WO2015125564A1 - 光センサ装置 - Google Patents

光センサ装置 Download PDF

Info

Publication number
WO2015125564A1
WO2015125564A1 PCT/JP2015/052100 JP2015052100W WO2015125564A1 WO 2015125564 A1 WO2015125564 A1 WO 2015125564A1 JP 2015052100 W JP2015052100 W JP 2015052100W WO 2015125564 A1 WO2015125564 A1 WO 2015125564A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical sensor
resin
sensor device
glass
resin sealing
Prior art date
Application number
PCT/JP2015/052100
Other languages
English (en)
French (fr)
Inventor
功二 塚越
紀吉 東
Original Assignee
セイコーインスツル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーインスツル株式会社 filed Critical セイコーインスツル株式会社
Priority to KR1020167021171A priority Critical patent/KR102313269B1/ko
Priority to US15/117,050 priority patent/US9773926B2/en
Priority to CN201580008853.2A priority patent/CN106062969B/zh
Publication of WO2015125564A1 publication Critical patent/WO2015125564A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/21Silica-free oxide glass compositions containing phosphorus containing titanium, zirconium, vanadium, tungsten or molybdenum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02162Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors
    • H01L31/02164Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors for shielding light, e.g. light blocking layers, cold shields for infrared detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02322Optical elements or arrangements associated with the device comprising luminescent members, e.g. fluorescent sheets upon the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to an optical sensor device using phosphate glass.
  • FIG. 14 is an example of a cross-sectional view of a packaged optical sensor.
  • An optical sensor element 24 is mounted on an insulating substrate 22 on which a wiring pattern 21 is formed by metallization, and a translucent epoxy resin 29 is molded around the optical sensor element 24 (FIG. 1 of FIG. 1). 2).
  • a resin 23 having a composition for cutting infrared light is provided on the flat surface directly above the optical sensor element 24 in a layered manner.
  • a light receiving sensor element is used for the optical sensor element 24 to be mounted.
  • the wiring pattern 21 by metallization is electrically connected to an electrode provided on the upper surface of the photosensor element 24 by a wire 25 and used as a connection terminal to the outside.
  • the electromotive force generated by the light incident on the optical sensor element is transmitted to the external connection terminal via the wire 25.
  • Light that enters from the outside directly above the optical sensor element is cut by infrared light by the resin 23 and passes through the translucent epoxy resin, and the optical sensor element is close to human visual sensitivity characteristics. Can be received.
  • the package structure described in Patent Document 1 is molded entirely with a transparent light-transmitting resin, and a resin having a composition that cuts infrared light molds the periphery of the optical sensor element. It is provided only directly above the optical sensor element that is a part of the outer surface of the translucent resin. For this reason, infrared light cannot be cut for obliquely incident light or light incident from the lateral direction, and the optical sensor element receives only light having characteristics reflecting the visibility characteristics. I can't. For this reason, it is difficult to obtain sufficient visibility characteristics for light incident from the lateral direction or oblique direction, and it is difficult to obtain desired light receiving characteristics.
  • the conventional package has a structure in which the periphery of the optical sensor element is molded only with a translucent epoxy resin. It is known that a translucent epoxy resin is vulnerable to heat, moisture, and ultraviolet rays, and if the resin is decomposed and deteriorated by heat, the resin is also discolored. Since discoloration causes light absorption, the transmittance is lowered, so that light incident from the outside is attenuated, the light intensity received by the photosensor element is also lowered, and the light receiving sensitivity is lowered. Further, the resin becomes brittle by being continuously exposed to heat, and peeling and cracking are likely to occur. In addition to causing a decrease in intensity, light incident from the outside attenuates, leading to a decrease in the intensity of light received by the optical sensor element and a decrease in light receiving sensitivity.
  • Translucent epoxy resins generally do not contain fillers such as silica, carbon, and alumina, compared to epoxy resins that contain a lot of silica fillers used for sealing IC packages. The value remains. For this reason, the expansion coefficient is higher than that of the resin containing the filler, and in a thermal shock environment where high and low temperatures are repeated and in a reflow atmosphere where the resin is suddenly exposed to a high temperature atmosphere, the molded resin undergoes significant expansion and contraction. This will lead to peeling and cracking. As a result, light incident from the outside is attenuated, and it is difficult to obtain high reliability such as a decrease in light intensity received by the optical sensor element and partial destruction of the mold resin.
  • the resin that cuts infrared light provided on the outer surface of the light-transmitting mold resin may easily deteriorate the characteristics of the resin due to heat and moisture.
  • the characteristics tend to be unstable. Since both the translucent resin that molds the periphery of the optical sensor element and the resin that cuts infrared light deteriorate, there are multiple resin factors that affect reliability, and high reliability is obtained. Is difficult.
  • the epoxy resin contains a benzene ring in the resin structure.
  • the benzene ring is damaged, leading to ring-opening decomposition. This means that the resin has decomposed, and the epoxy resin is decomposed by ultraviolet rays.
  • the light incident from the outside is attenuated and the light intensity received by the optical sensor element is reduced, and it is difficult to obtain high reliability because the mold resin is decomposed.
  • the mold resin will become thinner and thicker.
  • the above-described resin peeling, cracking, discoloration, and the like are more likely to occur, and at the same time, mechanical strength is reduced and deformation is easily caused.
  • the present invention provides a sealing resin in which a glass having a composition with high reliability and visibility characteristics is newly created, and the obtained new glass is pulverized into a filler to be dispersed and mixed into the resin. It is an object to provide a highly reliable photosensor device that can be miniaturized as a package.
  • a phosphate glass having visibility characteristics is adjusted by adjusting the composition, and the obtained phosphate glass is crushed into a filler state into a resin.
  • the mixed resin containing glass filler is characterized in that it has a structure in which it is used as a sealing resin for a resin-sealed package structure.
  • the optical sensor element can be packaged with a resin mixed with a glass filler having specific visibility characteristics around the periphery, so that not only from the top surface but also from outside light incident from the side or from the side surface direction. Sufficient visibility characteristics can be obtained even with respect to incident external light.
  • the package since the visibility characteristics are obtained with the glass filler compared to the ones that have obtained the visibility characteristics only with the resin typified by the dye, the package can have the visibility characteristics with high heat resistance.
  • the expansion coefficient of the sealing resin can be lowered, and the expansion and shrinkage of the mold resin due to the thermal shock environment that repeats high and low temperatures and the reflow atmosphere that is exposed to the high temperature atmosphere can be eased. Can be made difficult to occur.
  • the optical sensor device can reduce the occurrence of discoloration, peeling and cracking of the resin in the resin-encapsulated structure having the visibility characteristic, and can reduce the change in the visibility characteristic and the decrease in the light receiving sensitivity. it can.
  • the phosphate glass having the above-mentioned visibility characteristic has a wavelength range of 540 nm to 560 nm at the central peak of the transmittance, the transmittance in the wavelength range of 700 nm to 1200 nm is 2% or less, and is 300 nm to 430 nm.
  • the one having a transmittance characteristic with a transmittance in the wavelength range of 3% or less is used.
  • the sealing resin includes an epoxy resin, a silicon resin, an acrylic resin, a urethane resin, a melamine resin, a urea resin, a phenol resin, and a mixture thereof, and a light-transmitting resin such as polyamide, polycarbonate, and polystyrene. Is used.
  • the optical sensor device of the present invention has a structure in which the periphery of the optical sensor element is sealed with a resin mixed with a glass filler obtained by pulverizing phosphate-based glass having visibility characteristics in a structure in which the periphery of the optical sensor element is sealed with resin.
  • a package having a resin-encapsulated structure capable of continuously obtaining a stable visibility characteristic that is strong against heat, moisture, and ultraviolet rays with respect to a resin material having a visibility characteristic using an organic dye. It can be said that.
  • the package has a resin-encapsulated structure in which a finely pulverized phosphate-based glass having a visibility characteristic is adjusted by mixing the composition into a resin, and the glass filler around the optical sensor element has a visibility characteristic.
  • Phosphate-based glass filler having visibility characteristics has a wavelength range of 540 nm to 560 nm at the central peak of transmittance, transmittance in the wavelength range of 700 nm to 1200 nm is 2% or less, and a wavelength range of 300 nm to 430 nm It is a crushed glass filler made of glass having a transmittance characteristic of 3% or less, and having a particle size of about 1 ⁇ m to 20 ⁇ m, preferably 1 ⁇ m to 3 ⁇ m.
  • the optical sensor device having the glass filler mixed resin sealing structure can receive light having a visibility characteristic not only in the direction directly above the optical sensor element but also in light incident from an oblique direction or a lateral direction.
  • a highly reliable optical sensor device can be provided.
  • the optical sensor device of the present invention has a structure in which the periphery of the element mounting portion is sealed with a resin obtained by mixing a phosphate glass having a visibility characteristic with a unique composition into a filler. .
  • FIG. 1 schematically shows a cross-sectional configuration of the optical sensor device of the present invention.
  • the resin-sealed portion is composed of a resin in which a glass filler obtained by pulverizing phosphate glass having visibility characteristics by adjusting the composition is dispersed and mixed.
  • the periphery of the optical sensor element and the element mounting portion is made of a resin mixed with a glass filler having visibility characteristics, and the optical sensor element and the element mounting portion are in close contact with the resin.
  • the adhered resin is cured to form a package.
  • the composition of phosphate glass with visibility characteristics is 1) P 2 O 5 40-60% 2) BaO 20-40% 3) including Al 2 O 3 , La 2 O 3 , and Y 2 O 3 , Furthermore, Al 2 O 3 + La 2 O 3 + Y 2 O 3 1-8% 4) containing ZnO, MgO, CaO and SrO, ZnO + MgO + CaO + SrO 1-15% 5) including Li 2 O, Na 2 O, K 2 O, Li 2 O + Na 2 O + K 2 O 1-15% 6) CuO 3-10% 7) V 2 O 5 1-5% 8) NiO 1-5% Consists of.
  • the said composition shall have a visibility characteristic and high weather resistance compared with the conventional phosphate glass.
  • the phosphate-based glass having visibility characteristics is a crushed glass filler having a particle size of about 1 ⁇ m to 20 ⁇ m, preferably 1 ⁇ m to 3 ⁇ m.
  • the pulverized glass filler is mixed with a resin and kneaded, and defoamed and compatibilized to form a paste or slurry, thereby obtaining a liquid resin form in which the glass filler is mixed.
  • the lead frame can be made of metal or resin metallized, and the substrate can be made of resin, ceramic, metal, glass or silicon. Furthermore, it is also possible to have a structure in which the periphery of the optical sensor element mounted on the lead frame having a cavity and the substrate is filled with resin.
  • FIG. 1 is a schematic longitudinal sectional view of the optical sensor device 14 of the present embodiment.
  • the optical sensor element 4 is fixed and fixed to the element mounting portion 7 by the die attach agent 3.
  • An electrode (not shown) is provided on the upper surface of the optical sensor element 4, and the electrode provided on the optical sensor element 4 by the wire 5.
  • the lead frames 6a and 6b are electrically connected.
  • the element mounting portion 7 is usually made of the same material as the lead frames 6a and 6b, and is also called a die pad.
  • the phosphate which has the visibility characteristic which grind
  • a resin sealing part 1 in which a system glass is dispersed and mixed in a resin covers the periphery to form an exterior package. Part of the lead frames 6a and 6b is exposed to the outside from the resin sealing portion 1 and functions as an external terminal.
  • a tablet having finely pulverized glass having a visibility characteristic and made into a glass filler is dispersed and mixed in a resin, and then molded into a tablet.
  • the resin sealing part 1 can be made into a package.
  • Phosphate-based glass as a glass filler has visibility characteristics, and its composition is in terms of weight percent, 1) P 2 O 5 40-60% 2) BaO 20-40% 3) including Al 2 O 3 , La 2 O 3 , and Y 2 O 3 , Furthermore, Al 2 O 3 + La 2 O 3 + Y 2 O 3 1-8% 4) containing ZnO, MgO, CaO and SrO, ZnO + MgO + CaO + SrO 1-15% 5) including Li 2 O, Na 2 O, K 2 O, Li 2 O + Na 2 O + K 2 O 1-15% 6) CuO 3-10% 7) V 2 O 5 1-5% 8) NiO 1-5% It is comprised by.
  • the wavelength range of 540 nm to 560 nm is at the central peak of the transmittance
  • the transmittance in the wavelength range of 700 nm to 1200 nm is 2% or less
  • the transmittance in the wavelength range of 300 nm to 430 nm Has a visibility characteristic having a characteristic of 3% or less and a high weather resistance as compared with the conventional phosphate glass.
  • Table 1 shows a comparison result between this example and a comparative example showing the effectiveness of this composition. It was confirmed by relative evaluation that it is possible to achieve both the visibility characteristics shown in FIG. 13 and high weather resistance by the composition and addition amount of Example A based on this Example in Table 1. . In comparative experiments, the absence of BaO in Comparative Example B, or the presence of B 2 O 3 or SiO 2 in Comparative Examples C or D appears to have an unfavorable effect.
  • the transmittance in a short wavelength region of 300 nm to 430 nm is 3% or less while being a resin sealing structure.
  • the expansion coefficient of the resin can be reduced by 30% or more, and it exceeds the transmittance in the wavelength range of 540 nm to 560 nm by using resin dyes and conventional glass, and at the same time, the glass is resistant to heat of sensitivity and ultraviolet rays. Visibility characteristics can be obtained, and a highly reliable package with a resin-encapsulated structure can be obtained.
  • Resin having visibility characteristics includes a pulverized phosphate glass having a wavelength characteristic of 2% or less in the wavelength range of 700 nm to 1200 nm, and a transmission in the wavelength range of 300 nm to 430 nm. It can also be obtained by mixing a glass obtained by pulverizing phosphate glass having a wavelength characteristic with a rate of 3% or less into a filler at a certain ratio.
  • FIG. 2 is a cross-sectional view of the optical sensor device 14 of the present embodiment.
  • the resin sealing portion 1 is a portion having a package structure in which a glass filler having fine visibility and glass filler dispersed and mixed in a resin is sealed by a transfer molding method.
  • the structure is such that the element mounting portion 8 having heat dissipation is thickened in the cross-sectional direction and a part is exposed from the resin sealing portion 1.
  • the element mounting portion 8 having heat dissipation can release the heat generated in the optical sensor element 4 to the outside of the resin sealing portion 1, so that the package can have a low thermal resistance.
  • FIG. 3 is a cross-sectional view of the optical sensor device 14 of the present embodiment.
  • the resin-sealed portion 2 is sealed by a transfer mold method in which a glass filler with finely crushed glass having a light-shielding property is dispersed in a resin, and after the resin-sealed portion 2 is cured In this state, an opening portion is provided in the upper surface direction of the optical sensor element 4, and the opening portion is filled with a liquid resin in which a glass filler having a visibility characteristic is dispersed and mixed, and cured.
  • the resin sealing portion 1 having visibility characteristics is provided.
  • the package can have a structure in which visibility characteristics can be obtained only in the direction directly above the optical sensor element 4, and usage that does not require visibility characteristics from an oblique direction or a lateral direction with respect to the optical sensor element 4 is possible. It can be set as the package which has an effective structure with respect to the request
  • the resin sealing portion 2 has a package structure in which a glass having light-shielding properties is finely pulverized to form a glass filler, which is then dispersed and mixed in a resin.
  • the phosphate glass made into a glass filler has a light-shielding property, and aims to have a light-shielding property having a transmittance of 2% or less in a wavelength range of 300 nm to 1200 nm.
  • This composition can also have higher weather resistance than conventional phosphate glass.
  • the phosphate glass having a light shielding property has physical properties such as an expansion coefficient similar to those of the phosphate glass having a visibility characteristic, and the resin sealing portion 1 and the resin sealing portion 2 are expanded. The difference in coefficients does not become a problem, and a package having a resin sealing structure having the same high weather resistance level can be obtained.
  • FIG. 4 is a cross-sectional view of the optical sensor device 14 of the present embodiment.
  • the resin sealing portion 2 has a package structure in which a glass filler having finely pulverized glass is dispersed and mixed in a resin and sealed by a transfer molding method.
  • the resin sealing portion 1 filled in the opening is made of a liquid resin obtained by dispersing and mixing a glass filler having a visibility characteristic into a glass filler, and is the same as the embodiment of FIG. Structure.
  • the difference is that it has a heat dissipation property made of the same material as that of the lead frames 6a and 6b, is thick in the cross-sectional direction, and a part is exposed from the resin sealing portion 1.
  • heat-radiating heat generated in the optical sensor element 4 can be released to the outside of the resin sealing portion 1, so that a package with low thermal resistance can be obtained.
  • FIG. 5 is a cross-sectional view of the optical sensor device 14 of the present embodiment.
  • the resin sealing portion 9 is sealed with a translucent resin by a transfer molding method, and the shape after the resin sealing portion 9 is cured is more in the upper surface direction of the optical sensor element 4 than the dimension of the optical sensor element.
  • a structure having a small opening portion is provided, and the resin sealing portion 1 having the visibility characteristic is provided by filling and curing a liquid resin in which a glass filler having a visibility characteristic is dispersed and mixed in the opening location.
  • the resin sealing portion 9 has a rough surface having a grain shape on the outer peripheral surface and a light scattering effect that leaves a rough processing mark, and external light is reflected or scattered by the surface and greatly attenuated. Surface structure.
  • a package having a structure capable of having a visibility characteristic in a direction directly above the sensor element 4 can be obtained.
  • the periphery of the element is sealed with a resin in which a certain amount of particles having different refractive indexes, such as silica, alumina, and frosted glass, are dispersed and mixed.
  • a resin in which a certain amount of particles having different refractive indexes, such as silica, alumina, and frosted glass, are dispersed and mixed.
  • FIG. 6 is a cross-sectional view of the optical sensor device 14 of the present embodiment.
  • the resin sealing portion 1 only the upper surface of the mounting substrate 12 on which the optical sensor element is mounted is formed by a transfer molding method or potting using a resin in which a glass filler having visibility characteristics is dispersed and mixed in the resin. It is sealed. In the case of potting, a resin in the form of paste or slurry is used.
  • the mounting substrate 12 on which the optical sensor element is mounted a substrate made of resin, ceramic, glass, or silicon is used.
  • the mounting substrate 12 on which the optical sensor element is mounted is provided with through electrodes 11a and 11b serving as external terminals, and the surface opposite to the surface on which the optical sensor element 4 is mounted is 11a and 11b.
  • the external terminal does not have a size larger than the width of the resin sealing portion 1, and a compact package can be obtained.
  • the mounting substrate 12 on which the optical sensor element is mounted is made of resin, ceramic, glass, silicon, metal, or the like, it can be easily thinned, and a small and thin package can be obtained.
  • FIG. 7 is a cross-sectional view of the optical sensor device 14 of the present embodiment.
  • the package structure in which filling and sealing is performed by potting a resin in which a glass filler having visibility characteristics is dispersed and mixed in the mounting substrate 12 on which the optical sensor element is placed and the resin sealing portion 1 is mixed in the resin is shown in FIG.
  • the mounting substrate 12 on which the optical sensor element is mounted exposes a part of the mounting substrate 12 that is partly or as a bottom surface through the surface opposite to the surface on which the optical sensor element 4 is mounted. Although it has a heat dissipation property with a thickness, it is provided and the optical sensor element 4 is fixed.
  • the heat dissipating material is made of the same material as the through electrodes 11a and 11b, or is made of another metal material. As a result, the heat-radiating material can release heat generated in the optical sensor element 4 to the outside, so that the package structure can be reduced in size and thickness and have low thermal resistance.
  • FIG. 8 is a cross-sectional view of the optical sensor device 14 of the present embodiment.
  • the resin sealing portion 1 has a package structure in which a glass filler having fine visibility and made into a glass filler is dispersed and mixed in a resin and sealed by a transfer molding method or a liquid resin by potting filling. This is the same as the embodiment of FIG. The difference is that inside the element mounting substrate 12 on which the optical sensor element 4 is mounted, the lead frames 6a and 6b serving as external terminals are bent to fit within the width of the element mounting substrate 12, and the leading end portion of the lead frame
  • the back surface portion has a through electrode structure with a non-lead design in which the surface of the element mounting substrate 12 is exposed.
  • the optical sensor device 14 can be reduced in mounting area and easily reduced in size.
  • the mounting substrate 12 is made of resin, ceramic, or the like, a package having high strength and durability can be obtained with respect to the substrate portion to which stress and impact such as heat history and load accompanying mounting are directly transmitted.
  • the mounting substrate 12 may be omitted from the element mounting portion 7.
  • the optical sensor element 4 is mounted on the surface of the mounting substrate made of resin or ceramic.
  • FIG. 9 is a cross-sectional view of the optical sensor device 14 of the present embodiment.
  • the resin sealing portion 1 is a portion having a package structure in which a glass filler having fine visibility and glass filler dispersed and mixed in a resin is sealed by a transfer molding method or a liquid resin by potting filling.
  • the element mounting substrate 12 on which the optical sensor element 4 is mounted has a structure in which the lead frames 6a and 6b are accommodated within the substrate width, and this is the same as the embodiment of FIG. The difference is that the optical sensor element 4 has a structure having an element mounting portion 8 having heat dissipation.
  • the element mounting portion 8 having heat dissipation is made of the same metal as the lead frames 6a and 6b or a material having high thermal conductivity.
  • the optical sensor device 14 has a small mounting area and can be easily miniaturized.
  • the optical sensor device 14 has a low thermal resistance capable of releasing heat generated in the optical sensor element 4. It can be a package structure.
  • FIG. 10 is a cross-sectional view of the optical sensor device 14 of the present embodiment.
  • the resin sealing portion 1 is a portion having a package structure in which a glass filler having fine visibility and glass filler dispersed and mixed in a resin is sealed by a transfer molding method or a liquid resin by potting filling.
  • 6 is the same as the embodiment of FIG. 6, but the element mounting portion 7 and the external terminals 6a and 6b are made of metal, resin or ceramic provided by metallization, and the element mounting portion 7 is not made thick in the cross-sectional direction.
  • the external terminals 6a and 6b have the same thickness as the external terminals 6a and 6b, and the surface opposite to the surface on which the optical sensor element 4 is mounted is exposed to the outside.
  • the outer dimensions can be made thin and small.
  • a package structure with low thermal resistance that can release heat to the outside can be obtained.
  • FIG. 11 is a cross-sectional view of the optical sensor device 14 of the present embodiment.
  • the package includes a mounting part 13 having a cavity, lead frames 6a and 6b, and an optical sensor element 4.
  • the optical sensor element 4 has a bottom surface that serves as a bottom of the cavity of the mounting part 13 having a cavity by a die attach agent 3. Fastened to the mounting.
  • a part of the lead frames 6a and 6b is exposed on the bottom surface of the bottom of the cavity, and is connected to an electrode (not shown) provided on the upper surface of the optical sensor element 4 by a wire 5 to obtain an electrical connection.
  • One of the lead frames 6a and 6b penetrates the mounting portion having the cavity and is exposed to the outside and functions as an external terminal.
  • a resin in which a glass filler having visibility characteristics is dispersed and mixed in the resin is filled in the cavity by potting, thereby forming a resin sealing portion 1 for sealing the cavity.
  • a phosphate glass having the composition shown in Example 1 can be used as a glass filler having a visibility characteristic dispersed and mixed in a resin.
  • the mounting portion 13 having a cavity has a structure made of a resin, ceramic, or the like that has a light shielding property or a reflective property and has heat resistance.
  • a resin having reflectivity can be obtained by a method similar to that described in Example 5. As a result, the package can be made resistant to heat resistance, weather resistance, and external impact.
  • FIG. 12 is a cross-sectional view of the optical sensor device 14 of the present embodiment.
  • the package structure is composed of a mounting portion 13 having a cavity, lead frames 6a and 6b, and a resin sealing portion 1 in which a resin in which a glass filler having visibility characteristics is dispersed and mixed in the cavity is filled and sealed by potting.
  • 11 is the same as the embodiment 11, but the element mounting portion 8 made of the same material as the lead frames 6a and 6b and having a heat dissipation property is thickened in the cross-sectional direction, and a part thereof is exposed from the back surface of the mounting portion 13 having the cavity. It has a structure. As a result, the element mounting portion 8 having heat dissipation can release the heat generated in the optical sensor element 4 to the outside, so that it has a low heat resistance package in addition to heat resistance, weather resistance and resistance to external impacts. can do.
  • an optical sensor device using a package with a structure that seals the periphery of the optical sensor element with a resin a phosphate-based glass that has been newly developed with a unique composition in the resin is crushed into a glass filler in the resin.
  • the structure sealed with a resin that is dispersed and mixed the light sensitivity characteristics of the light received by the light-receiving optical sensor element are not only directly above the optical sensor element, but also in a wide-angle orientation including diagonal and horizontal directions. The angle dependency can be greatly improved.
  • the phosphate-based glass according to the present invention has high heat resistance due to the fact that it is a glass having a transmittance characteristic of 3% to 2% or less for light having a wavelength in the ultraviolet region and light having a wavelength in the infrared region in terms of visibility characteristics. And high weather resistance, it has a higher absorption rate for ultraviolet and infrared wavelengths than those with a resin and has good visibility characteristics for a long time. In addition, it has high reliability that is hardly affected by heat, ultraviolet rays and moisture.
  • optical sensor devices that are less susceptible to the influence of the surrounding environment and have little change over time, so that they can be used in in-vehicle and outdoor applications, such as TVs, home appliances, and portable terminals, as well as more severe environments. It can contribute to the supply to the optical sensor device-equipped equipment in consideration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Light Receiving Elements (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

 パッケージの小型化、薄型化に適応できる、視感度特性が安定して容易に変化しない高い信頼性を持った光センサ装置の提供のために、組成を調整することにより視感度特性を有すると共に、高い耐熱性と耐候性を併せ持ったリン酸塩系ガラスを微粉砕してフィラー状としてから樹脂に分散混合したものを素子実装部7に固定された光センサ素子4の周囲を封止するための樹脂封止部1としたことを特徴とする光センサ装置とする。

Description

光センサ装置
 本発明は、リン酸塩系ガラスを用いた光センサ装置に関する。
 近年の生活環境は、従来には無い新しい機能を搭載した電子機器や家電製品、車載製品等によって一段と利便性が向上してきている。この背景の一つとしては、人間の持つ五感機能を補うセンサ機能の働きが大きいといえる。これらの製品は今後、多岐に渡って著しい拡大が見込まれる。センサには半導体を用いたセンサも多く、圧力センサ、流量センサ、人感センサ、照度センサ、測距センサなどを代表として、多種多様なものが製品化されている。
 中でも照度センサを含む光センサは数多く使われており、オフィスや家庭用の照明器具から携帯端末、パソコンなど低消費電力を伴う用途へ搭載が増えたことによって著しく普及している。こうしたセンサ部品が搭載される製品には、アプリケーションの多様化、機能の豊富さ、携帯性に富んだデザインが好まれるといった特徴があり、小型化、薄型化、低コスト、そして高信頼性は例外なく求められ、その中ではパッケージに関する要求が多くの割合を占めている。このためパッケージの開発では従来技術の応用や新しい試みが一層重要になっている。
 図14は、パッケージされた光センサの断面図の一例である。メタライズにより配線パターン21が形成された絶縁性基板22の上へ光センサ素子24が実装されており、光センサ素子24の周囲に透光性エポキシ樹脂29がモールドされている(特許文献1の図2)。透光性エポキシ樹脂29の外側表面において光センサ素子24の直上方向の平坦面に赤外光をカットする組成を有する樹脂23を層状に重ねて設けている。
 実装される光センサ素子24には受光センサ素子が用いられる。メタライズによる配線パターン21は光センサ素子24上面に設けられた電極とワイヤー25により電気的に接続され、外部への接続端子として使用される。光センサ素子へ入射した光によって発生した起電力は、ワイヤー25を介して外部接続端子へと伝えられる。外部から光センサ素子の直上方向に入射する光は、樹脂23により赤外光をカットされて透光性エポキシ樹脂中を透過することになり、光センサ素子が人間の視感度特性に近づけた光を受光することが可能となっている。
 しかしながら、特許文献1に記載されたパッケージ構造は、透明な透光性の樹脂により全体がモールドされていること、そして赤外光をカットする組成を有する樹脂は、光センサ素子の周囲をモールドする透光性樹脂の外側表面の一部である光センサ素子直上にしか設けられていない。この為、斜めから入射する光や横方向から入射する光に対しては、赤外光をカットすることができず、視感度特性を反映した特性を有する光だけを光センサ素子が受光することができない。この為、横方向や斜め方向から入射する光に対しては十分な視感度特性が得られ難くなり、所望の受光特性を得ることが難しい。
 従来のパッケージは光センサ素子の周囲を透光性のエポキシ樹脂のみによりモールドした構造である。透光性のエポキシ樹脂は熱や水分や紫外線に弱いことが知られており、熱によって樹脂の分解劣化が発生すると樹脂の変色も伴って発生してしまう。変色は光の吸収を招く為、透過率の低下を生ずるので、外部から入射した光が減衰してしまい、光センサ素子へ受光される光強度も低下し、受光感度の低下に繋がる。また、熱に曝され続けることにより樹脂は脆化していき剥離やクラックを発生しやすくなる。強度低下を生ずると共に外部から入射する光は減衰し、光センサ素子が受光する光強度の低下と受光感度の低下に繋がる。
 透光性のエポキシ樹脂は一般的にIC用パッケージの封止に使用するシリカフィラーが多く含まれるエポキシ樹脂と比べて、シリカやカーボンやアルミナなどのフィラーが入らない為、膨張係数は樹脂本来の値のままである。この為、フィラーの入る樹脂に比べて膨張係数は高く、高温と低温を繰り返す熱衝撃環境や、急激に高温雰囲気に曝されるリフロー雰囲気では、モールドした樹脂には著しい膨張収縮が起き、樹脂の剥離、クラックの発生に繋がる。これにより外部から入射する光が減衰し、光センサ素子に受光される光強度の低下と共に、モールド樹脂の部分的な破壊へと至るなど、高い信頼性を得ることが難しい。
 また、透光性モールド樹脂の外表面に設けられた赤外光をカットする樹脂も同様に熱や水分により容易に樹脂の特性低下を起こす懸念がある。特に樹脂の組成や構造のうちの染料に分類される部分の特性によって赤外光をカットするという特有な性質を設けた樹脂の場合、熱や水分などの外部要因に対して染料成分の劣化により特性が不安定となる傾向が一般的に指摘されている。光センサ素子周囲をモールドしている透光性樹脂と、赤外光をカットする樹脂の両方が劣化することにより、信頼性に影響する樹脂要因が複数存在することとなり、高い信頼性を得ることが難しい。
 さらに、エポキシ樹脂は、樹脂構造中にベンゼン環を含んでいる。エポキシ樹脂は紫外線に曝され続けることにより、ベンゼン環はダメージを受け開環分解に至る。これは樹脂が分解を起こしていることであり、紫外線によってエポキシ樹脂が分解することとなる。この結果、外部から入射する光が減衰し光センサ素子へ受光される光強度が低下することに繋がると共に、モールド樹脂の分解を伴うことから高い信頼性を得ることが難しい。
 加えてパッケージの小型化、薄型化を行うことにより、モールド樹脂はより薄肉厚化していく。これにより前述した樹脂の剥離、クラック、変色等はさらに発生し易くなると同時に機械的な強度低下や変形し易さも伴うことから、一段とパッケージの信頼性低下に繋がり易い。
 この様な中、透光性のエポキシ樹脂であっても、封止樹脂中へフィラーを入れることにより樹脂の強度向上や耐熱性向上や膨張係数を低下させる方法、あるいは、樹脂中へ紫外線吸収効果のある物質や光安定剤を入れることにより紫外線対策を講じるなどの信頼性向上を計る方法が試みられている。樹脂中へフィラーを入れることにより樹脂の外部からの衝撃に対する強度向上と膨張係数の低下に効果があることから製品の信頼性向上を計ることができる。また、紫外線吸収効果のある物質の導入により、樹脂が紫外線に曝された場合のダメージを緩和して樹脂の劣化を遅らせる働きを有することができ、樹脂の分解や剥離、クラックといった樹脂要因に伴う視感度特性の変化や光センサ素子受光感度の低下が緩和され、特性の安定と高い信頼性を有したパッケージ実現に繋げることができる。
特開2007-36264号公報
 そこで本発明は、高い信頼性をもち視感度特性を有した組成のガラスを新規に作成すると共に、得られた新規ガラスを粉砕してフィラー状態にしたものを樹脂中へ分散混合した封止樹脂を用いて、パッケージとして小型化も可能な、信頼性の高い光センサ装置を提供することを課題とする。
 本発明の光センサ装置においては、組成を調整することで視感度特性を有するリン酸塩系ガラスを用いるとともに、得られたリン酸塩系ガラスを粉砕してフィラー状態としたものを樹脂中へ混合したガラスフィラー入り樹脂を、樹脂封止パッケージ構造の封止用樹脂として用いた構造であることを特徴としている。
 これにより光センサ素子は周囲を特定の視感度特性を有したガラスフィラーが混合された樹脂により封止されたパッケージとすることができる為、上面だけではなく斜めからの外光入射や側面方向からの外光入射に対しても、十分な視感度特性を得ることができる。また染料に代表される樹脂のみにより視感度特性を得ていたものに対してガラスフィラーによって視感度特性を得ていることから、パッケージは高い耐熱性を併せ持った視感度特性を有することができるとともに、封止樹脂の膨張係数を下げることができ、高温と低温を繰り返す熱衝撃環境や、高温雰囲気に曝されるリフロー雰囲気によるモールド樹脂の膨張収縮を緩和することができるため、樹脂の剥離、クラックを発生し難くすることができる。また、紫外線に強いガラスからなるフィラーを用いていることにより、紫外線に弱い樹脂染料によって視感度特性を有していた場合に対して、樹脂の紫外線劣化を発生し難くすることができ、紫外線劣化を発生することがなくなる。これにより光センサ装置は、視感度特性をもった樹脂封止構造において、樹脂の変色や剥離、クラックの発生を緩和することができ、視感度特性の変化や受光感度の低下を減少することができる。
 また、前記視感度特性を有するリン酸塩系ガラスには540nmから560nmの波長範囲を透過率の中心ピークに持ち、700nmから1200nmの波長範囲の透過率が2%以下であり、300nmから430nmの波長範囲の透過率が3%以下の透過率特性を有したものを用いる。
 また、前記封止樹脂には、エポキシ樹脂、シリコン樹脂、アクリル樹脂、ウレタン樹脂、メラミン樹脂、ユリア樹脂、フェノール樹脂、及び、これらの混合物、また、ポリアミド、ポリカーボネート、ポリスチレンなど透光性を有する樹脂を用いる。
 本発明の光センサ装置は、光センサ素子周囲を樹脂により封止する構造において、視感度特性を有するリン酸塩系ガラスを粉砕したガラスフィラーを混合した樹脂により光センサ素子周囲を封止した構造を用いることにより、有機物系の染料を用いる視感度特性を有した樹脂材料に対して、熱や水分、紫外線に強く安定した視感度特性を継続的に得ることができる樹脂封止構造を有するパッケージとすることができるものである。パッケージは組成を調整することにより視感度特性を有するリン酸塩系ガラスを微粉砕化したものを樹脂中へ混合した樹脂封止構造としており、光センサ素子周囲は視感度特性を有したガラスフィラーの混合された樹脂により封止される。視感度特性を有したリン酸塩系ガラスフィラーは540nmから560nmの波長範囲を透過率の中心ピークに持ち、700nmから1200nmの波長範囲の透過率が2%以下であり、300nmから430nmの波長範囲の透過率が3%以下の透過率特性を有したガラスからなり、粒径が約1μmから20μm、望ましくは、1μmから3μmの寸法から構成された粉砕ガラスフィラーである。
 視感度特性を有するリン酸塩系ガラスは、高温高湿環境などの耐候性に対して強い信頼性を併せ持つ。これによりガラスフィラー混合樹脂封止構造の光センサ装置は、光センサ素子直上方向だけではなく斜め方向や横方向から入射する光に対しても視感度特性が得られた光を受光することができるとともに、高い耐候性を有したガラス組成を持ち合わせていることから、信頼性の高い光センサ装置を提供することができる。
本発明の半導体装置の構成を模式的に示す断面図である。 本発明の半導体装置の構成を模式的に示す正面図である。 本発明の半導体装置の構成を模式的に示す断面図である。 本発明の半導体装置の構成を模式的に示す断面図である。 本発明の半導体装置の構成を模式的に示す断面図である。 本発明の半導体装置の構成を模式的に示す断面図である。 本発明の半導体装置の構成を模式的に示す断面図である。 本発明の半導体装置の構成を模式的に示す断面図である。 本発明の半導体装置の構成を模式的に示す断面図である。 本発明の半導体装置の構成を模式的に示す断面図である。 本発明の半導体装置の構成を模式的に示す断面図である。 本発明の半導体装置の構成を模式的に示す断面図である。 本発明の半導体装置のスペクトル特性を示す図である。 従来公知の半導体装置の構成を模式的に示す断面図である。
 本発明の光センサ装置は、特有な組成により視感度特性を有したリン酸塩系ガラスを粉砕してフィラー化したものを樹脂中へ混合した樹脂により素子実装部周囲を封止した構造からなる。図1に本発明の光センサ装置の断面構成を模式的に示す。
 樹脂封止部分は組成の調整をすることにより視感度特性を有しているリン酸塩系ガラスを粉砕することによりガラスフィラーとしたものが分散混合された樹脂により構成されている。光センサ素子と素子実装部の周囲は視感度特性を有したガラスフィラーが混合された樹脂からなり、光センサ素子および素子実装部は樹脂と密着している。密着した樹脂は硬化し、パッケージを構成する。
 視感度特性を有するリン酸塩系ガラスの組成は、
1)P25 40~60%
2)BaO 20~40%
3)Al23、La23、およびY23を含み、
さらに Al23+La23+Y23 1~8%
4)ZnO、MgO、CaOおよびSrOを含み、
さらに ZnO+MgO+CaO+SrO 1~15%
5)Li2O、Na2O、K2Oを含み、
さらに Li2O+Na2O+K2O 1~15%
6)CuO 3~10%
7)V25 1~5%
8)NiO 1~5%
からなる。前記組成により、従来のリン酸塩系ガラスに比べて、視感度特性と高い耐候性とを有したものとしている。
 視感度特性を有するリン酸塩系ガラスは粒径が約1μmから20μm、望ましくは、1μmから3μmの寸法から構成された粉砕ガラスフィラーである。粉砕した後のガラスフィラーを樹脂に混合して練り、脱泡と相溶化を行いペースト状態またはスラリー状態にすることによりガラスフィラーが混合した液状樹脂形態としている。光センサ素子が実装されたリードフレームまたは基板を樹脂封止型へセットした後、液状樹脂形態としたガラスフィラー入り樹脂を充填した後に硬化させてパッケージ形態としている。
 素子実装部の上方にキャビティを有していないリードフレームおよび基板に実装された光センサ素子の周囲を樹脂封止した構造とすることが可能である。リードフレームには金属、樹脂にメタライズをしたものが使用可能であり、基板には樹脂、セラミック、金属、ガラス、シリコンにより形成されたものが使用可能である。さらに、キャビティを有したリードフレームおよび基板に実装された光センサ素子の周囲を樹脂により充填した構造とすることも可能である。
 以下、図面に基づいて光センサ装置の構成を実施例により説明する。
 図1は、本実施例の光センサ装置14の模式的な縦断面図である。光センサ素子4はダイアタッチ剤3により素子実装部7へ固着され、固定されており、光センサ素子4の上面には図示しない電極が設けられ、ワイヤー5により光センサ素子4に設けられた電極とリードフレーム6a、6bとは電気的に接続されている。ここで、素子実装部7は通常リードフレーム6a、6bと同じ材質から形成されており、ダイパッドとも呼ばれる。そして、光センサ素子4と、素子実装部7と、光センサ素子4とワイヤー5により接続されたリードフレーム6a、6bの一部とを、粉砕してフィラーとした視感度特性を有するリン酸塩系ガラスを樹脂中へ分散混合した樹脂封止部1により、周囲を覆うことで外装パッケージとした構造となっている。リードフレーム6a、6bの一部は樹脂封止部1より外部へ露出しており、外部端子として機能する。
 製造方法の一例としては、視感度特性を有したガラスを微粉砕してガラスフィラーとしたものを樹脂中へ分散混合してから成型したタブレットとし、トランスファーモールド法を用いて光センサ素子の周囲を封止することで樹脂封止部1をパッケージとすることができる。
 ガラスフィラーとしたリン酸塩系ガラスは視感度特性を有しており、その組成は重量%換算で、
1)P25 40~60%
2)BaO 20~40%
3)Al23、La23、およびY23を含み、
さらに Al23+La23+Y23 1~8%
4)ZnO、MgO、CaOおよびSrOを含み、
さらに ZnO+MgO+CaO+SrO 1~15%
5)Li2O、Na2O、K2Oを含み、
さらに Li2O+Na2O+K2O 1~15%
6)CuO 3~10%
7)V25 1~5%
8)NiO 1~5%
により構成されている。
 この組成により図13に示すような、540nmから560nmの波長範囲を透過率の中心ピークに持ち、700nmから1200nmの波長範囲の透過率が2%以下であり、300nmから430nmの波長範囲の透過率が3%以下の特性を持つ視感度特性を有すると共に従来のリン酸塩系ガラスに比べて高い耐候性も有することができている。
 この組成の有効性を示す本実施例と比較例との比較結果を表1に示す。表1中の本実施例に基づく本実施例Aの組成と添加量により、図13に示す視感度特性と高い耐候性とを両立させることが可能であることを相対評価ではあるが確認できた。比較実験では比較例BにおけるBaOの不存在、あるいは比較例CあるいはDにおけるB23またはSiO2の存在が、好ましくない影響を与えているように見える。
Figure JPOXMLDOC01-appb-T000001
 このようなリン酸塩系ガラスによるフィラー化したガラスを樹脂中へ分散混合した樹脂を用いる封止構造により、樹脂封止構造でありながら300nmから430nmの短波長領域の透過率が3%以下であり700nmから1200nmの長波長領域の透過率が2%以下であるとともに、540nmから560nmの波長範囲の透過率が50%以上を有する視感度特性を得ることが可能である。加えて樹脂の膨張係数を30%以上減少することができるとともに、樹脂染料や従来のガラスを用いたものによる540nmから560nmの波長範囲の透過率を上回ると同時に視感度熱や紫外線に強いガラスによる視感度特性を得ることができ、高い信頼性を有した樹脂封止構造のパッケージを得ることができる。
 視感度特性を有する樹脂は、700nmから1200nmの波長範囲の透過率が2%以下の波長特性を持つリン酸塩系ガラスを粉砕してフィラー化したものと、前記300nmから430nmの波長範囲の透過率が3%以下の波長特性を有するリン酸塩系ガラスを粉砕してフィラー化したものを一定の割合にて樹脂に混合しても得ることが可能である。
 図2は、本実施例の光センサ装置14の断面図である。樹脂封止部1は視感度特性を有したガラスを微粉砕してガラスフィラー化したものを樹脂中へ分散混合したものをトランスファーモールド法により封止したパッケージ構造からなる部分は図1の実施例と変わらないものの、放熱性を有する素子実装部8を断面方向に厚くし、一部を樹脂封止部1より露出させた構造としている。これにより放熱性を有する素子実装部8は光センサ素子4で発生した熱を樹脂封止部1の外部へ放出することができるため、低熱抵抗なパッケージとすることができる。
 図3は、本実施例の光センサ装置14の断面図である。樹脂封止部2は遮光特性を有したガラスを微粉砕してガラスフィラー化したものを樹脂中へ分散したしたものをトランスファーモールド法により封止しており、樹脂封止部2が硬化した後の状態には光センサ素子4の上面方向には開口箇所が設けられた構造とし、開口箇所には視感度特性を有したガラスフィラーを樹脂中へ分散混合した液状樹脂を充填して硬化させ、視感度特性を有する樹脂封止部1を設けた構造としている。これによりパッケージは光センサ素子4の直上方向にのみ視感度特性を得ることができる構造とすることができ、光センサ素子4に対して斜め方向や横方向からの視感度特性が不要な使い方が求められる用途に対して有効な構造を有したパッケージとすることができる。
 ここで樹脂封止部2は遮光特性を有したガラスを微粉砕してガラスフィラー化したものを樹脂中へ分散混合したものにより封止したパッケージ構造からなる。ガラスフィラー化したリン酸塩系ガラスは遮光特性を有し、300nmから1200nmの波長範囲の透過率が2%以下の特性を持つ遮光特性を有することを目的としており、その組成は重量%換算で、
1)P25 40~60%
2)BaO 20~40%
3)Al23、La23、およびY23を含み、
さらに Al23+La23+Y23 1~8%
4)ZnO、MgO、CaOおよびSrOを含み、
さらに ZnO+MgO+CaO+SrO 1~15%
5)Li2O、Na2O、K2Oを含み、
さらに Li2O+Na2O+K2O 1~15%
6)CoO 1~5%
7)CuO 3~10%
8)V25 5~15%
9)NiO 1~5%
により構成されている。
 この組成により従来のリン酸塩系ガラスに比べて高い耐候性も有することができている。また、遮光特性を有するリン酸塩系ガラスは膨張係数をはじめとした物性は視感度特性を有するリン酸塩系ガラスと近似したものとなり、樹脂封止部1と樹脂封止部2とは膨張係数の差が問題になることが無く、同じ様な高い耐候性水準を持ち合わせた樹脂封止構造を有したパッケージとすることができる。
 図4は、本実施例の光センサ装置14の断面図である。樹脂封止部2は遮光特性を有したガラスを微粉砕してガラスフィラー化したものを樹脂中へ分散混合したものをトランスファーモールド法により封止したパッケージ構造からなる。開口部へ充填される樹脂封止部1は、視感度特性を有したガラスを微粉砕してガラスフィラー化したものを樹脂中へ分散混合した液状樹脂からなり、図3の実施例と同様の構造である。異なる点は、リードフレーム6a、6bと同じ材質からなる放熱性を有するを断面方向に厚くし、一部を樹脂封止部1より露出させた構造としていることである。これにより放熱性を有するは光センサ素子4で発生した熱を樹脂封止部1の外部へ放出することができるため、熱抵抗の小さなパッケージとすることができる。
 図5は、本実施例の光センサ装置14の断面図である。樹脂封止部9には透光性樹脂をトランスファーモールド法により封止しており、樹脂封止部9が硬化した後の形状は光センサ素子4の上面方向には光センサ素子の寸法よりも小さい開口箇所が設けられた構造とし、開口箇所には視感度特性を有したガラスフィラーを樹脂中へ分散混合した液状樹脂を充填して硬化させ、視感度特性を有する樹脂封止部1を設けた構造としている。ここで樹脂封止部9は外周表面にシボ状を有した上に粗い加工痕を残した光散乱効果を有する粗な面としており、外部からの光は反射または表面で散乱して大幅に減衰する表面構造としている。これにより遮光特性を有するガラスフィラーを樹脂中へ分散混合していない透光性樹脂を用いる場合であっても、外部からの光に対して一定の散乱、反射効果を得ることができるとともに、光センサ素子4の直上方向は視感度特性を有することができる構造のパッケージとすることができる。
 樹脂封止部の外周表面で光を反射あるいは散乱させるのではなく、樹脂封止部の内部で反射あるいは散乱させることも可能である。たとえば、素子の周囲を、シリカ、アルミナ、曇りガラス等、屈折率の異なる粒子が一定量分散混合された樹脂により封止する。これにより光センサ素子の上面方向より入射する光は視感度特性を有した受光感度を得られ、同素子の上面方向以外の周囲から入射する光は散乱、減衰され、素子表面に届くことがなくなる。
 図6は、本実施例の光センサ装置14の断面図である。樹脂封止部1には視感度特性を有したガラスフィラーを樹脂中へ分散混合した樹脂を用いて、トランスファーモールド法またはポッティングにより、光センサ素子が載置されている実装基板12の上面のみを封止したものである。ポッティングの場合はペースト状あるいはスラリー状とした樹脂が用いられる。光センサ素子が実装される実装基板12には樹脂やセラミック、ガラス、シリコンからなる基板が用いられる。また、光センサ素子が実装される実装基板12には外部端子の役割となる貫通電極11a、11bが設けられており、光センサ素子4が実装される面と反対側の面とは11a、11bが貫通した構造を有し、11a、11bの光センサ素子4が実装される面側には光センサ素子4の上面に設けられた図示しない電極とをワイヤー5により接続され、電気的な接続を得ており、貫通した構造により外部端子として機能している。これにより外部端子が樹脂封止部1の幅以上の寸法にならず、コンパクトなパッケージとすることができる。また光センサ素子が実装される実装基板12は樹脂やセラミック、ガラス、シリコン、金属などからなるため、薄くすることが容易であり、小型で薄型のパッケージとすることができる。
 図7は、本実施例の光センサ装置14の断面図である。光センサ素子が載置される実装基板12と樹脂封止部1へ視感度特性を有したガラスフィラーを樹脂中へ分散混合した樹脂をポッティングにより充填封止を行うパッケージ構造は図6の実施例と変わらないものの、光センサ素子が実装される実装基板12には、光センサ素子4が実装される面と反対側の面とを貫通して外部へと一部あるいは底面となる一面が露出する厚みを有した放熱性を有するが設けられており、光センサ素子4が固着されている。放熱性を有するは貫通電極11a、11bと同じ材質からなる、または別の金属材からなる。これにより放熱性を有するは光センサ素子4で発生した熱を外部へ放出することができるため、小型化や薄型化が可能であると共に低熱抵抗なパッケージ構造とすることができる。
 図8は、本実施例の光センサ装置14の断面図である。樹脂封止部1は、視感度特性を有したガラスを微粉砕してガラスフィラー化したものを樹脂中へ分散混合したものをトランスファーモールド法または液状樹脂をポッティング充填により封止したパッケージ構造からなり、図6の実施例と同様である。異なるのは、光センサ素子4が実装される素子実装基板12の内部において、外部端子となるリードフレーム6a、6bを屈曲させて素子実装基板12の幅内に収めるとともに、リードフレームの先端部分と裏面部分とが素子実装基板12の表面から露出したノンリードデザインによる貫通電極構造としている点である。
 これにより光センサ装置14は、実装面積が小さくできるとともに、小型化し易くなる。また実装基板12は樹脂やセラミックなどからなるため、実装にともなう熱履歴や荷重などのストレスや衝撃が直接伝わる基板部分に対して高い強度と耐久性を有するパッケージとすることができる。また素子実装部7を省いた実装基板12としてもよく、この場合は樹脂やセラミックなどからなる実装基板表面へ光センサ素子4が実装されることとなる。
 図9は、本実施例の光センサ装置14の断面図である。樹脂封止部1は視感度特性を有したガラスを微粉砕してガラスフィラー化したものを樹脂中へ分散混合したものをトランスファーモールド法または液状樹脂をポッティング充填により封止したパッケージ構造からなる部分と、光センサ素子4が実装される素子実装基板12が、リードフレーム6a、6bを基板幅内に収納した構造を有しており、この点は図8の実施例と同様である。異なるのは、光センサ素子4が放熱性を有する素子実装部8を有した構造としている点である。放熱性を有する素子実装部8は、リードフレーム6a、6bと同じ金属または高熱伝導率を有した物質からなる。これにより光センサ装置14は、実装面積が小さく小型化し易くなるとともに、また、実装基板部分を高い強度と耐久性を有することに加えて、光センサ素子4で発生した熱を放出できる低熱抵抗なパッケージ構造とすることができる。
 図10は、本実施例の光センサ装置14の断面図である。樹脂封止部1は視感度特性を有したガラスを微粉砕してガラスフィラー化したものを樹脂中へ分散混合したものをトランスファーモールド法または液状樹脂をポッティング充填により封止したパッケージ構造からなる部分は図6の実施例と変わらないが、素子実装部7と外部端子6a、6bとは金属または樹脂やセラミックに金属をメタライズにより設けたものからなり、素子実装部7を断面方向に厚くせずに外部端子6a、6bと同じ厚みとするとともに、光センサ素子4が実装する面と反対側を外部へ露出させた構造としている。これにより基板を用いない金属リードフレームを用いる構造や、樹脂やセラミックに金属をメタライズにより形成したものを用いる場合であっても外形寸法を薄く、小さくできることに加えて、光センサ素子4で発生した熱を外部へ放出できる低熱抵抗なパッケージ構造とすることができる。
 図11は、本実施例の光センサ装置14の断面図である。パッケージはキャビティを有する実装部13とリードフレーム6a、6bと光センサ素子4とにより構成されており、光センサ素子4はダイアタッチ剤3によりキャビティを有する実装部13のキャビティの底となる有底面へ固着実装される。リードフレーム6a、6bの一部はキャビティの底の有底面に露出しており、光センサ素子4の上面に設けられた図示しない電極とワイヤー5により接続され、電気的な接続を得ており、リードフレーム6a、6bの一方はキャビティを有する実装部を貫通して外部に露出し外部端子として機能している。キャビティ内には視感度特性を有するガラスフィラーを樹脂中へ分散混合した樹脂がポッティングにより充填され、キャビティを封止する樹脂封止部1を形成している。樹脂中へ分散混合される視感度特性を有するガラスフィラーには実施例1において示された組成を有するリン酸塩系ガラスを用いることができる。キャビティを有する実装部13は遮光性または反射性を有すると共に耐熱性を有する樹脂、セラミックなどから構成された構造となっている。反射性を有する樹脂は実施例5に記載されたものと同様の方法により得ることが可能である。これによりパッケージは耐熱性や耐候性や外部からの衝撃に強いパッケージとすることができる。
 図12は、本実施例の光センサ装置14の断面図である。キャビティを有する実装部13とリードフレーム6a、6bと、キャビティ内に視感度特性を有するガラスフィラーを樹脂中へ分散混合した樹脂をポッティングにより充填封止した樹脂封止部1からなるパッケージ構造は図11の実施例と同様であるが、リードフレーム6a、6bと同じ材質からなる放熱性を有する素子実装部8を断面方向に厚くし、一部をキャビティを有する実装部13の裏面より露出させた構造としている。これにより放熱性を有する素子実装部8は光センサ素子4で発生した熱を外部へ放出することができるため、耐熱性や耐候性や外部からの衝撃に強いことに加えて低熱抵抗なパッケージとすることができる。
 樹脂により光センサ素子周囲を封止する構造のパッケージを用いた光センサ装置において、樹脂中に、特有な組成により新規開発した視感度特性を有するリン酸塩系ガラスを、粉砕してガラスフィラー化したものを分散混合した樹脂により封止した構造とすることにより、受光光センサ素子が受ける光の視感度特性は光センサ素子直上方向だけでなく、斜め方向や横方向までも含めた広角な指向性を有することができ、角度依存性が大幅に改善できる。
 本発明に係るリン酸塩系ガラスには視感度特性に紫外領域の波長の光と赤外領域の波長の光を3%から2%以下の透過率特性と同時にガラスであることによる高耐熱性と高耐候性とを有する組成であることから、樹脂によって視感度特性を持たせたものに比べて紫外波長と赤外波長の吸収率が高く、長時間の良好な視感度特性が得られることに加えて、熱や紫外線や水分に対しても影響を受け難い高い信頼性をもつ。これにより周囲環境の影響を受け難く経時変化の少ない特性を有した光センサ装置を提供することができるので、テレビや家電製品、携帯端末をはじめ、より環境の厳しい車載や屋外用途への使用にまで配慮した光センサ装置搭載機器への供給に寄与することができる。
 1 視感度特性を有したリン酸塩系ガラスフィラーを樹脂中に含んだ樹脂封止部
 2 遮光性を有したリン酸塩系ガラスフィラーを樹脂中に含んだ樹脂封止部
 3 ダイアタッチ剤
 4 光センサ素子
 5 ワイヤー
 6a,6b リードフレーム
 7 素子実装部
 8 放熱性を有する素子実装部
 9 透光性樹脂
10 光散乱拡散シボ加工面
11a、11b 貫通電極
12 光センサ素子実装基板
13 キャビティを有する実装部
14 光センサ装置

Claims (17)

  1.  素子実装部と、
     前記素子実装部に固着された光センサ素子と、
     一端が前記光センサ素子とワイヤーにより接続され、他端が外部端子となるリードフレームと、
     前記素子実装部、前記光センサ素子および前記リードフレームを覆う樹脂封止部と、
    を有する光センサ装置であって、
     前記樹脂封止部は、全て、特定の視感度特性を有するリン酸塩系ガラスを粉砕したガラスフィラーが分散混合された樹脂からなることを特徴とする光センサ装置。
  2.  前記特定の視感度特性を有するリン酸塩系ガラスの組成は、重量%換算で、
    1)P25 40~60%
    2)BaO 20~40%
    3)Al23、La23、およびY23を含み、
    さらに Al23+La23+Y23 1~8%
    4)ZnO、MgO、CaOおよびSrOを含み、
    さらに ZnO+MgO+CaO+SrO 1~15%
    5)Li2O、Na2O、K2Oを含み、
    さらに Li2O+Na2O+K2O 1~15%
    6)CuO 3~10%
    7)V25 1~5%
    8)NiO 1~5%
    を含むことを特徴とする請求項1記載の光センサ装置。
  3.  前記樹脂封止部は、540nmから560nmの波長範囲を透過率の中心ピークに持ち、700nmから1200nmの波長範囲の透過率が2%以下であり、300nmから430nmの波長範囲の透過率が3%以下である特性を有することを特徴とする請求項1または2に記載の光センサ装置。
  4.  前記ガラスフィラーは粒径が1μmから20μmであることを特徴とする請求項1乃至3のいずれか1項に記載の光センサ装置。
  5.  前記素子実装部の一部が前記樹脂封止部から露出している請求項1乃至4のいずれか1項に記載の光センサ装置。
  6.  前記光センサ装置は、前記特定の視感度特性を有するリン酸塩系ガラスを粉砕してフィラーとしたもの混合した樹脂を成型したタブレットを用いて、トランスファーモールド法により光センサ素子の周囲を封止する構造であることを特徴とする請求項1乃至5のいずれか1項に記載の光センサ装置。
  7.  素子実装部と、
     前記素子実装部に固着された光センサ素子と、
     一端が前記光センサ素子とワイヤーにより接続され、他端が外部端子となるリードフレームと、
     前記素子実装部、前記光センサ素子および前記リードフレームを覆う樹脂封止部と、
    を有する光センサ装置であって、
     前記樹脂封止部は、特定の視感度特性を有するリン酸塩系ガラスを粉砕したガラスフィラーが分散混合された樹脂からなる第1の樹脂封止部と特定の遮光特性を有するリン酸塩系ガラスを粉砕したガラスフィラーが分散混合された樹脂からなる第2の樹脂封止部とからなる光センサ装置。
  8.  前記特定の視感度特性を有するリン酸塩系ガラスの組成は、重量%換算で、
    1)P25 40~60%
    2)BaO 20~40%
    3)Al23、La23、およびY23を含み、
    さらに Al23+La23+Y23 1~8%
    4)ZnO、MgO、CaOおよびSrOを含み、
    さらに ZnO+MgO+CaO+SrO 1~15%
    5)Li2O、Na2O、K2Oを含み、
    さらに Li2O+Na2O+K2O 1~15%
    6)CuO 3~10%
    7)V25 1~5%
    8)NiO 1~5%
    を含み、
     前記特定の遮光特性を有するリン酸塩系ガラスの組成は、重量%換算で、
    1)P25 40~60%
    2)BaO 20~40%
    3)Al23、La23、およびY23を含み、
    さらに Al23+La23+Y23 1~8%
    4)ZnO、MgO、CaOおよびSrOを含み、
    さらに ZnO+MgO+CaO+SrO 1~15%
    5)Li2O、Na2O、K2Oを含み、
    さらに Li2O+Na2O+K2O 1~15%
    6)CoO 1~5%
    7)CuO 3~10%
    8)V25 5~15%
    9)NiO 1~5%
    を含むことを特徴とする請求項7記載の光センサ装置。
  9.  前記第1の樹脂封止部は、540nmから560nmの波長範囲を透過率の中心ピークに持ち、700nmから1200nmの波長範囲の透過率が2%以下であり、300nmから430nmの波長範囲の透過率が3%以下である特性を有し、
     前記第2の樹脂封止部は、300nmから1200nmの波長範囲の透過率が2%以下である特性を有することを特徴とする請求項7または8に記載の光センサ装置。
  10.  光センサ素子と、
     前記光センサ素子が載置された実装基板と、
     前記実装基板を貫通して設けられ、前記光センサ素子と一端で接続され、多端が外部接続端子となる貫通電極と、
     前記実装基板および前記光センサ素子の上面を覆う樹脂封止部と、
    を有する光センサ装置であって、
     前記樹脂封止部は、全て、特定の視感度特性を有するリン酸塩系ガラスを粉砕したガラスフィラーが分散混合された樹脂からなることを特徴とする光センサ装置。
  11.  前記特定の視感度特性を有するリン酸塩系ガラスの組成は、重量%換算で、
    1)P25 40~60%
    2)BaO 20~40%
    3)Al23、La23、およびY23を含み、
    さらに Al23+La23+Y23 1~8%
    4)ZnO、MgO、CaOおよびSrOを含み、
    さらに ZnO+MgO+CaO+SrO 1~15%
    5)Li2O、Na2O、K2Oを含み、
    さらに Li2O+Na2O+K2O 1~15%
    6)CuO 3~10%
    7)V25 1~5%
    8)NiO 1~5%
    を含むことを特徴とする請求項10記載の光センサ装置。
  12.  前記樹脂封止部は、540nmから560nmの波長範囲を透過率の中心ピークに持ち、700nmから1200nmの波長範囲の透過率が2%以下であり、300nmから430nmの波長範囲の透過率が3%以下である特性を有することを特徴とする請求項10または11に記載の光センサ装置。
  13.  前記実装基板には、前記光センサ素子が実装される面から反対の面まで貫通して一部が外部へ露出している素子実装部が設けられている請求項10乃至12のいずれか1項に記載の光センサ装置。
  14.  前記貫通電極は、前記実装基板の内部で屈曲しているリードフレームであって、前記実装基板の幅内に収まると共に、前記リードフレームの先端部分と裏面部分とが前記実装基板の表面から露出している請求項10乃至13のいずれか1項に記載の光センサ装置。
  15.  キャビティを有する実装部と、
     前記実装部の有底面に固着された光センサ素子と、
     一端が前記有底面において露出し、前記光センサ素子とワイヤーにより接続され、他端が前記実装部から露出して外部端子となるリードフレームと、
     前記キャビティを充填している樹脂封止部と、
    を有する光センサ装置であって、
     前記樹脂封止部は、全て、特定の視感度特性を有するリン酸塩系ガラスを粉砕したガラスフィラーが分散混合された樹脂からなることを特徴とする光センサ装置。
  16.  前記特定の視感度特性を有するリン酸塩系ガラスの組成は、重量%換算で、
    1)P25 40~60%
    2)BaO 20~40%
    3)Al23、La23、およびY23を含み、
    さらに Al23+La23+Y23 1~8%
    4)ZnO、MgO、CaOおよびSrOを含み、
    さらに ZnO+MgO+CaO+SrO 1~15%
    5)Li2O、Na2O、K2Oを含み、
    さらに Li2O+Na2O+K2O 1~15%
    6)CuO 3~10%
    7)V25 1~5%
    8)NiO 1~5%
    を含むことを特徴とする請求項15記載の光センサ装置。
  17.  前記実装部には、前記光センサ素子が固着される前記有底面から反対の面まで貫通して一部が外部へ露出している素子実装部が設けられている請求項15または16に記載の光センサ装置。
PCT/JP2015/052100 2014-02-18 2015-01-27 光センサ装置 WO2015125564A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167021171A KR102313269B1 (ko) 2014-02-18 2015-01-27 광센서 장치
US15/117,050 US9773926B2 (en) 2014-02-18 2015-01-27 Optical sensor device
CN201580008853.2A CN106062969B (zh) 2014-02-18 2015-01-27 光传感器装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-028570 2014-02-18
JP2014028570 2014-02-18
JP2014-262223 2014-12-25
JP2014262223A JP6429621B2 (ja) 2014-02-18 2014-12-25 光センサ装置および光センサ装置の製造方法

Publications (1)

Publication Number Publication Date
WO2015125564A1 true WO2015125564A1 (ja) 2015-08-27

Family

ID=53878078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052100 WO2015125564A1 (ja) 2014-02-18 2015-01-27 光センサ装置

Country Status (6)

Country Link
US (1) US9773926B2 (ja)
JP (1) JP6429621B2 (ja)
KR (1) KR102313269B1 (ja)
CN (1) CN106062969B (ja)
TW (1) TWI642198B (ja)
WO (1) WO2015125564A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6415309B2 (ja) * 2014-02-18 2018-10-31 エイブリック株式会社 光センサ装置
TWI657237B (zh) * 2018-02-21 2019-04-21 茂達電子股份有限公司 光學偵測裝置及光學封裝結構
JPWO2023032555A1 (ja) * 2021-08-30 2023-03-09

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62251616A (ja) * 1986-04-24 1987-11-02 Sharp Corp ホトインタラプタ
JPS62279680A (ja) * 1986-05-28 1987-12-04 Sharp Corp 光結合素子
JP2002344006A (ja) * 2001-05-15 2002-11-29 Sharp Corp 光結合装置
JP2006001808A (ja) * 2004-06-18 2006-01-05 Isuzu Seiko Glass Kk 近赤外線カットガラス
JP2006213546A (ja) * 2005-02-02 2006-08-17 Hoya Corp ガラスの製造方法および赤外カットフィルター
JP2012238812A (ja) * 2011-05-13 2012-12-06 Seiko Instruments Inc 受光デバイス
JP2013011818A (ja) * 2011-06-30 2013-01-17 Seiko Instruments Inc 照度センサ用光学フィルターの製造方法
JP2013168510A (ja) * 2012-02-15 2013-08-29 Seiko Instruments Inc 光検出デバイス及び光検出デバイスの製造方法
JP2013191834A (ja) * 2012-02-17 2013-09-26 Seiko Instruments Inc 光センサ装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007036264A (ja) 2003-01-20 2007-02-08 Sharp Corp 光センサ用透光性樹脂組成物
US9343441B2 (en) * 2012-02-13 2016-05-17 Cree, Inc. Light emitter devices having improved light output and related methods
JP6211862B2 (ja) * 2013-09-18 2017-10-11 エスアイアイ・セミコンダクタ株式会社 光半導体装置およびその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62251616A (ja) * 1986-04-24 1987-11-02 Sharp Corp ホトインタラプタ
JPS62279680A (ja) * 1986-05-28 1987-12-04 Sharp Corp 光結合素子
JP2002344006A (ja) * 2001-05-15 2002-11-29 Sharp Corp 光結合装置
JP2006001808A (ja) * 2004-06-18 2006-01-05 Isuzu Seiko Glass Kk 近赤外線カットガラス
JP2006213546A (ja) * 2005-02-02 2006-08-17 Hoya Corp ガラスの製造方法および赤外カットフィルター
JP2012238812A (ja) * 2011-05-13 2012-12-06 Seiko Instruments Inc 受光デバイス
JP2013011818A (ja) * 2011-06-30 2013-01-17 Seiko Instruments Inc 照度センサ用光学フィルターの製造方法
JP2013168510A (ja) * 2012-02-15 2013-08-29 Seiko Instruments Inc 光検出デバイス及び光検出デバイスの製造方法
JP2013191834A (ja) * 2012-02-17 2013-09-26 Seiko Instruments Inc 光センサ装置

Also Published As

Publication number Publication date
TWI642198B (zh) 2018-11-21
CN106062969A (zh) 2016-10-26
TW201603292A (zh) 2016-01-16
JP2015173254A (ja) 2015-10-01
CN106062969B (zh) 2017-12-08
KR20160122136A (ko) 2016-10-21
US20160351730A1 (en) 2016-12-01
US9773926B2 (en) 2017-09-26
JP6429621B2 (ja) 2018-11-28
KR102313269B1 (ko) 2021-10-15

Similar Documents

Publication Publication Date Title
US9240498B2 (en) Optical semiconductor device
US9716190B2 (en) Optical sensor device and method of manufacturing optical sensor device
JP5736253B2 (ja) 光センサ装置
US20080197368A1 (en) Optoelectronic Component and Package For an Optoelectronic Component
US9029968B2 (en) Optical sensor device
KR102180504B1 (ko) 광 센서 장치
EP1529807A3 (en) Epoxy resin composition for encapsulating optical semiconductor element and optical semiconductor device using the same
JP6429621B2 (ja) 光センサ装置および光センサ装置の製造方法
TWI686435B (zh) 光感測裝置及光感測裝置的製造方法
TW201813139A (zh) 附反射層及螢光體層之光半導體元件
KR20190051205A (ko) 엘이디 패키지
JP2012186305A (ja) 光結合素子及び光結合素子の製造方法
JP6886307B2 (ja) 光センサ装置
JP7538399B2 (ja) 発光装置、又は、光学部材
JP5908627B2 (ja) 光センサ装置
CN116598403A (zh) 半导体组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15752715

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167021171

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15117050

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15752715

Country of ref document: EP

Kind code of ref document: A1