WO2015125953A1 - 植物生長調節剤及び植物生長調節方法 - Google Patents
植物生長調節剤及び植物生長調節方法 Download PDFInfo
- Publication number
- WO2015125953A1 WO2015125953A1 PCT/JP2015/054952 JP2015054952W WO2015125953A1 WO 2015125953 A1 WO2015125953 A1 WO 2015125953A1 JP 2015054952 W JP2015054952 W JP 2015054952W WO 2015125953 A1 WO2015125953 A1 WO 2015125953A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plant growth
- molecular weight
- plant
- test
- low molecular
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N43/00—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
- A01N43/02—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms
- A01N43/04—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom
- A01N43/14—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom six-membered rings
- A01N43/16—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom six-membered rings with oxygen as the ring hetero atom
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
Definitions
- the present invention relates to a plant growth regulator and a plant growth regulation method.
- crustacean shell powders such as shrimp and crabs can be applied to field soil to improve soil and prevent crop damage.
- attempts have been made to actively use shells by forming unions in specific areas. It is known that this shell effect is derived from the chitin contained in the shell.
- Patent Document 1 proposes a plant growth promoter containing chitin calcium obtained by deproteinization from chitin as an active ingredient.
- Patent Document 2 discloses a plant vital agent containing chitin oligosaccharide obtained by partial hydrolysis of chitin with an acid or an enzyme and at least one selected from chitosan, chitosan oligosaccharide and salts thereof. Proposed.
- Patent Document 3 proposes a plant disease control agent containing, as an active ingredient, low molecular weight chitin having a number average molecular weight of 3,000 to 50,000 obtained by hydrolyzing chitin.
- JP-A-8-157310 Japanese Patent Laid-Open No. 9-143013 JP 2004-323460 A
- the plant growth promoter described in Patent Document 1 contains high-molecular-weight chitin calcium obtained by deproteinization from chitin, the chitin calcium is expected to be decomposed by microorganisms in the soil.
- the plant vitality agent described in Patent Document 2 is a phytoalexin-inducing activity (elicitor activity) possessed by chitin oligosaccharides, and against plant pathogenic bacteria possessed by at least one selected from chitosan, chitosan oligosaccharides and salts thereof.
- the antibacterial activity acts synergistically to provide an excellent disease resistance imparting effect and growth promoting effect (paragraph 0012 of Patent Document 2).
- the chitin oligosaccharide plant growth itself The action and effect on the surface was poor (see the results of Comparative Example 3 of Patent Document 2).
- the plant disease control agent described in Patent Document 3 is intended for disease control, and has not yet found an action effect on plant growth itself.
- the object of the present invention is to provide an excellent plant growth regulator and a method for regulating plant growth using low molecular weight chitin in view of the above prior art.
- the plant growth regulator of the present invention is characterized by containing, as an active ingredient, low molecular weight chitin having a number average molecular weight of 2,000 to 50,000 obtained by hydrolyzing chitin.
- the plant growth regulator of the present invention is preferably used for plants of Brassicaceae, Eggplant, Compositae, Rose, Cucurbitaceae, Gramineae, Amaryllidaceae, Seriaceae, Ginger, or Legumes.
- the plant growth regulating method of the present invention is characterized by applying the plant growth regulating agent to a plant.
- the plant growth regulating method of the present invention it is preferable to apply the plant growth regulating agent to the soil where the plant grows.
- the plant growth regulator it is preferable to apply the plant growth regulator to plant stems and leaves.
- a low molecular weight chitin having a number average molecular weight of 2,000 to 50,000 obtained by hydrolyzing chitin is used as an active ingredient, so that it has an excellent effect of controlling plant growth. Specifically, it is excellent in the effect of promoting the growth of the plant and increasing the yield, or promoting the hatching of the plant and increasing the yield. Moreover, it is excellent in the effect of improving the taste of the harvested plant or increasing the functional component.
- the low molecular weight chitin which is an active ingredient of the plant growth regulator of the present invention is obtained by hydrolyzing chitin prepared by a conventional method from crustacean shells such as crabs and shrimps with an acid or an enzyme.
- a chitin degradation product having an average molecular weight of 2,000 to 50,000, preferably a number average molecular weight of 2,500 to 20,000.
- the number average molecular weight can be measured, for example, by size exclusion chromatography using pullulan as a standard substance.
- Such a low molecular weight chitin can be prepared, for example, as follows. That is, raw material chitin is dispersed in about 3 to 8 times concentrated hydrochloric acid and decomposed at 40 ° C. for 10 to 20 minutes. Concentrated hydrochloric acid and an equal amount of water were added to stop the reaction, neutralized with alkali, and then filtered to recover the residue. If necessary, an excipient such as dextrin was added as appropriate, and dried. Low molecular weight chitin can be obtained.
- the plant growth regulator of the present invention may be composed only of the low molecular weight chitin having the above molecular weight, and may contain other components other than the low molecular weight chitin having the above molecular weight.
- solid fertilizers such as silica, diatomaceous earth, talc, calcium carbonate, zeolite, water-soluble fertilizers such as urea, ammonium sulfate, ammonium sulfate, phosphoric acid, salt potassium, calcium, zinc, iron,
- Micronutrients such as boric acid, copper, manganese, and vitamin C, and amino acids and nucleic acids such as valine, glutamic acid, aspartic acid, lysine, alanine, cystine, glycine, isoleucine, proline, and adenine can be included.
- the content of the low molecular weight chitin having the molecular weight in the plant growth regulator is preferably 1 to 100% by mass, more preferably 10 to 80% by mass in terms of solid content.
- the form of the plant growth regulator may be any form such as powder, granule, liquid, or dispersed liquid in which a powder is dispersed in a solvent such as water.
- the plant growth regulator of the present invention can regulate plant growth by applying it to plants. Specifically, the growth of the plant can be promoted to increase the yield, or the hatching of the plant can be promoted to increase the yield. It should be noted that the promotion of plant growth and the increase in yield means an increase in yield per plant edible fruit or strain, and an increase in plant height that leads to plant head is not preferred.
- the technical significance of plant head prevention and hatching is described as follows. In vegetable cultivation, the use of cell molded seedlings is increasing in order to protect young plants from low temperatures, high temperatures, dryness, rainfall, strong winds, pests and the like. In the case of cell-molded seedlings, seedlings are grown at a high density, so that the length of the branches and stems of the plant is likely to increase.
- a sprinkler As a means for irrigation or water injection, a sprinkler, a watering nozzle, a watering tube, a sprinkler, an irrigator, or the like can be used.
- a power sprayer As a means for spraying and spraying, a power sprayer, a shoulder sprayer, a broadcaster, a sprayer, a manned or unmanned helicopter, a smoke sprayer, a hand spray, and the like can be used.
- a low molecular weight chitin having the above molecular weight prepared in a powder form may be applied to a plant as it is, but from the viewpoint of workability and effect efficiency, the powder form It is preferable to use those in the form of a dispersion in which water is dispersed in a solvent such as water.
- the low molecular weight chitin having the above molecular weight is dispersed in a solvent such as water, and is preferably 10 to 1000 mg / L, more preferably 50 to 700 mg / L, and still more preferably 125 to 500 mg / L in terms of the low molecular weight chitin.
- a dispersion liquid having a concentration of L can be prepared and applied to plants.
- the low molecular weight chitin having the above molecular weight may be applied to a plant alone, or may be applied to a plant together with other components other than the low molecular weight chitin having the above molecular weight.
- solid fertilizers such as silica, diatomaceous earth, talc, calcium carbonate, zeolite, water-soluble fertilizers such as urea, ammonium sulfate, ammonium sulfate, phosphoric acid, salt potassium, calcium, zinc, iron
- micronutrients such as boric acid, copper, manganese and vitamin C, and amino acids and nucleic acids such as valine, glutamic acid, aspartic acid, lysine, alanine, cystine, glycine, isoleucine, proline and adenine.
- it can be applied together with a precipitation inhibitor, a spreading agent, a preservative, a thickener, an excipient and the
- the amount applied to the plant differs depending on the type of plant, the application method, the application time, etc., and cannot be specified unconditionally.
- 1 The standard is preferably 8 to 200 g, more preferably 10 to 160 g, and still more preferably 20 to 80 g per square meter in terms of low molecular weight chitin.
- it is preferably 0.1 to 10 g in terms of low molecular weight chitin of the above molecular weight per 1 square meter of the area where the plant grows. More preferably, 0.2 to 8 g, and still more preferably 1.5 to 6 g.
- the above molecular weight is converted into low molecular weight chitin per square meter of the soil where the plant grows.
- the standard is 0.05 to 100 mg, more preferably 0.2 to 80 mg, and still more preferably 1 to 10 mg.
- the standard is 5 to 300 mg, more preferably 10 to 200 mg, and still more preferably 40 to 100 mg.
- the plant growth regulator of the present invention is applied to soil and culture soil where plants grow, and to plant stocks, compared to application to plant foliage.
- the application to the foliage of the plant tends to have a higher effect of hatching the plant than the application to the soil or culture soil where the plant grows or the application to the plant stock. Therefore, in a preferred embodiment of the present invention, as a regular use, it is applied to the soil or culture soil where the plant grows, or applied to the plant stock, to promote the growth of the plant and to increase the yield.
- the plant to which the plant growth regulator of the present invention is applied is not particularly limited in its genus, but typically, the Brassicaceae, Eggplant family, Asteraceae, Rosaceae, Cucurbitaceae, Gramineae, Amaryllidaceae , Celery family, ginger family, legume family, and the like. More specifically, for example, plants of the Brassicaceae genus Brassica such as kale, cauliflower, cabbage, broccoli, rape, Mizuna, turnip, Nozawana, Komatsuna, Chinese cabbage, chingensai, and plants of the genus Brassicaceae such as radish, Japanese radish.
- plants of the solanaceous genus such as tomato, eggplant, and potato, plants of the genus Singyaceae such as sengiku, rose strawberry genus such as strawberry, cucumber genus such as melon, cucumber and watermelon Grainsaceae, such as rice, Amaryllidaceae, such as leek, onion, leek, scallop, garlic, and licorice, cerebral genus such as carrot, ginger genus such as ginger and ginger, pea
- legumes such as beans, bean seedlings, broad beans, green soybeans, etc. It is.
- the composition of the low molecular weight chitin powder obtained is shown in Table 1.
- the obtained low molecular weight chitin powder was used as it is or suspended in water to form a suspension (hereinafter referred to as low molecular weight chitin suspension) and used in the following test examples. Since the main component of the low molecular weight chitin suspension is water-insoluble, when applied to a plant or soil, it was used after thoroughly stirring to disperse the main component as evenly as possible.
- Example 1 (Effects on the yield of Komatsuna) A terrapot (inner diameter 11.5 cm, height 9.5 cm) was prepared in the greenhouse, and a parallel test of 2 pots per test section was performed. The soil sample was prepared by mixing peat moss / red bean medium grain / pearlite at a ratio of 4/3/3 and adjusting the pH to 5.9 with the clay lime. The pot was filled with 500 mL of test soil, and 1 g of Magnamp K (manufactured by Hyponex) was added and mixed well. Further, the low molecular weight chitin powder prepared in Production Example 1 was added in the predetermined amount shown in Table 2 and mixed well.
- Example 2 (Effects on tomato yield, sugar content and acidity) A plastic bowl (inner diameter: 34 cm, height: 30 cm) was prepared and used as a parallel test of 4 bowls per test section. In addition, the bowls in each test section were randomly arranged. A test soil mixed with coconut fiber, compost and the like was prepared and filled in a pot. Two tomato seedlings (variety: animo) were planted per pot and cultivated by an automatic liquid feeding culture system. At that time, a prescribed amount of TF full mix A and TF full mix B manufactured by Toyohashi Seed Co., Ltd. was supplied at a rate of 20 mL / min for 2 to 5 minutes per time.
- Example 3 (Effect on the yield of radish) A cell tray (5.0 cm ⁇ 5.0 cm) was prepared in the greenhouse, and two parallel tests were performed per test section. The cell tray was filled with commercially available vegetable soil, and radish seedlings (2 to 4 true leaves) grown in the house were planted. The test start date was a fixed planting date. Cultivation management during the test period was performed by a certain amount of irrigation when the soil surface was dried. After planting, 0.05 L of a low molecular weight chitin suspension prepared in a predetermined amount (8000 times suspension: 125 mg / L) shown in Table 4 was poured into the stock.
- NA-COS-Y (trade name, manufactured by Yaizu Suisan Chemical Co., Ltd.) (comparative zone 1), molecular weight 100, which is a chitin oligosaccharide mixture having a polymerization degree of 1 to 6 instead of low molecular weight chitin.
- Ten thousand or more chitin (comparative group 2) and commercially available liquid fertilizer (comparative group 3) were prepared in the predetermined amounts shown in Table 4 (comparative group 1: 4000 times suspension: chitin oligosaccharide 250 mg / L, comparative group 2: 4000 times suspended).
- Suspension chitin 250 mg / L, comparative group 3: 500-fold diluted solution of liquid fertilizer stock solution), and water was poured into the plant stock in the same manner as the test group. Water injection was performed at the start of the test and 5 days later, and was performed twice in total. A final survey was conducted 12 days after the start of the test. In the final survey, weighed the weight of the above-ground part (stems and leaves) and the underground part (root). This test was started on February 7, 2014, water injection was conducted on February 7 and February 12, and a final survey was conducted on February 19, 2014. In all the test sections, no obstacles due to the test materials or phytotoxicity due to foreign substances were confirmed. Table 4 shows the weight of the ground part and the underground part of each test section.
- Example 4 (Effect on yield of sengoku) A planter (53.5 cm ⁇ 28 cm) was prepared in the greenhouse, and a parallel test with 2 strains per test area was performed. The planter was filled with commercially available vegetable soil, and commercially available sengoku seedlings were planted. Cultivation management during the test period was carried out by irrigation with a certain amount when the soil surface was dried and fertilization (once / week) with a specified amount of commercial liquid fertilizer (Hyponex). After planting, 0.1 L of a low molecular weight chitin suspension prepared in a predetermined amount (4000 times suspension: 250 mg / L) shown in Table 5 was poured into the stock.
- Example 5 (Influence on Komatsuna Hatching) A terrapot (inner diameter 11.5 cm, height 9.5 cm) was prepared in the greenhouse, and a parallel test of 2 pots per test section was performed.
- the soil sample was prepared by mixing peat moss / red bean medium grain / pearlite at a ratio of 4/3/3 and adjusting the pH to 5.9 with the clay lime.
- the pot was filled with 500 mL of test soil, and 1 g of Magnamp K (manufactured by Hyponex) was added and mixed well. Twenty komatsuna seeds per pot were sown at equal intervals using tweezers. Cultivation management during the test period was always performed by irrigation.
- ⁇ Test Example 6> (Influence on hatching of tomato) A plastic bowl (inner diameter: 34 cm, height: 30 cm) was prepared, and a parallel test of 5 bowls per test section was performed. In addition, the bowls in each test section were randomly arranged. A test soil mixed with coconut fiber, compost and the like was prepared and filled in a pot. Two tomato seedlings (variety: animo) were planted per pot and cultivated by an automatic liquid feeding culture system. At that time, a prescribed amount of TF full mix A and TF full mix B manufactured by Toyohashi Seed Co., Ltd. was supplied at a rate of 20 mL / min for 2 to 5 minutes per time.
- Cultivation management of hormonal agents and pesticides during the test period was carried out according to customs. Ten days after planting, 80 mL of a low molecular weight chitin suspension prepared in a predetermined amount (8000 times suspension: 125 mg / L) shown in Tables 7 and 8 was sprayed on one strain so that the whole foliage was wet. Thereafter, spraying of the low molecular weight chitin suspension was performed every other week until the test was completed. The harvest amount, sugar content and acidity of the tomatoes at each stage were examined, and the internode length, stem diameter and internode length hatching rate for growth were investigated. The yield was determined by measuring the number and weight of all harvested tomatoes.
- the sugar content and acidity were measured by randomly selecting 4 fruits from each test section of each stage, preparing a juice. In this test, seedlings were planted on August 25, 2013, spraying of the test solution started on September 4, the second stage harvest on December 10, and the third stage on December 20 Harvested. In all the test sections, no obstacles due to the test materials or phytotoxicity due to foreign substances were confirmed.
- Table 7 shows the tomato yield, sugar content and acidity of each test section.
- Table 8 shows the internode length / stem diameter and the hatching rate of the internode length in each test section.
- Example 7 (Influence on the yield of strawberries) Commercially available strawberry seedlings were prepared in a greenhouse, and two parallel bowls were used per test section. In addition, cultivation management during the test period was performed by irrigation with a certain amount so that the soil surface would not dry. 0.25 L of a low molecular weight chitin suspension prepared in a predetermined amount shown in Table 9 (16000 times suspension: 62.5 mg / L) was poured into the stock. As a comparison plot, 500-fold diluted liquid fertilizer was poured into the stock. Thereafter, water injection of low molecular weight chitin was performed 6 times every other week. The fruits were harvested as appropriate, and the results were collected at 2 months from the start of the test, and the average weight per fruit was calculated.
- the melon fruits were harvested at about 2 months from the start of the test, and the final survey was conducted. This test was started on August 1, 2014. A low molecular weight chitin suspension was sprayed on August 1 and August 25, and a final survey was conducted on September 19, 2014. In all the test sections, no obstacles due to the test materials or phytotoxicity due to foreign substances were confirmed. Table 10 shows the average weight per fruit of melon in each test section.
- Example 9 (Effects on rice yield) A commercially available paddy rice seedling box was prepared and pool seedlings were carried out. A parallel test of 10 to 20 boxes per test area was performed. During the seedling period, a certain amount of irrigation was controlled so that the water did not dry. A seedling box with 0.5 L of a low molecular weight chitin suspension prepared in a predetermined amount shown in Table 11 (16000 times suspension: 62.5 mg / L, 4000 times suspension: 250 mg / L) Irrigation was performed from above the head. The control group was similarly irrigated with water. The irrigation treatment was performed twice in total every other week during the seedling raising period.
- sensory evaluation of cooked rice by 13 people was performed.
- six items of appearance, fragrance, taste, stickiness, hardness, and comprehensive evaluation were evaluated in 6 stages from +3 to -3 with the control area rice being 0, and the average value was calculated.
- the rice in the test areas 1 to 3 was mixed, and the treated area rice was compared with the control area rice.
- the treated rice treated with low molecular weight chitin compared with the control rice was +0.64 in the taste item, +1.57 in the stickiness item, and +1.14 in the overall evaluation, and the evaluation was high.
- the amount of protein in the cooked rice with the low-molecular-weight chitin was compared to the amount of protein in the cooked rice with the control rice was 7.3% by mass.
- the score by the taste analyzer was improved by 5 points, being as low as 6.8% by mass.
- Example 10 (Effect on leaf yield) A terapot (inner diameter 21.5 cm, height 25.0 cm) was prepared in the greenhouse, and a parallel test of 24 strains per test section was performed. A soil sample was prepared by mixing peat moss / red bean clay grain / pearlite at a 1/1/1 quantitative ratio and adjusting the pH to 6.7 with mashed lime. The pot was filled with 4 L of test soil, 8 g of Magnamp K (manufactured by Hyponex) was added and mixed well. About 30 leaf green onion seeds (variety: Iwatsuki) were sown in a single sowing manner. During the test period, cultivation management was performed by constantly irrigating.
- Example 11 (Effects on carrot yield) A planter (45 cm ⁇ 98 cm) was prepared and used as 6 parallel tests per test area. The planter was filled with commercial soil, and after seeding the commercial seeds, thinning was performed when there were 2 to 3 true leaves. During the test period, cultivation management was performed by irrigating when the soil was dry. 28 days after sowing, 0.25 L of a low molecular weight chitin suspension prepared in a predetermined amount (8000 times suspension: 125 mg / L) shown in Table 13 was irrigated from above. Thereafter, irrigation of the low molecular weight chitin suspension was carried out six times in total until about 65 days after sowing every other week.
- Example 12 (Effects on Ginger Yield and Components) A seed ginger was planted in an open field field, and a parallel test of 5 ares per test section was conducted. 120 L of a low molecular weight chitin suspension prepared in a predetermined amount shown in Table 14 (16000 times suspension: 62.5 mg / mL) was sprayed onto a 5 are strain. During the test period, cultivation management was carried out according to customary practices, and foliar application of low molecular weight chitin was carried out 5 times every 9 to 16 days. Nine strains from each section were selected and harvested at 7 months after planting, the weight of rhizomes was measured, and the average rhizome weight per strain was calculated.
- 6-gingerol per 100 g of dried ginger in both the rhizome end part and the rhizome center part as compared with the control group
- the content increased.
- 6-gingerol which is a functional component contained in the rhizome, could be increased by foliar application of the low molecular weight chitin suspension.
- Example 13> (Influence on the yield of bean seedlings) A plastic pack (12 cm long, 17 cm wide, 7 cm high) was prepared indoors, and 20 strains per test section were set as parallel tests. A paper towel moistened with water was laid in the pack, and 30 seedling seeds per seed were sown. During the test period, the cultivation was managed by leaving it in a dark place and constantly irrigating it. Six days after seeding after germination, 50 mL of a low molecular weight chitin suspension prepared in a predetermined amount shown in Table 16 (16000 times suspension: 62.5 mg / L, 4000 times suspension: 250 mg / L) was irrigated from above. did. A final survey was conducted about 3 weeks after the start of the study.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Dentistry (AREA)
- Plant Pathology (AREA)
- Pest Control & Pesticides (AREA)
- Agronomy & Crop Science (AREA)
- Environmental Sciences (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Virology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
Abstract
低分子量キチンを利用して、優れた植物生長調節剤及び植物生長調節方法を提供する。 植物生長調節剤の有効成分として、キチンを加水分解して得られる数平均分子量2,000~50,000の低分子量キチンを用いる。この植物生長調節剤は、アブラナ科アブラナ属、アブラナ科ダイコン属、ナス科ナス属、キク科シュンギク属、バラ科オランダイチゴ属、ウリ科キュウリ属、イネ科イネ属、ヒガンバナ科ネギ属、セリ科ニンジン属、ショウガ科ショウガ属、又はマメ科エンドウ属の植物に用いられることが好ましい。また、植物の生育を促し、収量増加のため、あるいは植物の矮化を促し、収量増加のために用いられることが好ましい。
Description
本発明は、植物生長調節剤及び植物生長調節方法に関する。
農業分野において、エビやカニ等の甲殻類の殻粉末は、畑土壌に施用することにより、土壌の改良効果、連作障害の防止効果があることが経験的に知られており、また廃棄物である殻資源の再利用という観点から、特定の地域で組合を形成するなどして殻を積極的に利用する試みがなされている。この殻による効果は、殻に含まれるキチン質に由来することが知られている。
キチンの利用に関する報告例としては、例えば、下記特許文献1に、キチン質から除タンパクして得られるキチンカルシウムを有効成分として含有する植物成長促進剤が提案されている。また、下記特許文献2に、キチンを酸又は酵素によって部分加水分解することにより得られるキチンオリゴ糖と、キトサン、キトサンオリゴ糖及びそれらの塩から選ばれた少なくとも一種とを含有する植物活力剤が提案されている。また、下記特許文献3に、キチンを加水分解して得られる数平均分子量3,000~50,000の低分子量キチンを有効成分として含有する植物病害防除剤が提案されている。
しかしながら、特許文献1に記載の植物成長促進剤は、キチン質から除タンパクして得られる高分子量のキチンカルシウムを有効成分とするので、そのキチンカルシウムが土壌中の微生物によって分解されることを期待した方法であり、生長促進効果にばらつきがあるという問題や、慣行栽培に匹敵する程度の生長促進効果しかなく、効果が不十分であるという問題があった。また、特許文献2に記載の植物活力剤は、キチンオリゴ糖の有するファイトアレキシン誘導活性(エリシター活性)と、キトサン、キトサンオリゴ糖及びそれらの塩から選ばれた少なくとも一種が有する植物の病原菌に対する抗菌活性とが相乗的に作用して、優れた耐病性付与効果と生長促進効果をもたらすことができる、というものであり(特許文献2の段落0012)、そのキチンオリゴ糖について、植物の生長自体に対する作用効果は乏しかった(特許文献2の比較例3の結果参照)。また、特許文献3に記載の植物病害防除剤は、病害防除を目的としており、植物の生長自体に対する作用効果を見出すには至らなかった。
本発明の目的は、上記従来技術に鑑み、低分子量キチンを利用して、優れた植物生長調節剤及び植物生長調節方法を提供することにある。
上記目的を達成するため、本発明者らが鋭意研究した結果、数平均分子量2,000~50,000程度の低分子量キチンに優れた植物生長調節効果があることを見出し、本発明を完成するに至った。
すなわち、本発明の植物生長調節剤は、キチンを加水分解して得られる数平均分子量2,000~50,000の低分子量キチンを有効成分として含有することを特徴とする。
本発明の植物生長調節剤においては、アブラナ科、ナス科、キク科、バラ科、ウリ科、イネ科、ヒガンバナ科、セリ科、ショウガ科、又はマメ科の植物に用いられることが好ましい。
また、アブラナ科アブラナ属、アブラナ科ダイコン属、ナス科ナス属、キク科シュンギク属、バラ科オランダイチゴ属、ウリ科キュウリ属、イネ科イネ属、ヒガンバナ科ネギ属、セリ科ニンジン属、ショウガ科ショウガ属、又はマメ科エンドウ属の植物に用いられることが好ましい。
また、植物の生育を促し、収量増加のために用いられることが好ましい。
また、植物の矮化を促し、収量増加のために用いられることが好ましい。
また、収穫される植物の食味改善のために用いられることが好ましい。
また、収穫される植物の機能性成分増加のために用いられることが好ましい。
一方、本発明の植物生長調節方法は、上記植物生長調節剤を植物に施与することを特徴する。
本発明の植物生長調節方法においては、上記植物生長調節剤を植物が生育する土に付与することが好ましい。
また、上記植物生長調節剤を植物の茎葉に付与することが好ましい。
本発明によれば、キチンを加水分解して得られる数平均分子量2,000~50,000の低分子量キチンを有効成分とするので、植物の生長を調節する効果に優れている。具体的には、植物の生育を促し、収量を増加させたり、植物の矮化を促し、収量を増加させたりする効果に優れている。また、収穫される植物の食味を改善したり、機能性成分を増加させたりする効果に優れている。
本発明の植物生長調節剤の有効成分である低分子量キチンは、カニ、エビ等の甲殻類の殻等から常法によって調製されるキチンを、酸又は酵素で加水分解することによって得られる、数平均分子量2,000~50,000、好ましくは数平均分子量2,500~20,000のキチン分解物をいう。数平均分子量は、例えばプルランを標準物質としたサイズ排除クロマトグラフィーなどで測定することができる。
このような低分子量キチンは、例えば、以下のようにして調製することができる。すなわち、原料キチンを3~8倍量程度の濃塩酸に分散させ、40℃で10~20分間分解を行う。濃塩酸と等量の水を加えて反応を停止し、アルカリで中和した後、濾過して残渣を回収し、必要に応じてデキストリン等の賦形剤を適宜添加し、乾燥することにより、低分子量キチンを得ることができる。
本発明の植物生長調節剤は、上記分子量の低分子量キチンのみで構成してもよく、上記分子量の低分子量キチン以外の他の成分を含んでいてもよい。例えば、他の成分として、シリカ、ケイ藻土、タルク、炭酸カルシウム、ゼオライトなどの固形肥料や、尿素、硫安、塩安、燐安、塩加里などの水可溶性肥料や、カルシウム、亜鉛、鉄、硼酸、銅、マンガン、ビタミンCなどの微量栄養素や、バリン、グルタミン酸、アスパラギン酸、リジン、アラニン、シスチン、グリシン、イソロイシン、プロリン、アデニンなどのアミノ酸・核酸などを含むことができる。また、必要に応じて、沈殿防止剤、展着剤、防腐剤、増粘剤、賦形剤などを含むこともできる。植物生長調節剤中の上記分子量の低分子量キチンの含有量としては、上記分子量の低分子量キチンを固形分換算で1~100質量%含むことが好ましく、10~80質量%含むことがより好ましい。また、植物生長調節剤の形態としては、粉状、顆粒状、液状、粉状物を水等の溶媒に分散させた分散液状等のいずれの形態であってもよい。
本発明の植物生長調節剤は、これを植物に施与することにより、植物の生長を調節することができる。具体的には、植物の生育を促し、収量を増加させたり、植物の矮化を促進し、収量を増加させたりすることができる。なお、植物の生育を促し、収量を増加させるとは、植物の可食部一果または一株あたりの収量の増加を意味し、植物の徒長につながる草丈の増長は好ましくない。ここで、植物の徒長防止や矮化の技術的意義について説明すると、次のとおりである。野菜栽培においては、低温、高温、乾燥、降雨、強風、病害虫などから幼植物を守るため、セル成型苗の利用が増加している。セル成型苗の場合、高密度に苗を育てるため、植物の枝や茎が間延びして伸びる徒長が起こりやすい。また、本圃においては、光量不足や特に高温期の栽培において徒長が起こりやすく、植物の軟弱化や収量の低下につながる。更に、トマトのように、葉腋に花をつくりながら茎頂に茎と葉をつくりつづけ、栄養生長と生殖生長を同時に進める植物では、徒長が果実の収量に致命的損害を与え、いかに徒長を抑制しながら生殖成長をさせるかが重要な課題である。このように、野菜栽培現場においては、植物の徒長防止に有効な矮化技術が求められている。本発明の植物生長調節剤は、植物の生育を促すことによる収量の増加だけでなく、植物の矮化を促し、このような植物の徒長を抑えて収量低下を抑止するためにも有効に用いることができる。
植物への施与方法は、特に制限はなく、植物が生育する土壌や培土への混合や散布、植物の株元への灌注や注水や散布、植物の茎葉への噴霧や散布などで行うことができる。灌注や注水の手段としては、ジョロ、散水ノズル、灌水チューブ、スプリンクラー、灌注機などを用いることができる。噴霧や散布の手段としては、動力噴霧器、肩掛け噴霧器、ブロードキャスター、スプレイヤー、有人または無人ヘリコプター、煙霧器、ハンドスプレーなどを用いることができる。
植物への施与形態としては、上記分子量の低分子量キチンを粉状に調製した形態のものをそのまま植物に施与してもよいが、作業性や効果効率の観点からは、その粉状物を水等の溶媒に分散させた分散液状の形態のものを使用することが好ましい。例えば、上記分子量の低分子量キチンを水等の溶媒に分散させ、上記分子量の低分子量キチン換算で好ましくは10~1000mg/L、より好ましくは50~700mg/L、更により好ましくは125~500mg/Lの濃度に分散させた分散液を調製し、これを植物に施与することができる。
また、上記分子量の低分子量キチンは、それのみを植物に施与してもよく、上記分子量の低分子量キチン以外の他の成分とともに植物に施与してもよい。例えば、他の成分として、シリカ、ケイ藻土、タルク、炭酸カルシウム、ゼオライトなどの固形肥料や、尿素、硫安、塩安、燐安、塩加里などの水可溶性肥料や、カルシウム、亜鉛、鉄、硼酸、銅、マンガン、ビタミンCなどの微量栄養素や、バリン、グルタミン酸、アスパラギン酸、リジン、アラニン、シスチン、グリシン、イソロイシン、プロリン、アデニンなどのアミノ酸・核酸などとともに施与することができる。また、必要に応じて、沈殿防止剤、展着剤、防腐剤、増粘剤、賦形剤などとともに施与することができる。
植物への施与量としては、植物の種類、施用方法、施用時期等により異なり一概に規定することはできないが、例えば、植物が生育する土壌や培土へ混合や散布をする場合には、1平方メートルあたり、上記分子量の低分子量キチン換算で好ましくは8~200g、より好ましくは10~160g、更により好ましくは20~80gが目安である。また、例えば、植物の株元へ灌注や注水や散布をする場合には、植物が生育する土壌等の面積1平方メートルにつき1回あたり、上記分子量の低分子量キチン換算で好ましくは0.1~10g、より好ましくは0.2~8g、更により好ましくは1.5~6gが目安である。また、例えば、育苗あるいはコマツナやシュンギクのような小サイズの植物の茎葉へ噴霧や散布をする場合には、植物が生育する土壌等の面積1平方メートルにつき1回あたり、上記分子量の低分子量キチン換算で好ましくは0.05~100mg、より好ましくは0.2~80mg、更により好ましくは1~10mgが目安である。また、例えば、トマトのような中~大サイズの植物の茎葉へ噴霧や散布をする場合には、植物が生育する土壌等の面積1平方メートルにつき1回あたり、上記分子量の低分子量キチン換算で好ましくは5~300mg、より好ましくは10~200mg、更により好ましくは40~100mgが目安である。
施与回数や施与時期等については、植物に合わせて適宜決定すればよい。例えば、トマトやコマツナであれば7~14日毎に一回、施与すればよい。また、育苗期、本圃どちらの生育ステージでも、同様な方法により施与することができる。
本発明の植物生長調節剤は、後述の実施例で示すように、植物の茎葉への施与に比べ、植物が生育する土壌や培土への施与や、植物の株元への施与のほうが、植物の可食部一果または一株あたりの収量を増加させる効果が高い傾向がある。一方、植物の茎葉への施与のほうが、植物が生育する土壌や培土への施与や、植物の株元へ施与に比べ、植物を矮化させる効果が高い傾向がある。そこで、本発明の好ましい態様では、常時的使用として、植物が生育する土壌や培土への施与や、植物の株元への施与を行って、植物の生育を促し、収量増加の効果を得、一時的使用として、植物の徒長が見られた際、あるいは見られそうな時期(例えば、夏場、梅雨時、曇天が続く時など)に、植物が生育する土壌や培土への施与や、植物の株元への施与に代えて、あるいはそれらの施与とともに、植物の茎葉への施与を行って、植物の矮化を促し、徒長を抑えて収量低下を抑止するなど、同一植物の生育期間にわたって、収量増加の目的と矮化促進の目的とを使い分けることが好ましい。
本発明の植物生長調節剤が適用される植物としては、特にその種属に制限はないが、典型的には、アブラナ科、ナス科、キク科、バラ科、ウリ科、イネ科、ヒガンバナ科、セリ科、ショウガ科、マメ科の植物などが挙げられる。より具体的には、例えば、ケール、カリフラワー、キャベツ、ブロッコリー、アブラナ、ミズナ、カブ、ノザワナ、コマツナ、ハクサイ、チンゲンサイなどのアブラナ科アブラナ属の植物や、ダイコン、ハツカダイコンなどのアブラナ科ダイコン属の植物や、トマト、ナス、ジャガイモなどのナス科ナス属の植物や、シュンギクなどのキク科シュンギク属の植物や、イチゴなどのバラ科オランダイチゴ属や、メロン、キュウリ、スイカなどのウリ科キュウリ属や、イネなどのイネ科イネ属や、ネギ、タマネギ、ニラ、ワケギ、ニンニク、ラッキョウなどのヒガンバナ科ネギ属や、ニンジンなどのセリ科ニンジン属や、ショウガ、ミョウガなどのショウガ科ショウガ属や、エンドウマメ、豆苗、ソラマメ、枝豆などのマメ科エンドウ属などが挙げられる。
以下に実施例を挙げて本発明について更に具体的に説明するが、これらの実施例は本発明の範囲を限定するものではない。
<製造例1>
原料キチン1.0kgを5.3倍量の濃塩酸に分散させて、40℃で12分間分解を行った後、濃塩酸と等量の水を加えて反応を停止した。アルカリで中和した後、濾過して残渣を回収し、乾燥することで粉末状のキチン分解物0.84kgを得た。得られた低分子量キチン粉末の組成を表1に示す。
原料キチン1.0kgを5.3倍量の濃塩酸に分散させて、40℃で12分間分解を行った後、濃塩酸と等量の水を加えて反応を停止した。アルカリで中和した後、濾過して残渣を回収し、乾燥することで粉末状のキチン分解物0.84kgを得た。得られた低分子量キチン粉末の組成を表1に示す。
得られた低分子量キチン粉末はそのままあるいは水に懸濁して懸濁液(以下低分子量キチン懸濁液という)とし、以下の試験例で用いた。なお低分子量キチン懸濁液の主要成分は非水溶性であることから、植物体や土壌に施用する際には、直前に十分にかき混ぜて主要成分をできるだけ均一に分散させてから用いた。
<試験例1> (コマツナの収穫量に及ぼす影響)
ビニールハウス内にてテラポット(内径11.5cm、高さ9.5cm)を用意し、1試験区あたり2ポットの並行試験とした。ピートモス/赤玉土中粒/パーライトを4/3/3の量比で混合し、苦土石灰でpHを5.9に調整することで供試土壌を調製した。ポットに500mLの供試土壌を充填し、1gのマグァンプK(ハイポネックス社製)を投入、よく混合した。更に、表2に示す所定量で、製造例1で調製した低分子量キチン粉末を投入、よく混合した。ポット当たり20粒のコマツナ種子を、ピンセットを使用して等間隔に播種した。試験期間中の栽培管理は、常時潅水により行った。子葉展開後、約1ヶ月経過時点で最終調査を行った。最終調査では地上部の生体重を測定した。この試験は2013年11月22日に開始し、最終調査を12月27日に行った。全試験区において、供試資材による障害や、異物による薬害等は確認されなかった。表2に、各試験区の地上部生体重を示す。
ビニールハウス内にてテラポット(内径11.5cm、高さ9.5cm)を用意し、1試験区あたり2ポットの並行試験とした。ピートモス/赤玉土中粒/パーライトを4/3/3の量比で混合し、苦土石灰でpHを5.9に調整することで供試土壌を調製した。ポットに500mLの供試土壌を充填し、1gのマグァンプK(ハイポネックス社製)を投入、よく混合した。更に、表2に示す所定量で、製造例1で調製した低分子量キチン粉末を投入、よく混合した。ポット当たり20粒のコマツナ種子を、ピンセットを使用して等間隔に播種した。試験期間中の栽培管理は、常時潅水により行った。子葉展開後、約1ヶ月経過時点で最終調査を行った。最終調査では地上部の生体重を測定した。この試験は2013年11月22日に開始し、最終調査を12月27日に行った。全試験区において、供試資材による障害や、異物による薬害等は確認されなかった。表2に、各試験区の地上部生体重を示す。
表2に示すように、低分子量キチン粉末の391mgを土壌に供試した試験区2では、対照区と比較して、地上部生体重が増加した。低分子量キチン粉末の1,563mgを土壌に供試した試験区3では、更に顕著な地上部生体重の増加傾向が見られた。このように、低分子量キチン粉末の土壌への施与によりコマツナの収穫量を増加させることができた。
<試験例2> (トマトの収穫量及び糖度・酸度に及ぼす影響)
ポリ鉢(内径34cm、高さ30cm)を用意し、1試験区あたり4鉢の並行試験とした。なお各試験区の鉢はランダムに配置された。ココナッツファイバー、堆肥等を混合した供試土壌を調製し、鉢に充填した。トマト苗(品種:アニモ)を1鉢当たりに2株定植し、自動給液養液栽培システムにより栽培した。その際、トヨハシ種苗株式会社製のTFフルミックスAとTFフルミックスBの規定量希釈液を、1日あたり2~5分間/回を数回、20mL/minで給液を行った。試験期間中のホルモン剤や農薬等の栽培管理は、慣行に従い行われた。定植10日後、表3に示す所定量(40000倍懸濁液:25mg/L、8000倍懸濁液:125mg/L、4000倍懸濁液:250mg/L、2000倍懸濁液:500mg/L)で調製した低分子量キチン懸濁液の1Lを株元に注水した。以後、低分子量キチン懸濁液の注水は、一週間おきに試験が完了するまで行われた。収穫された各段のトマトの収穫量および糖度・酸度の調査を行った。収穫量は、収穫した全てのトマトの果数、重量を測定した。糖度・酸度は、各段の各試験区から無作為に4果を選び、搾汁液を調製して測定した。この試験は2013年8月25日に苗を定植し、9月4日から低分子量キチン懸濁液の注水を開始し、10月29日に第一段目の収穫、11月27日に第二段目の収穫、12月20日に第三段目の収穫を行った。全試験区において、供試資材による障害や、異物による薬害等は確認されなかった。表3に、各試験区のトマト収穫量および糖度・酸度を示す。
ポリ鉢(内径34cm、高さ30cm)を用意し、1試験区あたり4鉢の並行試験とした。なお各試験区の鉢はランダムに配置された。ココナッツファイバー、堆肥等を混合した供試土壌を調製し、鉢に充填した。トマト苗(品種:アニモ)を1鉢当たりに2株定植し、自動給液養液栽培システムにより栽培した。その際、トヨハシ種苗株式会社製のTFフルミックスAとTFフルミックスBの規定量希釈液を、1日あたり2~5分間/回を数回、20mL/minで給液を行った。試験期間中のホルモン剤や農薬等の栽培管理は、慣行に従い行われた。定植10日後、表3に示す所定量(40000倍懸濁液:25mg/L、8000倍懸濁液:125mg/L、4000倍懸濁液:250mg/L、2000倍懸濁液:500mg/L)で調製した低分子量キチン懸濁液の1Lを株元に注水した。以後、低分子量キチン懸濁液の注水は、一週間おきに試験が完了するまで行われた。収穫された各段のトマトの収穫量および糖度・酸度の調査を行った。収穫量は、収穫した全てのトマトの果数、重量を測定した。糖度・酸度は、各段の各試験区から無作為に4果を選び、搾汁液を調製して測定した。この試験は2013年8月25日に苗を定植し、9月4日から低分子量キチン懸濁液の注水を開始し、10月29日に第一段目の収穫、11月27日に第二段目の収穫、12月20日に第三段目の収穫を行った。全試験区において、供試資材による障害や、異物による薬害等は確認されなかった。表3に、各試験区のトマト収穫量および糖度・酸度を示す。
表3に示すように、低分子量キチン懸濁液を株元に注水した各試験区では、対照区と比較して、トマト1個あたりの重量や総重量の増加が見られた。低分子量キチン懸濁液中のキチン濃度が大きいほど効果が高く、2000倍懸濁液においては対照区の1.3倍の増収であった。このように、低分子量キチン懸濁液の株元への注水によりトマトの収穫量を増加させることができた。糖度、酸度については、対照区と比較して、低分子量キチン懸濁液を株元に注水した各試験区の方が、若干高い傾向が見られた。
<試験例3> (ハツカダイコンの収穫量に及ぼす影響)
ビニールハウス内にてセルトレイ(5.0cm×5.0cm)を用意し、1試験区あたり2株の並行試験とした。セルトレイに市販野菜用培土を充填し、ハウス内で育苗したハツカダイコン苗(本葉2~4枚)を定植した。試験開始日は定植日とした。試験期間中の栽培管理は、土表面が乾燥した際の一定量の灌水により行った。定植後、表4に示す所定量(8000倍懸濁液:125mg/L)で調製した低分子量キチン懸濁液の0.05Lを株元に注水した。比較のため、低分子量キチンの代わりに、重合度1~6のキチンオリゴ糖混合物である「NA-COS‐Y」(商品名、焼津水産化学工業株式会社製)(比較区1)、分子量100万以上のキチン(比較区2)、市販液肥(比較区3)を、表4に示す所定量(比較区1:4000倍懸濁液:キチンオリゴ糖250mg/L、比較区2:4000倍懸濁液:キチン250mg/L、比較区3:液肥原液の500倍希釈液)で用い、試験区と同様に株元に注水した。注水は試験開始時とその5日後に行い、計2回行われた。試験開始から12日後、最終調査を行った。最終調査では地上部(茎葉)、地下部(根)の生体重を測定した。この試験は2014年2月7日に開始し、注水を2月7日と2月12日に実施し、最終調査を2014年2月19日に行った。全試験区において、供試資材による障害や、異物による薬害等は確認されなかった。表4に、各試験区の地上部および地下部の生体重を示す。
ビニールハウス内にてセルトレイ(5.0cm×5.0cm)を用意し、1試験区あたり2株の並行試験とした。セルトレイに市販野菜用培土を充填し、ハウス内で育苗したハツカダイコン苗(本葉2~4枚)を定植した。試験開始日は定植日とした。試験期間中の栽培管理は、土表面が乾燥した際の一定量の灌水により行った。定植後、表4に示す所定量(8000倍懸濁液:125mg/L)で調製した低分子量キチン懸濁液の0.05Lを株元に注水した。比較のため、低分子量キチンの代わりに、重合度1~6のキチンオリゴ糖混合物である「NA-COS‐Y」(商品名、焼津水産化学工業株式会社製)(比較区1)、分子量100万以上のキチン(比較区2)、市販液肥(比較区3)を、表4に示す所定量(比較区1:4000倍懸濁液:キチンオリゴ糖250mg/L、比較区2:4000倍懸濁液:キチン250mg/L、比較区3:液肥原液の500倍希釈液)で用い、試験区と同様に株元に注水した。注水は試験開始時とその5日後に行い、計2回行われた。試験開始から12日後、最終調査を行った。最終調査では地上部(茎葉)、地下部(根)の生体重を測定した。この試験は2014年2月7日に開始し、注水を2月7日と2月12日に実施し、最終調査を2014年2月19日に行った。全試験区において、供試資材による障害や、異物による薬害等は確認されなかった。表4に、各試験区の地上部および地下部の生体重を示す。
表4に示すように、低分子量キチン懸濁液を株元に注水した試験区では、対照区と比較して、地上部および地下部の生体重の増加が見られた。キチンオリゴ糖、キチンを株元に注水した比較区においても地上部および地下部の生体重の増加が見られたが、低分子量キチン懸濁液を株元に注水した試験区のほうが顕著な増加であり、極めて効果が大きかった。このように、低分子量キチン懸濁液の株元への注水によりハツカダイコンの収穫量を増加させることができた。
<試験例4> (シュンギクの収穫量に及ぼす影響)
ビニールハウス内にてプランター(53.5cm×28cm)を用意し、1試験区あたり2株の並行試験とした。プランターに市販野菜用培土を充填し、市販シュンギク苗を定植した。試験期間中の栽培管理は、土表面が乾燥した際の一定量の灌水と規定量の市販液肥(ハイポネックス社製)の施肥(1回/週)により行った。定植後、表5に示す所定量(4000倍懸濁液:250mg/L)で調製した低分子量キチン懸濁液の0.1Lを株元に注水した。以後、低分子量キチン懸濁液の注水は、一週間おきに計3回行われた。試験開始から約1.5ヶ月経過時点で最終調査を行った。最終調査では茎葉および根の生体重を測定した。この試験は2013年11月27日に開始し、低分子量キチン懸濁液の注水を11月27日から12月12日まで実施し、最終調査を2014年1月16日に行った。全試験区において、供試資材による障害や、異物による薬害等は確認されなかった。表5に、各試験区の茎葉および根の生体重を示す。
ビニールハウス内にてプランター(53.5cm×28cm)を用意し、1試験区あたり2株の並行試験とした。プランターに市販野菜用培土を充填し、市販シュンギク苗を定植した。試験期間中の栽培管理は、土表面が乾燥した際の一定量の灌水と規定量の市販液肥(ハイポネックス社製)の施肥(1回/週)により行った。定植後、表5に示す所定量(4000倍懸濁液:250mg/L)で調製した低分子量キチン懸濁液の0.1Lを株元に注水した。以後、低分子量キチン懸濁液の注水は、一週間おきに計3回行われた。試験開始から約1.5ヶ月経過時点で最終調査を行った。最終調査では茎葉および根の生体重を測定した。この試験は2013年11月27日に開始し、低分子量キチン懸濁液の注水を11月27日から12月12日まで実施し、最終調査を2014年1月16日に行った。全試験区において、供試資材による障害や、異物による薬害等は確認されなかった。表5に、各試験区の茎葉および根の生体重を示す。
表5に示すように、低分子量キチン懸濁液を株元に注水した試験区では、対照区と比較して、茎葉および根の生体重の増加が見られた。また、より厚みのある茎葉となった。このように、低分子量キチン懸濁液の株元への注水によりシュンギクの収穫量を増加させることができた。
<試験例5> (コマツナの矮化に及ぼす影響)
ビニールハウス内にてテラポット(内径11.5cm、高さ9.5cm)を用意し、1試験区あたり2ポットの並行試験とした。ピートモス/赤玉土中粒/パーライトを4/3/3の量比で混合し、苦土石灰でpHを5.9に調整することで供試土壌を調製した。ポットに500mLの供試土壌を充填し、1gのマグァンプK(ハイポネックス社製)を投入、よく混合した。ポット当たり20粒のコマツナ種子を、ピンセットを使用して等間隔に播種した。試験期間中の栽培管理は、常時潅水により行った。発芽、子葉展開した定植12日後に、表6に示す所定量(16000倍懸濁液:62.5mg/L、8000倍懸濁液:125mg/L、1000倍懸濁液:1000mg/L、250倍懸濁液:4000mg/L)で調製した低分子量キチン懸濁液の2.5mLを上部から葉茎に噴霧した。以後、低分子量キチン懸濁液の噴霧は、一週間おきに試験が完了するまで行われた。試験開始から約1ヶ月経過時点で最終調査を行った。最終調査では地上部の生体重を測定した。この試験は2013年11月22日に開始し、低分子量キチン懸濁液の噴霧を12月4日から開始し、最終調査を12月27日に行った。全試験区において、供試資材による障害や、異物による薬害等は確認されなかった。表6に、各試験区の地上部生体重を示す。
ビニールハウス内にてテラポット(内径11.5cm、高さ9.5cm)を用意し、1試験区あたり2ポットの並行試験とした。ピートモス/赤玉土中粒/パーライトを4/3/3の量比で混合し、苦土石灰でpHを5.9に調整することで供試土壌を調製した。ポットに500mLの供試土壌を充填し、1gのマグァンプK(ハイポネックス社製)を投入、よく混合した。ポット当たり20粒のコマツナ種子を、ピンセットを使用して等間隔に播種した。試験期間中の栽培管理は、常時潅水により行った。発芽、子葉展開した定植12日後に、表6に示す所定量(16000倍懸濁液:62.5mg/L、8000倍懸濁液:125mg/L、1000倍懸濁液:1000mg/L、250倍懸濁液:4000mg/L)で調製した低分子量キチン懸濁液の2.5mLを上部から葉茎に噴霧した。以後、低分子量キチン懸濁液の噴霧は、一週間おきに試験が完了するまで行われた。試験開始から約1ヶ月経過時点で最終調査を行った。最終調査では地上部の生体重を測定した。この試験は2013年11月22日に開始し、低分子量キチン懸濁液の噴霧を12月4日から開始し、最終調査を12月27日に行った。全試験区において、供試資材による障害や、異物による薬害等は確認されなかった。表6に、各試験区の地上部生体重を示す。
表6に示すように、低分子量キチン懸濁液を葉茎に噴霧した各試験区では、対照区と比較して、地上部生体重の減少が見られ、コマツナの矮化が示唆された。
<試験例6> (トマトの矮化に及ぼす影響)
ポリ鉢(内径34cm、高さ30cm)を用意し、1試験区あたり5鉢の並行試験とした。なお各試験区の鉢はランダムに配置された。ココナッツファイバー、堆肥等を混合した供試土壌を調製し、鉢に充填した。トマト苗(品種:アニモ)を1鉢当たりに2株定植し、自動給液養液栽培システムにより栽培した。その際、トヨハシ種苗株式会社製のTFフルミックスAとTFフルミックスBの規定量希釈液を、1日あたり2~5分間/回を数回、20mL/minで給液を行った。試験期間中のホルモン剤や農薬等の栽培管理は、慣行に従い行われた。定植10日後、表7,8に示す所定量(8000倍懸濁液:125mg/L)で調製した低分子量キチン懸濁液の80mLを一株に対して茎葉全体が濡れるよう噴霧した。以後、低分子量キチン懸濁液の噴霧は、一週間おきに試験が完了するまで行われた。収穫された各段のトマトの収穫量および糖度・酸度の調査、並びに生育に関する節間長・茎径および節間長の矮化率の調査を行った。収穫量は、収穫した全てのトマトの果数、重量を測定した。糖度・酸度は、各段の各試験区から無作為に4果を選び、搾汁液を調製して測定した。この試験は2013年8月25日に苗を定植し、9月4日から供試液の噴霧を開始し、12月10日に第二段目の収穫、12月20日に第三段目の収穫を行った。全試験区において、供試資材による障害や、異物による薬害等は確認されなかった。表7に、各試験区のトマト収穫量および糖度・酸度を示す。表8に、各試験区の節間長・茎径および節間長の矮化率を示す。
ポリ鉢(内径34cm、高さ30cm)を用意し、1試験区あたり5鉢の並行試験とした。なお各試験区の鉢はランダムに配置された。ココナッツファイバー、堆肥等を混合した供試土壌を調製し、鉢に充填した。トマト苗(品種:アニモ)を1鉢当たりに2株定植し、自動給液養液栽培システムにより栽培した。その際、トヨハシ種苗株式会社製のTFフルミックスAとTFフルミックスBの規定量希釈液を、1日あたり2~5分間/回を数回、20mL/minで給液を行った。試験期間中のホルモン剤や農薬等の栽培管理は、慣行に従い行われた。定植10日後、表7,8に示す所定量(8000倍懸濁液:125mg/L)で調製した低分子量キチン懸濁液の80mLを一株に対して茎葉全体が濡れるよう噴霧した。以後、低分子量キチン懸濁液の噴霧は、一週間おきに試験が完了するまで行われた。収穫された各段のトマトの収穫量および糖度・酸度の調査、並びに生育に関する節間長・茎径および節間長の矮化率の調査を行った。収穫量は、収穫した全てのトマトの果数、重量を測定した。糖度・酸度は、各段の各試験区から無作為に4果を選び、搾汁液を調製して測定した。この試験は2013年8月25日に苗を定植し、9月4日から供試液の噴霧を開始し、12月10日に第二段目の収穫、12月20日に第三段目の収穫を行った。全試験区において、供試資材による障害や、異物による薬害等は確認されなかった。表7に、各試験区のトマト収穫量および糖度・酸度を示す。表8に、各試験区の節間長・茎径および節間長の矮化率を示す。
表7に示すように、低分子量キチン懸濁液を葉茎に噴霧した試験区では、対照区と比較して、トマトの総重量の増加が見られ、収穫量は増加したが、試験例2に示した株元への注水の場合と異なり、茎葉への噴霧の場合には一個当たり重量はやや小さくなった。糖度、酸度については全く影響が見られなかった。一方、トマト株の生育を観察したところ、表8に示すように、低分子量キチン懸濁液を葉茎に噴霧した試験区では、対照区と比較して、茎径には大きな影響を及ぼさずに、節間長の減少が見られ、草丈の明らかな矮小化が観察された。このように、低分子量キチン懸濁液の葉茎への噴霧によりトマトの収穫量に影響を与えることなく、植物の徒長を抑えることができた。
<試験例7> (イチゴの収穫量に及ぼす影響)
ビニールハウス内にて市販イチゴ苗を用意し、1試験区あたり2鉢の並行試験とした。なお試験期間中の栽培管理は、土表面が乾かないように一定量の灌水により行った。表9に示す所定量(16000倍懸濁液:62.5mg/L)で調製した低分子量キチン懸濁液の0.25Lを株元に注水した。比較区として市販液肥の500倍希釈液を株元に注水した。以後、低分子量キチンの注水は、一週間おきに計6回行われた。実の収穫は適宜行い、試験開始から2ヶ月時点で結果を纏め、実の一果あたりの平均重量を算出した。この試験は、2014年2月24日から開始し、低分子量キチンの懸濁液の注水を3月3日から4月16日まで実施し、最終調査を2014年4月25日に行った。全試験区において、供試資材による障害や、異物による薬害等は確認されなかった。表9に、各試験区のイチゴの一果あたりの平均重量を示す。
ビニールハウス内にて市販イチゴ苗を用意し、1試験区あたり2鉢の並行試験とした。なお試験期間中の栽培管理は、土表面が乾かないように一定量の灌水により行った。表9に示す所定量(16000倍懸濁液:62.5mg/L)で調製した低分子量キチン懸濁液の0.25Lを株元に注水した。比較区として市販液肥の500倍希釈液を株元に注水した。以後、低分子量キチンの注水は、一週間おきに計6回行われた。実の収穫は適宜行い、試験開始から2ヶ月時点で結果を纏め、実の一果あたりの平均重量を算出した。この試験は、2014年2月24日から開始し、低分子量キチンの懸濁液の注水を3月3日から4月16日まで実施し、最終調査を2014年4月25日に行った。全試験区において、供試資材による障害や、異物による薬害等は確認されなかった。表9に、各試験区のイチゴの一果あたりの平均重量を示す。
表9に示すように、低分子量キチン懸濁液を株元に注水した試験区では、対照区と比較して、イチゴ一果あたりの平均重量の増加が見られた。最終調査後、根を取出し観察したところ、低分子量キチン懸濁液を株元に注水した試験区では白い新根が多く見られていた。このように、低分子量キチン懸濁液の株元への注水によりイチゴの収穫量を増加させることができた。
<試験例8> (メロンの収穫量に及ぼす影響)
温室ハウス内にて栽培されるアローマメロン苗を用意し、1試験区あたり10鉢の並行試験とした。なお試験期間中の灌水、農薬等の栽培管理は、慣行に従い行った。表10に示す所定量(16000倍懸濁液:62.5mg/L)で調製した低分子量キチン懸濁液を、試験区1の葉面散布の場合は0.1L/株を散布し、試験区2の土壌灌注の場合は1.0L/株を注水した。低分子量キチンの散布は、交配前の1回とネットが現れてきた頃の2回の計2回行われた。試験開始から約2ヶ月時点でメロン果実の収穫を行い、最終調査した。この試験は、2014年8月1日から開始し、低分子量キチンの懸濁液の散布を8月1日と8月25日に実施し、最終調査を2014年9月19日に行った。全試験区において、供試資材による障害や、異物による薬害等は確認されなかった。表10に、各試験区のメロンの一果あたりの平均重量を示す。
温室ハウス内にて栽培されるアローマメロン苗を用意し、1試験区あたり10鉢の並行試験とした。なお試験期間中の灌水、農薬等の栽培管理は、慣行に従い行った。表10に示す所定量(16000倍懸濁液:62.5mg/L)で調製した低分子量キチン懸濁液を、試験区1の葉面散布の場合は0.1L/株を散布し、試験区2の土壌灌注の場合は1.0L/株を注水した。低分子量キチンの散布は、交配前の1回とネットが現れてきた頃の2回の計2回行われた。試験開始から約2ヶ月時点でメロン果実の収穫を行い、最終調査した。この試験は、2014年8月1日から開始し、低分子量キチンの懸濁液の散布を8月1日と8月25日に実施し、最終調査を2014年9月19日に行った。全試験区において、供試資材による障害や、異物による薬害等は確認されなかった。表10に、各試験区のメロンの一果あたりの平均重量を示す。
表10に示すように、低分子量キチン懸濁液を葉面散布または株元注水した試験区では、対照区と比較して、メロン一果あたりの平均重量の増加が見られた。また低分子量キチンを施用した区のメロンはネットが整っていた。このように、低分子量キチン懸濁液の葉面への散布または株元への注水によりメロンの収穫量を増加させることができた。
<試験例9> (イネの収穫量に及ぼす影響)
市販水稲(こしひかり)苗箱を用意し、プール育苗を実施した。1試験区あたり10~20箱の並行試験とした。育苗期間中は水が乾かないように一定量の灌水管理を行った。表11に示す所定量(16000倍懸濁液:62.5mg/L、4000倍懸濁液:250mg/L)で調製した低分子量キチン懸濁液0.5Lを1箱に対して、苗箱の頭上より灌注処理した。対照区は同様に水を灌注処理した。灌注処理は、育苗期間中の一週間おきに計2回行われた。その後、本田(2反分)に定植し、灌水、農薬等の管理については慣行に従い、イネの栽培を行った。中干し時、低分子量キチン4000倍区の1/4区画に対し、表11に示す所定量(8000倍懸濁液:125mg/L)で調製した低分子量キチン懸濁液6.5Lを葉面散布処理した。収穫時期になったら株の収穫を行い、各収量構成要素を測定することで玄米収量を求めた。この試験は、2014年5月19日から開始し、低分子量キチンの懸濁液の灌注を5月19日と5月27日に実施し、葉面散布処理を7月18日に実施し、収穫後の最終調査を2014年9月26日に行った。全試験区において、供試資材による障害や、異物による薬害等は確認されなかった。表11に、各試験区におけるイネの収量構成要素を示す。
市販水稲(こしひかり)苗箱を用意し、プール育苗を実施した。1試験区あたり10~20箱の並行試験とした。育苗期間中は水が乾かないように一定量の灌水管理を行った。表11に示す所定量(16000倍懸濁液:62.5mg/L、4000倍懸濁液:250mg/L)で調製した低分子量キチン懸濁液0.5Lを1箱に対して、苗箱の頭上より灌注処理した。対照区は同様に水を灌注処理した。灌注処理は、育苗期間中の一週間おきに計2回行われた。その後、本田(2反分)に定植し、灌水、農薬等の管理については慣行に従い、イネの栽培を行った。中干し時、低分子量キチン4000倍区の1/4区画に対し、表11に示す所定量(8000倍懸濁液:125mg/L)で調製した低分子量キチン懸濁液6.5Lを葉面散布処理した。収穫時期になったら株の収穫を行い、各収量構成要素を測定することで玄米収量を求めた。この試験は、2014年5月19日から開始し、低分子量キチンの懸濁液の灌注を5月19日と5月27日に実施し、葉面散布処理を7月18日に実施し、収穫後の最終調査を2014年9月26日に行った。全試験区において、供試資材による障害や、異物による薬害等は確認されなかった。表11に、各試験区におけるイネの収量構成要素を示す。
表11に示すように、低分子量キチン土壌潅注区、およびそれに葉面散布を加えた区で収量の増加の結果を得た。収量増加は、千粒重、総籾数、穂数の向上が寄与していた。食味においても対照区よりもすぐれていた。
また、13名による炊飯米の官能評価を行った。官能評価は、外観、香り、味、粘り、硬さ、総合評価の6項目につき、対照区米を0として+3~-3の6段階により評価を行い、平均値を算出した。その際、試験区1~3の米を混合し、処理区米として対照区米と比較評価を行った。その結果、対照区米に比べて低分子量キチンを処理した処理区米では、味の項目において+0.64、粘りの項目において+1.57、総合評価において+1.14となり、評価が高かった。また、食味分析計による測定をおこなったところ、対照区米による炊飯米のタンパク量は7.3質量%であったのに比べ、低分子量キチンを処理した処理区米による炊飯米のタンパク量は6.8質量%と少なく、食味分析計によるスコアが5点向上した。
このように、低分子量キチン懸濁液の育苗時の処理または葉面散布により、イネの収量を増加させ、食味をよくすることができた。
<試験例10> (葉ねぎの収穫量に及ぼす影響)
ビニールハウス内にてテラポット(内径21.5cm、高さ25.0cm)を用意し、1試験区あたり24株の並行試験とした。ピートモス/赤玉土中粒/パーライトを1/1/1の量比で混合し、苦土石灰でpHを6.7に調整することで供試土壌を調製した。ポットに4Lの供試土壌を充填し、8gのマグァンプK(ハイポネックス社製)を投入、よく混合した。1ポットあたり約30粒の葉ねぎ種子(品種:岩槻葱)を、ばら蒔きで播種した。試験期間中は、常時灌水することにより栽培管理を行った。発芽した播種11日後に表12に示す所定量(8000倍懸濁液:125mg/L)で調製した低分子量キチン懸濁液の0.2Lを上部から灌注した。以後、低分子量キチン懸濁液の灌注は、一週間おきに播種25日後まで計3回行われた。試験開始から約2.5ヶ月経過時点で最終調査を行った。最終調査では植物体の生体重を測定した。この試験は、2014年11月21日に開始し、低分子量キチン懸濁液の灌注を12月2日から12月15日まで実施し、最終調査を2015年2月5日に行った。全試験区において、供試資材による障害や、異物による薬害等は確認されなかった。表12に、各試験区の1株あたりの地上部(可食部)の生体重を示す。
ビニールハウス内にてテラポット(内径21.5cm、高さ25.0cm)を用意し、1試験区あたり24株の並行試験とした。ピートモス/赤玉土中粒/パーライトを1/1/1の量比で混合し、苦土石灰でpHを6.7に調整することで供試土壌を調製した。ポットに4Lの供試土壌を充填し、8gのマグァンプK(ハイポネックス社製)を投入、よく混合した。1ポットあたり約30粒の葉ねぎ種子(品種:岩槻葱)を、ばら蒔きで播種した。試験期間中は、常時灌水することにより栽培管理を行った。発芽した播種11日後に表12に示す所定量(8000倍懸濁液:125mg/L)で調製した低分子量キチン懸濁液の0.2Lを上部から灌注した。以後、低分子量キチン懸濁液の灌注は、一週間おきに播種25日後まで計3回行われた。試験開始から約2.5ヶ月経過時点で最終調査を行った。最終調査では植物体の生体重を測定した。この試験は、2014年11月21日に開始し、低分子量キチン懸濁液の灌注を12月2日から12月15日まで実施し、最終調査を2015年2月5日に行った。全試験区において、供試資材による障害や、異物による薬害等は確認されなかった。表12に、各試験区の1株あたりの地上部(可食部)の生体重を示す。
表12に示すように、低分子量キチン懸濁液を灌注した試験区では、対照区と比較して、1株あたりの可食部重の増加がみられた。このように、低分子量キチン懸濁液の灌注により葉ねぎの収穫量を増加させることができた。
<試験例11> (ニンジンの収穫量に及ぼす影響)
プランター(45cm×98cm)を用意し、1試験区あたり6株の並行試験とした。プランターに市販培土を充填し、市販種子を播種の後、本葉2~3枚のときに間引きをした。試験期間中は、土が乾いたら灌水することにより栽培管理を行った。播種28日後に表13に示す所定量(8000倍懸濁液:125mg/L)で調製した低分子量キチン懸濁液の0.25Lを上部から灌注した。以後、低分子量キチン懸濁液の灌注は、およそ一週間おきに播種65日後まで計6回行われた。試験開始から約4ヶ月経過時点で最終調査を行った。最終調査では植物体の生体重を測定した。この試験は、2014年6月13日に開始し、低分子量キチン懸濁液の灌注を7月11日から8月16日まで実施し、最終調査を2014年10月21日に行った。全処理区において、供試資材による障害や、異物による薬害等は確認されなかった。表13に、各試験区の個体あたりの地上部、地下部、及び全固体の生体重を示す。
プランター(45cm×98cm)を用意し、1試験区あたり6株の並行試験とした。プランターに市販培土を充填し、市販種子を播種の後、本葉2~3枚のときに間引きをした。試験期間中は、土が乾いたら灌水することにより栽培管理を行った。播種28日後に表13に示す所定量(8000倍懸濁液:125mg/L)で調製した低分子量キチン懸濁液の0.25Lを上部から灌注した。以後、低分子量キチン懸濁液の灌注は、およそ一週間おきに播種65日後まで計6回行われた。試験開始から約4ヶ月経過時点で最終調査を行った。最終調査では植物体の生体重を測定した。この試験は、2014年6月13日に開始し、低分子量キチン懸濁液の灌注を7月11日から8月16日まで実施し、最終調査を2014年10月21日に行った。全処理区において、供試資材による障害や、異物による薬害等は確認されなかった。表13に、各試験区の個体あたりの地上部、地下部、及び全固体の生体重を示す。
表13に示すように、低分子量キチン懸濁液を灌注処理した試験区では、対照区と比較して、可食部である地下部の生体重の増加がみられた。このように、低分子量キチン懸濁液の灌注によりニンジンの収穫量を増加させることができた。
<試験例12> (ショウガの収穫量及び成分に及ぼす影響)
露地圃場に種ショウガを定植し、1試験区あたり5アールの並行試験とした。表14に示す所定量(16000倍懸濁液:62.5mg/mL)で調製した低分子量キチン懸濁液の120Lを5アールの株に葉面散布した。試験期間中、栽培管理は慣行により行い、低分子量キチンの葉面散布は9~16日おきに計5回行われた。定植から7ヶ月時点で各区より9株を選別して収穫を行い、根茎の重量を測定し、1株あたりの根茎平均重量を算出した。この試験は、2014年6月12日から開始し、低分子量キチン懸濁液の葉面散布を7月29日から9月19日まで実施し、最終調査を2014年11月7日に行った。全処理区において、供試資材による障害や、異物による薬害等は確認されなかった。表14に、各試験区の根茎の1株あたりの平均重量を示す。
露地圃場に種ショウガを定植し、1試験区あたり5アールの並行試験とした。表14に示す所定量(16000倍懸濁液:62.5mg/mL)で調製した低分子量キチン懸濁液の120Lを5アールの株に葉面散布した。試験期間中、栽培管理は慣行により行い、低分子量キチンの葉面散布は9~16日おきに計5回行われた。定植から7ヶ月時点で各区より9株を選別して収穫を行い、根茎の重量を測定し、1株あたりの根茎平均重量を算出した。この試験は、2014年6月12日から開始し、低分子量キチン懸濁液の葉面散布を7月29日から9月19日まで実施し、最終調査を2014年11月7日に行った。全処理区において、供試資材による障害や、異物による薬害等は確認されなかった。表14に、各試験区の根茎の1株あたりの平均重量を示す。
表14に示すように、低分子量キチン懸濁液を葉面散布した試験区では、対照区と比較して、1株あたりの茎数と1株あたりの根茎平均重量の増加が見られた。このように,低分子量キチン懸濁液の葉面散布によりショウガの収穫量を増加させることができた。
また、HPLC法により、得られたショウガに含まれる6-ジンゲロール含量の分析を行った。
表15に示すように、低分子量キチン懸濁液を葉面散布した試験区では、対照区と比較して、根茎端部位および根茎中央部位のいずれにおいてもショウガ乾燥物100グラムあたりの6-ジンゲロール含量が増加した。このように、低分子量キチン懸濁液の葉面散布により根茎中に含まれる機能成分である6-ジンゲロールの含量を高めることができた。
<試験例13> (豆苗の収穫量に及ぼす影響)
屋内にてプラスティックパック(縦12cm、横17cm、高さ7cm)を用意し、1試験区あたり20株の並行試験とした。パック内に水で湿らせたペーパータオルを敷き、1パック当たり30粒の豆苗種子を播種した。試験期間中は、暗所に静置し、常時灌水することにより栽培管理を行った。発芽した播種6日後に表16に示す所定量(16000倍懸濁液:62.5mg/L、4000倍懸濁液:250mg/L)で調製した低分子量キチン懸濁液の50mLを上部から灌注した。試験開始から約3週間経過時点で最終調査を行った。最終調査では植物体の生体重を測定した。2015年1月5日に開始し、低分子量キチン懸濁液の灌水を1月11日に実施し、最終調査1月26日に行った。全試験区において、供試資材による障害や、異物による薬害等は確認されなかった。表16に、各試験区の個体あたりの地上部、地下部、及び全固体の生体重を示す。
屋内にてプラスティックパック(縦12cm、横17cm、高さ7cm)を用意し、1試験区あたり20株の並行試験とした。パック内に水で湿らせたペーパータオルを敷き、1パック当たり30粒の豆苗種子を播種した。試験期間中は、暗所に静置し、常時灌水することにより栽培管理を行った。発芽した播種6日後に表16に示す所定量(16000倍懸濁液:62.5mg/L、4000倍懸濁液:250mg/L)で調製した低分子量キチン懸濁液の50mLを上部から灌注した。試験開始から約3週間経過時点で最終調査を行った。最終調査では植物体の生体重を測定した。2015年1月5日に開始し、低分子量キチン懸濁液の灌水を1月11日に実施し、最終調査1月26日に行った。全試験区において、供試資材による障害や、異物による薬害等は確認されなかった。表16に、各試験区の個体あたりの地上部、地下部、及び全固体の生体重を示す。
表16に示すように、低分子量キチン懸濁液を灌注処理した試験区では、対照区と比較して、1株あたりの生体重(全固体、地下部、地上部)の増加がみられた。このように、低分子量キチン懸濁液の灌注により豆苗の収穫量を増加させることができた。
Claims (10)
- キチンを加水分解して得られる数平均分子量2,000~50,000の低分子量キチンを有効成分として含有することを特徴とする植物生長調節剤。
- アブラナ科、ナス科、キク科、バラ科、ウリ科、イネ科、ヒガンバナ科、セリ科、ショウガ科、又はマメ科の植物に用いられる請求項1に記載の植物生長調節剤。
- アブラナ科アブラナ属、アブラナ科ダイコン属、ナス科ナス属、キク科シュンギク属、バラ科オランダイチゴ属、ウリ科キュウリ属、イネ科イネ属、ヒガンバナ科ネギ属、セリ科ニンジン属、ショウガ科ショウガ属、又はマメ科エンドウ属の植物に用いられる請求項1に記載の植物生長調節剤。
- 植物の生育を促し、収量増加のために用いられる請求項1~3のいずれか1つに記載の植物生長調節剤。
- 植物の矮化を促し、収量増加のために用いられる請求項1~3のいずれか1つに記載の植物生長調節剤。
- 収穫される植物の食味改善のために用いられる請求項1~3のいずれか1つに記載の植物生長調節剤。
- 収穫される植物の機能性成分増加のために用いられる請求項1~3のいずれか1つに記載の植物生長調節剤。
- 請求項1~7のいずれか1つに記載の植物生長調節剤を植物に施与することを特徴する植物生長調節方法。
- 前記植物生長調節剤を植物が生育する土に付与する請求項8記載の植物生長調節方法。
- 前記植物生長調節剤を植物の茎葉に付与する請求項8記載の植物生長調節方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016504206A JP6444978B2 (ja) | 2014-02-24 | 2015-02-23 | 植物生長調節剤及び植物生長調節方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014032671 | 2014-02-24 | ||
JP2014-032671 | 2014-02-24 | ||
JP2014207813 | 2014-10-09 | ||
JP2014-207813 | 2014-10-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015125953A1 true WO2015125953A1 (ja) | 2015-08-27 |
Family
ID=53878449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/054952 WO2015125953A1 (ja) | 2014-02-24 | 2015-02-23 | 植物生長調節剤及び植物生長調節方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6444978B2 (ja) |
WO (1) | WO2015125953A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105379525A (zh) * | 2015-10-27 | 2016-03-09 | 上海宇元生物科技有限公司 | 一种利用甲壳素肥料生产茄果类作物的方法 |
JP6163619B1 (ja) * | 2016-03-29 | 2017-07-12 | Umiウェルネス株式会社 | 腸内細菌叢のバランスを改善するための組成物及び方法 |
CN107182506A (zh) * | 2017-06-08 | 2017-09-22 | 南京农业大学 | 一种提高菊花商品率及产量的方法和应用 |
CN115669489A (zh) * | 2022-12-30 | 2023-02-03 | 云南省农业科学院药用植物研究所 | 一种促进仙茅苷有效积累的调节剂及调节方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63273493A (ja) * | 1987-04-30 | 1988-11-10 | Kyogyo Kumiai N F I | N−アセチル−d−グルコサミンの製造法 |
JPH02258705A (ja) * | 1989-03-30 | 1990-10-19 | Lion Corp | 植物培養用添加剤 |
JPH03198702A (ja) * | 1989-12-27 | 1991-08-29 | Lion Corp | 種子発芽促進方法 |
JPH09143013A (ja) * | 1995-11-20 | 1997-06-03 | Yaizu Suisan Kagaku Kogyo Kk | 植物活力剤 |
JP2000281696A (ja) * | 1999-03-29 | 2000-10-10 | Yaizu Suisankagaku Industry Co Ltd | 天然型n−アセチル−d−グルコサミンの製造法 |
JP2004196679A (ja) * | 2002-12-17 | 2004-07-15 | Sanin Kensetsu Kogyo Kk | 植物生長促進剤 |
JP2004323460A (ja) * | 2003-04-28 | 2004-11-18 | National Agriculture & Bio-Oriented Research Organization | 植物病害防除剤及びそれを用いた植物の病害防除法 |
JP2007332110A (ja) * | 2006-06-19 | 2007-12-27 | National Agriculture & Food Research Organization | 根こぶ病害防除剤及び根こぶ病害防除方法 |
JP2008189593A (ja) * | 2007-02-05 | 2008-08-21 | Yaizu Suisankagaku Industry Co Ltd | 摘花剤及び摘花方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08157310A (ja) * | 1994-12-07 | 1996-06-18 | Bankaku Souhonpo:Kk | 植物の生長促進剤 |
-
2015
- 2015-02-23 JP JP2016504206A patent/JP6444978B2/ja active Active
- 2015-02-23 WO PCT/JP2015/054952 patent/WO2015125953A1/ja active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63273493A (ja) * | 1987-04-30 | 1988-11-10 | Kyogyo Kumiai N F I | N−アセチル−d−グルコサミンの製造法 |
JPH02258705A (ja) * | 1989-03-30 | 1990-10-19 | Lion Corp | 植物培養用添加剤 |
JPH03198702A (ja) * | 1989-12-27 | 1991-08-29 | Lion Corp | 種子発芽促進方法 |
JPH09143013A (ja) * | 1995-11-20 | 1997-06-03 | Yaizu Suisan Kagaku Kogyo Kk | 植物活力剤 |
JP2000281696A (ja) * | 1999-03-29 | 2000-10-10 | Yaizu Suisankagaku Industry Co Ltd | 天然型n−アセチル−d−グルコサミンの製造法 |
JP2004196679A (ja) * | 2002-12-17 | 2004-07-15 | Sanin Kensetsu Kogyo Kk | 植物生長促進剤 |
JP2004323460A (ja) * | 2003-04-28 | 2004-11-18 | National Agriculture & Bio-Oriented Research Organization | 植物病害防除剤及びそれを用いた植物の病害防除法 |
JP2007332110A (ja) * | 2006-06-19 | 2007-12-27 | National Agriculture & Food Research Organization | 根こぶ病害防除剤及び根こぶ病害防除方法 |
JP2008189593A (ja) * | 2007-02-05 | 2008-08-21 | Yaizu Suisankagaku Industry Co Ltd | 摘花剤及び摘花方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105379525A (zh) * | 2015-10-27 | 2016-03-09 | 上海宇元生物科技有限公司 | 一种利用甲壳素肥料生产茄果类作物的方法 |
JP6163619B1 (ja) * | 2016-03-29 | 2017-07-12 | Umiウェルネス株式会社 | 腸内細菌叢のバランスを改善するための組成物及び方法 |
JP2017178929A (ja) * | 2016-03-29 | 2017-10-05 | Umiウェルネス株式会社 | 腸内細菌叢のバランスを改善するための組成物及び方法 |
CN107182506A (zh) * | 2017-06-08 | 2017-09-22 | 南京农业大学 | 一种提高菊花商品率及产量的方法和应用 |
CN115669489A (zh) * | 2022-12-30 | 2023-02-03 | 云南省农业科学院药用植物研究所 | 一种促进仙茅苷有效积累的调节剂及调节方法 |
CN115669489B (zh) * | 2022-12-30 | 2023-04-07 | 云南省农业科学院药用植物研究所 | 一种促进仙茅苷有效积累的调节剂及调节方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6444978B2 (ja) | 2018-12-26 |
JPWO2015125953A1 (ja) | 2017-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shiyam et al. | Effect of poultry manure and urea-n on flowering occurrence and leaf productivity of Amaranthus cruentus | |
KR101502503B1 (ko) | 천연 미네랄 성분을 이용한 과일, 채소 또는 곡식 재배방법 | |
CN103875500B (zh) | 一种软枝香蜜杨桃种植方法 | |
CN105660142A (zh) | 一种大豆高垄密植滴灌免耕种植方法 | |
CN104396641A (zh) | 一种无公害葡萄病虫害防治方法 | |
JP6444978B2 (ja) | 植物生長調節剤及び植物生長調節方法 | |
CN104003811A (zh) | 防治十字花科作物根肿病的生根剂、制备方法和用途 | |
KR100612641B1 (ko) | 천연광물을 이용한 채소의 재배방법 | |
Ashilenje | Learn how to grow Peppers | |
JP2014503498A (ja) | 植物成長増強混合物及び該混合物の適用方法 | |
Jhilik et al. | Effect of foliar application of moringa leaf extract on growth and yield of late sown wheat | |
WO2022004741A1 (ja) | 植物栽培方法及び植物活力剤 | |
SINGH et al. | Dynamics of anthracnose disease of chilli in responses to water and nitrogen management under drip and flood irrigation | |
CN105284350A (zh) | 一种蚕豆的高产栽培方法 | |
CN105237209A (zh) | 一种种子包衣剂、其制备方法及应用 | |
JP2000309502A (ja) | 植物生長促進剤及び該植物生長促進剤を使用した肥料 | |
CN107711021A (zh) | 一种番茄高产种植方法 | |
CN107996322B (zh) | 一种大麦高产富硒栽培方法 | |
JPH10182317A (ja) | 植物根の生育促進剤 | |
CN104982167A (zh) | 一种黑膜全覆盖栽培白瓜籽的方法 | |
CN108353717A (zh) | 一种大穗形花椒培育方法 | |
Ahmad | Effect of organic fertilizers on growth and yield of Brassica rapa variety Chinensis | |
Adeyemi et al. | Weed control efficacy of hoe weeding and commercially formulated mixture of metolachlor+ prometryn herbicide under maize production in soil amended with biochar | |
Turdiyeva et al. | Types and quantities of weeds found in corn fields and the effect of herbicides on grain yield | |
Momin et al. | Effect of plant growth regulators and fertilizer management practices on vegetative growth of bitter gourd (Momordica charantia L.) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15751987 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2016504206 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15751987 Country of ref document: EP Kind code of ref document: A1 |