the use of special equipment and costs huge human and financial resources.
  • Another object of the present invention is to provide a wind turbine transmission structure that uses power splitting and recombination to perform power transmission to reduce the failure rate of the transmission structure and improve the reliability of the transmission structure.
  • the object of the present invention is achieved by a wind turbine transmission structure, the wind power generator comprising a tower and a machine compartment disposed at the top of the tower; the transmission structure is provided by a spiral bevel gear disposed in the machine compartment The mechanism and the planetary gear speed increasing box disposed in the tower; the impeller of the wind power generator is connected to the input shaft of the spiral bevel gear mechanism, and the output shaft of the spiral bevel gear mechanism is connected to the input shaft of the planetary gear speed increasing box, the planetary gear An output shaft of the speed increase box is connected to a rotating shaft of the generator set; an output shaft of the spiral bevel gear mechanism is coaxially disposed with an input shaft of the planetary gear speed increasing box, and is in the same direction as the axis of the tower;
  • the spiral bevel gear mechanism is composed of an active spiral bevel gear and a first driven spiral bevel gear and a second driven spiral bevel gear meshing with the active spiral bevel gear; the rotating shaft of the first driven spiral bevel gear is coaxially worn It is disposed in the rotating shaft of the second driven helical bevel gear and together constitutes an output shaft of the spiral bevel gear mechanism.
  • the planetary gear increaser is formed by a two-stage planetary gear mechanism.
  • the first stage planetary gear mechanism includes a first ring gear, a first sun gear and a first planet carrier, and the first planet carrier is provided with a plurality of first ring gears.
  • the second stage planetary gear mechanism includes a second ring gear, a second sun gear and a second planet carrier, and the second planet carrier is provided with a plurality of second teeth a second planetary gear meshed by the second sun gear;
  • the first planet carrier is coupled to a rotating shaft of the first driven helical bevel gear, and the first ring gear is coupled to a rotating shaft of the second driven helical bevel gear
  • the first sun gear is connected to the second planet carrier, the second ring gear is fixedly disposed, and the second sun gear is connected to the generator set
  • the first planet carrier and the first ring gear together form an input end of the planetary gear speed increase box, and the second sun gear constitutes an output end of the planetary gear speed increase box.
  • the planetary gear increaser case is composed of a primary planetary gear mechanism and a primary fixed axle train.
  • the planetary gear mechanism includes a ring gear, a sun gear and a planet carrier, and the planet carrier is provided with a plurality of planet wheels meshing with the ring gear and the sun gear; a rotating shaft of the first driven helical bevel gear, the ring gear is coupled to a rotating shaft of the second driven helical bevel gear, and the carrier and the ring gear together form an input end of the planetary gear increasing gear box;
  • the fixed axle train is connected to the rotating shaft of the generator set, and the output shaft of the fixed axle train constitutes the output end of the planetary gear increaser.
  • the input shaft of the spiral bevel gear mechanism forms an angle with a horizontal plane, and the included angle is an inclination angle of the wind turbine impeller.
  • the first driven spiral bevel gear is fixedly provided with a first thrust plate
  • the second driven spiral bevel gear is fixedly provided with a second thrust plate
  • a corresponding annular groove is disposed on an end surface of the active spiral bevel gear, and edges of the first thrust plate and the second thrust plate are rotatably engaged in the annular groove.
  • the side circumferential surfaces of the first thrust plate and the second thrust plate are tapered surfaces; the cross section of the annular groove corresponds to the shape of the side circumferential surface of the thrust plate the same.
  • the tower is provided with a lifting mechanism for lifting the planetary gear speed increasing box and the generator set.
  • the lifting mechanism is constituted by a slide rail or a pulley.
  • the output shaft of the helical bevel gear mechanism is in flexible engagement with the input shaft of the planetary gearbox.
  • a brake disc is mounted between the output shaft of the helical bevel gear mechanism and the input shaft of the planetary gearbox.
  • the wind turbine transmission structure of the present invention increases the power transmission capability through the large-diameter spiral bevel gear mechanism and adopts the power splitting and recombination mode, and the number of torques acting on the planetary gear speed increase box after increasing the speed.
  • the reduction of the times greatly reduces the contact stress of the tooth surface and the bending stress of the tooth root, reduces the failure rate of the transmission structure, and improves the reliability of the transmission structure;
  • the spiral bevel gear mechanism and the planetary gear speed increase box are structurally mutually Independently, the planetary gear speed increaser and generator set are placed in the tower to facilitate the disassembly and maintenance of the transmission structure, thereby reducing the maintenance cost of the transmission structure.
  • Fig. 2 is a schematic view showing the structure of a thrust plate provided in the present invention. DETAILED DESCRIPTION OF THE INVENTION
  • the present invention provides a wind turbine transmission structure 1000, which includes a tower 93 and a machine compartment 92 disposed at the top of the tower 93; the transmission structure 1000 is disposed in the machine compartment
  • the output shaft of the planetary gearbox 200 is coupled to the rotating shaft of the genset 94; the output shaft of the helical bevel gear mechanism 100, the input shaft and output of the planetary gearbox 200
  • the shaft is coaxially disposed and is the same as the axial direction of the tower 93.
  • the wind power generator transmission structure of the present invention adopts a large-diameter spiral bevel gear mechanism as the first-stage transmission, and the planetary gear speed-increasing box as the second-stage transmission, and the large-diameter spiral bevel gear mechanism has a strong power transmission capability, so that After the speed increase, the torque acting on the planetary gearbox is reduced by several times, thereby making the planetary gearbox more compact and compact; the helical bevel gear mechanism and the planetary gearbox are structurally Independent of each other, the planetary gear speed increasing box and the generator set are arranged in the tower to facilitate the disassembly and maintenance of the transmission structure, thereby reducing the maintenance cost of the transmission structure.
  • the spiral bevel gear mechanism 100 is composed of an active spiral bevel gear 101 and a first driven spiral bevel gear 102 meshing with the active spiral bevel gear 101, and a second slave
  • the spiral bevel gear 103 is configured; the rotating shaft of the first driven helical bevel gear 102 is coaxially disposed in the rotating shaft of the second driven helical bevel gear 103, and together constitutes an output shaft of the spiral bevel gear mechanism 100;
  • the planetary gear speed increase box 200 is composed of two stages of planetary gear mechanisms 201 and 202;
  • the first stage planetary gear mechanism 201 includes a first ring gear 2011, a first sun gear 2012 and a first planet carrier 2013, first
  • the planet carrier 2013 is provided with a plurality of first planet gears 2014 meshing with the first ring gear and the first sun gear;
  • the second stage planetary gear mechanism 202 includes a second ring gear 2021, a second sun gear 2022 and a a second planet carrier 2023, the second planet carrier 2023 is provided with a plurality of second planet gears 2024 meshing with the second ring gear and the second sun gear;
  • the star frame 2013 is coupled to a rotating shaft of the first driven helical bevel gear 102, the first ring gear 2011 is coupled to a rotating shaft of the second driven helical bevel gear 103, and the first sun gear 2012 is coupled to the second planet carrier 2023.
  • the second ring gear 2021 is fixedly disposed, and the second sun gear 2022 is coupled to the rotating shaft of the generator set 94.
  • the first planet carrier 2013 and the first ring gear 2011 together constitute the planetary gear speed increasing box 200.
  • the second sun gear 2022 constitutes the output end of the planetary gear speed increase box 200.
  • the input shaft of the spiral bevel gear mechanism forms an angle with the horizontal plane, the angle is the inclination of the wind turbine impeller 91; the power generated by the impeller 91 drives the input shaft of the spiral bevel gear mechanism, and the input
  • the shaft drives the active spiral bevel gear 101, and the active spiral bevel gear 101 drives the two driven spiral bevel gears 102 and 103 to rotate in two opposite directions; the two driven spiral bevel gears 103 and 102 are respectively connected to the first stage planetary gear mechanism.
  • the structure realizes the shunting of the power, and the first planet carrier and the first ring gear merge the power to the first sun
  • the first sun gear drives the second planet carrier to rotate, and then the second sun gear outputs power to drive the generator set to generate electric energy. Since the torque acting on the input shaft of the spiral bevel gear mechanism is huge, and the torque is gradually reduced as the power is transmitted on the transmission structure, the spiral bevel gear mechanism adopts the power split mode as the first-stage transmission structure.
  • the power is shared by the two driven spiral bevel gears, which greatly reduces the contact stress of the tooth surface and the bending stress of the root. After the speed increase of the first stage transmission structure, the torque has been reduced several times. At this time, the power is merged in the planetary gear speed increase box; thereby, the failure rate of the transmission structure can be reduced, and the reliability of the transmission structure can be improved.
  • the output shaft of the helical bevel gear mechanism 100 and the input shaft of the planetary gear increaser 200 may be rigidly connected; or a flexible coupling or the like may be used for flexible connection.
  • a brake disc or the like may be mounted between the output shaft of the helical bevel gear mechanism 100 and the input shaft of the planetary gear increaser 200.
  • a lifting mechanism for lifting the planetary gear speed increasing box 200 and the generator set 94 may be disposed in the tower 93; when the planetary gear speed increasing box fails, it may be driven from the spiral bevel gear mechanism After being disassembled, the planetary gear speed increasing box is slowly hoisted along the tower wall by the lifting mechanism in the tower until the bottom of the tower; during the installation of the fan, the planetary gear speed increasing box can be installed in a similar manner.
  • the hoisting mechanism may be constituted by a member such as a slide rail or a pulley.
  • Impeller inclination 5 degrees.
  • the gear module of the spiral bevel gear mechanism is 40, the number of teeth of the active spiral bevel gear is 51, the number of teeth of the first driven helical bevel gear is 21, and the number of teeth of the second driven spiral bevel gear is 30;
  • the first stage planetary gear mechanism of the planetary gear increaser has a modulus of 16, the first planetary gear has a number of teeth 37, the first planetary gear has a number of five, and the first ring gear has a number of teeth of 108, and the first sun gear The number of teeth is 32;
  • the modulus of the second stage planetary gear mechanism is 10, the number of teeth of the second planetary gear is 45, the number of the second planetary gears is 3, the number of teeth of the second ring gear is 118, and the number of teeth of the second sun gear is 23;
  • the total transmission ratio of the transmission mechanism is 100.
  • the impeller inclination angle is 4. 9885
  • the rated rotation speed of the impeller is set to 12 rpm, and then transmitted to the generator set through the transmission structure.
  • the upper speed is about 1200 rpm, which meets the design requirements.
  • the wind turbine transmission structure of the present invention increases the power transmission capability through the large-diameter spiral bevel gear mechanism and adopts the power splitting and recombination mode, and the number of torques acting on the planetary gear speed increase box after increasing the speed.
  • the reduction of the times greatly reduces the contact stress of the tooth surface and the bending stress of the tooth root, reduces the failure rate of the transmission structure, and improves the reliability of the transmission structure;
  • the spiral bevel gear mechanism and the planetary gear speed increase box are structurally mutually Independently, the planetary gear speed increaser and generator set are placed in the tower to facilitate the disassembly and maintenance of the transmission structure, thereby reducing the maintenance cost of the transmission structure.
  • Embodiment 2 Embodiment 2
  • the structure and the principle of the first embodiment are basically the same as those of the first embodiment. The difference is that, as shown in FIG. 2, the first driven spiral bevel gear 102 is fixedly provided with a first thrust plate 104, and the second driven device A second thrust plate 105 is fixedly disposed on the spiral bevel gear 103; a corresponding annular groove 106 is disposed on an end surface of the active spiral bevel gear 101, and edges of the first thrust plate 104 and the second thrust plate 105 Rotatingly snapped into the annular groove 106.
  • the first thrust disc 104 cooperates with the annular groove 106 to offset the axial force on the first driven spiral bevel gear 102; the second thrust disc 105 cooperates with the annular groove 106 to offset The axial force on the second driven spiral bevel gear 103; thus, it is possible to omit the provision of the thrust bearing on the corresponding rotating shaft to reduce the cost. Even if a thrust bearing is provided on the corresponding shaft, the thrust bearing can be prevented from being subjected to a large axial force, thereby increasing its service life.
  • the side circumferential surfaces of the first thrust disc 104 and the second thrust disc 105 are tapered surfaces; the cross section of the annular groove 106 and the thrust disc 104, The shape of the side peripheral surface of 105 corresponds to the same.
  • the input shaft of the spiral bevel gear mechanism 100 forms an angle with the horizontal plane, that is, the spiral bevel gear machine
  • the input shaft and the output shaft of the structure 100 have an intersection angle (the intersection angle is a complementary angle of the angle), and therefore, the diameter of the first thrust disc 104 is smaller than the diameter of the second thrust disc 105.
  • the thrust plate can be fixedly coupled to the corresponding driven helical bevel gear by bolts.
  • the structure and the principle of the first embodiment are basically the same as those of the first embodiment.
  • the difference is that, in the first embodiment, the planetary gear speed increasing box is composed of a two-stage planetary gear mechanism; and in this embodiment, the planet The gear speed increaser consists of a primary planetary gear mechanism and a primary fixed axle train (not shown).
  • the planetary gear mechanism includes a ring gear, a sun gear and a planet carrier, and the planet carrier is provided with a plurality of planet wheels meshing with the ring gear and the sun gear; the planet carrier is coupled to the rotating shaft of the first driven spiral bevel gear, The ring gear is coupled to a rotating shaft of the second driven helical bevel gear, and the carrier and the ring gear together form an input end of the planetary gear speed increasing box; the sun gear is connected to the rotating shaft of the generator set through the fixed axle gear train, The output shaft of the fixed axle train constitutes the output of the planetary gearbox.

Abstract

一种风力发电机传动结构(1000),由设置在机仓(92)内的螺旋伞齿轮机构(100)和设置在塔筒(93)内的行星齿轮增速箱(200)组成;叶轮(91)连接于螺旋伞齿轮机构(100)的输入轴,螺旋伞齿轮机构的输出轴连接于行星齿轮增速箱(200)的输入轴,行星齿轮增速箱(200)的输出轴连接于发电机组(94);螺旋伞齿轮机构(100)输出轴和行星齿轮增速箱(200)输入轴同轴且与塔筒(93)轴线方向相同。该传动结构(1000)可靠性高、故障率低,便于拆装和维修。

Description

一种风力发电机传动结构 技术领域 本发明是关于一种风力发电机, 尤其涉及一种易维护的动力分流式风力发电机传 动结构。 背景技术 风力发电机中的传动链具有传动和增速的作用, 是风机的核心部分。 风力发电机 传动链的结构形式种类繁多, 从传动方式来看, 可以分为行星齿轮传动、 平行轴齿轮 传动, 混合式传动 (即行星齿轮和平行轴混合传动) 。 混合式传是目前使用最广泛的 结构类型;在混合式传动结构中,一般采用两级行星传动和一级定轴进行传动和增速, 整个传动结构布置在位于塔筒上方的机仓内。
由于风机受无规律变向和变负荷的风力作用, 且常年经受极端温差的影响, 加之 所处的自然环境, 安装在机仓狭小空间内的整个传动结构, 一旦出现故障, 修复将非 常困难; 因此要求传动结构体积小, 重量轻, 性能优良, 运行可靠, 故障率低; 尤其 对其可靠性和使用寿命的要求都比一般机械高很多。
目前市场上的风机可靠性并不理想, 由传动结构尤其是齿轮箱故障或损坏引起的 机组停运事件时有发生, 由此带来非常严重的直接损失和间接损失, 维修人员投入维 修工作的工作量也不断增加。 这主要是由于风电机组单机容量的不断增大, 传动结构 的设计技术相对滞后而造成的。
有数据显示, 风机故障率最高的是传动结构, 传动结构中最容易发生故障的是齿 轮箱、 主轴及主轴承。 如果传动结构出现故障, 那么维修费用是巨大的。 由于风机本 身的结构限制, 要排除故障需要将叶轮和整个机仓拆卸下来, 排除故障后, 再重新安 装回原来的位置;整个维修过程非常复杂,需要专用的起重设备和吊装工具才能完成; 尤其是海上风机, 拆装一次的费用能够达到上千万元。
为了降低故障率, 减少维修成本, 多数厂家试图采用更合理的传动结构布置方式 来提高齿轮箱、 主轴及主轴承的可靠性。 风机传动结构常见的形式按主轴的支撑方式 有: "两点式"支撑、 "三点式"支撑及 "一点式"支撑等。 其中 "两点式"支撑结 构中, 主轴是由两个轴承支撑, 一个轴向固定, 另一个轴向浮动, 主轴仅将转矩传至 齿轮箱。 "一点式"支撑结构中, 是单个轴承支撑, 传动箱体与主支架一体化设计。 这几种形式有各自的特点, 配合特定的机型, 在一定程度上使故障率有所降低。 但是 这几种形式的布置并没有从根本上减少维修成本。 这是因为, 一方面, 传动结构 (以 齿轮箱为主) 的设计寿命为 20年, 实际使用寿命并不能达到设计使用年限, 使传动 结构的维护甚至更换都很频繁。 另一方面, 目前传动结构的拆装很复杂, 需要动用专 用的设备, 花费巨大的人力财力。
由此, 本发明人凭借多年从事相关行业的经验与实践, 提出一种风力发电机传动 结构, 以克服现有技术的缺陷。 发明内容 本发明的目的在于提供一种风力发电机传动结构, 以便于该传动结构的拆装和维 修, 降低传动结构的维护成本。
本发明的另一目的在于提供一种风力发电机传动结构, 该传动结构采用动力分流 再合流的方式进行动力传递, 以降低传动结构的故障率, 提高传动结构的可靠性。
本发明的目的是这样实现的, 一种风力发电机传动结构, 所述风力发电机包括有 塔筒和设置于塔筒顶部的机仓; 所述传动结构由设置在机仓内的螺旋伞齿轮机构和设 置在塔筒内的行星齿轮增速箱构成; 风力发电机的叶轮连接于螺旋伞齿轮机构的输入 轴, 螺旋伞齿轮机构的输出轴连接于行星齿轮增速箱的输入轴, 行星齿轮增速箱的输 出轴连接于发电机组的转轴; 所述螺旋伞齿轮机构的输出轴和行星齿轮增速箱的输入 轴同轴设置, 且与塔筒轴线方向相同;
所述螺旋伞齿轮机构由一主动螺旋伞齿轮和与该主动螺旋伞齿轮啮合的第一从 动螺旋伞齿轮、 第二从动螺旋伞齿轮构成; 第一从动螺旋伞齿轮的转轴同轴穿设于第 二从动螺旋伞齿轮的转轴内, 并共同构成所述螺旋伞齿轮机构的输出轴。
在本发明的一较佳实施方式中, 所述行星齿轮增速箱由两级行星齿轮机构构成。 在本发明的一较佳实施方式中, 所述第一级行星齿轮机构包括有第一齿圈、 第一 太阳轮和第一行星架, 第一行星架上设有多个与第一齿圈和第一太阳轮啮合的第一行 星轮; 所述第二级行星齿轮机构包括有第二齿圈、 第二太阳轮和第二行星架, 第二行 星架上设有多个与第二齿圈和第二太阳轮啮合的第二行星轮; 所述第一行星架连接于 第一从动螺旋伞齿轮的转轴, 所述第一齿圈连接于第二从动螺旋伞齿轮的转轴, 所述 第一太阳轮连接于第二行星架, 第二齿圈固定设置, 所述第二太阳轮连接于发电机组 的转轴; 第一行星架和第一齿圈共同构成行星齿轮增速箱的输入端, 第二太阳轮构成 行星齿轮增速箱的输出端。
在本发明的一较佳实施方式中, 所述行星齿轮增速箱由一级行星齿轮机构和一级 定轴轮系构成。
在本发明的一较佳实施方式中,所述行星齿轮机构包括有齿圈、太阳轮和行星架, 行星架上设有多个与齿圈和太阳轮啮合的行星轮; 所述行星架连接于第一从动螺旋伞 齿轮的转轴, 所述齿圈连接于第二从动螺旋伞齿轮的转轴, 行星架和齿圈共同构成行 星齿轮增速箱的输入端; 所述太阳轮通过所述定轴轮系连接于发电机组的转轴, 定轴 轮系的输出轴构成行星齿轮增速箱的输出端。
在本发明的一较佳实施方式中, 所述螺旋伞齿轮机构的输入轴与水平面构成一夹 角, 所述夹角为风力发电机叶轮的倾角。
在本发明的一较佳实施方式中, 所述第一从动螺旋伞齿轮上固定设有第一止推 盘, 所述第二从动螺旋伞齿轮上固定设有第二止推盘; 所述主动螺旋伞齿轮的端面上 设有相应的环形槽, 所述第一止推盘和第二止推盘的边缘转动地卡设于环形槽内。
在本发明的一较佳实施方式中, 所述第一止推盘和第二止推盘的侧周面为锥形 面; 所述环形槽的横截面与止推盘的侧周面形状对应相同。
在本发明的一较佳实施方式中, 所述塔筒内设有吊装行星齿轮增速箱和发电机组 的吊装机构。
在本发明的一较佳实施方式中, 所述吊装机构由滑轨或滑轮构成。
在本发明的一较佳实施方式中, 螺旋伞齿轮机构的输出轴与行星齿轮增速箱的输 入轴为柔性连接。
在本发明的一较佳实施方式中, 螺旋伞齿轮机构的输出轴与行星齿轮增速箱的输 入轴之间安装有制动盘。
由上所述, 本发明风力发电机传动结构通过大直径螺旋伞齿轮机构并采用动力分 流再合流的方式, 提高了动力传递能力, 使增速后作用在行星齿轮增速箱上的转矩数 倍的减小,大大降低了齿面的接触应力和齿根的弯曲应力,降低了传动结构的故障率, 提高了传动结构的可靠性; 螺旋伞齿轮机构与行星齿轮增速箱在结构上相互独立, 行 星齿轮增速箱和发电机组设置在塔筒内, 便于传动结构的拆装和维修, 从而降低了传 动结构的维护成本。 附图说明 以下附图仅旨在于对本发明做示意性说明和解释,并不限定本发明的范围。其中: 图 1 : 为本发明风力发电机传动结构的示意图。
图 2 : 为本发明中设置止推盘的结构示意图。 具体实施方式 为了对本发明的技术特征、 目的和效果有更加清楚的理解, 现对照附图说明本发 明的具体实施方式。
实施例一
如图 1所示, 本发明提出一种风力发电机传动结构 1000, 所述风力发电机包括有 塔筒 93和设置于塔筒 93顶部的机仓 92 ;所述传动结构 1000由设置在机仓 92内的螺 旋伞齿轮机构 100和设置在塔筒 93内的行星齿轮增速箱 200构成; 风力发电机的叶 轮 91连接于螺旋伞齿轮机构 100的输入轴, 螺旋伞齿轮机构 100的输出轴连接于行 星齿轮增速箱 200的输入轴, 行星齿轮增速箱 200的输出轴连接于发电机组 94的转 轴; 所述螺旋伞齿轮机构 100的输出轴、 行星齿轮增速箱 200的输入轴和输出轴同轴 设置, 且与塔筒 93轴线方向相同。
由上所述, 本发明风力发电机传动结构采用大直径螺旋伞齿轮机构作为第一级传 动, 由行星齿轮增速箱做为第二级传动, 大直径螺旋伞齿轮机构动力传递能力强, 使 增速后作用在行星齿轮增速箱上的转矩数倍的减小, 由此, 可以将行星齿轮增速箱制 作得更加小巧和紧凑; 螺旋伞齿轮机构与行星齿轮增速箱在结构上相互独立, 行星齿 轮增速箱和发电机组设置在塔筒内, 便于传动结构的拆装和维修, 从而降低了传动结 构的维护成本。
进一步, 如图 1所示, 在本实施例中, 所述螺旋伞齿轮机构 100由一主动螺旋伞 齿轮 101和与该主动螺旋伞齿轮 101啮合的第一从动螺旋伞齿轮 102、 第二从动螺旋 伞齿轮 103构成;第一从动螺旋伞齿轮 102的转轴同轴穿设于第二从动螺旋伞齿轮 103 的转轴内, 并共同构成所述螺旋伞齿轮机构 100的输出轴;
所述行星齿轮增速箱 200由两级行星齿轮机构 201和 202构成; 所述第一级行星 齿轮机构 201包括有第一齿圈 2011、 第一太阳轮 2012和第一行星架 2013, 第一行星 架 2013上设有多个与第一齿圈和第一太阳轮啮合的第一行星轮 2014 ; 所述第二级行 星齿轮机构 202包括有第二齿圈 2021、 第二太阳轮 2022和第二行星架 2023, 第二行 星架 2023上设有多个与第二齿圈和第二太阳轮啮合的第二行星轮 2024; 所述第一行 星架 2013连接于第一从动螺旋伞齿轮 102的转轴, 所述第一齿圈 2011连接于第二从 动螺旋伞齿轮 103的转轴, 所述第一太阳轮 2012连接于第二行星架 2023, 第二齿圈 2021固定设置, 所述第二太阳轮 2022连接于发电机组 94的转轴; 在本实施例中, 第 一行星架 2013和第一齿圈 2011共同构成行星齿轮增速箱 200的输入端, 第二太阳轮 2022构成行星齿轮增速箱 200的输出端。
在本实施例中, 所述螺旋伞齿轮机构的输入轴与水平面构成一夹角, 所述夹角为 风力发电机叶轮 91的倾角; 叶轮 91产生的动力带动螺旋伞齿轮机构的输入轴, 输入 轴带动主动螺旋伞齿轮 101,主动螺旋伞齿轮 101驱动两个从动螺旋伞齿轮 102和 103 沿两个相反的方向转动; 两个从动螺旋伞齿轮 103和 102分别连接第一级行星齿轮机 构的第一齿圈和第一行星架, 使得第一齿圈和第一行星架反向转动, 此结构实现了动 力的分流, 第一行星架和第一齿圈再将动力合流到第一太阳轮; 第一太阳轮驱动第二 行星架转动, 进而通过第二太阳轮输出动力带动发电机组产生电能。 由于作用在螺旋 伞齿轮机构的输入轴上的转矩是巨大的, 而随着动力在传动结构上传递, 转矩逐渐变 小; 螺旋伞齿轮机构作为第一级传动结构采用动力分流的方式, 使得动力由两个从动 螺旋伞齿轮共同承担, 大大降低了其齿面的接触应力和齿根的弯曲应力。 经过第一级 传动结构的增速, 转矩已数倍的减小, 此时动力在行星齿轮增速箱进行合流; 由此, 能够降低传动结构的故障率, 提高传动结构的可靠性。
进一步, 在本实施例中, 螺旋伞齿轮机构 100的输出轴与行星齿轮增速箱 200的 输入轴可以为刚性连接; 也可以采用弹性联轴器等结构进行柔性连接。 螺旋伞齿轮机 构 100的输出轴与行星齿轮增速箱 200的输入轴之间也可以安装有制动盘等部件。
在本实施例中, 在所述塔筒 93内可以设置用于吊装行星齿轮增速箱 200和发电 机组 94 的吊装机构; 当行星齿轮增速箱发生故障时, 可将其从螺旋伞齿轮机构上拆 卸下来,利用塔筒内的吊装机构将行星齿轮增速箱沿塔壁慢慢的吊下,直至塔筒底部; 风机装机过程中, 行星齿轮增速箱的安装也可采用相似的方式进行。 所述吊装机构可 由滑轨或滑轮等部件构成。
做为本实施例的一种具体实施方式, 下面以一种 3兆瓦上风向水平轴风力发电机 为例, 对本发明的传动结构及参数作出说明。
初步数据:
叶轮转矩均值: 2350 kNm;
叶轮的转速: 6_13rpm;
发电机组的额定转速: 1200rpm; 总的传动比: 100 ;
叶轮倾角: 5度。
螺旋伞齿轮机构的齿轮模数为 40, 主动螺旋伞齿轮的齿数为 51, 第一从动螺旋 伞齿轮的齿数为 21, 第二从动螺旋伞齿轮的齿数为 30 ;
行星齿轮增速箱的第一级行星齿轮机构的模数为 16, 第一行星轮的齿数为 37, 第一行星轮的个数为 5, 第一齿圈的齿数为 108, 第一太阳轮的齿数为 32 ;
第二级行星齿轮机构的模数为 10, 第二行星轮的齿数为 45, 第二行星轮的个数 为 3, 第二齿圈的齿数为 118, 第二太阳轮的齿数为 23 ;
按照上述设计完成后的数据进行计算, 该传动机构总的传动比为 100. 31, 叶轮倾 角为 4. 9885, 将叶轮的额定转速度设定为 12rpm, 则经过该传动结构, 传递到发电机 组上的转速约为 1200rpm, 满足设计要求。
由上所述, 本发明风力发电机传动结构通过大直径螺旋伞齿轮机构并采用动力分 流再合流的方式, 提高了动力传递能力, 使增速后作用在行星齿轮增速箱上的转矩数 倍的减小,大大降低了齿面的接触应力和齿根的弯曲应力,降低了传动结构的故障率, 提高了传动结构的可靠性; 螺旋伞齿轮机构与行星齿轮增速箱在结构上相互独立, 行 星齿轮增速箱和发电机组设置在塔筒内, 便于传动结构的拆装和维修, 从而降低了传 动结构的维护成本。 实施例二
本实施例与实施例一的结构和原理基本相同, 其区别在于如图 2所示, 所述第一 从动螺旋伞齿轮 102上固定设有第一止推盘 104, 所述第二从动螺旋伞齿轮 103上固 定设有第二止推盘 105 ; 所述主动螺旋伞齿轮 101的端面上设有对应的环形槽 106, 所述第一止推盘 104和第二止推盘 105的边缘转动地卡设于环形槽 106中。
所述第一止推盘 104与环形槽 106相配合, 可以抵消掉第一从动螺旋伞齿轮 102 上的轴向力; 所述第二止推盘 105与环形槽 106相配合, 可以抵消掉第二从动螺旋伞 齿轮 103上的轴向力; 由此可以省略在相应转轴上设置推力轴承以降低成本。 即使在 相应转轴上设置推力轴承的情况下, 也能够避免推力轴承承受较大轴向力, 从而提高 其使用寿命。
如图 2所示, 在本实施例中, 所述第一止推盘 104和第二止推盘 105的侧周面为 锥形面; 所述环形槽 106的横截面与止推盘 104、 105的侧周面形状对应相同。
由于, 所述螺旋伞齿轮机构 100的输入轴与水平面构成一夹角, 即螺旋伞齿轮机 构 100的输入轴与输出轴之间具有是相交角 (该相交角为所述夹角的补角) , 因此, 所述第一止推盘 104的直径小于第二止推盘 105的直径。
在本实施例中, 止推盘可由螺栓固定连接于相应的从动螺旋伞齿轮上。
本实施例的其他结构、 工作原理和有益效果与实施一相同, 在此不再赘述。 实施例三
本实施例与实施例一的结构和原理基本相同, 其区别在于, 在实施例一中, 所述 行星齿轮增速箱是由两级行星齿轮机构构成的; 而本实施例中, 所述行星齿轮增速箱 由一级行星齿轮机构和一级定轴轮系 (图中未示出) 构成。
所述行星齿轮机构包括有齿圈、 太阳轮和行星架, 行星架上设有多个与齿圈和太 阳轮啮合的行星轮; 所述行星架连接于第一从动螺旋伞齿轮的转轴, 所述齿圈连接于 第二从动螺旋伞齿轮的转轴, 行星架和齿圈共同构成行星齿轮增速箱的输入端; 所述 太阳轮通过所述定轴轮系连接于发电机组的转轴, 定轴轮系的输出轴构成行星齿轮增 速箱的输出端。
本实施例的其他结构、 工作原理和有益效果与实施一相同, 在此不再赘述。 以上所述仅为本发明示意性的具体实施方式, 并非用以限定本发明的范围。 任何 本领域的技术人员, 在不脱离本发明的构思和原则的前提下所作出的等同变化与修 改, 均应属于本发明保护的范围。

Claims

权利要求书
1、 一种风力发电机传动结构, 所述风力发电机包括有塔筒和设置于塔筒顶部的 机仓; 其特征在于: 所述传动结构由设置在机仓内的螺旋伞齿轮机构和设置在塔筒内 的行星齿轮增速箱构成; 风力发电机的叶轮连接于螺旋伞齿轮机构的输入轴, 螺旋伞 齿轮机构的输出轴连接于行星齿轮增速箱的输入轴, 行星齿轮增速箱的输出轴连接于 发电机组的转轴; 所述螺旋伞齿轮机构的输出轴和行星齿轮增速箱的输入轴同轴设 置, 且与塔筒轴线方向相同;
所述螺旋伞齿轮机构由一主动螺旋伞齿轮和与该主动螺旋伞齿轮啮合的第一从 动螺旋伞齿轮、 第二从动螺旋伞齿轮构成; 第一从动螺旋伞齿轮的转轴同轴穿设于第 二从动螺旋伞齿轮的转轴内, 并共同构成所述螺旋伞齿轮机构的输出轴。
2、 如权利要求 1 所述的风力发电机传动结构, 其特征在于: 所述行星齿轮增速 箱由两级行星齿轮机构构成。
3、 如权利要求 2所述的风力发电机传动结构, 其特征在于: 所述第一级行星齿 轮机构包括有第一齿圈、 第一太阳轮和第一行星架, 第一行星架上设有多个与第一齿 圈和第一太阳轮啮合的第一行星轮; 所述第二级行星齿轮机构包括有第二齿圈、 第二 太阳轮和第二行星架, 第二行星架上设有多个与第二齿圈和第二太阳轮啮合的第二行 星轮; 所述第一行星架连接于第一从动螺旋伞齿轮的转轴, 所述第一齿圈连接于第二 从动螺旋伞齿轮的转轴, 所述第一太阳轮连接于第二行星架, 第二齿圈固定设置, 所 述第二太阳轮连接于发电机组的转轴; 第一行星架和第一齿圈共同构成行星齿轮增速 箱的输入端, 第二太阳轮构成行星齿轮增速箱的输出端。
4、 如权利要求 1 所述的风力发电机传动结构, 其特征在于: 所述行星齿轮增速 箱由一级行星齿轮机构和一级定轴轮系构成。
5、 如权利要求 4所述的风力发电机传动结构, 其特征在于: 所述行星齿轮机构 包括有齿圈、 太阳轮和行星架, 行星架上设有多个与齿圈和太阳轮啮合的行星轮; 所 述行星架连接于第一从动螺旋伞齿轮的转轴, 所述齿圈连接于第二从动螺旋伞齿轮的 转轴, 行星架和齿圈共同构成行星齿轮增速箱的输入端; 所述太阳轮通过所述定轴轮 系连接于发电机组的转轴, 定轴轮系的输出轴构成行星齿轮增速箱的输出端。
6、 如权利要求 1 所述的风力发电机传动结构, 其特征在于: 所述螺旋伞齿轮机 构的输入轴与水平面构成一夹角, 所述夹角为风力发电机叶轮的倾角。
7、 如权利要求 1 所述的风力发电机传动结构, 其特征在于: 所述第一从动螺旋 伞齿轮上固定设有第一止推盘, 所述第二从动螺旋伞齿轮上固定设有第二止推盘; 所 述主动螺旋伞齿轮的端面上设有相应的环形槽, 所述第一止推盘和第二止推盘的边缘 转动地卡设于环形槽内。
8、 如权利要求 7所述的风力发电机传动结构, 其特征在于: 所述第一止推盘和 第二止推盘的侧周面为锥形面; 所述环形槽的横截面与止推盘的侧周面形状对应相 同。
9、 如权利要求 1 所述的风力发电机传动结构, 其特征在于: 所述塔筒内设有吊 装行星齿轮增速箱和发电机组的吊装机构。
10、 如权利要求 9所述的风力发电机传动结构, 其特征在于: 所述吊装机构由滑 轨或滑轮构成。
11、 如权利要求 1所述的风力发电机传动结构, 其特征在于: 螺旋伞齿轮机构的 输出轴与行星齿轮增速箱的输入轴为柔性连接。
12、 如权利要求 1所述的风力发电机传动结构, 其特征在于: 螺旋伞齿轮机构的 输出轴与行星齿轮增速箱的输入轴之间安装有制动盘。
PCT/CN2014/072512 2014-02-25 2014-02-25 一种风力发电机传动结构 WO2015127589A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/072512 WO2015127589A1 (zh) 2014-02-25 2014-02-25 一种风力发电机传动结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/072512 WO2015127589A1 (zh) 2014-02-25 2014-02-25 一种风力发电机传动结构

Publications (1)

Publication Number Publication Date
WO2015127589A1 true WO2015127589A1 (zh) 2015-09-03

Family

ID=54008113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/072512 WO2015127589A1 (zh) 2014-02-25 2014-02-25 一种风力发电机传动结构

Country Status (1)

Country Link
WO (1) WO2015127589A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109372969A (zh) * 2018-10-24 2019-02-22 明阳智慧能源集团股份公司 一种超紧凑半直驱式功率分流差动的风电齿轮箱传动结构
WO2021086179A1 (en) 2019-10-28 2021-05-06 Vervent B.V. Wind turbine
NL2024113B1 (en) * 2019-10-28 2021-07-19 Vervent B V Wind turbine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5222924A (en) * 1990-01-31 1993-06-29 Chan Shin Over-drive gear device
JP2004162652A (ja) * 2002-11-14 2004-06-10 Nsk Ltd 風力発電装置
CN101649810A (zh) * 2009-08-25 2010-02-17 江苏泰隆减速机股份有限公司 风力发电变桨减速装置
EP2236823A1 (en) * 2007-11-16 2010-10-06 Gamesa Innovation & Technology, S.L. Power transmission with high gear ratio, intended for a wind turbine
CN102072109A (zh) * 2009-11-25 2011-05-25 吴小平 无轴承侧压变速箱及双转子电机的风电偏航方法
CN103835892A (zh) * 2014-02-25 2014-06-04 北京巴付勒传动技术有限公司 一种风力发电机传动结构
CN203756446U (zh) * 2014-02-25 2014-08-06 北京巴付勒传动技术有限公司 一种风力发电机传动结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5222924A (en) * 1990-01-31 1993-06-29 Chan Shin Over-drive gear device
JP2004162652A (ja) * 2002-11-14 2004-06-10 Nsk Ltd 風力発電装置
EP2236823A1 (en) * 2007-11-16 2010-10-06 Gamesa Innovation & Technology, S.L. Power transmission with high gear ratio, intended for a wind turbine
CN101649810A (zh) * 2009-08-25 2010-02-17 江苏泰隆减速机股份有限公司 风力发电变桨减速装置
CN102072109A (zh) * 2009-11-25 2011-05-25 吴小平 无轴承侧压变速箱及双转子电机的风电偏航方法
CN103835892A (zh) * 2014-02-25 2014-06-04 北京巴付勒传动技术有限公司 一种风力发电机传动结构
CN203756446U (zh) * 2014-02-25 2014-08-06 北京巴付勒传动技术有限公司 一种风力发电机传动结构

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109372969A (zh) * 2018-10-24 2019-02-22 明阳智慧能源集团股份公司 一种超紧凑半直驱式功率分流差动的风电齿轮箱传动结构
WO2021086179A1 (en) 2019-10-28 2021-05-06 Vervent B.V. Wind turbine
WO2021086178A1 (en) 2019-10-28 2021-05-06 Vervent B.V. Wind turbine
NL2024113B1 (en) * 2019-10-28 2021-07-19 Vervent B V Wind turbine

Similar Documents

Publication Publication Date Title
US8198749B2 (en) Wind turbine generator
US20170175717A1 (en) Wind turbine with a modular drive train
JP5474866B2 (ja) 風力発電設備に使用する減速装置
EP2604857B1 (en) A modular gear unit for a wind turbine
CN202545696U (zh) 一种大功率两级行星增速箱
CN203756446U (zh) 一种风力发电机传动结构
CN202326028U (zh) 一种多输出风力发电机组
WO2015127589A1 (zh) 一种风力发电机传动结构
US10018182B2 (en) Turbine driven by wind or motor and method for generating electricity
CN103835892B (zh) 一种风力发电机传动结构
JP2019526012A (ja) 風力タービン用のナセル及びロータ並びに方法
CN109386434B (zh) 一种紧凑型半直驱风电齿轮箱多轴功率分流传动结构
US20190383359A1 (en) Wind turbine with two-stage star compound gear train
US20130343889A1 (en) Friction Wheel Drive Train for a Wind Turbine
CN113803216B (zh) 风力发电机组
CN108612625A (zh) 一种带驱动盘的变桨装置
US20130294916A1 (en) Inverted Tooth Silent Drive Chain for Wind Turbine Powertrain Applications
CN101634279B (zh) 同体双轴双风叶风能机
CN216131348U (zh) 一种采用非对称齿轮设计的风电齿轮箱
KR101215481B1 (ko) 풍력발전장치용 기어트레인
TW201237264A (en) Power transmission and wind turbine having the same
CN203822550U (zh) 风力发电机传动装置及风力发电机
CN216131349U (zh) 齿轮箱多分流平行传动结构
WO2024083245A1 (zh) 一种风电机平行级中速轴轴系连接结构及轴系
TW201346130A (zh) 風機之單級大比例增速變速箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14884111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 02.01.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14884111

Country of ref document: EP

Kind code of ref document: A1