WO2015125656A1 - Polarizing plate, optical-member set, and touchscreen - Google Patents

Polarizing plate, optical-member set, and touchscreen Download PDF

Info

Publication number
WO2015125656A1
WO2015125656A1 PCT/JP2015/053587 JP2015053587W WO2015125656A1 WO 2015125656 A1 WO2015125656 A1 WO 2015125656A1 JP 2015053587 W JP2015053587 W JP 2015053587W WO 2015125656 A1 WO2015125656 A1 WO 2015125656A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polarizing plate
optical film
resin
optical
Prior art date
Application number
PCT/JP2015/053587
Other languages
French (fr)
Japanese (ja)
Inventor
慶史 小松
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=53878161&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2015125656(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020177003093A priority Critical patent/KR102084297B1/en
Priority to KR1020167021362A priority patent/KR101711357B1/en
Priority to CN201580009327.8A priority patent/CN106030353B/en
Publication of WO2015125656A1 publication Critical patent/WO2015125656A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0221Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having an irregular structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to a polarizing plate that can be suitably used for an air gap type touch input type image display device, an optical member set including the same, and a touch input type image display device.
  • the touch input type image display device includes a touch input element (touch panel) for detecting touch position information on the viewing side of the image display element or inside the image display element, and the image display element is a liquid crystal cell or organic electroluminescence.
  • the touch input type image display device is generally configured to include a polarizing plate.
  • the resistive film type and the electrostatic capacity type are mainly used at present.
  • the resistive film method two substrates having transparent electrodes are arranged so that the transparent electrodes are opposed to each other, and the two transparent electrodes facing each other when touching the screen with a finger or the like are in contact with each other. To detect the touch position.
  • a gap is provided between two substrates.
  • the electrostatic capacity method detects a touch position by detecting a change in surface charge of a portion touched with a finger or the like.
  • Some electrostatic capacity systems have a configuration in which a gap is provided in a touch input type image display device. Below, what provided the gap
  • Patent Document 1 describes that a laminated body in which a transparent conductive film is formed on an uneven surface of a resin molded body is used as a substrate with a transparent electrode for a touch panel.
  • Patent Document 2 discloses a polarizing plate, a retardation film, a hard coat layer, and a transparent conductive film as one substrate (a viewing-side substrate) in a resistive film type touch panel. It is described that a laminate including in order is used (FIG. 9).
  • an air gap type touch-input type image display device when the screen is touched with a finger or the like, the interval of the air gap changes, and as a result, the light reflected in the air gap interferes with the Newton. Interference fringes called rings are likely to occur. When Newton rings occur, the visibility of the display screen is reduced.
  • Newton's ring can be suppressed by roughening the surface of the resin molded body on which the transparent conductive film is formed, specifically, by setting the arithmetic average roughness Ra to 50 to 150 nm.
  • the Newton ring may not necessarily be effectively suppressed particularly when the arithmetic average roughness Ra is at a level of 100 nm or less.
  • Patent Document 2 Newton's ring and glare can be suppressed by controlling the arithmetic average roughness Ra of the surface on the side where the transparent conductive film is formed in the hard coat layer and the number of protrusions having a predetermined height.
  • Newton's ring may not be effectively suppressed.
  • An object of the present invention is to provide a polarizing plate capable of effectively suppressing the generation of Newton rings, an optical member set including the polarizing plate, and a touch input type image display device.
  • the present invention provides the following polarizing plate, optical member set and touch input type image display device.
  • the surface of the first optical film opposite to the polarizer has a cross-sectional curve kurtosis Pku of 3.0 or more, and a reflectance at a reflection angle of 12 ° when light is incident at an incident angle of 12 °.
  • the polarizing plate whose Y is 4.0% or less.
  • thermoplastic resin film is made of a cellulose resin, a (meth) acrylic resin, a cyclic polyolefin resin, or a polyester resin.
  • the second optical film includes a second thermoplastic resin film made of a cellulose resin, a (meth) acrylic resin, or a cyclic polyolefin resin.
  • the polarizing plate according to any one of [1] to [6], A translucent member to be disposed on the first optical film side in the polarizing plate; An optical member set for a touch input type image display device.
  • a polarizing plate capable of effectively suppressing the occurrence of Newton rings
  • an optical member set including the polarizing plate and a touch input type image display device.
  • FIG. 1 is a schematic cross-sectional view showing an example of a polarizing plate according to the present invention and an optical member set including the polarizing plate.
  • the polarizing plate according to the present invention includes a polarizer 10 and a first optical film 20 laminated on one surface thereof.
  • the polarizing plate according to the present invention can be used as one of the members constituting the touch input type image display device. In this case, the polarizing plate is the viewing side (front side) of the image display element of the touch input type image display device. ).
  • the optical member set according to the present invention is a set (combination) of optical members for constructing a touch input type image display device, and includes the polarizing plate 1 and the translucent member 30 described above with reference to FIG.
  • the optical member set 40 is constructed by the polarizing plate 1 and the translucent member 30 disposed on the first optical film 20 side (viewing side of the polarizing plate 1).
  • This optical member set 40 is used in an air gap type touch input type image display device, that is, the translucent member 30 is arranged and fixed separately from the first optical film 20.
  • Polarizer 10 constituting the polarizing plate 1 absorbs linearly polarized light having a vibration plane parallel to the optical axis and transmits linearly polarized light having a vibration plane orthogonal to the optical axis.
  • a film in which a dichroic dye (iodine or dichroic organic dye) is adsorbed and oriented on a polyvinyl alcohol-based resin film can be suitably used.
  • the polyvinyl alcohol resin constituting the polarizer 10 can be obtained by saponifying a polyvinyl acetate resin.
  • the polyvinyl acetate resin include polyvinyl acetate, which is a homopolymer of vinyl acetate, as well as copolymers of vinyl acetate and other monomers copolymerizable therewith.
  • examples of other monomers copolymerized with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and (meth) acrylamides having an ammonium group.
  • the degree of saponification of the polyvinyl alcohol resin is usually about 85 to 100 mol%, preferably 98 mol% or more.
  • This polyvinyl alcohol-based resin may be further modified, and for example, polyvinyl formal and polyvinyl acetal modified with aldehydes may be used.
  • (meth) acryl means at least one selected from acrylic and methacrylic. The same applies to cases such as “(meth) acrylate”.
  • the degree of polymerization of the polyvinyl alcohol resin is usually about 1000 to 10000, preferably about 1500 to 5000.
  • Specific examples of the polyvinyl alcohol-based resin and dichroic dye include those exemplified in JP 2012-159778 A.
  • a film obtained by forming the polyvinyl alcohol resin is used as a raw film of the polarizer 10.
  • the method for forming a polyvinyl alcohol-based resin is not particularly limited, and can be formed by a known method.
  • the thickness of the raw film made of polyvinyl alcohol resin is not particularly limited, but is, for example, about 1 to 150 ⁇ m. Considering easiness of stretching, the thickness is preferably 10 ⁇ m or more.
  • the polarizer 10 is, for example, a step of uniaxially stretching a polyvinyl alcohol resin film as described above; a step of dyeing a polyvinyl alcohol resin film with a dichroic dye and adsorbing the dichroic dye; It can be manufactured through a step of treating the polyvinyl alcohol resin film adsorbed with boric acid aqueous solution; a step of washing with water after the boric acid aqueous solution treatment; and a drying step.
  • the thickness of the polarizer 10 can be about 2 to 40 ⁇ m, and preferably about 3 to 30 ⁇ m.
  • the polarizer 10 may be manufactured in accordance with, for example, a method described in JP2012-159778A.
  • a polyvinyl alcohol resin layer is formed by coating the polyvinyl alcohol resin on the base film, and this is stretched. After dyeing and making a polarizer layer (polarizer 10), an optical film such as a protective film is bonded to obtain a polarizing plate.
  • the first optical film 20 can be a thermoplastic resin film (protective film) having only a function of protecting the polarizer 10, but in addition to the protective function, the polarizing plate 1
  • the optical layer 22 is formed of fine surface irregularities such that the outer surface S (the surface opposite to the first thermoplastic resin film 21) satisfies predetermined surface characteristics described later.
  • the optical layer 22 can have a single-layer structure or a multilayer structure, and is not particularly limited.
  • the optical layer 22 is a layer having surface irregularities, it typically includes an antiglare layer or an antiglare layer that also serves as a hard coat layer. The configuration, material, and surface unevenness of the optical layer 22 are selected and adjusted so as to satisfy predetermined surface characteristics described later.
  • the first thermoplastic resin film 21 is preferably made of a light-transmitting thermoplastic resin, more preferably an optically transparent thermoplastic resin, and good mechanical strength, thermal stability, and the like. It is preferable to consist of a thermoplastic resin.
  • a thermoplastic resin examples include polyolefin resins such as chain polyolefin resins (polyethylene resins, polypropylene resins, etc.), cyclic polyolefin resins (norbornene resins, etc.); triacetyl cellulose, diacetyl cellulose, etc.
  • Cellulosic resin (cellulose ester resin); Polyester resin such as polyethylene terephthalate, polyethylene isophthalate, polybutylene terephthalate; (Meth) acrylic such as (meth) acrylic resin, (meth) acrylic ester copolymer Polyresin resin; Polycarbonate resin; Polysulfone resin; Polyethersulfone resin; Polyimide resin and the like.
  • cellulose resins, (meth) acrylic resins, cyclic polyolefin resins, polyester resins and the like are preferably used.
  • the thickness of the first thermoplastic resin film 21 is usually about 5 to 200 ⁇ m, preferably 10 ⁇ m or more, and preferably 80 ⁇ m or less.
  • the optical layer 22 having the outer surface S composed of fine surface irregularities can be formed by, for example, applying a translucent resin on the first thermoplastic resin film 21 and curing the applied layer as necessary. At this time, the formation of fine surface irregularities is carried out by bringing fine particles into the translucent resin, or by closely attaching a mold having an irregular surface (embossing mold) to the coating layer containing the translucent resin. It can be performed by a method of transferring the uneven surface to the coating layer.
  • the translucent resin include an active energy ray curable resin such as an ultraviolet curable resin and an electron beam curable resin, a thermosetting resin, a thermoplastic resin, and a metal alkoxide.
  • an active energy ray-curable resin is preferable because high hardness and scratch resistance can be imparted.
  • the optical layer 22 is formed by curing the resin by irradiation or heating with an active energy ray.
  • the active energy ray-curable resin examples include polyfunctional (meth) acrylates such as (meth) acrylic acid esters of polyhydric alcohols; terminal isocyanato group urethane prepolymers obtained by reaction of diisocyanates and polyhydric alcohols ( Polyfunctional urethane (meth) acrylates such as those obtained by reacting hydroxyalkyl esters of meth) acrylic acid are included.
  • polyether resins having a (meth) acrylate functional group polyester resins, epoxy resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins, and the like can also be active energy ray curable resins.
  • thermosetting resin examples include a phenol resin, a urea melamine resin, an epoxy resin, an unsaturated polyester resin, and a silicone resin in addition to a thermosetting urethane resin composed of (meth) acryl polyol and an isocyanate prepolymer.
  • thermoplastic resin examples include cellulose derivatives such as acetylcellulose, nitrocellulose, acetylbutylcellulose, ethylcellulose, and methylcellulose; vinyl acetate homopolymer or copolymer, vinyl chloride homopolymer or copolymer, chloride Vinyl resins such as vinylidene homopolymers or copolymers; acetal resins such as polyvinyl formal and polyvinyl butyral; (meth) acrylic resins and (meth) acrylic ester copolymers (meth) Including acrylic resin; polystyrene resin; polyamide resin; polyester resin; polycarbonate resin.
  • cellulose derivatives such as acetylcellulose, nitrocellulose, acetylbutylcellulose, ethylcellulose, and methylcellulose
  • vinyl acetate homopolymer or copolymer vinyl chloride homopolymer or copolymer, chloride Vinyl resins such as vinylidene homopolymers or copolymers
  • an alkoxysilane-based material can be used, which forms a silicon oxide-based matrix by hydrolysis or dehydration condensation. Specifically, it is tetramethoxysilane, tetraethoxysilane, or the like, and forms an inorganic or organic-inorganic composite matrix by hydrolysis or dehydration condensation to become a translucent resin.
  • active energy ray curable resins and thermosetting resins are prepared in a liquid state, and metal alkoxides are often liquid.
  • the resin prepared in a liquid state can be used as it is as a coating liquid for forming the optical layer 22, but if necessary, it may be diluted with a solvent or the like as the coating liquid.
  • a resin prepared as a solid such as a thermoplastic resin is used as a coating solution in a state dissolved in an appropriate solvent.
  • the coating liquid containing an active energy ray curable resin, a thermosetting resin, a metal alkoxide, or a thermoplastic resin can contain an appropriate additive such as a leveling agent or a dispersant.
  • the optical layer 22 can contain fine particles in order to form surface irregularities as described above or to impart internal haze for the purpose of reducing glare or the like.
  • the optical layer 22 is an antiglare layer or includes an antiglare layer.
  • the fine particles translucent ones are used. Specific examples thereof include (meth) acrylic resins, melamine resins, polyethylene resins, polystyrene resins, organic silicone resins, (meth) acrylic acid ester-styrene copolymers.
  • the fine particles may be used alone or in combination of two or more.
  • the shape of the fine particles may be spherical, flat, plate-like, needle-like, indeterminate.
  • the particle diameter (weight average particle diameter) of the fine particles is preferably in the range of 0.5 to 20 ⁇ m.
  • the difference between the refractive index of the light-transmitting resin (active energy ray-curable resin, thermosetting resin, and cured product in the case of metal alkoxide) and the refractive index of the fine particles is preferably in the range of 0.04 to 0.15.
  • the content of the fine particles is usually 3 to 60 parts by weight, preferably 5 to 50 parts by weight with respect to 100 parts by weight of the translucent resin. If the content of fine particles is less than 3 parts by weight, it is difficult to obtain sufficient internal haze for reducing glare. On the other hand, when the content exceeds 60 parts by weight, the transparency of the obtained first optical film 20 may be impaired, and when the polarizing plate is applied to an image display device, light scattering is too strong. For example, in black display, the light leaking obliquely with respect to the front direction of the image display apparatus may be reduced in contrast because the optical layer 22 strongly scatters in the front direction.
  • the low refractive index layer that can be included in the optical layer 22 is a resin material such as an ultraviolet curable (meth) acrylic resin; a hybrid material in which inorganic fine particles such as colloidal silica are dispersed in a resin; a sol containing alkoxysilane; It can be formed from a gel material or the like.
  • the refractive index of the low refractive index layer can range from 1.30 to 1.45.
  • the low refractive index layer may be formed by coating a polymer that has been polymerized, or may be formed by coating in the state of a monomer or oligomer that is a precursor, followed by polymerization and curing.
  • the sol-gel material preferably contains a compound having a fluorine atom in the molecule, and a typical example thereof is polyfluoroalkylalkoxysilane.
  • the polyfluoroalkylalkoxysilane is represented by the following formula: CF 3 (CF 2 ) n CH 2 CH 2 Si (OR) 3 It can be a compound shown by these.
  • R represents an alkyl group having 1 to 5 carbon atoms
  • n represents an integer of 0 to 12. Of these, compounds in which n in the above formula is 2 to 6 are preferred.
  • the low refractive index layer can also be formed by curing a curable fluorine-containing compound such as a fluorine-containing polymer having a crosslinkable functional group.
  • a curable fluorine-containing compound such as a fluorine-containing polymer having a crosslinkable functional group.
  • the fluorine-containing polymer having a crosslinkable functional group can be obtained by 1) copolymerizing a fluorine-containing monomer and a monomer having a crosslinkable functional group, or 2) copolymerizing a fluorine-containing monomer and a monomer having a functional group. Then, it can be produced by a method of adding a compound having a crosslinkable functional group to the functional group in the polymer.
  • fluorine-containing monomer examples include fluoroolefins such as fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, perfluoro-2,2-dimethyl-1,3-dioxole; (meth) acrylic acid Partially or fully fluorinated alkyl ester derivatives of the above; fully or partially fluorinated vinyl ethers of (meth) acrylic acid.
  • Examples of the monomer having a crosslinkable functional group and the compound having a crosslinkable functional group include a monomer having a glycidyl group such as glycidyl (meth) acrylate; a monomer having a carboxyl group such as (meth) acrylic acid; Examples thereof include monomers having a hydroxyl group such as alkyl (meth) acrylate; monomers having an alkenyl group such as allyl (meth) acrylate; monomers having an amino group; monomers having a sulfonic acid group.
  • the low refractive index layer can contain low refractive index inorganic fine particles made of silica, alumina, titania, zirconia, magnesium fluoride or the like. Among these, silica hollow fine particles are preferably used.
  • the average particle diameter of the fine particles is preferably in the range of 5 to 2000 nm, more preferably in the range of 20 to 100 nm.
  • the polarizing plate 1 can be obtained by bonding the first optical film 20 to one surface of the polarizer 10. Bonding with the polarizer 10 and the 1st optical film 20 can be performed using an adhesive agent or an adhesive.
  • an adhesive agent or an adhesive a water-based adhesive containing a polyvinyl alcohol resin or a urethane resin as a main component, or a photocurable adhesive containing a photocurable resin such as an ultraviolet curable resin (epoxy resin or the like) is used. it can.
  • the pressure-sensitive adhesive those having a base polymer of (meth) acrylic polymer, silicone polymer, polyester, polyurethane, polyether or the like can be used.
  • the bonding surface of the polarizer 10 and / or the first optical film 20 may be subjected to an easy adhesion process such as a saponification process, a corona process, a primer process, and an anchor coating process.
  • the outer surface S of the first optical film 20 has a cross-sectional curve kurtosis Pku of 3.0 or more and a reflectance Y of 4.0%. It is as follows. By imparting such surface characteristics to the outer surface S composed of fine surface irregularities, it is possible to effectively suppress the occurrence of Newton rings when the screen is pressed with fingers or the like.
  • the present inventor not only adjusts Pku to a predetermined range but also reflects the reflectance Y not only on the outer surface S but also the reflectance Y greatly affects the occurrence of Newton rings. It has been found that the rate Y must also be adjusted to a predetermined range.
  • Z (x) is the height of the cross-sectional curve at an arbitrary position x
  • Lp is the reference length (equivalent to the evaluation length) of the cross-sectional curve.
  • Pq is the root mean square height of the cross-sectional curve, and is defined as follows in 4.2.2 of JIS B 0601: 2013.
  • Pku is the mean square of Z (x) at the reference length Lp made dimensionless by the square of the root mean square height Pq of the cross-sectional curve.
  • Pku is a parameter indicating the degree of sharpness (sharpness) of the probability density function of the cross-section curve, and is called “spiral degree” in statistical terms.
  • Pku can be measured using a commercially available three-dimensional shape measuring device, a roughness meter, or the like. In Examples described later, measurement was performed using a three-dimensional microscope “PL ⁇ 2300” manufactured by SENSOFAR. This apparatus is designed to automatically calculate specified parameters for the measurement sample.
  • the reflectance Y means a visibility correction reflectance, and specifically, a spectral reflectance in a wavelength range of 350 to 900 nm at a reflection angle of 12 ° when light is incident at an incident angle of 12 °.
  • C light source a 2 degree visual field
  • the spectral reflectance of the light 204 (reflected light in the regular reflection direction) is measured. Furthermore, from the obtained spectral reflectance, the reflectance Y can be obtained by correcting the visibility with a 2-degree field (C light source) of JIS Z 8701.
  • the reflected light Y can be measured using a spectrophotometer or the like.
  • the possibility of reflection from the back surface of the first optical film 20 affecting the measurement value is eliminated, and in addition, the first optical film 20 is optically transparent to prevent warping.
  • the first optical film 20 bonded to a black plate (black acrylic plate or the like) on the first thermoplastic resin film 21 side is used as a measurement sample.
  • the higher the Pku and the lower the reflectance Y the more advantageous the suppression of the Newton ring.
  • the Pku is sufficiently high, even if the reflectance Y is relatively high in the range of 4.0 or less, the Newton ring
  • the reflectance Y is sufficiently low, Newton's ring tends to be sufficiently suppressed even if Pku is relatively low in the range of 3.0 or more.
  • Pku is 4.5 or more
  • Newton's ring can be sufficiently suppressed even if the reflectance Y is 2.0 or more, further 2.5 or more, and even 3.0 or more.
  • the reflectance Y when the reflectance Y is 2.0 or less, Newton rings can be sufficiently suppressed even if Pku is 5.0 or less, further 4.0 or less, and even 3.5 or less.
  • the reflectance Y When Pku is relatively low as 3.0 to 5.0, the reflectance Y is preferably 3.0 or less, more preferably 2.5 or less, and further preferably 2.0 or less (particularly 1. 5 or less).
  • Pku is preferably 3.1 or more, more preferably 3.5 or more, and further preferably 4.0 or more. .
  • the outer surface S of the first optical film 20 preferably has an arithmetic average roughness Ra of 100 nm or less.
  • the arithmetic average roughness Ra is a parameter defined in 4.2.1 of JIS B 0601: 2013, and means an average value of absolute values of the height Z (x) in the reference length.
  • the arithmetic average roughness Ra of the outer surface S of the first optical film 20 is usually 30 nm or more.
  • the adjustment of Pku can be performed according to a known method in the field of an antiglare film used for preventing reflection of external light and glare due to surface unevenness.
  • the design of the coating liquid that is, the particle diameter of the fine particles
  • a translucent resin for example, active energy ray curable
  • a mold with a predetermined surface shape is used as the mold. do it.
  • a low refractive index layer may be provided on the outermost surface of the optical layer 22 or a fine uneven structure may be provided on the surface.
  • the translucent member 30 disposed on the first optical film 20 side (the viewing side of the polarizing plate 1) of the polarizing plate 1 is a translucent plate, sheet, or the like.
  • a protective plate (front plate) disposed on the outermost surface of the image display device by providing the image display element with a function of the touch input element, in addition to being a touch input element (touch panel) itself. ) Can be a member that only plays a role.
  • the translucent member 30 can be a glass plate or various thermoplastic resin films having translucency (preferably optically transparent). The content described about the 1st thermoplastic resin film 21 is quoted about the specific example of a thermoplastic resin.
  • the touch input type image display device is a resistive film type
  • a transparent conductive layer is formed on the outermost surface on the first optical film 20 (air gap) side of the translucent member 30 that is a touch input element. May be formed.
  • the translucent member 30 as a touch input element used in the resistive film method is preferably flexible, it is often composed of a thermoplastic resin film.
  • flexibility is often not required, and either a glass plate or a thermoplastic resin film can be used.
  • FIG. 3 is a schematic cross-sectional view showing another example of the polarizing plate according to the present invention and an optical member set including the polarizing plate.
  • the polarizing plate according to the present invention is on the surface of the polarizer 10 opposite to the first optical film 20 in addition to the polarizer 10 and the first optical film 20.
  • a second optical film 25 may be further included.
  • the second optical film 25 is a film disposed on the image display element side in the image display device.
  • the 3 includes the polarizing plate 2 and the above-described translucent member 30, and is disposed on the polarizing plate 2 and the first optical film 20 side (viewing side of the polarizing plate 2). It is used for an air gap type touch input type image display device constructed with the translucent member 30.
  • the second optical film 25 may be a film made of a thermoplastic resin film (second thermoplastic resin film) or a film including the same.
  • the content described about the 1st thermoplastic resin film 21 is quoted about the specific example of the thermoplastic resin which comprises a 2nd thermoplastic resin film.
  • cellulose resins, (meth) acrylic resins, cyclic polyolefin resins, and the like are preferably used.
  • the thickness of the second optical film 25 is usually about 5 to 200 ⁇ m, preferably 10 ⁇ m or more, and preferably 80 ⁇ m or less.
  • the second optical film 25 may be a simple protective film for protecting the polarizer 10, or may be a protective film having both optical functions such as a retardation film (optical compensation film) and a brightness enhancement film. You can also.
  • the retardation film may be, for example, a liquid crystal compound formed on a film obtained by uniaxially or biaxially stretching the second thermoplastic resin film (cyclic polyolefin resin film or the like) or the second thermoplastic resin film (cellulose resin film or the like). Can be applied and oriented film.
  • the second optical film 25 may be a birefringent film in which the refractive index in the thickness direction of the film is controlled by applying a shrinkage force and / or stretching force under adhesion with the heat-shrinkable film.
  • the 2nd optical film 25 may be a laminated body of the 2nd thermoplastic resin film which is a protective film, and the optical compensation film laminated
  • R 0 (n x ⁇ n y ) ⁇ d
  • R th [ ⁇ (n x + ny ) / 2 ⁇ ⁇ n z ] ⁇ d
  • N x is the in-plane slow axis direction of the refractive index in the above formulas
  • n y is a refractive index in the in-plane fast axis direction (perpendicular to the plane slow axis direction)
  • n z is the refractive index in the thickness direction
  • d is the thickness of the film.
  • the retardation film can be, for example, a 1 / 4 ⁇ plate.
  • Bonding of the second optical film 25 and the polarizer 10 can also be performed using an adhesive such as a water-based adhesive or a photocurable adhesive, or a pressure-sensitive adhesive. Prior to bonding, the above-described easy adhesion treatment may be performed on the bonding surface of the polarizer 10 and / or the second optical film 25.
  • FIG. 4 is a schematic cross-sectional view showing another example of the polarizing plate according to the present invention and an optical member set including the polarizing plate.
  • the polarizing plate and the translucent member may have a transparent conductive layer.
  • the optical member set 42 including the polarizing plate 3 and the translucent member 30 shown in FIG. 4 can be used for a resistive film system, and the first optical film 20 (air) in the translucent member 30 as a touch input element.
  • a transparent conductive layer 31 is formed on the outermost surface on the gap) side, and a transparent conductive layer 23 is also formed on the outer surface S of the first optical film 20.
  • the transparent conductive layers 23 and 31 serving as electrodes play a role for detecting the position when the translucent member 30 side is pressed with a finger or the like so that they come into contact with each other at that position.
  • the transparent conductive layers 23 and 31 can be made of ITO (indium tin oxide) or the like well known in the resistive film system.
  • the polarizing plate 3 shown in FIG. 4 can further include a second optical film 25 laminated on the surface opposite to the first optical film 20, similarly to the polarizing plate 2 shown in FIG. 3.
  • the manufacturing method of a 1st optical film 20 which has the outer surface S which consists of surface asperity coats the coating liquid containing translucent resin and microparticles
  • It can be manufactured by a method in which a mold having an embossing (embossing mold) is brought into close contact, and the uneven surface is transferred to a coating layer.
  • embossing embossing mold
  • another layer for example, a low refractive index layer
  • a low refractive index layer can be further laminated on the layer obtained by the above method.
  • a method preferably used for imparting surface irregularities is a method using an embossing mold, and this method includes the following steps: (A) A step of applying a coating liquid containing a translucent resin on the first thermoplastic resin film 21, and (B) an uneven surface of an embossing type (transfer type) on the surface of the coating layer. A transfer step.
  • the coating liquid used in the above step (A) contains a translucent resin, and if necessary, contains other components such as translucent fine particles and a solvent.
  • the coating solution further contains a photopolymerization initiator (radical polymerization initiator).
  • the photopolymerization initiator include acetophenone photopolymerization initiator, benzoin photopolymerization initiator, benzophenone photopolymerization initiator, thioxanthone photopolymerization initiator, triazine photopolymerization initiator, and oxadiazole photopolymerization initiator. An initiator or the like is used.
  • 2,4,6-trimethylbenzoyldiphenylphosphine oxide 2,2′-bis (o-chlorophenyl) -4,4 ′, 5,5′-tetraphenyl-1,2′-biimidazole, 10- Butyl-2-chloroacridone, 2-ethylanthraquinone, benzyl, 9,10-phenanthrenequinone, camphorquinone, methyl phenylglyoxylate, titanocene compounds and the like can also be used as a photopolymerization initiator.
  • the amount of the photopolymerization initiator used is usually 0.5 to 20 parts by weight, preferably 1 to 5 parts by weight with respect to 100 parts by weight of the ultraviolet curable resin contained in the coating liquid.
  • the application of the coating liquid onto the first thermoplastic resin film 21 is performed by, for example, a gravure coating method, a micro gravure coating method, a rod coating method, a knife coating method, an air knife coating method, a kiss coating method, a die coating method, or the like. be able to.
  • Various surface treatments may be applied to the coated surface of the first thermoplastic resin film 21 for the purpose of improving the coating properties of the coating liquid or improving the adhesion with the resulting coating layer.
  • the surface treatment can be a corona discharge treatment, a glow discharge treatment, an acid surface treatment, an alkali surface treatment, an ultraviolet irradiation treatment or the like.
  • another layer such as a primer layer may be formed on the first thermoplastic resin film 21 and a coating solution may be applied thereon.
  • step (B) an embossed uneven surface is brought into close contact with the surface of the coating layer, and the uneven surface is transferred.
  • the optical layer 22 or a layer constituting the same having a desired surface shape can be formed.
  • an active energy ray curable resin a thermosetting resin or a metal alkoxide is used as the translucent resin, irradiation with active energy rays (active energy) is performed with an embossed uneven surface in close contact with the surface of the coating layer.
  • the coating layer is cured by heating (when using a linear curable resin) or heating (when using a thermosetting resin or metal alkoxide).
  • the active energy ray can be appropriately selected from an electron beam, an ultraviolet ray, a near ultraviolet ray, a visible light, a near infrared ray, an infrared ray, an X-ray and the like according to the type of resin contained in the coating liquid.
  • ultraviolet rays or electron beams are preferable, and ultraviolet rays are preferably used because they are easy to handle and high energy is obtained.
  • a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a xenon lamp, a metal halide lamp, or the like can be used.
  • an ArF excimer laser, a KrF excimer laser, an excimer lamp, synchrotron radiation, or the like can also be used.
  • mercury lamps, xenon lamps, or metal halide lamps including ultra-high pressure, high pressure, medium pressure and low pressure are preferably used.
  • the electron beam 50 to 1000 keV emitted from various electron beam accelerators such as a cockroft Walton type, a bandegraph type, a resonance transformation type, an insulating core transformation type, a linear type, a dynamitron type, or a high frequency type, preferably 100 Mention may be made of electron beams having an energy of ⁇ 300 keV.
  • various electron beam accelerators such as a cockroft Walton type, a bandegraph type, a resonance transformation type, an insulating core transformation type, a linear type, a dynamitron type, or a high frequency type, preferably 100 Mention may be made of electron beams having an energy of ⁇ 300 keV.
  • the embossing mold used for imparting surface irregularities to the optical layer 22 has a surface irregularity shape corresponding to the desired surface irregularity shape of the optical layer 22.
  • the surface uneven pattern in the embossed pattern may be a regular pattern, a random pattern, or a pseudo-random pattern in which one or more random patterns of a specific size are spread.
  • it is preferably a random pattern or a pseudo-random pattern.
  • the outer shape of the embossed mold is not particularly limited, and may be a flat plate shape or a cylindrical or cylindrical roll, but from the viewpoint of continuous productivity of the first optical film 20.
  • a columnar or cylindrical mold, that is, an embossing roll is preferable. In this case, a predetermined surface shape is formed on the side surface of the columnar or cylindrical mold.
  • the substrate constituting the embossing mold is not particularly limited, and can be appropriately selected from, for example, metal, glass, carbon, resin, or a composite thereof, but metal is preferable from the viewpoint of workability.
  • the metal material suitably used for the embossing mold is aluminum, iron, or an alloy mainly composed of aluminum or iron, particularly from the viewpoint of cost.
  • a base material is polished, sandblasted, and then subjected to electroless nickel plating (Japanese Patent Laid-Open No. 2006-53371); the base material is subjected to copper plating or nickel plating. Then, polishing, then sandblasting, and further chromium plating (Japanese Patent Laid-Open No. 2007-187852); copper plating or nickel plating, polishing, then sandblasting, and further etching step Alternatively, a method of performing chromium plating after passing through a copper plating step (Japanese Patent Laid-Open No.
  • Embossed surface irregularities consisting of random patterns or pseudo-random patterns include, for example, FM screen method, DLDS (Dynamic Low-Discontinuity Sequence) method, method using block copolymer microphase separation pattern, bandpass filter method
  • a random pattern created by the above method can be formed by exposing the photosensitive resin film, developing it, and performing an etching process using the developed photosensitive resin film as a mask.
  • the polarizing plate according to the present invention is disposed on the viewing side of the image display element, and the first optical film side of the polarizing plate is separated from the first optical film.
  • An optical member is arranged.
  • the image display element may be a non-self light emitting element such as a liquid crystal cell, or may be a self light emitting element such as an organic EL display element.
  • FIG. 1 An example of a touch input type image display device using the liquid crystal cell 50 as an image display element is shown in FIG.
  • the optical member set 40 shown in FIG. 1 is applied.
  • the operation method of the touch input type image display apparatus may be any method, but typical examples are a resistive film method and a capacitance method.
  • the liquid crystal cell 50 has a liquid crystal layer sandwiched between two transparent substrates, controls the alignment state of the liquid crystal layer by applying a voltage, and enables display. A liquid crystal cell known in the field of liquid crystal display is adopted. be able to.
  • the touch input type image display device is a liquid crystal display device including the liquid crystal cell 50, as shown in FIG. 5, a back side polarizing plate 60 is disposed on the back side of the liquid crystal cell 50, and further on the back side thereof.
  • a backlight 80 for supplying display light is disposed.
  • the polarizing plate is usually bonded to the liquid crystal cell 50 via the pressure-sensitive adhesive layers 70 and 71.
  • the organic EL display element when employed as the image display element, the organic EL display element is a self-luminous type, and therefore, instead of the liquid crystal cell 50, the adhesive layer 71, the back side polarizing plate 60, and the backlight 80 in FIG. In addition, this organic EL display element may be disposed.
  • the organic EL display element includes a light emitter including an organic light emitting material sandwiched between a pair of electrodes, and a well-known one in this field can also be employed.
  • Example 1 (A) Manufacture of optical film (A1) Manufacture of mold for optical film (emboss mold) According to the method described in Example 1 (B) of JP 2012-68474 A, etching for forming irregularities By changing the amount, a mold for imparting an uneven shape to the optical film was produced. That is, first, an aluminum roll having a diameter of 200 mm (A5056 according to JIS) with copper ballad plating applied thereto was prepared. The copper ballad plating was composed of a copper plating layer / a thin silver plating layer / a surface copper plating layer, and the thickness of the entire plating layer was about 200 ⁇ m.
  • the copper plating surface was mirror-polished, a positive photosensitive resin was applied to the polished copper plating surface, and dried to form a photosensitive resin film.
  • the photosensitive resin film was exposed to laser light so that a predetermined pattern (pattern shown in FIG. 16 of the same publication) was repeated, and then developed.
  • the laser light exposure and development were performed using “Laser Stream FX” manufactured by Sink Laboratories.
  • a first etching process was performed with a cupric chloride aqueous solution.
  • the photosensitive resin film was removed from the roll after the first etching treatment, and a second etching treatment was again performed with a cupric chloride aqueous solution.
  • the first etching processing amount is 4 ⁇ m
  • the second etching processing amount also the same
  • the thickness (thickened by etching) was set to 12 ⁇ m.
  • chrome plating was performed.
  • the thickness of the chromium plating was set to 4 ⁇ m.
  • UV curable resin a mixture of 60 parts of pentaerythritol triacrylate and 40 parts of polyfunctional urethanized acrylate (reaction product of hexamethylene diisocyanate and pentaerythritol triacrylate).
  • Photopolymerization initiator “Lucirin TPO” (chemical name: 2,4,6-trimethylbenzoyldiphenylphosphine oxide) sold by BASF.
  • a UV curable resin composition for forming a coating layer was prepared by mixing 5 parts of the photopolymerization initiator and 150 parts of ethyl acetate as a diluent solvent with 100 parts of the UV curable resin.
  • thermoplastic resin film made of triacetylcellulose with a die coater so that the film thickness after drying was 5 ⁇ m, and a thermoplastic resin was obtained.
  • a laminate comprising a film and a coating layer of an ultraviolet curable resin composition was obtained. After drying this laminated body in a drying furnace, it was pressed and adhered to the mold roll produced in (A1) above with a nip roll so that the coating layer side was in contact with the mold.
  • the obtained coating solution for forming a low refractive index layer is coated on the uneven surface of the optical film obtained above with a wire bar coater and dried in a dryer set at 120 ° C. for 1 minute to reduce the refractive index. An index layer was formed to obtain an optical film.
  • the resulting low refractive index layer had a thickness of 102 nm and a refractive index of 1.37.
  • the polyvinyl alcohol adhesive prepared in (E) above is applied to the saponification treated surface with a 10 ⁇ m bar coater, and the coated surface is coated with the optical film of the upper polarizer. It bonded on the surface on the opposite side to the surface where the film was bonded. Thereafter, it was dried at 80 ° C. for 5 minutes and further cured at room temperature for 1 day. Thus, a polarizing plate having a layer structure of optical film / polarizer / triacetyl cellulose film was produced.
  • A Newton rings are not observed
  • B Newton rings are slightly observed, but at a level where there is no problem with visual recognition.
  • C Newton rings are observed remarkably.
  • Example 2 An optical film was obtained in the same manner as in Example 1 except that the first etching treatment amount of the optical film mold was 5.0 ⁇ m and the thickness of the low refractive index layer was 68 nm. The surface properties of this film were measured by the same method as in Example 1. As a result, Pku was 4.9 and reflectance Y was 2.0%. A polarizing plate was produced in the same manner as in Example 1 except that this film was used as an optical film, and Newton rings were evaluated.
  • Example 3 An optical film was obtained in the same manner as in Example 1 except that the first etching treatment amount of the optical film mold was 7.0 ⁇ m and the low refractive index layer was not provided. When the surface properties of this film were measured by the same method as in Example 1, Pku was 7.9 and reflectance Y was 3.0%. A polarizing plate was produced in the same manner as in Example 1 except that this film was used as an optical film, and Newton rings were evaluated.
  • Example 4 An optical film was obtained in the same manner as in Example 1 except that the low refractive index layer was not provided. When the surface characteristics of this film were measured by the same method as in Example 1, Pku was 3.2 and reflectance Y was 3.4%. A polarizing plate was produced in the same manner as in Example 1 except that this film was used as an optical film, and Newton rings were evaluated.
  • Example 5 An optical film was obtained in the same manner as in Example 1 except that the thickness of the low refractive index layer was 80 nm. The surface properties of this film were measured by the same method as in Example 1. As a result, Pku was 3.2 and reflectance Y was 1.8%. A polarizing plate was produced in the same manner as in Example 1 except that this film was used as an optical film, and Newton rings were evaluated.
  • Example 1 The surface treatment film “NC-1B” sold by Nippon Paper Chemicals Co., Ltd. was used as the optical film.
  • the surface properties of this film were measured by the same method as in Example 1. As a result, Pku was 3.3 and reflectance Y was 4.1%.
  • a polarizing plate was produced in the same manner as in Example 1 except that this film was used as an optical film, and Newton rings were evaluated.
  • ⁇ Comparative example 2> A surface-treated film “40CHC” sold by Toppan Printing Co., Ltd. was used as an optical film. The surface properties of this film were measured by the same method as in Example 1. As a result, Pku was 2.2 and reflectance Y was 4.2%. A polarizing plate was produced in the same manner as in Example 1 except that this film was used as an optical film, and Newton rings were evaluated.
  • Example 3 A surface-treated film “40KSPLR” sold by Toppan Printing Co., Ltd. was used as an optical film. The surface properties of this film were measured by the same method as in Example 1. As a result, Pku was 2.6 and reflectance Y was 1.0%. A polarizing plate was produced in the same manner as in Example 1 except that this film was used as an optical film, and Newton rings were evaluated.
  • Polarizing plate 1, 2, 3 Polarizing plate, 10 Polarizer, 20 First optical film, 21 First thermoplastic resin film, 22 Optical layer, 23 Transparent conductive layer, 25 Second optical film, 30 Translucent member, 31 Transparent conductive Layer, 40, 41, 42 optical member set, 50 liquid crystal cell, 60 back side polarizing plate, 70, 71 adhesive layer, 80 backlight, S outer surface of the first optical film, 200 normal line of the first optical film, 201 Incident light, 203, a plane including the incident light direction and the normal line of the first optical film, and 204, reflected light reflected in the regular reflection direction.

Abstract

This invention provides the following: a polarizing plate that contains a polarizer and a first optical film laminated to one surface of said polarizer, wherein a profile curve of the surface of the first optical film that faces away from the polarizer exhibits a kurtosis (Pku) of at least 3.0, and when light is incident thereon at an angle of incidence of 12°, said surface exhibits a reflectance (Y) of at most 4.0% at an angle of reflection of 12°; and an optical-member set and a touchscreen that contain the aforementioned polarizing plate.

Description

偏光板、光学部材セット及びタッチ入力式画像表示装置Polarizing plate, optical member set, and touch input type image display device
 本発明は、エアーギャップ方式のタッチ入力式画像表示装置に好適に用いることができる偏光板、並びにそれを含む光学部材セット及びタッチ入力式画像表示装置に関する。 The present invention relates to a polarizing plate that can be suitably used for an air gap type touch input type image display device, an optical member set including the same, and a touch input type image display device.
 近年、スマートフォンやタブレット型携帯情報端末等を中心に、タッチ入力式の画像表示装置が急速に普及してきている。タッチ入力式画像表示装置は、画像表示素子の視認側、若しくは画像表示素子内部にタッチ位置情報を検知するためのタッチ入力素子(タッチパネル)を備えており、画像表示素子が液晶セルや有機エレクトロルミネッセンス(EL)表示素子等である場合、タッチ入力式画像表示装置は一般的に偏光板を含む構成とされる。 In recent years, touch-input type image display devices have been rapidly spread mainly in smartphones and tablet-type portable information terminals. The touch input type image display device includes a touch input element (touch panel) for detecting touch position information on the viewing side of the image display element or inside the image display element, and the image display element is a liquid crystal cell or organic electroluminescence. In the case of an (EL) display element or the like, the touch input type image display device is generally configured to include a polarizing plate.
 タッチ入力式画像表示装置には各種の方式があるが、現在主流を占めているのは抵抗膜方式と静電容量方式である。抵抗膜方式は、透明電極を有する2枚の基板が間隙を保って、かつそれぞれの透明電極が向かい合うように配置されており、手指等で画面をタッチしたときに対向する2つの透明電極が接触することでタッチ位置を検知する。このように、抵抗膜方式においては、2枚の基板間に間隙が設けられる。 There are various types of touch input type image display devices, but the resistive film type and the electrostatic capacity type are mainly used at present. In the resistive film method, two substrates having transparent electrodes are arranged so that the transparent electrodes are opposed to each other, and the two transparent electrodes facing each other when touching the screen with a finger or the like are in contact with each other. To detect the touch position. Thus, in the resistive film system, a gap is provided between two substrates.
 一方、静電容量方式は、手指等でタッチした部分の表面電荷の変化を捉えてタッチ位置を検知する。静電容量方式においても、タッチ入力式画像表示装置内に間隙を設けた構成のものがある。以下では、タッチ入力式画像表示装置内に間隙(エアーギャップ)を設けたものを「エアーギャップ方式」のタッチ入力式画像表示装置ともいう。 On the other hand, the electrostatic capacity method detects a touch position by detecting a change in surface charge of a portion touched with a finger or the like. Some electrostatic capacity systems have a configuration in which a gap is provided in a touch input type image display device. Below, what provided the gap | interval (air gap) in the touch input type image display apparatus is also called the touch input type image display apparatus of an "air gap type".
 特開2008-155387号公報(特許文献1)には、樹脂成形体の凹凸表面に透明導電膜を形成した積層体をタッチパネル用の透明電極付き基板として用いることが記載されている。また、特開2011-133881号公報(特許文献2)には、抵抗膜方式のタッチパネルにおける一方の基板(視認側の基板)として、偏光板、位相差フィルム、ハードコート層及び透明導電膜をこの順で含む積層体を用いることが記載されている(図9)。 Japanese Patent Application Laid-Open No. 2008-155387 (Patent Document 1) describes that a laminated body in which a transparent conductive film is formed on an uneven surface of a resin molded body is used as a substrate with a transparent electrode for a touch panel. Japanese Patent Application Laid-Open No. 2011-133881 (Patent Document 2) discloses a polarizing plate, a retardation film, a hard coat layer, and a transparent conductive film as one substrate (a viewing-side substrate) in a resistive film type touch panel. It is described that a laminate including in order is used (FIG. 9).
特開2008-155387号公報JP 2008-155387 A 特開2011-133881号公報JP 2011-133881 A
 エアーギャップ方式のタッチ入力式画像表示装置においては、手指等で画面をタッチしたとき、エアーギャップの間隔が変化し、その結果、エアギャップにおいて多重反射した光が干渉することに起因して、ニュートンリングと呼ばれる干渉縞が発生しやすい。ニュートンリングが発生すると、表示画面の視認性が低下する。 In an air gap type touch-input type image display device, when the screen is touched with a finger or the like, the interval of the air gap changes, and as a result, the light reflected in the air gap interferes with the Newton. Interference fringes called rings are likely to occur. When Newton rings occur, the visibility of the display screen is reduced.
 特許文献1には、樹脂成形体における透明導電膜が形成される側の面を粗面化する、具体的には算術平均粗さRaを50~150nmとすることでニュートンリングを抑制し得ることが記載されているが、算術平均粗さRaの制御では、特にそれが100nm以下のレベルである場合に、必ずしもニュートンリングを有効に抑制できないことがあった。特許文献2には、ハードコート層における透明導電膜が形成される側の面の算術平均粗さRa及び所定高さの凸部の存在個数を制御することでニュートンリング及びギラツキを抑制し得ることが記載されているが、特許文献1と同様、ニュートンリングを有効に抑制できないことがあった。 In Patent Document 1, Newton's ring can be suppressed by roughening the surface of the resin molded body on which the transparent conductive film is formed, specifically, by setting the arithmetic average roughness Ra to 50 to 150 nm. However, when the arithmetic average roughness Ra is controlled, the Newton ring may not necessarily be effectively suppressed particularly when the arithmetic average roughness Ra is at a level of 100 nm or less. In Patent Document 2, Newton's ring and glare can be suppressed by controlling the arithmetic average roughness Ra of the surface on the side where the transparent conductive film is formed in the hard coat layer and the number of protrusions having a predetermined height. However, like Patent Document 1, Newton's ring may not be effectively suppressed.
 本発明の目的は、ニュートンリングの発生を効果的に抑制することのできる偏光板、並びにそれを含む光学部材セット及びタッチ入力式画像表示装置を提供することにある。 An object of the present invention is to provide a polarizing plate capable of effectively suppressing the generation of Newton rings, an optical member set including the polarizing plate, and a touch input type image display device.
 本発明は、以下に示す偏光板、光学部材セット及びタッチ入力式画像表示装置を提供する。 The present invention provides the following polarizing plate, optical member set and touch input type image display device.
 [1] 偏光子と、その一方の面上に積層される第1光学フィルムとを含み、
 前記第1光学フィルムにおける前記偏光子とは反対側の表面は、断面曲線のクルトシスPkuが3.0以上であり、かつ、入射角12°で光を入射したときの反射角12°における反射率Yが4.0%以下である、偏光板。
[1] A polarizer and a first optical film laminated on one surface thereof,
The surface of the first optical film opposite to the polarizer has a cross-sectional curve kurtosis Pku of 3.0 or more, and a reflectance at a reflection angle of 12 ° when light is incident at an incident angle of 12 °. The polarizing plate whose Y is 4.0% or less.
 [2] 前記第1光学フィルムは、第1熱可塑性樹脂フィルムと、その前記偏光子とは反対側の面上に積層される光学層とを含む、[1]に記載の偏光板。 [2] The polarizing plate according to [1], wherein the first optical film includes a first thermoplastic resin film and an optical layer laminated on a surface opposite to the polarizer.
 [3] 前記第1熱可塑性樹脂フィルムがセルロース系樹脂、(メタ)アクリル系樹脂、環状ポリオレフィン系樹脂又はポリエステル系樹脂からなる、[2]に記載の偏光板。 [3] The polarizing plate according to [2], wherein the first thermoplastic resin film is made of a cellulose resin, a (meth) acrylic resin, a cyclic polyolefin resin, or a polyester resin.
 [4] 前記偏光子における前記第1光学フィルムとは反対側の面上に積層される第2光学フィルムをさらに含む、[1]~[3]のいずれかに記載の偏光板。 [4] The polarizing plate according to any one of [1] to [3], further including a second optical film laminated on a surface of the polarizer opposite to the first optical film.
 [5] 前記第2光学フィルムは、セルロース系樹脂、(メタ)アクリル系樹脂又は環状ポリオレフィン系樹脂からなる第2熱可塑性樹脂フィルムを含む、[4]に記載の偏光板。 [5] The polarizing plate according to [4], wherein the second optical film includes a second thermoplastic resin film made of a cellulose resin, a (meth) acrylic resin, or a cyclic polyolefin resin.
 [6] 前記第2光学フィルムが位相差フィルムである、[4]又は[5]に記載の偏光板。 [6] The polarizing plate according to [4] or [5], wherein the second optical film is a retardation film.
 [7] [1]~[6]のいずれかに記載の偏光板と、
 前記偏光板における前記第1光学フィルム側に配置されるための透光性部材と、
からなる、タッチ入力式画像表示装置用の光学部材セット。
[7] The polarizing plate according to any one of [1] to [6],
A translucent member to be disposed on the first optical film side in the polarizing plate;
An optical member set for a touch input type image display device.
 [8] 画像表示素子と、
 前記画像表示素子の視認側に配置される[1]~[6]のいずれかに記載の偏光板と、
 前記偏光板における前記第1光学フィルム側に、前記第1光学フィルムと離間して配置される透光性部材と、
を含む、タッチ入力式画像表示装置。
[8] An image display element;
The polarizing plate according to any one of [1] to [6] disposed on the viewing side of the image display element;
On the side of the first optical film in the polarizing plate, a translucent member disposed apart from the first optical film,
A touch input type image display device.
 [9] 前記透光性部材がタッチ入力素子である、[8]に記載のタッチ入力式画像表示装置。 [9] The touch input type image display device according to [8], wherein the translucent member is a touch input element.
 本発明によれば、ニュートンリングの発生を効果的に抑制できる偏光板、並びにそれを含む光学部材セット及びタッチ入力式画像表示装置を提供することができる。 According to the present invention, it is possible to provide a polarizing plate capable of effectively suppressing the occurrence of Newton rings, an optical member set including the polarizing plate, and a touch input type image display device.
本発明に係る偏光板、並びにそれを含む光学部材セットの一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the polarizing plate which concerns on this invention, and an optical member set containing the same. 第1光学フィルム外面の反射率Yの測定方法を説明するための図であり、レーザー光の入射方向と測定される反射光の方向とを模式的に示す斜視図である。It is a figure for demonstrating the measuring method of the reflectance Y of the 1st optical film outer surface, and is a perspective view which shows typically the incident direction of a laser beam, and the direction of the reflected light to be measured. 本発明に係る偏光板、並びにそれを含む光学部材セットの他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the polarizing plate which concerns on this invention, and an optical member set containing the same. 本発明に係る偏光板、並びにそれを含む光学部材セットの他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the polarizing plate which concerns on this invention, and an optical member set containing the same. 本発明に係るタッチ入力式画像表示装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the touch input type image display apparatus which concerns on this invention.
 <偏光板及び光学部材セット>
 図1は、本発明に係る偏光板、並びにそれを含む光学部材セットの一例を示す概略断面図である。図1に示される偏光板1のように、本発明に係る偏光板は、偏光子10と、その一方の面上に積層される第1光学フィルム20とを含む。本発明に係る偏光板はタッチ入力式画像表示装置を構成する部材の1つとして用いることができ、この場合、偏光板は、タッチ入力式画像表示装置が有する画像表示素子の視認側(前面側)に配置される。
<Polarizing plate and optical member set>
FIG. 1 is a schematic cross-sectional view showing an example of a polarizing plate according to the present invention and an optical member set including the polarizing plate. Like the polarizing plate 1 shown in FIG. 1, the polarizing plate according to the present invention includes a polarizer 10 and a first optical film 20 laminated on one surface thereof. The polarizing plate according to the present invention can be used as one of the members constituting the touch input type image display device. In this case, the polarizing plate is the viewing side (front side) of the image display element of the touch input type image display device. ).
 本発明に係る光学部材セットは、タッチ入力式画像表示装置を構築する光学部材のセット(組み合わせ)であり、図1を参照して、上述の偏光板1と透光性部材30とからなる。光学部材セット40は、偏光板1と、その第1光学フィルム20側(偏光板1の視認側)に配置される透光性部材30とで構築される。この光学部材セット40はエアーギャップ方式のタッチ入力式画像表示装置に用いられ、すなわち、透光性部材30は第1光学フィルム20と離間して配置・固定される。 The optical member set according to the present invention is a set (combination) of optical members for constructing a touch input type image display device, and includes the polarizing plate 1 and the translucent member 30 described above with reference to FIG. The optical member set 40 is constructed by the polarizing plate 1 and the translucent member 30 disposed on the first optical film 20 side (viewing side of the polarizing plate 1). This optical member set 40 is used in an air gap type touch input type image display device, that is, the translucent member 30 is arranged and fixed separately from the first optical film 20.
 (1)偏光子
 偏光板1を構成する偏光子10としては、光学軸に平行な振動面をもつ直線偏光を吸収し、光学軸に直交する振動面をもつ直線偏光を透過する性質を有する光学フィルムであることができ、具体的には、ポリビニルアルコール系樹脂フィルムに二色性色素(ヨウ素又は二色性有機染料)が吸着配向されたものを好適に用いることができる。
(1) Polarizer The polarizer 10 constituting the polarizing plate 1 absorbs linearly polarized light having a vibration plane parallel to the optical axis and transmits linearly polarized light having a vibration plane orthogonal to the optical axis. Specifically, a film in which a dichroic dye (iodine or dichroic organic dye) is adsorbed and oriented on a polyvinyl alcohol-based resin film can be suitably used.
 偏光子10を構成するポリビニルアルコール系樹脂は、ポリ酢酸ビニル系樹脂をケン化することにより得ることができる。ポリ酢酸ビニル系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルのほか、酢酸ビニル及びこれと共重合可能な他の単量体の共重合体等が例示される。酢酸ビニルに共重合される他の単量体としては、例えば、不飽和カルボン酸類、オレフィン類、ビニルエーテル類、不飽和スルホン酸類、アンモニウム基を有する(メタ)アクリルアミド類等を挙げることができる。ポリビニルアルコール系樹脂のケン化度は、通常85~100モル%程度、好ましくは98モル%以上である。このポリビニルアルコール系樹脂はさらに変性されていてもよく、例えば、アルデヒド類で変性されたポリビニルホルマールやポリビニルアセタール等も使用し得る。 The polyvinyl alcohol resin constituting the polarizer 10 can be obtained by saponifying a polyvinyl acetate resin. Examples of the polyvinyl acetate resin include polyvinyl acetate, which is a homopolymer of vinyl acetate, as well as copolymers of vinyl acetate and other monomers copolymerizable therewith. Examples of other monomers copolymerized with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and (meth) acrylamides having an ammonium group. The degree of saponification of the polyvinyl alcohol resin is usually about 85 to 100 mol%, preferably 98 mol% or more. This polyvinyl alcohol-based resin may be further modified, and for example, polyvinyl formal and polyvinyl acetal modified with aldehydes may be used.
 なお、本明細書において「(メタ)アクリル」とは、アクリル及びメタクリルから選択される少なくとも一方を意味する。「(メタ)アクリレート」などというときについても同様である。 In this specification, “(meth) acryl” means at least one selected from acrylic and methacrylic. The same applies to cases such as “(meth) acrylate”.
 ポリビニルアルコール系樹脂の重合度は、通常1000~10000程度、好ましくは1500~5000程度である。具体的なポリビニルアルコール系樹脂や二色性色素としては、例えば、特開2012-159778号公報に例示されているものが挙げられる。 The degree of polymerization of the polyvinyl alcohol resin is usually about 1000 to 10000, preferably about 1500 to 5000. Specific examples of the polyvinyl alcohol-based resin and dichroic dye include those exemplified in JP 2012-159778 A.
 上記ポリビニルアルコール系樹脂を製膜したものが、偏光子10の原反フィルムとして用いられる。ポリビニルアルコール系樹脂を製膜する方法は特に制限されるものでなく、公知の方法で製膜することができる。ポリビニルアルコール系樹脂からなる原反フィルムの厚みは特に制限されないが、例えば1~150μm程度である。延伸のしやすさ等も考慮すれば、その厚みは10μm以上であるのが好ましい。 A film obtained by forming the polyvinyl alcohol resin is used as a raw film of the polarizer 10. The method for forming a polyvinyl alcohol-based resin is not particularly limited, and can be formed by a known method. The thickness of the raw film made of polyvinyl alcohol resin is not particularly limited, but is, for example, about 1 to 150 μm. Considering easiness of stretching, the thickness is preferably 10 μm or more.
 偏光子10は、例えば、上記のようなポリビニルアルコール系樹脂フィルムを一軸延伸する工程;ポリビニルアルコール系樹脂フィルムを二色性色素で染色してその二色性色素を吸着させる工程;二色性色素が吸着されたポリビニルアルコール系樹脂フィルムをホウ酸水溶液で処理する工程;このホウ酸水溶液による処理後に水洗する工程;及び、乾燥工程を経て、製造することができる。偏光子10の厚みは、2~40μm程度であることができ、好ましくは3~30μm程度である。 The polarizer 10 is, for example, a step of uniaxially stretching a polyvinyl alcohol resin film as described above; a step of dyeing a polyvinyl alcohol resin film with a dichroic dye and adsorbing the dichroic dye; It can be manufactured through a step of treating the polyvinyl alcohol resin film adsorbed with boric acid aqueous solution; a step of washing with water after the boric acid aqueous solution treatment; and a drying step. The thickness of the polarizer 10 can be about 2 to 40 μm, and preferably about 3 to 30 μm.
 偏光子10は、例えば特開2012-159778号公報に記載されている方法に準じて製造してもよい。当該文献に記載の方法においては、上記ポリビニルアルコール系樹脂からなる原反フィルムを用いるのではなく、基材フィルムへのポリビニルアルコール系樹脂のコーティングによってポリビニルアルコール系樹脂層を形成し、これを延伸、染色して偏光子層(偏光子10)とした後、保護フィルムのような光学フィルムを貼合して偏光板を得る。 The polarizer 10 may be manufactured in accordance with, for example, a method described in JP2012-159778A. In the method described in the document, instead of using the raw film made of the polyvinyl alcohol resin, a polyvinyl alcohol resin layer is formed by coating the polyvinyl alcohol resin on the base film, and this is stretched. After dyeing and making a polarizer layer (polarizer 10), an optical film such as a protective film is bonded to obtain a polarizing plate.
 (2)第1光学フィルムの構成
 第1光学フィルム20は、偏光子10を保護する機能のみを有する熱可塑性樹脂フィルム(保護フィルム)であることもできるが、当該保護機能に加えて偏光板1に他の光学機能を付与するために、及び/又は第1光学フィルム20に後述する所定の表面特性を付与するために、図1に示されるように、第1熱可塑性樹脂フィルム21と、その偏光子10とは反対側の面上に積層される光学層22とを含むものであることが好ましい。
(2) Configuration of First Optical Film The first optical film 20 can be a thermoplastic resin film (protective film) having only a function of protecting the polarizer 10, but in addition to the protective function, the polarizing plate 1 In order to impart other optical functions to the first optical film 20 and / or to impart predetermined surface characteristics to the first optical film 20, as shown in FIG. 1, the first thermoplastic resin film 21 and its It is preferable that the optical layer 22 laminated | stacked on the surface on the opposite side to the polarizer 10 is included.
 光学層22は、その外面S(第1熱可塑性樹脂フィルム21とは反対側の表面)が、後述する所定の表面特性を満足するような微細な表面凹凸からなる。光学層22は単層構造又は多層構造であることができ、特に制限されないが、例えば、防眩層、ハードコート層、低屈折率層、反射防止層、帯電防止層、防汚層又はこれらのうち2以上の機能(特性)を兼ね備えた層を含んで構成することができる。光学層22は表面凹凸を有する層であることから、典型的には、防眩層、又はハードコート層を兼ねた防眩層を含む。光学層22は、後述する所定の表面特性を満足するように、その構成、材質及び表面凹凸形状が選択・調整される。 The optical layer 22 is formed of fine surface irregularities such that the outer surface S (the surface opposite to the first thermoplastic resin film 21) satisfies predetermined surface characteristics described later. The optical layer 22 can have a single-layer structure or a multilayer structure, and is not particularly limited. For example, the anti-glare layer, the hard coat layer, the low refractive index layer, the antireflection layer, the antistatic layer, the antifouling layer, or these layers. Of these, a layer having two or more functions (characteristics) can be included. Since the optical layer 22 is a layer having surface irregularities, it typically includes an antiglare layer or an antiglare layer that also serves as a hard coat layer. The configuration, material, and surface unevenness of the optical layer 22 are selected and adjusted so as to satisfy predetermined surface characteristics described later.
 第1熱可塑性樹脂フィルム21は、透光性を有する熱可塑性樹脂からなることが好ましく、光学的に透明な熱可塑性樹脂からなることがより好ましく、また、機械強度や熱安定性等の良好な熱可塑性樹脂からなることが好ましい。このような樹脂として、例えば、鎖状ポリオレフィン系樹脂(ポリエチレン系樹脂、ポリプロピレン系樹脂等)、環状ポリオレフィン系樹脂(ノルボルネン系樹脂等)のようなポリオレフィン系樹脂;トリアセチルセルロース、ジアセチルセルロースのようなセルロース系樹脂(セルロースエステル系樹脂);ポリエチレンテレフタレート、ポリエチレンイソフタレート、ポリブチレンテレフタレートのようなポリエステル系樹脂;(メタ)アクリル樹脂、(メタ)アクリル酸エステル系共重合体のような(メタ)アクリル系樹脂;ポリスチレン系樹脂;ポリカーボネート系樹脂;ポリスルホン系樹脂;ポリエーテルスルホン系樹脂;ポリイミド系樹脂等を挙げることができる。中でも、セルロース系樹脂、(メタ)アクリル系樹脂、環状ポリオレフィン系樹脂、ポリエステル系樹脂等が好ましく用いられる。 The first thermoplastic resin film 21 is preferably made of a light-transmitting thermoplastic resin, more preferably an optically transparent thermoplastic resin, and good mechanical strength, thermal stability, and the like. It is preferable to consist of a thermoplastic resin. Examples of such resins include polyolefin resins such as chain polyolefin resins (polyethylene resins, polypropylene resins, etc.), cyclic polyolefin resins (norbornene resins, etc.); triacetyl cellulose, diacetyl cellulose, etc. Cellulosic resin (cellulose ester resin); Polyester resin such as polyethylene terephthalate, polyethylene isophthalate, polybutylene terephthalate; (Meth) acrylic such as (meth) acrylic resin, (meth) acrylic ester copolymer Polyresin resin; Polycarbonate resin; Polysulfone resin; Polyethersulfone resin; Polyimide resin and the like. Among these, cellulose resins, (meth) acrylic resins, cyclic polyolefin resins, polyester resins and the like are preferably used.
 第1熱可塑性樹脂フィルム21の厚みは、通常5~200μm程度であり、好ましくは10μm以上であり、また好ましくは80μm以下である。 The thickness of the first thermoplastic resin film 21 is usually about 5 to 200 μm, preferably 10 μm or more, and preferably 80 μm or less.
 微細な表面凹凸からなる外面Sを有する光学層22は、第1熱可塑性樹脂フィルム21上に、例えば透光性樹脂を塗工し、必要に応じてその塗工層を硬化させることにより形成できる。この際、微細な表面凹凸の形成は、透光性樹脂中に微粒子を含有させる方法や、透光性樹脂を含む上記塗工層に凹凸面を有する型(エンボス型)を密着させて、その凹凸面を塗工層に転写する方法等によって行うことができる。 The optical layer 22 having the outer surface S composed of fine surface irregularities can be formed by, for example, applying a translucent resin on the first thermoplastic resin film 21 and curing the applied layer as necessary. . At this time, the formation of fine surface irregularities is carried out by bringing fine particles into the translucent resin, or by closely attaching a mold having an irregular surface (embossing mold) to the coating layer containing the translucent resin. It can be performed by a method of transferring the uneven surface to the coating layer.
 透光性樹脂の具体例は、紫外線硬化性樹脂や電子線硬化性樹脂のような活性エネルギー線硬化性樹脂、熱硬化性樹脂、熱可塑性樹脂、金属アルコキシドを含む。これらの中でも、とりわけ防眩層やハードコート層を形成する場合においては、高い硬度及び耐擦傷性を付与できることから、活性エネルギー線硬化性樹脂が好適である。活性エネルギー線硬化性樹脂、熱硬化性樹脂又は金属アルコキシドを用いる場合は、活性エネルギー線の照射又は加熱により当該樹脂を硬化させることで光学層22(又はこれを構成する層)が形成される。 Specific examples of the translucent resin include an active energy ray curable resin such as an ultraviolet curable resin and an electron beam curable resin, a thermosetting resin, a thermoplastic resin, and a metal alkoxide. Among these, particularly in the case of forming an antiglare layer or a hard coat layer, an active energy ray-curable resin is preferable because high hardness and scratch resistance can be imparted. When an active energy ray curable resin, a thermosetting resin, or a metal alkoxide is used, the optical layer 22 (or a layer constituting the optical layer 22) is formed by curing the resin by irradiation or heating with an active energy ray.
 活性エネルギー線硬化性樹脂の具体例は、多価アルコールの(メタ)アクリル酸エステルのような多官能(メタ)アクリレート;ジイソシアネートと多価アルコールとの反応によって得られる末端イソシアナト基ウレタンプレポリマーに(メタ)アクリル酸のヒドロキシアルキルエステルを反応させることにより得られるもののような多官能のウレタン(メタ)アクリレートを含む。これらの他、(メタ)アクリレート系の官能基を有するポリエーテル樹脂、ポリエステル樹脂、エポキシ樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂等も活性エネルギー線硬化性樹脂となり得る。 Specific examples of the active energy ray-curable resin include polyfunctional (meth) acrylates such as (meth) acrylic acid esters of polyhydric alcohols; terminal isocyanato group urethane prepolymers obtained by reaction of diisocyanates and polyhydric alcohols ( Polyfunctional urethane (meth) acrylates such as those obtained by reacting hydroxyalkyl esters of meth) acrylic acid are included. Besides these, polyether resins having a (meth) acrylate functional group, polyester resins, epoxy resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins, and the like can also be active energy ray curable resins.
 熱硬化性樹脂としては、(メタ)アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化型ウレタン樹脂の他、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコーン樹脂等が挙げられる。 Examples of the thermosetting resin include a phenol resin, a urea melamine resin, an epoxy resin, an unsaturated polyester resin, and a silicone resin in addition to a thermosetting urethane resin composed of (meth) acryl polyol and an isocyanate prepolymer.
 熱可塑性樹脂の具体例は、アセチルセルロース、ニトロセルロース、アセチルブチルセルロース、エチルセルロース、メチルセルロースのようなセルロース誘導体;酢酸ビニルの単独重合体又は共重合体、塩化ビニルの単独重合体又は共重合体、塩化ビニリデンの単独重合体又は共重合体のようなビニル系樹脂;ポリビニルホルマール、ポリビニルブチラールのようなアセタール系樹脂;(メタ)アクリル樹脂、(メタ)アクリル酸エステル系共重合体のような(メタ)アクリル系樹脂;ポリスチレン系樹脂;ポリアミド系樹脂;ポリエステル系樹脂;ポリカーボネート系樹脂を含む。 Specific examples of the thermoplastic resin include cellulose derivatives such as acetylcellulose, nitrocellulose, acetylbutylcellulose, ethylcellulose, and methylcellulose; vinyl acetate homopolymer or copolymer, vinyl chloride homopolymer or copolymer, chloride Vinyl resins such as vinylidene homopolymers or copolymers; acetal resins such as polyvinyl formal and polyvinyl butyral; (meth) acrylic resins and (meth) acrylic ester copolymers (meth) Including acrylic resin; polystyrene resin; polyamide resin; polyester resin; polycarbonate resin.
 金属アルコキシドとしては、アルコキシシラン系の材料を使用することができ、これは加水分解や脱水縮合により酸化珪素系等のマトリックスを形成するものである。具体的には、テトラメトキシシラン、テトラエトキシシラン等であり、加水分解や脱水縮合により無機系又は有機無機複合系マトリックスを形成して透光性樹脂となる。 As the metal alkoxide, an alkoxysilane-based material can be used, which forms a silicon oxide-based matrix by hydrolysis or dehydration condensation. Specifically, it is tetramethoxysilane, tetraethoxysilane, or the like, and forms an inorganic or organic-inorganic composite matrix by hydrolysis or dehydration condensation to become a translucent resin.
 これらのうち、活性エネルギー線硬化性樹脂や熱硬化性樹脂(いずれも硬化前のもの)には液体状態で用意されるものがあり、また金属アルコキシドは多くの場合液体である。このように液体状態で用意される樹脂は、そのまま光学層22を形成するための塗工液として用いることができるが、必要により、溶媒等により希釈した状態で塗工液としてもよい。一方、熱可塑性樹脂のような固体で用意される樹脂は、適当な溶媒に溶かした状態で塗工液とされる。活性エネルギー線硬化性樹脂、熱硬化性樹脂、金属アルコキシド又は熱可塑性樹脂を含む塗工液は、レベリング剤や分散剤のような適宜の添加剤を含むことができる。 Among these, active energy ray curable resins and thermosetting resins (both before curing) are prepared in a liquid state, and metal alkoxides are often liquid. As described above, the resin prepared in a liquid state can be used as it is as a coating liquid for forming the optical layer 22, but if necessary, it may be diluted with a solvent or the like as the coating liquid. On the other hand, a resin prepared as a solid such as a thermoplastic resin is used as a coating solution in a state dissolved in an appropriate solvent. The coating liquid containing an active energy ray curable resin, a thermosetting resin, a metal alkoxide, or a thermoplastic resin can contain an appropriate additive such as a leveling agent or a dispersant.
 光学層22は、上述のように表面凹凸の形成のために、又はギラツキの低減等を目的として内部ヘーズを付与するために、微粒子を含有することができる。この場合、光学層22は、防眩層であるか、又は防眩層を含むものになる。微粒子としては透光性のものが用いられ、その具体例は、(メタ)アクリル系樹脂、メラミン樹脂、ポリエチレン系樹脂、ポリスチレン系樹脂、有機シリコーン樹脂、(メタ)アクリル酸エステル-スチレン共重合体等からなる有機微粒子;炭酸カルシウム、シリカ、酸化アルミニウム、炭酸バリウム、硫酸バリウム、酸化チタン、ガラス等からなる無機微粒子;有機重合体のバルーン;ガラス中空ビーズを含む。微粒子は、1種のみを単独で使用してもよいし、2種以上を併用してもよい。微粒子の形状は、球状、扁平状、板状、針状、不定形状等であり得る。 The optical layer 22 can contain fine particles in order to form surface irregularities as described above or to impart internal haze for the purpose of reducing glare or the like. In this case, the optical layer 22 is an antiglare layer or includes an antiglare layer. As the fine particles, translucent ones are used. Specific examples thereof include (meth) acrylic resins, melamine resins, polyethylene resins, polystyrene resins, organic silicone resins, (meth) acrylic acid ester-styrene copolymers. Organic fine particles composed of calcium carbonate, silica, aluminum oxide, barium carbonate, barium sulfate, titanium oxide, glass, etc .; organic polymer balloons; glass hollow beads. The fine particles may be used alone or in combination of two or more. The shape of the fine particles may be spherical, flat, plate-like, needle-like, indeterminate.
 表面凹凸の付与及び内部ヘーズ発現の観点から、微粒子の粒子径(重量平均粒子径)は、0.5~20μmの範囲にあることが好ましい。また、内部ヘーズの発現を十分に高めるためには、透光性樹脂(活性エネルギー線硬化性樹脂、熱硬化性樹脂、金属アルコキシドの場合は硬化物)の屈折率と微粒子の屈折率との差(絶対値)は、0.04~0.15の範囲にあることが好ましい。 From the viewpoint of imparting surface irregularities and developing internal haze, the particle diameter (weight average particle diameter) of the fine particles is preferably in the range of 0.5 to 20 μm. Also, in order to sufficiently increase the expression of internal haze, the difference between the refractive index of the light-transmitting resin (active energy ray-curable resin, thermosetting resin, and cured product in the case of metal alkoxide) and the refractive index of the fine particles The (absolute value) is preferably in the range of 0.04 to 0.15.
 微粒子の含有量は、透光性樹脂100重量部に対して、通常3~60重量部であり、好ましくは5~50重量部である。微粒子の含有量が3重量部未満では、ギラツキ低減のための十分な内部ヘーズが得られにくい。一方、その含有量が60重量部を超えると、得られる第1光学フィルム20の透明性が損なわれることがあり、また、偏光板を画像表示装置に適用した場合に、光散乱が強すぎて、例えば、黒表示において画像表示装置の正面方向に対して斜めに漏れ出してくる光が光学層22によって正面方向へ強く散乱されてしまう等の理由により、コントラストを低下させることもある。 The content of the fine particles is usually 3 to 60 parts by weight, preferably 5 to 50 parts by weight with respect to 100 parts by weight of the translucent resin. If the content of fine particles is less than 3 parts by weight, it is difficult to obtain sufficient internal haze for reducing glare. On the other hand, when the content exceeds 60 parts by weight, the transparency of the obtained first optical film 20 may be impaired, and when the polarizing plate is applied to an image display device, light scattering is too strong. For example, in black display, the light leaking obliquely with respect to the front direction of the image display apparatus may be reduced in contrast because the optical layer 22 strongly scatters in the front direction.
 光学層22に含まれ得る低屈折率層は、紫外線硬化性(メタ)アクリル樹脂のような樹脂材料;樹脂中にコロイダルシリカのような無機微粒子を分散させたハイブリッド材料;アルコキシシランを含むゾル-ゲル材料等から形成することができる。低屈折率層の屈折率は、1.30~1.45の範囲であることができる。低屈折率層は、重合済みのポリマーを塗工することによって形成してもよいし、前駆体であるモノマー又はオリゴマーの状態で塗工し、その後重合硬化させることによって形成してもよい。 The low refractive index layer that can be included in the optical layer 22 is a resin material such as an ultraviolet curable (meth) acrylic resin; a hybrid material in which inorganic fine particles such as colloidal silica are dispersed in a resin; a sol containing alkoxysilane; It can be formed from a gel material or the like. The refractive index of the low refractive index layer can range from 1.30 to 1.45. The low refractive index layer may be formed by coating a polymer that has been polymerized, or may be formed by coating in the state of a monomer or oligomer that is a precursor, followed by polymerization and curing.
 上記ゾル-ゲル材料は、分子内にフッ素原子を有する化合物を含むことが好ましく、その代表例としてポリフルオロアルキルアルコキシシランを挙げることができる。ポリフルオロアルキルアルコキシシランは、例えば、下記式:
 CF3(CF2nCH2CH2Si(OR)3
で示される化合物であることができる。ここで、Rは炭素数1~5のアルキル基を表し、nは0~12の整数を表す。中でも、上記式中のnが2~6である化合物が好ましい。
The sol-gel material preferably contains a compound having a fluorine atom in the molecule, and a typical example thereof is polyfluoroalkylalkoxysilane. For example, the polyfluoroalkylalkoxysilane is represented by the following formula:
CF 3 (CF 2 ) n CH 2 CH 2 Si (OR) 3
It can be a compound shown by these. Here, R represents an alkyl group having 1 to 5 carbon atoms, and n represents an integer of 0 to 12. Of these, compounds in which n in the above formula is 2 to 6 are preferred.
 低屈折率層は、架橋性官能基を有する含フッ素重合体のような硬化性含フッ素化合物を硬化させることによって形成することもできる。架橋性官能基を有する含フッ素重合体は、1)フッ素含有モノマーと架橋性官能基を有するモノマーとを共重合させる方法、又は、2)フッ素含有モノマーと官能基を有するモノマーとを共重合させ、次いで重合体中の上記官能基に架橋性官能基を有する化合物を付加させる方法、等によって製造することができる。 The low refractive index layer can also be formed by curing a curable fluorine-containing compound such as a fluorine-containing polymer having a crosslinkable functional group. The fluorine-containing polymer having a crosslinkable functional group can be obtained by 1) copolymerizing a fluorine-containing monomer and a monomer having a crosslinkable functional group, or 2) copolymerizing a fluorine-containing monomer and a monomer having a functional group. Then, it can be produced by a method of adding a compound having a crosslinkable functional group to the functional group in the polymer.
 上記フッ素含有モノマーとしては、例えば、フルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ-2,2-ジメチル-1,3-ジオキソールのようなフルオロオレフィン類;(メタ)アクリル酸の部分又は完全フッ素化アルキルエステル誘導体類;(メタ)アクリル酸の完全又は部分フッ素化ビニルエーテル類が挙げられる。 Examples of the fluorine-containing monomer include fluoroolefins such as fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, perfluoro-2,2-dimethyl-1,3-dioxole; (meth) acrylic acid Partially or fully fluorinated alkyl ester derivatives of the above; fully or partially fluorinated vinyl ethers of (meth) acrylic acid.
 上記架橋性官能基を有するモノマー及び架橋性官能基を有する化合物としては、例えば、グリシジル(メタ)アクリレートのようなグリシジル基を有するモノマー;(メタ)アクリル酸のようなカルボキシル基を有するモノマー;ヒドロキシアルキル(メタ)アクリレートのような水酸基を有するモノマー;アリル(メタ)アクリレートのようなアルケニル基を有するモノマー;アミノ基を有するモノマー;スルホン酸基を有するモノマーを挙げることができる。 Examples of the monomer having a crosslinkable functional group and the compound having a crosslinkable functional group include a monomer having a glycidyl group such as glycidyl (meth) acrylate; a monomer having a carboxyl group such as (meth) acrylic acid; Examples thereof include monomers having a hydroxyl group such as alkyl (meth) acrylate; monomers having an alkenyl group such as allyl (meth) acrylate; monomers having an amino group; monomers having a sulfonic acid group.
 低屈折率層は、シリカ、アルミナ、チタニア、ジルコニア、フッ化マグネシウム等からなる低屈折率性の無機微粒子を含むことができる。中でも、シリカの中空微粒子が好ましく用いられる。微粒子の平均粒子径は、好ましくは5~2000nmの範囲であり、より好ましくは20~100nmの範囲である。 The low refractive index layer can contain low refractive index inorganic fine particles made of silica, alumina, titania, zirconia, magnesium fluoride or the like. Among these, silica hollow fine particles are preferably used. The average particle diameter of the fine particles is preferably in the range of 5 to 2000 nm, more preferably in the range of 20 to 100 nm.
 第1光学フィルム20を偏光子10の一方の面に貼合することにより偏光板1を得ることができる。偏光子10と第1光学フィルム20との貼合は、接着剤又は粘着剤を用いて行うことができる。接着剤としては、ポリビニルアルコール系樹脂やウレタン樹脂を主成分として含む水系接着剤や、紫外線硬化性樹脂(エポキシ系樹脂等)のような光硬化性樹脂を含む光硬化性接着剤を用いることができる。粘着剤としては、(メタ)アクリル系重合体、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリエーテル等をベースポリマーとするものを用いることができる。貼合に先立って、偏光子10及び/又は第1光学フィルム20の貼合面に、ケン化処理、コロナ処理、プライマー処理、アンカーコーティング処理等の易接着処理を施してもよい。 The polarizing plate 1 can be obtained by bonding the first optical film 20 to one surface of the polarizer 10. Bonding with the polarizer 10 and the 1st optical film 20 can be performed using an adhesive agent or an adhesive. As the adhesive, a water-based adhesive containing a polyvinyl alcohol resin or a urethane resin as a main component, or a photocurable adhesive containing a photocurable resin such as an ultraviolet curable resin (epoxy resin or the like) is used. it can. As the pressure-sensitive adhesive, those having a base polymer of (meth) acrylic polymer, silicone polymer, polyester, polyurethane, polyether or the like can be used. Prior to the bonding, the bonding surface of the polarizer 10 and / or the first optical film 20 may be subjected to an easy adhesion process such as a saponification process, a corona process, a primer process, and an anchor coating process.
 (3)第1光学フィルムの表面特性
 本発明の偏光板1において第1光学フィルム20の外面Sは、断面曲線のクルトシスPkuが3.0以上とされ、かつ、反射率Yが4.0%以下とされる。微細な表面凹凸からなる外面Sにこのような表面特性を付与することにより、画面を手指等で押圧したときのニュートンリングの発生を効果的に抑制することができる。
(3) Surface characteristics of the first optical film In the polarizing plate 1 of the present invention, the outer surface S of the first optical film 20 has a cross-sectional curve kurtosis Pku of 3.0 or more and a reflectance Y of 4.0%. It is as follows. By imparting such surface characteristics to the outer surface S composed of fine surface irregularities, it is possible to effectively suppress the occurrence of Newton rings when the screen is pressed with fingers or the like.
 上記特許文献1及び2のように、ニュートンリングを抑制するための従来の検討においては、エアーギャップ側に向けられる表面凹凸形状とニュートンリング発生との関係を、当該表面凹凸の算術平均粗さRaで評価していた。しかしながら、本発明者の検討により、算術平均粗さRaよりもむしろ、凸部の尖度を表す指標であるPkuを用いた方が表面凹凸形状とニュートンリング発生との関係をより正確に評価でき、反射率Yが4.0以下であることを前提として、Pkuを3.0以上とすることによりニュートンリングの発生を効果的に抑制できることが明らかとなった。なお、表面凹凸の算術平均粗さRaが同程度であってもPkuは有意に相違し得、算術平均粗さRaとPkuとは必ずしも相関しないことが本発明者の検討により明らかとなっている。 As in the above-mentioned Patent Documents 1 and 2, in the conventional study for suppressing Newton ring, the relationship between the surface irregularity shape directed to the air gap side and the occurrence of Newton ring is represented by the arithmetic average roughness Ra of the surface irregularity. It was evaluated with. However, as a result of the study by the present inventor, it is possible to more accurately evaluate the relationship between the surface irregularity shape and the occurrence of Newton rings by using Pku, which is an index representing the kurtosis of the convex portion, rather than the arithmetic average roughness Ra. Assuming that the reflectance Y is 4.0 or less, it has become clear that the occurrence of Newton rings can be effectively suppressed by setting Pku to 3.0 or more. In addition, even if the arithmetic average roughness Ra of the surface irregularities is the same, Pku can be significantly different, and it has been clarified by the present inventors that the arithmetic average roughness Ra and Pku do not necessarily correlate. .
 また本発明者は、外面SのPkuだけではなく、反射率Yもニュートンリングの発生に多大な影響を与え、ニュートンリング抑制のためには、Pkuを所定の範囲に調整するだけではなく、反射率Yも所定の範囲に調整しなければならないことを見出したものである。 In addition, the present inventor not only adjusts Pku to a predetermined range but also reflects the reflectance Y not only on the outer surface S but also the reflectance Y greatly affects the occurrence of Newton rings. It has been found that the rate Y must also be adjusted to a predetermined range.
 断面曲線のクルトシスPkuは、JIS B 0601:2013「製品の幾何特性仕様(GPS)-表面性状:輪郭曲線方式-用語,定義及び表面性状パラメータ」(ISO 4287:1997,Amd.1:2009に対応する)の4.2.4に規定されるパラメータであって、下記式で定義される。 Cross-sectional curve kurtosis Pku corresponds to JIS B 0601: 2013 “Product Geometrical Specification (GPS) -Surface Properties: Contour Curve Method—Terminology, Definitions and Surface Property Parameters” (ISO 4287: 1997, Amd. 1: 2009) )) Defined in 4.2.4, and is defined by the following equation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式中、Z(x)は任意の位置xにおける断面曲線の高さであり、Lpは断面曲線の基準長さ(評価長さに等しい)である。Pqは断面曲線の二乗平均平方根高さであって、JIS B 0601:2013の4.2.2において下記のとおり定義されている。 In the formula, Z (x) is the height of the cross-sectional curve at an arbitrary position x, and Lp is the reference length (equivalent to the evaluation length) of the cross-sectional curve. Pq is the root mean square height of the cross-sectional curve, and is defined as follows in 4.2.2 of JIS B 0601: 2013.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 すなわちPkuは、断面曲線の二乗平均平方根高さPqの四乗によって無次元化した基準長さLpにおけるZ(x)の四乗平均である。Pkuは、断面曲線の確率密度関数のとがり(鋭さ)の度合を示すパラメータであり、統計用語では「せん(尖)度]と呼ばれるものである。 That is, Pku is the mean square of Z (x) at the reference length Lp made dimensionless by the square of the root mean square height Pq of the cross-sectional curve. Pku is a parameter indicating the degree of sharpness (sharpness) of the probability density function of the cross-section curve, and is called “spiral degree” in statistical terms.
 Pkuは、市販の三次元形状測定装置や粗さ計等を用いて測定することができる。後述する実施例では、SENSOFAR社製の三次元顕微鏡「PLμ 2300」を用いて測定を行った。この装置は、測定サンプルについて、指定されたパラメータを自動的に計算するようになっている。 Pku can be measured using a commercially available three-dimensional shape measuring device, a roughness meter, or the like. In Examples described later, measurement was performed using a three-dimensional microscope “PLμ 2300” manufactured by SENSOFAR. This apparatus is designed to automatically calculate specified parameters for the measurement sample.
 また、反射率Yとは、視感度補正反射率を意味しており、具体的には、入射角12°で光を入射したときの反射角12°における波長350~900nmの範囲の分光反射率(すなわち入射角12°における正反射率)をJIS Z 8701の2度視野(C光源)により視感度補正した反射率をいう。図2を参照して、反射率Yの測定方法を具体的に説明すると、第1光学フィルム20の外面S側であって、第1光学フィルム20の法線200方向に対して12°傾いた方向から光201を入射し、入射する光201方向と法線200とを含む平面203内で、法線200方向からみて、入射する光201とは逆側に12°傾いた方向に反射する反射光204(正反射方向への反射光)の分光反射率を測定する。さらに、得られた分光反射率からJIS Z 8701の2度視野(C光源)により視感度補正して反射率Yを求めることができる。 The reflectance Y means a visibility correction reflectance, and specifically, a spectral reflectance in a wavelength range of 350 to 900 nm at a reflection angle of 12 ° when light is incident at an incident angle of 12 °. This means the reflectance obtained by correcting the visibility (ie, the regular reflectance at an incident angle of 12 °) with a 2 degree visual field (C light source) of JIS Z 8701. Referring to FIG. 2, the measurement method of the reflectance Y will be specifically described. The reflectance Y is inclined by 12 ° with respect to the normal 200 direction of the first optical film 20 on the outer surface S side of the first optical film 20. Reflecting light incident from a direction and reflected in a direction inclined at an angle of 12 ° to the opposite side of the incident light 201 in the plane 203 including the direction of the incident light 201 and the normal 200. The spectral reflectance of the light 204 (reflected light in the regular reflection direction) is measured. Furthermore, from the obtained spectral reflectance, the reflectance Y can be obtained by correcting the visibility with a 2-degree field (C light source) of JIS Z 8701.
 反射光Yは、分光光度計等を用いて測定することができる。反射率Yの測定には、第1光学フィルム20の裏面からの反射が測定値に影響を及ぼす可能性を排除し、また、第1光学フィルム20の反りを防止するために、光学的に透明な粘着剤を用いて、第1光学フィルム20を、その第1熱可塑性樹脂フィルム21側で黒色板(黒色アクリル板等)に貼合したものを測定用サンプルとして用いる。 The reflected light Y can be measured using a spectrophotometer or the like. In measuring the reflectance Y, the possibility of reflection from the back surface of the first optical film 20 affecting the measurement value is eliminated, and in addition, the first optical film 20 is optically transparent to prevent warping. The first optical film 20 bonded to a black plate (black acrylic plate or the like) on the first thermoplastic resin film 21 side is used as a measurement sample.
 Pkuが高いほど、また反射率Yが低いほどニュートンリングの抑制に有利といえるが、例えばPkuが十分に高い場合には、反射率Yは4.0以下の範囲で比較的高くてもニュートンリングを十分に抑制できる傾向にあり、反射率Yが十分に低い場合には、Pkuは3.0以上の範囲で比較的低くてもニュートンリングを十分に抑制できる傾向にある。例えばPkuが4.5以上である場合、反射率Yが2.0以上、さらには2.5以上、なおさらには3.0以上であってもニュートンリングを十分に抑制することができる。また、反射率Yが2.0以下である場合、Pkuが5.0以下、さらには4.0以下、なおさらには3.5以下であってもニュートンリングを十分に抑制することができる。Pkuが3.0~5.0と比較的低い場合、反射率Yは、好ましくは3.0以下であり、より好ましくは2.5以下であり、さらに好ましくは2.0以下(特に1.5以下)である。また、反射率Yが3.0~4.0と比較的高い場合、Pkuは、好ましくは3.1以上であり、より好ましくは3.5以上であり、さらに好ましくは4.0以上である。 It can be said that the higher the Pku and the lower the reflectance Y, the more advantageous the suppression of the Newton ring. For example, when the Pku is sufficiently high, even if the reflectance Y is relatively high in the range of 4.0 or less, the Newton ring When the reflectance Y is sufficiently low, Newton's ring tends to be sufficiently suppressed even if Pku is relatively low in the range of 3.0 or more. For example, when Pku is 4.5 or more, Newton's ring can be sufficiently suppressed even if the reflectance Y is 2.0 or more, further 2.5 or more, and even 3.0 or more. Further, when the reflectance Y is 2.0 or less, Newton rings can be sufficiently suppressed even if Pku is 5.0 or less, further 4.0 or less, and even 3.5 or less. When Pku is relatively low as 3.0 to 5.0, the reflectance Y is preferably 3.0 or less, more preferably 2.5 or less, and further preferably 2.0 or less (particularly 1. 5 or less). Further, when the reflectance Y is relatively high as 3.0 to 4.0, Pku is preferably 3.1 or more, more preferably 3.5 or more, and further preferably 4.0 or more. .
 第1光学フィルム20の外面Sは、算術平均粗さRaが100nm以下であることが好ましい。算術平均粗さRaは、JIS B 0601:2013の4.2.1に規定されるパラメータであり、基準長さにおける高さZ(x)の絶対値の平均値を意味する。算術平均粗さRaを100nm以下とすることで、ニュートンリングの抑制効果を高めることができる場合がある。第1光学フィルム20の外面Sの算術平均粗さRaは、通常30nm以上である。 The outer surface S of the first optical film 20 preferably has an arithmetic average roughness Ra of 100 nm or less. The arithmetic average roughness Ra is a parameter defined in 4.2.1 of JIS B 0601: 2013, and means an average value of absolute values of the height Z (x) in the reference length. By controlling the arithmetic average roughness Ra to 100 nm or less, the Newton ring suppression effect may be enhanced. The arithmetic average roughness Ra of the outer surface S of the first optical film 20 is usually 30 nm or more.
 Pkuの調整は、表面凹凸によって外光の写り込みやギラツキを防止するために用いられる防眩フィルムの分野において公知の方法に準じて行うことができる。例えば微粒子を含む塗工液を用いて光学層22を形成する場合は、塗工液の設計、すなわち、その微粒子の粒径、光学層22を形成する透光性樹脂(例えば活性エネルギー線硬化性樹脂)に対する微粒子の添加量、光学層22の膜厚、塗工液の溶媒、塗工層の乾燥条件等を調節する方法がある。また、表面凹凸が付与された型(エンボス型)を透光性樹脂の塗工層に押し当ててその表面凹凸形状を転写する場合は、当該型として所定の表面形状が付与されたものを採用すればよい。 The adjustment of Pku can be performed according to a known method in the field of an antiglare film used for preventing reflection of external light and glare due to surface unevenness. For example, when the optical layer 22 is formed using a coating liquid containing fine particles, the design of the coating liquid, that is, the particle diameter of the fine particles, a translucent resin (for example, active energy ray curable) that forms the optical layer 22 is used. There are methods for adjusting the amount of fine particles added to the resin), the film thickness of the optical layer 22, the solvent of the coating solution, the drying conditions of the coating layer, and the like. In addition, when the surface unevenness shape is transferred by pressing a mold with surface irregularities (embossed mold) against the coating layer of the translucent resin, a mold with a predetermined surface shape is used as the mold. do it.
 また、反射率Yを所定の範囲に調整する方法としては、光学層22の最表面に低屈折率層を設けたり、表面に微細な凹凸構造を設けたりすることが挙げられる。 Further, as a method for adjusting the reflectance Y to a predetermined range, a low refractive index layer may be provided on the outermost surface of the optical layer 22 or a fine uneven structure may be provided on the surface.
 (4)透光性部材
 光学部材セット40において偏光板1の第1光学フィルム20側(偏光板1の視認側)に配置される透光性部材30は透光性の板状体、シート又はフィルム等であり、それ自体タッチ入力素子(タッチパネル)であることができる他、タッチ入力素子の機能を画像表示素子に持たせることによって、画像表示装置の最表面に配置される保護板(前面板)としてのみの役割を担う部材であることもできる。透光性部材30は、ガラス板や、透光性を有する(好ましくは光学的に透明な)各種の熱可塑性樹脂フィルムであることができる。熱可塑性樹脂の具体例については、第1熱可塑性樹脂フィルム21について記述した内容が引用される。
(4) Translucent member In the optical member set 40, the translucent member 30 disposed on the first optical film 20 side (the viewing side of the polarizing plate 1) of the polarizing plate 1 is a translucent plate, sheet, or the like. A protective plate (front plate) disposed on the outermost surface of the image display device by providing the image display element with a function of the touch input element, in addition to being a touch input element (touch panel) itself. ) Can be a member that only plays a role. The translucent member 30 can be a glass plate or various thermoplastic resin films having translucency (preferably optically transparent). The content described about the 1st thermoplastic resin film 21 is quoted about the specific example of a thermoplastic resin.
 後述するように、タッチ入力式画像表示装置が抵抗膜方式である場合には、タッチ入力素子である透光性部材30における第1光学フィルム20(エアーギャップ)側の最表面には透明導電層が形成される場合がある。抵抗膜方式に用いられるタッチ入力素子としての透光性部材30は可撓性を有することが好ましいので、熱可塑性樹脂フィルムで構成することが多い。一方、静電容量方式に用いられる透光性部材30においては可撓性は要求されないことが多く、ガラス板及び熱可塑性樹脂フィルムのいずれも用いることができる。 As will be described later, when the touch input type image display device is a resistive film type, a transparent conductive layer is formed on the outermost surface on the first optical film 20 (air gap) side of the translucent member 30 that is a touch input element. May be formed. Since the translucent member 30 as a touch input element used in the resistive film method is preferably flexible, it is often composed of a thermoplastic resin film. On the other hand, in the translucent member 30 used for the electrostatic capacity method, flexibility is often not required, and either a glass plate or a thermoplastic resin film can be used.
 (5)偏光板及び光学部材セットの変形例
 図3は、本発明に係る偏光板、並びにそれを含む光学部材セットの他の一例を示す概略断面図である。図3に示される偏光板2のように、本発明に係る偏光板は、偏光子10及び第1光学フィルム20に加えて、偏光子10における第1光学フィルム20とは反対側の面上に積層される第2光学フィルム25をさらに含むことができる。第2光学フィルム25は、画像表示装置において画像表示素子側に配置されるフィルムである。図3に示される光学部材セット41は、この偏光板2と上述の透光性部材30とからなり、偏光板2と、その第1光学フィルム20側(偏光板2の視認側)に配置される透光性部材30とで構築されるエアーギャップ方式のタッチ入力式画像表示装置に用いられる。
(5) Modified Example of Polarizing Plate and Optical Member Set FIG. 3 is a schematic cross-sectional view showing another example of the polarizing plate according to the present invention and an optical member set including the polarizing plate. Like the polarizing plate 2 shown in FIG. 3, the polarizing plate according to the present invention is on the surface of the polarizer 10 opposite to the first optical film 20 in addition to the polarizer 10 and the first optical film 20. A second optical film 25 may be further included. The second optical film 25 is a film disposed on the image display element side in the image display device. The optical member set 41 shown in FIG. 3 includes the polarizing plate 2 and the above-described translucent member 30, and is disposed on the polarizing plate 2 and the first optical film 20 side (viewing side of the polarizing plate 2). It is used for an air gap type touch input type image display device constructed with the translucent member 30.
 第2光学フィルム25は、熱可塑性樹脂フィルム(第2熱可塑性樹脂フィルム)からなるフィルムであってもよいし、これを含むフィルムであってもよい。第2熱可塑性樹脂フィルムを構成する熱可塑性樹脂の具体例については、第1熱可塑性樹脂フィルム21について記述した内容が引用される。中でも、セルロース系樹脂、(メタ)アクリル系樹脂、環状ポリオレフィン系樹脂等が好ましく用いられる。第2光学フィルム25の厚みは、通常5~200μm程度であり、好ましくは10μm以上であり、また好ましくは80μm以下である。 The second optical film 25 may be a film made of a thermoplastic resin film (second thermoplastic resin film) or a film including the same. The content described about the 1st thermoplastic resin film 21 is quoted about the specific example of the thermoplastic resin which comprises a 2nd thermoplastic resin film. Among these, cellulose resins, (meth) acrylic resins, cyclic polyolefin resins, and the like are preferably used. The thickness of the second optical film 25 is usually about 5 to 200 μm, preferably 10 μm or more, and preferably 80 μm or less.
 第2光学フィルム25は、偏光子10を保護するための単なる保護フィルムであってもよいし、例えば位相差フィルム(光学補償フィルム)、輝度向上フィルムのような光学機能を併せ持つ保護フィルムであることもできる。位相差フィルムは、例えば、上記第2熱可塑性樹脂フィルム(環状ポリオレフィン系樹脂フィルム等)を一軸又は二軸延伸したフィルムや、上記第2熱可塑性樹脂フィルム(セルロース系樹脂フィルム等)上に液晶化合物を塗工、配向させたフィルムであることができる。また、第2光学フィルム25は、熱収縮性フィルムとの接着下に収縮力及び/又は延伸力を印加することでフィルムの厚み方向の屈折率を制御した複屈折性フィルムであってもよい。また、第2光学フィルム25は、保護フィルムである第2熱可塑性樹脂フィルムとその上に積層される光学補償フィルムとの積層体であってもよい。 The second optical film 25 may be a simple protective film for protecting the polarizer 10, or may be a protective film having both optical functions such as a retardation film (optical compensation film) and a brightness enhancement film. You can also. The retardation film may be, for example, a liquid crystal compound formed on a film obtained by uniaxially or biaxially stretching the second thermoplastic resin film (cyclic polyolefin resin film or the like) or the second thermoplastic resin film (cellulose resin film or the like). Can be applied and oriented film. Further, the second optical film 25 may be a birefringent film in which the refractive index in the thickness direction of the film is controlled by applying a shrinkage force and / or stretching force under adhesion with the heat-shrinkable film. Moreover, the 2nd optical film 25 may be a laminated body of the 2nd thermoplastic resin film which is a protective film, and the optical compensation film laminated | stacked on it.
 下記式:
 R0=(nx-ny)×d
 Rth=[{(nx+ny)/2}-nz]×d
で定義される位相差フィルムの面内位相差値R0、厚み方向位相差値Rthは、例えば画像表示素子が液晶セルであれば、その液晶セルの種類に合わせて適切に調整される。上記式においてnxは面内遅相軸方向の屈折率、nyは面内進相軸方向(面内遅相軸方向と直交する方向)の屈折率、nzは厚み方向の屈折率、dはフィルムの厚みである。画像表示素子が有機EL表示素子である場合、位相差フィルムは例えば1/4λ板であることができる。
Following formula:
R 0 = (n x −n y ) × d
R th = [{(n x + ny ) / 2} −n z ] × d
If the image display element is a liquid crystal cell, for example, the in-plane retardation value R 0 and the thickness direction retardation value R th of the retardation film defined in (1) are appropriately adjusted according to the type of the liquid crystal cell. N x is the in-plane slow axis direction of the refractive index in the above formulas, n y is a refractive index in the in-plane fast axis direction (perpendicular to the plane slow axis direction), n z is the refractive index in the thickness direction, d is the thickness of the film. When the image display element is an organic EL display element, the retardation film can be, for example, a 1 / 4λ plate.
 第2光学フィルム25と偏光子10との貼合もまた、水系接着剤や光硬化性接着剤のような接着剤、又は粘着剤を用いて行うことができる。貼合に先立って、偏光子10及び/又は第2光学フィルム25の貼合面に上述のような易接着処理を施してもよい。 Bonding of the second optical film 25 and the polarizer 10 can also be performed using an adhesive such as a water-based adhesive or a photocurable adhesive, or a pressure-sensitive adhesive. Prior to bonding, the above-described easy adhesion treatment may be performed on the bonding surface of the polarizer 10 and / or the second optical film 25.
 図4は、本発明に係る偏光板、並びにそれを含む光学部材セットの他の一例を示す概略断面図である。図4に示されるように偏光板及び透光性部材は、透明導電層を有していてもよい。図4に示される偏光板3及び透光性部材30とからなる光学部材セット42は抵抗膜方式に使用できるものであり、タッチ入力素子としての透光性部材30における第1光学フィルム20(エアーギャップ)側の最表面には透明導電層31が形成されており、第1光学フィルム20の外面Sにも透明導電層23が形成されている。電極となる透明導電層23,31は、透光性部材30側を手指等で押圧したときにその位置で両者が接触し、その位置を検知するための役割を果たす。透明導電層23,31は、抵抗膜方式において周知のITO(酸化インジウムスズ)等で構成することができる。 FIG. 4 is a schematic cross-sectional view showing another example of the polarizing plate according to the present invention and an optical member set including the polarizing plate. As shown in FIG. 4, the polarizing plate and the translucent member may have a transparent conductive layer. The optical member set 42 including the polarizing plate 3 and the translucent member 30 shown in FIG. 4 can be used for a resistive film system, and the first optical film 20 (air) in the translucent member 30 as a touch input element. A transparent conductive layer 31 is formed on the outermost surface on the gap) side, and a transparent conductive layer 23 is also formed on the outer surface S of the first optical film 20. The transparent conductive layers 23 and 31 serving as electrodes play a role for detecting the position when the translucent member 30 side is pressed with a finger or the like so that they come into contact with each other at that position. The transparent conductive layers 23 and 31 can be made of ITO (indium tin oxide) or the like well known in the resistive film system.
 図4に示される偏光板3は、図3に示される偏光板2と同様、第1光学フィルム20とは反対側の面上に積層される第2光学フィルム25をさらに含むことができる。 The polarizing plate 3 shown in FIG. 4 can further include a second optical film 25 laminated on the surface opposite to the first optical film 20, similarly to the polarizing plate 2 shown in FIG. 3.
 <第1光学フィルムの製造方法>
 ここでは、第1光学フィルム20の製造方法についてさらに具体的に説明する。表面凹凸からなる外面Sを有する第1光学フィルム20は、第1熱可塑性樹脂フィルム21上に、透光性樹脂及び微粒子を含む塗工液を塗工し、必要に応じて塗工層を乾燥させ(溶媒を含む場合)、その後、必要に応じてその塗工層を、活性エネルギー線の照射(活性エネルギー線硬化性樹脂を用いる場合)若しくは加熱(熱硬化性樹脂又は金属アルコキシドを用いる場合)によって硬化させて、微粒子に基づく凹凸を塗工層上に発現させる方法や、透光性樹脂を含む塗工液(微粒子を含んでいてもよい。)を塗工し、塗工層に凹凸面を有する型(エンボス型)を密着させて、その凹凸面を塗工層に転写する方法等によって製造することができる。表面凹凸の微調整や反射率Yの制御のために、上記の方法によって得られた層の上にさらに他の層(例えば低屈折率層)を積層することもできる。
<The manufacturing method of a 1st optical film>
Here, the manufacturing method of the 1st optical film 20 is demonstrated more concretely. The 1st optical film 20 which has the outer surface S which consists of surface asperity coats the coating liquid containing translucent resin and microparticles | fine-particles on the 1st thermoplastic resin film 21, and dries a coating layer as needed. (If a solvent is included), then, if necessary, the coating layer is irradiated with active energy rays (when an active energy ray-curable resin is used) or heated (when a thermosetting resin or metal alkoxide is used). Or by applying a coating liquid containing a light-transmitting resin (which may contain fine particles), and forming an uneven surface on the coating layer. It can be manufactured by a method in which a mold having an embossing (embossing mold) is brought into close contact, and the uneven surface is transferred to a coating layer. In order to finely adjust the surface irregularities and control the reflectance Y, another layer (for example, a low refractive index layer) can be further laminated on the layer obtained by the above method.
 上記の中でも、表面凹凸を付与するために好ましく用いられる方法は、エンボス型を用いた方法であり、この方法は次の工程:
 (A)第1熱可塑性樹脂フィルム21上に、透光性樹脂を含む塗工液を塗工する工程、及び
 (B)塗工層の表面に、エンボス型(転写用型)の凹凸面を転写する工程
を含む。
Among the above methods, a method preferably used for imparting surface irregularities is a method using an embossing mold, and this method includes the following steps:
(A) A step of applying a coating liquid containing a translucent resin on the first thermoplastic resin film 21, and (B) an uneven surface of an embossing type (transfer type) on the surface of the coating layer. A transfer step.
 上記工程(A)で用いる塗工液は、透光性樹脂を含み、必要に応じて透光性微粒子や溶媒等のその他の成分を含む。透光性樹脂として紫外線硬化性樹脂を用いる場合、この塗工液は、さらに光重合開始剤(ラジカル重合開始剤)を含む。光重合開始剤としては、例えば、アセトフェノン系光重合開始剤、ベンゾイン系光重合開始剤、ベンゾフェノン系光重合開始剤、チオキサントン系光重合開始剤、トリアジン系光重合開始剤、オキサジアゾール系光重合開始剤等が用いられる。また例えば、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、2,2’-ビス(o-クロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、10-ブチル-2-クロロアクリドン、2-エチルアントラキノン、ベンジル、9,10-フェナンスレンキノン、カンファーキノン、フェニルグリオキシル酸メチル、チタノセン化合物等を、光重合開始剤として用いることもできる。光重合開始剤の使用量は、塗工液に含有される紫外線硬化性樹脂100重量部に対して、通常0.5~20重量部であり、好ましくは1~5重量部である。 The coating liquid used in the above step (A) contains a translucent resin, and if necessary, contains other components such as translucent fine particles and a solvent. When an ultraviolet curable resin is used as the translucent resin, the coating solution further contains a photopolymerization initiator (radical polymerization initiator). Examples of the photopolymerization initiator include acetophenone photopolymerization initiator, benzoin photopolymerization initiator, benzophenone photopolymerization initiator, thioxanthone photopolymerization initiator, triazine photopolymerization initiator, and oxadiazole photopolymerization initiator. An initiator or the like is used. Also, for example, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,2′-bis (o-chlorophenyl) -4,4 ′, 5,5′-tetraphenyl-1,2′-biimidazole, 10- Butyl-2-chloroacridone, 2-ethylanthraquinone, benzyl, 9,10-phenanthrenequinone, camphorquinone, methyl phenylglyoxylate, titanocene compounds and the like can also be used as a photopolymerization initiator. The amount of the photopolymerization initiator used is usually 0.5 to 20 parts by weight, preferably 1 to 5 parts by weight with respect to 100 parts by weight of the ultraviolet curable resin contained in the coating liquid.
 第1熱可塑性樹脂フィルム21上への塗工液の塗工は、例えば、グラビアコート法、マイクログラビアコート法、ロッドコート法、ナイフコート法、エアーナイフコート法、キスコート法、ダイコート法等によって行うことができる。 The application of the coating liquid onto the first thermoplastic resin film 21 is performed by, for example, a gravure coating method, a micro gravure coating method, a rod coating method, a knife coating method, an air knife coating method, a kiss coating method, a die coating method, or the like. be able to.
 塗工液の塗工性の改良又は得られる塗工層との接着性の改良を目的として、第1熱可塑性樹脂フィルム21の塗工面に各種表面処理を施してもよい。表面処理は、コロナ放電処理、グロー放電処理、酸表面処理、アルカリ表面処理、紫外線照射処理等であり得る。また、第1熱可塑性樹脂フィルム21上に、例えばプライマー層等の他の層を形成し、その上に塗工液を塗工するようにしてもよい。 Various surface treatments may be applied to the coated surface of the first thermoplastic resin film 21 for the purpose of improving the coating properties of the coating liquid or improving the adhesion with the resulting coating layer. The surface treatment can be a corona discharge treatment, a glow discharge treatment, an acid surface treatment, an alkali surface treatment, an ultraviolet irradiation treatment or the like. Further, another layer such as a primer layer may be formed on the first thermoplastic resin film 21 and a coating solution may be applied thereon.
 上記工程(B)においては、塗工層の表面にエンボス型の凹凸面を密着させて、その凹凸面を転写する。このようにエンボス型の凹凸面を塗工層の表面に転写することによって、所望の表面形状を有する光学層22(又はこれを構成する層)を形成することができる。 In the above step (B), an embossed uneven surface is brought into close contact with the surface of the coating layer, and the uneven surface is transferred. By transferring the embossed uneven surface to the surface of the coating layer in this manner, the optical layer 22 (or a layer constituting the same) having a desired surface shape can be formed.
 透光性樹脂として活性エネルギー線硬化性樹脂、熱硬化性樹脂又は金属アルコキシドを用いる場合は、塗工層の表面にエンボス型の凹凸面を密着させた状態で、活性エネルギー線の照射(活性エネルギー線硬化性樹脂を用いる場合)又は加熱(熱硬化性樹脂又は金属アルコキシドを用いる場合)により塗工層を硬化させる。活性エネルギー線は、塗工液に含まれる樹脂の種類に応じて、電子線、紫外線、近紫外線、可視光、近赤外線、赤外線、X線等から適宜選択することができる。これらの中では、紫外線又は電子線が好ましく、とりわけ取扱いが簡便で高いエネルギーが得られることから、紫外線が好ましく用いられる。 When an active energy ray curable resin, a thermosetting resin or a metal alkoxide is used as the translucent resin, irradiation with active energy rays (active energy) is performed with an embossed uneven surface in close contact with the surface of the coating layer. The coating layer is cured by heating (when using a linear curable resin) or heating (when using a thermosetting resin or metal alkoxide). The active energy ray can be appropriately selected from an electron beam, an ultraviolet ray, a near ultraviolet ray, a visible light, a near infrared ray, an infrared ray, an X-ray and the like according to the type of resin contained in the coating liquid. Among these, ultraviolet rays or electron beams are preferable, and ultraviolet rays are preferably used because they are easy to handle and high energy is obtained.
 紫外線を採用する場合、その光源としては、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、キセノンランプ、メタルハライドランプ等を用いることができる。また、ArFエキシマレーザー、KrFエキシマレーザー、エキシマランプ、シンクロトロン放射光等も用いることができる。これらの中でも、超高圧、高圧、中圧及び低圧を含む水銀灯、キセノンランプ、又はメタルハライドランプが好ましく用いられる。 When ultraviolet rays are employed, for example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a xenon lamp, a metal halide lamp, or the like can be used. Further, an ArF excimer laser, a KrF excimer laser, an excimer lamp, synchrotron radiation, or the like can also be used. Among these, mercury lamps, xenon lamps, or metal halide lamps including ultra-high pressure, high pressure, medium pressure and low pressure are preferably used.
 電子線としては、コックロフトワルトン型、バンデグラフ型、共振変圧型、絶縁コア変圧型、直線型、ダイナミトロン型、又は高周波型のような各種電子線加速器から放出される50~1000keV、好ましくは100~300keVのエネルギーを有する電子線を挙げることができる。 As the electron beam, 50 to 1000 keV emitted from various electron beam accelerators such as a cockroft Walton type, a bandegraph type, a resonance transformation type, an insulating core transformation type, a linear type, a dynamitron type, or a high frequency type, preferably 100 Mention may be made of electron beams having an energy of ˜300 keV.
 <エンボス型の作製方法>
 光学層22に表面凹凸を付与するために用いられるエンボス型は、所望する光学層22の表面凹凸形状に応じた表面凹凸形状を有するものである。
<Embossed production method>
The embossing mold used for imparting surface irregularities to the optical layer 22 has a surface irregularity shape corresponding to the desired surface irregularity shape of the optical layer 22.
 エンボス型における表面凹凸のパターンは、規則的なパターンであってもよいし、ランダムパターン、あるいは特定サイズの1種類以上のランダムパターンを敷き詰めた、擬似ランダムパターンであってもよい。ただし、表面形状に起因する反射光の干渉により反射像が虹色に色づくことを防止する観点からは、ランダムパターン又は擬似ランダムパターンであることが好ましい。 The surface uneven pattern in the embossed pattern may be a regular pattern, a random pattern, or a pseudo-random pattern in which one or more random patterns of a specific size are spread. However, from the viewpoint of preventing the reflected image from becoming iridescent due to interference of reflected light caused by the surface shape, it is preferably a random pattern or a pseudo-random pattern.
 エンボス型の外形形状は特に制限されるものではなく、平板状であってもよいし、円柱状又は円筒状のロールであってもよいが、第1光学フィルム20の連続生産性の点からは、円柱状又は円筒状の型、すなわちエンボスロールであることが好ましい。この場合、円柱状又は円筒状の鋳型の側面に所定の表面形状が形成される。 The outer shape of the embossed mold is not particularly limited, and may be a flat plate shape or a cylindrical or cylindrical roll, but from the viewpoint of continuous productivity of the first optical film 20. A columnar or cylindrical mold, that is, an embossing roll is preferable. In this case, a predetermined surface shape is formed on the side surface of the columnar or cylindrical mold.
 エンボス型を構成する基材も特に制限されるものでなく、例えば、金属、ガラス、カーボン、樹脂、あるいはそれらの複合体から適宜選択できるが、加工性等の点から金属が好ましい。エンボス型に好適に用いられる金属材料は、特にコストの観点から、アルミニウム、鉄、又はアルミニウム若しくは鉄を主体とする合金である。 The substrate constituting the embossing mold is not particularly limited, and can be appropriately selected from, for example, metal, glass, carbon, resin, or a composite thereof, but metal is preferable from the viewpoint of workability. The metal material suitably used for the embossing mold is aluminum, iron, or an alloy mainly composed of aluminum or iron, particularly from the viewpoint of cost.
 エンボス型を得る方法としては、例えば、基材を研磨し、サンドブラスト加工を施した後、無電解ニッケルめっきを施す方法(特開2006-53371号公報);基材に銅めっき又はニッケルめっきを施した後、研磨し、次いでサンドブラスト加工を施し、さらにクロムめっきを施す方法(特開2007-187952号公報);銅めっき又はニッケルめっきを施した後、研磨し、次いでサンドブラスト加工を施し、さらにエッチング工程又は銅めっき工程を経た後にクロムめっきを施す方法(特開2007-237541号公報);基材の表面に銅めっき又はニッケルめっきを施した後、研磨し、研磨された面に感光性樹脂膜を形成し、その感光性樹脂膜上にパターンを露光し、次いで現像し、現像された感光性樹脂膜をマスクとして用いてエッチング処理を行い、感光性樹脂膜を剥離し、さらにエッチング処理して凹凸面を鈍らせた後に、形成された凹凸面にクロムめっきを施す方法(特開2010-76385号公報や、特開2012-68474号公報);旋盤等の工作機械を用いて、切削工具により鋳型となる基材を切削する方法(国際公開第2007/077892号パンフレット)等が挙げられる。 As a method for obtaining an embossing mold, for example, a base material is polished, sandblasted, and then subjected to electroless nickel plating (Japanese Patent Laid-Open No. 2006-53371); the base material is subjected to copper plating or nickel plating. Then, polishing, then sandblasting, and further chromium plating (Japanese Patent Laid-Open No. 2007-187852); copper plating or nickel plating, polishing, then sandblasting, and further etching step Alternatively, a method of performing chromium plating after passing through a copper plating step (Japanese Patent Laid-Open No. 2007-237541); applying copper plating or nickel plating to the surface of the substrate, polishing, and then applying a photosensitive resin film on the polished surface Forming, exposing the pattern on the photosensitive resin film, then developing, and using the developed photosensitive resin film as a mask Etching treatment is performed, the photosensitive resin film is peeled off, and further the etching treatment is performed to make the concavo-convex surface dull, and then the formed concavo-convex surface is subjected to chromium plating (JP 2010-76385 A and JP 2012-68474 gazette); the method (international publication 2007/077892 pamphlet) etc. which cut the base material used as a casting_mold | template with a cutting tool using machine tools, such as a lathe.
 ランダムパターン又は擬似ランダムパターンからなるエンボス型の表面凹凸形状は、例えば、FMスクリーン法、DLDS(Dynamic Low-Discrepancy Sequence)法、ブロック共重合体のミクロ相分離パターンを利用する方法、バンドパスフィルター法等によって作成されたランダムパターンを感光性樹脂膜上に露光し、現像して、現像された感光性樹脂膜をマスクとしてエッチング処理を行う方法により形成することができる。 Embossed surface irregularities consisting of random patterns or pseudo-random patterns include, for example, FM screen method, DLDS (Dynamic Low-Discontinuity Sequence) method, method using block copolymer microphase separation pattern, bandpass filter method A random pattern created by the above method can be formed by exposing the photosensitive resin film, developing it, and performing an etching process using the developed photosensitive resin film as a mask.
 <タッチ入力式画像表示装置>
 本発明に係るタッチ入力式画像表示装置は、本発明に係る偏光板を画像表示素子の視認側に配置し、その偏光板における第1光学フィルム側に、第1光学フィルムと離間するように透光性部材を配置したものである。画像表示素子は、液晶セルのような非自発光型の素子であってもよいし、有機EL表示素子のような自発光型の素子であってもよい。
<Touch input image display device>
In the touch input type image display device according to the present invention, the polarizing plate according to the present invention is disposed on the viewing side of the image display element, and the first optical film side of the polarizing plate is separated from the first optical film. An optical member is arranged. The image display element may be a non-self light emitting element such as a liquid crystal cell, or may be a self light emitting element such as an organic EL display element.
 画像表示素子に液晶セル50を用いたタッチ入力式画像表示装置の一例を図5に示した。この例では図1に示される光学部材セット40を適用しているが、これに限定されず、本発明に係る光学部材セットであればよい。タッチ入力式画像表示装置の動作方式はいかなる方式であってもよいが、その代表例は抵抗膜方式及び静電容量方式である。液晶セル50は、2枚の透明基板間に液晶層を挟持し、電圧印加によって当該液晶層の配向状態を制御し、表示を可能とするもので、液晶表示の分野において周知のものを採用することができる。 An example of a touch input type image display device using the liquid crystal cell 50 as an image display element is shown in FIG. In this example, the optical member set 40 shown in FIG. 1 is applied. However, the present invention is not limited to this, and any optical member set according to the present invention may be used. The operation method of the touch input type image display apparatus may be any method, but typical examples are a resistive film method and a capacitance method. The liquid crystal cell 50 has a liquid crystal layer sandwiched between two transparent substrates, controls the alignment state of the liquid crystal layer by applying a voltage, and enables display. A liquid crystal cell known in the field of liquid crystal display is adopted. be able to.
 タッチ入力式画像表示装置が液晶セル50を備える液晶表示装置である場合、図5に示されるように、液晶セル50の背面側には、背面側偏光板60が配置され、さらにその背面側に表示用の光を供給するためのバックライト80が配置される。偏光板は通常、粘着剤層70,71を介して液晶セル50に貼合される。 When the touch input type image display device is a liquid crystal display device including the liquid crystal cell 50, as shown in FIG. 5, a back side polarizing plate 60 is disposed on the back side of the liquid crystal cell 50, and further on the back side thereof. A backlight 80 for supplying display light is disposed. The polarizing plate is usually bonded to the liquid crystal cell 50 via the pressure-sensitive adhesive layers 70 and 71.
 一方、画像表示素子として有機EL表示素子を採用する場合、有機EL表示素子は自発光型であるので、図5における液晶セル50、粘着剤層71、背面側偏光板60及びバックライト80の代わりに、この有機EL表示素子を配置すればよい。有機EL表示素子は、有機発光材料を含む発光体を1対の電極で挟持したものであり、やはりこの分野で周知のものを採用することができる。 On the other hand, when an organic EL display element is employed as the image display element, the organic EL display element is a self-luminous type, and therefore, instead of the liquid crystal cell 50, the adhesive layer 71, the back side polarizing plate 60, and the backlight 80 in FIG. In addition, this organic EL display element may be disposed. The organic EL display element includes a light emitter including an organic light emitting material sandwiched between a pair of electrodes, and a well-known one in this field can also be employed.
 以下、実施例を示して本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。例中、含有量又は使用量を表す%及び部は、特記ない限り重量基準である。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples. In the examples, “%” and “part” representing the content or amount used are based on weight unless otherwise specified.
 <実施例1>
 (A)光学フィルムの作製
 (A1)光学フィルム用金型(エンボス型)の作製
 特開2012-68474号公報の実施例1(B)に記載される方法に準ずるが、凹凸形成のためのエッチング量を変えることで、光学フィルムに凹凸形状を付与するための金型を作製した。すなわち、まず直径200mmのアルミニウムロール(JISによるA5056)の表面に銅バラードめっきが施されたものを用意した。銅バラードめっきは、銅めっき層/薄い銀めっき層/表面銅めっき層からなるもので、めっき層全体の厚みが約200μmのものを用いた。その銅めっき表面を鏡面研磨し、研磨された銅めっき表面にポジ型感光性樹脂を塗工し、乾燥して感光性樹脂膜を形成した。次いで、所定のパターン(同公報の図16に示されるパターン)が繰り返されるよう、感光性樹脂膜上にレーザー光を露光し、その後現像した。レーザー光の露光及び現像は、(株)シンク・ラボラトリー製の「Laser Stream FX」を用いて行った。
<Example 1>
(A) Manufacture of optical film (A1) Manufacture of mold for optical film (emboss mold) According to the method described in Example 1 (B) of JP 2012-68474 A, etching for forming irregularities By changing the amount, a mold for imparting an uneven shape to the optical film was produced. That is, first, an aluminum roll having a diameter of 200 mm (A5056 according to JIS) with copper ballad plating applied thereto was prepared. The copper ballad plating was composed of a copper plating layer / a thin silver plating layer / a surface copper plating layer, and the thickness of the entire plating layer was about 200 μm. The copper plating surface was mirror-polished, a positive photosensitive resin was applied to the polished copper plating surface, and dried to form a photosensitive resin film. Next, the photosensitive resin film was exposed to laser light so that a predetermined pattern (pattern shown in FIG. 16 of the same publication) was repeated, and then developed. The laser light exposure and development were performed using “Laser Stream FX” manufactured by Sink Laboratories.
 現像後、塩化第二銅水溶液で第1のエッチング処理を行った。次に第1のエッチング処理後のロールから感光性樹脂膜を除去し、再び塩化第二銅水溶液で第2のエッチング処理を行った。このとき、その後の処理により得られる光学フィルムの断面曲線のクルトシスPkuを所定の値に調整するため、第1のエッチング処理量(エッチングにより削られる厚み)が4μm、第2のエッチング処理量(同じくエッチングにより削られる厚み)が12μmとなるように設定した。その後、クロムめっき加工を行った。クロムめっきの厚みは4μmとなるように設定した。こうして、表面に微細な凹凸を有する金型ロールを作製した。 After the development, a first etching process was performed with a cupric chloride aqueous solution. Next, the photosensitive resin film was removed from the roll after the first etching treatment, and a second etching treatment was again performed with a cupric chloride aqueous solution. At this time, in order to adjust the kurtosis Pku of the cross-sectional curve of the optical film obtained by the subsequent processing to a predetermined value, the first etching processing amount (thickness cut by etching) is 4 μm, and the second etching processing amount (also the same) The thickness (thickened by etching) was set to 12 μm. Thereafter, chrome plating was performed. The thickness of the chromium plating was set to 4 μm. Thus, a mold roll having fine irregularities on the surface was produced.
 (A2)紫外線硬化性樹脂組成物の調製
 紫外線硬化性樹脂組成物の原料として、以下のものを用意した。
・紫外線硬化性樹脂:ペンタエリスリトールトリアクリレート60部、及び多官能ウレタン化アクリレート(ヘキサメチレンジイソシアネートとペンタエリスリトールトリアクリレートの反応生成物)40部の混合物。
・光重合開始剤:BASF社から販売されている「ルシリン TPO」(化学名:2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド)。
(A2) Preparation of UV curable resin composition The following were prepared as raw materials for the UV curable resin composition.
UV curable resin: a mixture of 60 parts of pentaerythritol triacrylate and 40 parts of polyfunctional urethanized acrylate (reaction product of hexamethylene diisocyanate and pentaerythritol triacrylate).
Photopolymerization initiator: “Lucirin TPO” (chemical name: 2,4,6-trimethylbenzoyldiphenylphosphine oxide) sold by BASF.
 上記の紫外線硬化性樹脂100部に対し、上記の光重合開始剤5部及び希釈溶媒として酢酸エチル150部を混合して、塗工層を形成するための紫外線硬化性樹脂組成物を調製した。 A UV curable resin composition for forming a coating layer was prepared by mixing 5 parts of the photopolymerization initiator and 150 parts of ethyl acetate as a diluent solvent with 100 parts of the UV curable resin.
 (A3)光学フィルムの作製
 上で調製した紫外線硬化性樹脂組成物を、トリアセチルセルロースからなる熱可塑性樹脂フィルム上に乾燥後の膜厚が5μmとなるようダイコーターで塗工し、熱可塑性樹脂フィルムと紫外線硬化性樹脂組成物の塗工層とからなる積層体を得た。この積層体を乾燥炉で乾燥させた後、上の(A1)で作製した金型ロールに、塗工層側が金型と接するようにニップロールで押し当てて密着させた。この状態で熱可塑性樹脂フィルム側から、最大照度が700mW/cm2、積算光量が300mJ/cm2となるように紫外線を照射して、紫外線硬化性樹脂組成物を硬化させた。その後、金型ロールから積層体を剥離することで、表面に凹凸を有する樹脂層を形成した。
(A3) Production of optical film The ultraviolet curable resin composition prepared above was coated on a thermoplastic resin film made of triacetylcellulose with a die coater so that the film thickness after drying was 5 μm, and a thermoplastic resin was obtained. A laminate comprising a film and a coating layer of an ultraviolet curable resin composition was obtained. After drying this laminated body in a drying furnace, it was pressed and adhered to the mold roll produced in (A1) above with a nip roll so that the coating layer side was in contact with the mold. In this state, ultraviolet rays were irradiated from the thermoplastic resin film side so that the maximum illuminance was 700 mW / cm 2 and the integrated light amount was 300 mJ / cm 2 , thereby curing the ultraviolet curable resin composition. Then, the laminated body was peeled from the mold roll to form a resin layer having irregularities on the surface.
 (A4)低屈折率層の形成
 テトラエトキシシランと1H,1H,2H,2H-パーフルオロオクチルトリメトキシシランの95:5(モル比)混合物にイソプロピルアルコール及び0.1N塩酸を加え、加水分解させることより、オリゴマーからなる有機ケイ素化合物の重合体を含む溶液を得た。この溶液に低屈折率シリカ中空微粒子を混合し、イソプロピルアルコールを加えることにより、有機ケイ素化合物を2重量%、低屈折率シリカ中空微粒子を2重量%含む低屈折率層形成用塗工液を得た。得られた低屈折率層形成用塗工液を、上で得られた光学フィルムの凹凸面にワイヤーバーコーターにより塗工し、120℃に設定した乾燥機中で1分間乾燥させることにより低屈折率層を形成して、光学フィルムを得た。得られた低屈折率層の厚みは102nmであり、屈折率は1.37であった。
(A4) Formation of Low Refractive Index Layer Isopropyl alcohol and 0.1N hydrochloric acid are added to a 95: 5 (molar ratio) mixture of tetraethoxysilane and 1H, 1H, 2H, 2H-perfluorooctyltrimethoxysilane to cause hydrolysis. Thus, a solution containing an organosilicon compound polymer composed of an oligomer was obtained. Low refractive index silica hollow fine particles are mixed into this solution and isopropyl alcohol is added to obtain a coating solution for forming a low refractive index layer containing 2% by weight of an organosilicon compound and 2% by weight of low refractive index silica hollow fine particles. It was. The obtained coating solution for forming a low refractive index layer is coated on the uneven surface of the optical film obtained above with a wire bar coater and dried in a dryer set at 120 ° C. for 1 minute to reduce the refractive index. An index layer was formed to obtain an optical film. The resulting low refractive index layer had a thickness of 102 nm and a refractive index of 1.37.
 (B)光学フィルムの表面形状の測定
 SENSOFAR社製の三次元顕微鏡「PLμ 2300」を用い、対物レンズの倍率を20倍とし、共焦点モードにて、上で得られた光学フィルムの表面形状(断面曲線のクルトシスPku)を求めた。測定面積は637μm×477μmとした。また、光学フィルムサンプルの反りを防止するため、光学的に透明な粘着剤を用いて、凹凸面とは反対側の面で(凹凸面が表面となる)サンプルをガラス基板に貼合してから測定を行った。得られた光学フィルムが有する凹凸面のPkuは3.2であった。
(B) Measurement of surface shape of optical film Using a three-dimensional microscope “PLμ 2300” manufactured by SENSOFAR, the magnification of the objective lens is 20 times, and the surface shape of the optical film obtained above in the confocal mode ( The cross-sectional curve kurtosis Pku) was determined. The measurement area was 637 μm × 477 μm. In order to prevent warping of the optical film sample, an optically transparent adhesive is used, and the sample is bonded to the glass substrate on the surface opposite to the uneven surface (the uneven surface becomes the surface). Measurements were made. Pku of the uneven surface of the obtained optical film was 3.2.
 (C)光学フィルムの反射率Y(反射率Y値)の測定
 上述の測定方法に従い、分光光度計((株)島津製作所製「UV2450」)に積分球((株)島津製作所製「BIS-3100」)を付属した装置を用いて、反射率Y値を測定した。光学フィルムサンプル裏面からの反射を防止するとともに、サンプルの反りを防止するため、光学的に透明な粘着剤を用いて、凹凸面とは反対側の面で(凹凸面が表面となる)サンプルを黒色アクリル板(住友化学株式会社製「スミペックス」)に貼合してから測定を行った。得られた光学フィルムが有する凹凸面の反射率Yは1.0%であった。
(C) Measurement of reflectance Y (reflectance Y value) of optical film In accordance with the measurement method described above, the spectrophotometer ("UV2450" manufactured by Shimadzu Corporation) was integrated with an integrating sphere ("BIS-" manufactured by Shimadzu Corporation). 3100 ") was used to measure the reflectance Y value. In order to prevent reflection from the back side of the optical film sample and to prevent warping of the sample, an optically transparent adhesive is used to prepare a sample on the surface opposite to the uneven surface (the uneven surface becomes the surface). Measurement was performed after bonding to a black acrylic plate (“SUMIPEX” manufactured by Sumitomo Chemical Co., Ltd.). The reflectance Y of the concavo-convex surface of the obtained optical film was 1.0%.
 (D)偏光子の作製
 平均重合度約2,400、ケン化度99.9モル%以上で厚さ75μmのポリビニルアルコールフィルムを、30℃の純水に浸漬した後、ヨウ素/ヨウ化カリウム/水の重量比が0.02/2/100の水溶液に30℃で浸漬して染色した。その後、ヨウ化カリウム/ホウ酸/水の重量比が12/5/100の水溶液に56.5℃で浸漬して架橋処理を行った。引き続き、8℃の純水で洗浄した後、65℃で乾燥して、ポリビニルアルコールにヨウ素が吸着配向している偏光子を得た。延伸は、ヨウ素染色及びホウ酸架橋処理の工程で主に行い、トータル延伸倍率は5.3倍であった。
(D) Production of Polarizer A polyvinyl alcohol film having an average polymerization degree of about 2,400 and a saponification degree of 99.9 mol% or more and a thickness of 75 μm was immersed in pure water at 30 ° C., and then iodine / potassium iodide / It dye | stained by immersing in the aqueous solution whose water weight ratio is 0.02 / 2/100 at 30 degreeC. Then, it was immersed in an aqueous solution having a potassium iodide / boric acid / water weight ratio of 12/5/100 at 56.5 ° C. to carry out a crosslinking treatment. Subsequently, after washing with pure water at 8 ° C., drying was performed at 65 ° C. to obtain a polarizer in which iodine was adsorbed and oriented on polyvinyl alcohol. Stretching was mainly performed in the steps of iodine staining and boric acid crosslinking treatment, and the total stretching ratio was 5.3 times.
 (E)接着剤の調製
 水100部に対して、(株)クラレから販売されているカルボキシル基変性ポリビニルアルコール「クラレポバール KL318」(変性度2モル%)を1.8部溶解し、さらにそこに、水溶性ポリアミドエポキシ樹脂である田岡化学工業(株)製から販売されている「スミレーズレジン 650」(固形分30%の水溶液)を1.5部加えて溶解し、ポリビニルアルコール系接着剤を調製した。
(E) Preparation of adhesive To 100 parts of water, 1.8 parts of carboxyl group-modified polyvinyl alcohol “Kuraray Poval KL318” (modification degree 2 mol%) sold by Kuraray Co., Ltd. was dissolved. To this, 1.5 parts of “Smilease Resin 650” (aqueous solution with a solid content of 30%) sold by Taoka Chemical Industry Co., Ltd., which is a water-soluble polyamide epoxy resin, is added and dissolved to obtain a polyvinyl alcohol adhesive. Was prepared.
 (F)偏光板の作製
 上の(A4)で作製した光学フィルムの凹凸を有する光学層が形成された面とは反対側の熱可塑性樹脂フィルム面にケン化処理を施した後、上の(E)で調製したポリビニルアルコール系接着剤を10μmバーコータで塗工し、その上に、上の(D)で作製した偏光子を貼合した。また、偏光子の他面に貼合する保護フィルムとして、厚さ40μmのトリアセチルセルロースフィルム(コニカミノルタアドバンストレイヤー(株)から販売されている「KC4UE」、面内位相差値R0=0.7nm、厚み方向位相差子Rth=-0.1nm)を用意した。この保護フィルムにケン化処理を施した後、そのケン化処理面に上の(E)で調製したポリビニルアルコール系接着剤を10μmバーコータで塗工し、その塗工面を、上の偏光子の光学フィルムが貼合された面とは反対側の面に貼合した。その後、80℃で5分間乾燥し、さらに常温で1日間養生した。こうして、光学フィルム/偏光子/トリアセチルセルロースフィルムの層構成からなる偏光板を作製した。
(F) Production of Polarizing Plate After saponifying the surface of the thermoplastic resin film opposite to the surface on which the optical layer having the irregularities of the optical film produced in (A4) above was formed, The polyvinyl alcohol adhesive prepared in E) was applied with a 10 μm bar coater, and the polarizer prepared in (D) above was bonded thereon. Further, as a protective film to be bonded to the other surface of the polarizer, a 40 μm thick triacetyl cellulose film (“KC4UE” sold by Konica Minolta Advanced Layer Co., Ltd.), in-plane retardation value R 0 = 0. 7 nm, thickness direction retardation R th = −0.1 nm) was prepared. After the saponification treatment is applied to this protective film, the polyvinyl alcohol adhesive prepared in (E) above is applied to the saponification treated surface with a 10 μm bar coater, and the coated surface is coated with the optical film of the upper polarizer. It bonded on the surface on the opposite side to the surface where the film was bonded. Thereafter, it was dried at 80 ° C. for 5 minutes and further cured at room temperature for 1 day. Thus, a polarizing plate having a layer structure of optical film / polarizer / triacetyl cellulose film was produced.
 (G)ニュートンリングの評価
 上の(F)で作製した偏光板の光学フィルム凹凸面側に、4mm厚のアクリル板を、そのアクリル板と偏光板表面との間のエアギャップが0.3mmとなるように調節して配置した。アクリル板を700gの荷重で押して、ニュートンリングが発生するかどうかを観察し、次の評価基準に従って評価した。
(G) Evaluation of Newton's ring A 4 mm thick acrylic plate is provided on the optical film uneven surface side of the polarizing plate produced in (F) above, and the air gap between the acrylic plate and the polarizing plate surface is 0.3 mm. It adjusted and arranged so that it might become. The acrylic board was pushed with a load of 700 g to observe whether Newton rings were generated, and evaluated according to the following evaluation criteria.
 A: ニュートンリングが観察されない、
 B: ニュートンリングがわずかに観察されるが、視認に問題ないレベルである、
 C: ニュートンリングが顕著に観察される。
A: Newton rings are not observed,
B: Newton rings are slightly observed, but at a level where there is no problem with visual recognition.
C: Newton rings are observed remarkably.
 <実施例2>
 光学フィルム用金型の第1のエッチング処理量を5.0μm、低屈折率層の厚みを68nmとした以外は実施例1と同様にして光学フィルムを得た。このフィルムの表面特性を実施例1と同じ方法で測定したところ、Pkuは4.9、反射率Yは2.0%であった。このフィルムを光学フィルムとして用いること以外は実施例1と同様にして、偏光板を作製し、ニュートンリングの評価を行った。
<Example 2>
An optical film was obtained in the same manner as in Example 1 except that the first etching treatment amount of the optical film mold was 5.0 μm and the thickness of the low refractive index layer was 68 nm. The surface properties of this film were measured by the same method as in Example 1. As a result, Pku was 4.9 and reflectance Y was 2.0%. A polarizing plate was produced in the same manner as in Example 1 except that this film was used as an optical film, and Newton rings were evaluated.
 <実施例3>
 光学フィルム用金型の第1のエッチング処理量を7.0μmとし、低屈折率層を設けないこと以外は実施例1と同様にして光学フィルムを得た。このフィルムの表面特性を実施例1と同じ方法で測定したところ、Pkuは7.9、反射率Yは3.0%であった。このフィルムを光学フィルムとして用いること以外は実施例1と同様にして、偏光板を作製し、ニュートンリングの評価を行った。
<Example 3>
An optical film was obtained in the same manner as in Example 1 except that the first etching treatment amount of the optical film mold was 7.0 μm and the low refractive index layer was not provided. When the surface properties of this film were measured by the same method as in Example 1, Pku was 7.9 and reflectance Y was 3.0%. A polarizing plate was produced in the same manner as in Example 1 except that this film was used as an optical film, and Newton rings were evaluated.
 <実施例4>
 低屈折率層を設けないこと以外は実施例1と同様にして光学フィルムを得た。このフィルムの表面特性を実施例1と同じ方法で測定したところ、Pkuは3.2、反射率Yは3.4%であった。このフィルムを光学フィルムとして用いること以外は実施例1と同様にして、偏光板を作製し、ニュートンリングの評価を行った。
<Example 4>
An optical film was obtained in the same manner as in Example 1 except that the low refractive index layer was not provided. When the surface characteristics of this film were measured by the same method as in Example 1, Pku was 3.2 and reflectance Y was 3.4%. A polarizing plate was produced in the same manner as in Example 1 except that this film was used as an optical film, and Newton rings were evaluated.
 <実施例5>
 低屈折率層の厚みを80nmとしたこと以外は実施例1と同様にして光学フィルムを得た。このフィルムの表面特性を実施例1と同じ方法で測定したところ、Pkuは3.2、反射率Yは1.8%であった。このフィルムを光学フィルムとして用いること以外は実施例1と同様にして、偏光板を作製し、ニュートンリングの評価を行った。
<Example 5>
An optical film was obtained in the same manner as in Example 1 except that the thickness of the low refractive index layer was 80 nm. The surface properties of this film were measured by the same method as in Example 1. As a result, Pku was 3.2 and reflectance Y was 1.8%. A polarizing plate was produced in the same manner as in Example 1 except that this film was used as an optical film, and Newton rings were evaluated.
 <比較例1>
 日本製紙ケミカル(株)から販売されている表面処理フィルム「NC-1B」を光学フィルムとした。このフィルムの表面特性を実施例1と同じ方法で測定したところ、Pkuは3.3、反射率Yは4.1%であった。このフィルムを光学フィルムとして用いること以外は実施例1と同様にして、偏光板を作製し、ニュートンリングの評価を行った。
<Comparative Example 1>
The surface treatment film “NC-1B” sold by Nippon Paper Chemicals Co., Ltd. was used as the optical film. The surface properties of this film were measured by the same method as in Example 1. As a result, Pku was 3.3 and reflectance Y was 4.1%. A polarizing plate was produced in the same manner as in Example 1 except that this film was used as an optical film, and Newton rings were evaluated.
 <比較例2>
 凸版印刷(株)から販売されている表面処理フィルム「40CHC」を光学フィルムとした。このフィルムの表面特性を実施例1と同じ方法で測定したところ、Pkuは2.2、反射率Yは4.2%であった。このフィルムを光学フィルムとして用いること以外は実施例1と同様にして、偏光板を作製し、ニュートンリングの評価を行った。
<Comparative example 2>
A surface-treated film “40CHC” sold by Toppan Printing Co., Ltd. was used as an optical film. The surface properties of this film were measured by the same method as in Example 1. As a result, Pku was 2.2 and reflectance Y was 4.2%. A polarizing plate was produced in the same manner as in Example 1 except that this film was used as an optical film, and Newton rings were evaluated.
 <比較例3>
 凸版印刷(株)から販売されている表面処理フィルム「40KSPLR」を光学フィルムとした。このフィルムの表面特性を実施例1と同じ方法で測定したところ、Pkuは2.6、反射率Yは1.0%あった。このフィルムを光学フィルムとして用いること以外は実施例1と同様にして、偏光板を作製し、ニュートンリングの評価を行った。
<Comparative Example 3>
A surface-treated film “40KSPLR” sold by Toppan Printing Co., Ltd. was used as an optical film. The surface properties of this film were measured by the same method as in Example 1. As a result, Pku was 2.6 and reflectance Y was 1.0%. A polarizing plate was produced in the same manner as in Example 1 except that this film was used as an optical film, and Newton rings were evaluated.
 実施例1~5及び比較例1~3で行ったニュートンリングの評価結果を、用いた光学フィルムの表面特性とともに表1に示した。 The evaluation results of Newton rings performed in Examples 1 to 5 and Comparative Examples 1 to 3 are shown in Table 1 together with the surface characteristics of the optical film used.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 1,2,3 偏光板、10 偏光子、20 第1光学フィルム、21 第1熱可塑性樹脂フィルム、22 光学層、23 透明導電層、25 第2光学フィルム、30 透光性部材、31 透明導電層、40,41,42 光学部材セット、50 液晶セル、60 背面側偏光板、70,71 粘着剤層、80 バックライト、S 第1光学フィルムの外面、200 第1光学フィルムの法線、201 入射する光、203 入射する光方向と第1光学フィルムの法線とを含む平面、204 正反射方向へ反射する反射光。 1, 2, 3 Polarizing plate, 10 Polarizer, 20 First optical film, 21 First thermoplastic resin film, 22 Optical layer, 23 Transparent conductive layer, 25 Second optical film, 30 Translucent member, 31 Transparent conductive Layer, 40, 41, 42 optical member set, 50 liquid crystal cell, 60 back side polarizing plate, 70, 71 adhesive layer, 80 backlight, S outer surface of the first optical film, 200 normal line of the first optical film, 201 Incident light, 203, a plane including the incident light direction and the normal line of the first optical film, and 204, reflected light reflected in the regular reflection direction.

Claims (9)

  1.  偏光子と、その一方の面上に積層される第1光学フィルムとを含み、
     前記第1光学フィルムにおける前記偏光子とは反対側の表面は、断面曲線のクルトシスPkuが3.0以上であり、かつ、入射角12°で光を入射したときの反射角12°における反射率Yが4.0%以下である、偏光板。
    Including a polarizer and a first optical film laminated on one surface thereof,
    The surface of the first optical film opposite to the polarizer has a cross-sectional curve kurtosis Pku of 3.0 or more, and a reflectance at a reflection angle of 12 ° when light is incident at an incident angle of 12 °. The polarizing plate whose Y is 4.0% or less.
  2.  前記第1光学フィルムは、第1熱可塑性樹脂フィルムと、その前記偏光子とは反対側の面上に積層される光学層とを含む、請求項1に記載の偏光板。 The polarizing plate according to claim 1, wherein the first optical film includes a first thermoplastic resin film and an optical layer laminated on a surface opposite to the polarizer.
  3.  前記第1熱可塑性樹脂フィルムがセルロース系樹脂、(メタ)アクリル系樹脂、環状ポリオレフィン系樹脂又はポリエステル系樹脂からなる、請求項2に記載の偏光板。 The polarizing plate according to claim 2, wherein the first thermoplastic resin film is made of a cellulose resin, a (meth) acrylic resin, a cyclic polyolefin resin, or a polyester resin.
  4.  前記偏光子における前記第1光学フィルムとは反対側の面上に積層される第2光学フィルムをさらに含む、請求項1~3のいずれか1項に記載の偏光板。 The polarizing plate according to any one of claims 1 to 3, further comprising a second optical film laminated on a surface of the polarizer opposite to the first optical film.
  5.  前記第2光学フィルムは、セルロース系樹脂、(メタ)アクリル系樹脂又は環状ポリオレフィン系樹脂からなる第2熱可塑性樹脂フィルムを含む、請求項4に記載の偏光板。 The polarizing plate according to claim 4, wherein the second optical film includes a second thermoplastic resin film made of a cellulose resin, a (meth) acrylic resin, or a cyclic polyolefin resin.
  6.  前記第2光学フィルムが位相差フィルムである、請求項4又は5に記載の偏光板。 The polarizing plate according to claim 4 or 5, wherein the second optical film is a retardation film.
  7.  請求項1~6のいずれか1項に記載の偏光板と、
     前記偏光板における前記第1光学フィルム側に配置されるための透光性部材と、
    からなる、タッチ入力式画像表示装置用の光学部材セット。
    A polarizing plate according to any one of claims 1 to 6,
    A translucent member to be disposed on the first optical film side in the polarizing plate;
    An optical member set for a touch input type image display device.
  8.  画像表示素子と、
     前記画像表示素子の視認側に配置される請求項1~6のいずれか1項に記載の偏光板と、
     前記偏光板における前記第1光学フィルム側に、前記第1光学フィルムと離間して配置される透光性部材と、
    を含む、タッチ入力式画像表示装置。
    An image display element;
    The polarizing plate according to any one of claims 1 to 6, which is disposed on the viewing side of the image display element,
    On the side of the first optical film in the polarizing plate, a translucent member disposed apart from the first optical film,
    A touch input type image display device.
  9.  前記透光性部材がタッチ入力素子である、請求項8に記載のタッチ入力式画像表示装置。 The touch input type image display device according to claim 8, wherein the translucent member is a touch input element.
PCT/JP2015/053587 2014-02-21 2015-02-10 Polarizing plate, optical-member set, and touchscreen WO2015125656A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177003093A KR102084297B1 (en) 2014-02-21 2015-02-10 Polarizing plate, optical-member set, and touchscreen
KR1020167021362A KR101711357B1 (en) 2014-02-21 2015-02-10 Polarizing plate, optical-member set, and touchscreen
CN201580009327.8A CN106030353B (en) 2014-02-21 2015-02-10 Polarization plates, optical component group and touch input formula image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014031676A JP5886338B2 (en) 2014-02-21 2014-02-21 Polarizing plate, optical member set, and touch input type image display device
JP2014-031676 2014-02-21

Publications (1)

Publication Number Publication Date
WO2015125656A1 true WO2015125656A1 (en) 2015-08-27

Family

ID=53878161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053587 WO2015125656A1 (en) 2014-02-21 2015-02-10 Polarizing plate, optical-member set, and touchscreen

Country Status (5)

Country Link
JP (1) JP5886338B2 (en)
KR (2) KR102084297B1 (en)
CN (1) CN106030353B (en)
TW (1) TWI618952B (en)
WO (1) WO2015125656A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108288679A (en) * 2017-01-10 2018-07-17 昆山国显光电有限公司 Display panel and the method for improving display panel Newton's ring
WO2019230187A1 (en) * 2018-06-01 2019-12-05 株式会社ダイセル Anti-newton ring film, method for producing same, and use thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101948821B1 (en) * 2016-03-14 2019-02-15 주식회사 엘지화학 Anti-reflective film and display device
KR101951863B1 (en) 2016-03-14 2019-02-25 주식회사 엘지화학 Anti-reflective film and display device
KR102510750B1 (en) * 2017-04-04 2023-03-15 스미또모 가가꾸 가부시키가이샤 Polarizing plate with protective film, and liquid crystal panel
JP2020181184A (en) * 2019-03-14 2020-11-05 住友化学株式会社 Polarizer
EP3951454A4 (en) * 2019-03-29 2022-12-14 Nitto Denko Corporation Optical film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005085914A1 (en) * 2004-03-03 2005-09-15 Kimoto Co., Ltd. Light control film and backlight device using it
JP2009288732A (en) * 2008-06-02 2009-12-10 Asahi Kasei Corp Anti-glare film
JP2010254950A (en) * 2008-10-10 2010-11-11 Sony Corp Resin composition, antireflection film, display, and method for manufacturing antireflection film
JP2012173976A (en) * 2011-02-21 2012-09-10 Gunze Ltd Touch panel
WO2013031766A1 (en) * 2011-08-29 2013-03-07 大日本印刷株式会社 Anti-glare film, polarized light plate, and image display device
JP2013161203A (en) * 2012-02-03 2013-08-19 Toppan Printing Co Ltd Touch panel sensor substrate and display unit equipped with the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5211696B2 (en) * 2006-10-06 2013-06-12 東レ株式会社 Hard coat film, method for producing the same, and antireflection film
JP5219363B2 (en) 2006-12-21 2013-06-26 日本合成化学工業株式会社 Laminated body
JP5120938B2 (en) * 2008-03-05 2013-01-16 住友化学株式会社 Retardation film with adhesive layer, elliptically polarizing plate using the same, and liquid crystal display device
JP2010020267A (en) * 2008-06-09 2010-01-28 Sony Corp Optical film and manufacturing method therefor, anti-glare film, polarizing element with optical layer, and display device
JP5354673B2 (en) * 2008-08-11 2013-11-27 住友化学株式会社 Optical film with adhesive and optical laminate using the same
US8243426B2 (en) * 2008-12-31 2012-08-14 Apple Inc. Reducing optical effects in a display
JP5789963B2 (en) 2009-11-30 2015-10-07 大日本印刷株式会社 Optical film and touch panel
JP6213804B2 (en) * 2012-08-21 2017-10-18 大日本印刷株式会社 Optical film substrate, optical film, polarizing plate, liquid crystal panel, and image display device
JP2015034955A (en) * 2013-08-09 2015-02-19 大日本印刷株式会社 Transparent conductive laminate, touch panel, and touch panel intermediate laminate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005085914A1 (en) * 2004-03-03 2005-09-15 Kimoto Co., Ltd. Light control film and backlight device using it
JP2009288732A (en) * 2008-06-02 2009-12-10 Asahi Kasei Corp Anti-glare film
JP2010254950A (en) * 2008-10-10 2010-11-11 Sony Corp Resin composition, antireflection film, display, and method for manufacturing antireflection film
JP2012173976A (en) * 2011-02-21 2012-09-10 Gunze Ltd Touch panel
WO2013031766A1 (en) * 2011-08-29 2013-03-07 大日本印刷株式会社 Anti-glare film, polarized light plate, and image display device
JP2013161203A (en) * 2012-02-03 2013-08-19 Toppan Printing Co Ltd Touch panel sensor substrate and display unit equipped with the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108288679A (en) * 2017-01-10 2018-07-17 昆山国显光电有限公司 Display panel and the method for improving display panel Newton's ring
WO2019230187A1 (en) * 2018-06-01 2019-12-05 株式会社ダイセル Anti-newton ring film, method for producing same, and use thereof
JP2019211576A (en) * 2018-06-01 2019-12-12 株式会社ダイセル Newton ring prevention film, and manufacturing method and application of the same
JP7296196B2 (en) 2018-06-01 2023-06-22 株式会社ダイセル Anti-Newton ring film and its manufacturing method and use

Also Published As

Publication number Publication date
JP5886338B2 (en) 2016-03-16
KR20160098521A (en) 2016-08-18
JP2015156003A (en) 2015-08-27
TWI618952B (en) 2018-03-21
TW201539063A (en) 2015-10-16
CN106030353A (en) 2016-10-12
KR20170018092A (en) 2017-02-15
CN106030353B (en) 2019-01-04
KR101711357B1 (en) 2017-02-28
KR102084297B1 (en) 2020-03-03

Similar Documents

Publication Publication Date Title
JP5886338B2 (en) Polarizing plate, optical member set, and touch input type image display device
TWI710831B (en) Optical sheet, polarizing plate, optical sheet screening method, optical sheet manufacturing method and display device
JP5887080B2 (en) Light diffusing film and manufacturing method thereof, light diffusing polarizing plate, and liquid crystal display device
JP4510124B2 (en) Anti-glare hard coat film for image display device, polarizing plate and image display device using the same
TWI487952B (en) A light diffusion film, a method of manufacturing the same, a light diffusioning polarizing plate, and a liquid crystal display device
JP4116045B2 (en) Anti-glare hard coat film
KR101107532B1 (en) Laser pointer visibility improving film, polarizing plate, image display, and laser pointer display method
WO2011027903A1 (en) Light-diffusing film, manufacturing method therefor, light-diffusing polarizing plate, and liquid-crystal display device
JP2008158536A (en) Antiglare hard coat film
JP2007334064A (en) Antidazzle hard coat film, and polarizing plate and image display apparatus using the same
JP2011081219A (en) Hard-coated antiglare film, and polarizing plate and image display including the same
WO2011162133A1 (en) Light-diffusing polarization plate and liquid-crystal display device
JP2013178534A (en) Hard-coated antidazzle film, and polarizing plate using the same, and image display device
JP6819156B2 (en) Liquid crystal display device
JP5827811B2 (en) Liquid crystal display
JP6382491B2 (en) Touch panel and image display device including the same
JP2010204479A (en) Glare-proof hard coat film and polarizing plate using the same, and image display device
JP2011186066A (en) Antiglare film
JP5714369B2 (en) Surface-treated film and method for producing the same
WO2011162132A1 (en) Light-diffusing polarization plate and liquid-crystal display device
JP2013029858A (en) Antiglare hard coat film, and polarizing plate and image display device using the same
JP2009186759A (en) Optical film, polarizing plate, and image display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15752053

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167021362

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15752053

Country of ref document: EP

Kind code of ref document: A1