WO2015125333A1 - Charging current control circuit and charging current control device - Google Patents

Charging current control circuit and charging current control device Download PDF

Info

Publication number
WO2015125333A1
WO2015125333A1 PCT/JP2014/075821 JP2014075821W WO2015125333A1 WO 2015125333 A1 WO2015125333 A1 WO 2015125333A1 JP 2014075821 W JP2014075821 W JP 2014075821W WO 2015125333 A1 WO2015125333 A1 WO 2015125333A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
electrode
node
voltage
control circuit
Prior art date
Application number
PCT/JP2014/075821
Other languages
French (fr)
Japanese (ja)
Inventor
思洋 陳
池田 豊
清文 鳥井
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2016503923A priority Critical patent/JP6202186B2/en
Publication of WO2015125333A1 publication Critical patent/WO2015125333A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/1555Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with control circuit
    • H02M7/1557Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with control circuit with automatic control of the output voltage or current

Definitions

  • the present invention relates to a charging current control circuit and a charging current control device, for example, a charging current control circuit for suppressing an inflow of an excessive charging current (so-called inrush current) into a smoothing capacitor when power is turned on, and charging current control Relates to the device.
  • a charging current control circuit for suppressing an inflow of an excessive charging current (so-called inrush current) into a smoothing capacitor when power is turned on, and charging current control Relates to the device.
  • Patent Document 1 discloses a power supply circuit including a current-limiting resistor and a thyristor connected in parallel between a rectifier circuit and a smoothing capacitor, and a transistor for controlling the arc-phase of the thyristor.
  • the timing for switching the path for applying the full-wave rectified voltage to the smoothing capacitor from the current limiting resistor to the thyristor is performed by a transistor that controls the arc-phase.
  • Patent Document 2 discloses a switching power supply circuit including a current limiting resistor and a thyristor connected in parallel between a rectifier circuit and a smoothing capacitor, and a capacitor for supplying a conduction voltage to the gate terminal of the thyristor.
  • Patent Document 3 discloses a switching power supply including a current limiting resistor and a thyristor connected in parallel between a rectifier diode and a smoothing capacitor, and a time limit circuit for controlling the gate voltage of the thyristor.
  • the time limit circuit includes a voltage dividing resistor that divides the pulsating output voltage and a delay capacitor that forms a time limit circuit together with the voltage dividing resistor.
  • Patent Document 1 and Patent Document 2 are both connected to a thyristor gate at the gate of the thyristor, and the thyristor is charged with power generated by a transformer so that the thyristor is turned on after the power is turned on. Is confused. For this reason, a transformer for isolating the gate point of the thyristor is necessary, which causes the power supply circuit to become complicated and large.
  • a thyristor is lit by connecting a lone capacitor to the gate of the thyristor and charging the lone capacitor with an input voltage.
  • the present invention is a charging current control circuit for controlling a charging current of a smoothing capacitor charged by a rectifying circuit, and a second node connected to a first node to which an output voltage of the rectifying circuit is applied and a positive electrode of the smoothing capacitor.
  • a first switching element connected to the first node and the second node, the third electrode is electrically connected to the first node, and the fourth electrode is connected to the first node and the second node, respectively;
  • a second switching element connected to the first control electrode of the first switching element; a third electrode of the second switching element; and a second node connected to the second control electrode of the second switching element.
  • a timing control circuit for outputting wherein the timing control circuit discharges a first timing capacitor charged with a voltage applied to the first node and a charge accumulated in the first timing capacitor.
  • a conduction control signal is generated based on the voltage of the first timing capacitor, and when the value of the conduction control signal is equal to or higher than the threshold voltage of the second switching element, The one switching element sequentially changes from the non-conduction state to the conduction state, and when the value of the conduction control signal becomes less than the threshold voltage of the second switching element, the second switching element and the first switching element are changed from the conduction state. It is a charging current control circuit which changes to a non-conduction state.
  • the present invention is a charging current control device comprising a first terminal, a second terminal, and a wiring board, wherein the wiring board has a first node to which an output voltage of a rectifier circuit is applied, a positive electrode of a smoothing capacitor, A first switching element to which the first electrode and the second electrode are connected to the second node to be connected, the first node and the second node, respectively, and a third electrode to be electrically connected to the first node; A second switching element connected to the first control electrode of the first switching element; a third electrode of the second switching element; and a second control electrode of the second switching element connected between the second node.
  • a timing control circuit that outputs a conduction control signal to the first node, the timing control circuit discharging a charge stored in the first timing capacitor and a first timing capacitor charged with a voltage applied to the first node.
  • a conduction control signal is generated based on the voltage of the first timing capacitor, and when the value of the conduction control signal is equal to or higher than the threshold voltage of the second switching element, The one switching element sequentially changes from the non-conduction state to the conduction state, and when the value of the conduction control signal becomes less than the threshold voltage of the second switching element, the second switching element and the first switching element are changed from the conduction state.
  • the charging current control device is changed to a non-conduction state, and the first terminal and the second terminal are connected to the first node and the second node, respectively.
  • a charging current control circuit that does not require a transformer for the gate point of the thyristor after turning on the power and suppresses the influence of the fluctuation of the input voltage on the timing of the point of the thyristor, the main wiring board, thus, it is possible to realize a charging current control device in which the number of connection terminals is minimized.
  • FIG. 2 is a circuit diagram of an AC / DC converter circuit including a charging current control circuit according to Embodiment 1.
  • FIG. 5 is a circuit diagram of an AC / DC converter circuit including a charging current control circuit according to Embodiment 2.
  • FIG. 6 is a circuit diagram of an AC / DC converter circuit including a charging current control circuit according to Embodiment 3.
  • FIG. 6 is a circuit diagram of an AC / DC converter circuit including a charging current control circuit according to Embodiment 4.
  • FIG. 10 is a circuit diagram of an AC / DC conversion circuit including a charging current control circuit according to a fifth embodiment.
  • FIG. 10 is a circuit diagram of an AC / DC converter circuit including a charging current control circuit according to a sixth embodiment.
  • FIG. 7 is a perspective view of a charging current control device equipped with a charging current control circuit according to any of Embodiments 1 to 6.
  • FIG. 1 is a circuit diagram of an AC / DC converter circuit including a charging current control circuit 100 according to the first embodiment.
  • the AC / DC conversion circuit includes a diode bridge Db that rectifies an input AC voltage Vin and outputs a DC voltage, a limiting resistor Rp, a smoothing capacitor Cs, and a charging current control circuit 100.
  • the DC voltage output from the diode bridge Db is applied to one end of the smoothing capacitor Cs via the limiting resistor Rp.
  • the ground voltage GND is applied to the side facing the side that outputs a DC voltage and the other end of the smoothing capacitor Cs.
  • a positive temperature coefficient thermistor (PTC) is applied to the limiting resistor Rp.
  • the charging current control circuit 100 includes a node N1, a node N2, a first switching element SCR1, a second switching element SCR2, a resistor R1, a resistor Rg, a capacitor C0, a timing control circuit 10, and a first voltage clamp element Znr1.
  • the timing control circuit 10 includes a resistor Rc1, a first discharge resistor Rc2, a diode D1, and a first timing capacitor C1, and outputs a conduction control signal Sg that controls the conduction state of the second switching element SCR2.
  • the first switching element SCR1 and the second switching element SCR2 are both thyristors (SCR), and the first voltage clamp element Znr1 is a Zener diode or a diac (DIAC).
  • the anode and cathode of the first switching element SCR1 are connected to the node N1 and the node N2, respectively.
  • One end and the other end of the limiting resistor Rp are also connected to the node N1 and the node N2, respectively.
  • the first switching element SCR1 and the limiting resistor Rp are connected in parallel.
  • the anode of the second switching element SCR2 is connected to the node N1 via the resistor R1.
  • the value of the resistor R1 is selected so that the voltage applied to the anode of the second switching element SCR2 becomes an optimum value.
  • the cathode and gate of second switching element SCR2 are connected to the gate of first switching element SCR1 and one end of resistor Rg, respectively.
  • the timing control circuit 10 is disposed between the anode of the second switching element SCR2 and the node N2.
  • one end and the other end of the resistor Rc1 are connected to the anode of the second switching element SCR2 and the anode of the diode D1, respectively.
  • the anode of the diode D1 is connected to the other end of the resistor Rg, and the conduction control signal Sg is output from the connection node.
  • a first timing capacitor C1 and a first discharge resistor Rc2 are connected in parallel between the cathode of the diode D1 and the node N2.
  • the resistor Rc1 and the first timing capacitor C1 connected in series determine the timing at which the second switching element SCR2 changes from the non-conductive state to the conductive state, as will be described later. Further, the first timing capacitor C1 and the first discharge resistor Rc2 connected in parallel determine the timing at which the second switching element SCR2 changes from the conductive state to the non-conductive state.
  • the first voltage clamp element Znr1 is connected to limit the voltage applied to the timing control circuit 10 and to suppress fluctuations in the charging time of the first timing capacitor C1 due to fluctuations in the power supply voltage or the like.
  • the operation of the charging current control circuit 100 will be described with reference to FIG. First, the operation of the charging current control circuit 100 when the power is turned on will be described.
  • the diode bridge Db When the AC voltage Vin is applied to the diode bridge Db, that is, when the AC / DC converter circuit is powered on, the diode bridge Db starts generating a DC voltage obtained by full-wave rectifying the AC voltage Vin. This DC voltage has a ripple whose maximum voltage value rises to the amplitude value of the AC voltage Vin.
  • the DC voltage output from the diode bridge Db is applied to the smoothing capacitor Cs via the limiting resistor Rp, and charging of the smoothing capacitor Cs is started.
  • the value of the limiting resistor Rp is set to a value that does not damage the AC / DC converter circuit of FIG. 1 due to the inrush current immediately after the power is turned on.
  • the charging current of the smoothing capacitor Cs decreases. Further, when no abnormality has occurred in the AC / DC converter circuit, the value of the limiting resistor Rp hardly changes until the smoothing capacitor Cs reaches the fully charged state. That is, the resistance value of the limiting resistor Rp having a positive thermistor characteristic does not increase even when absorbing a constant Joule heat. As a result, the peak value of the DC voltage applied to the smoothing capacitor Cs and the charging current of the smoothing capacitor Cs each converge to a constant value.
  • a voltage generated at both ends of the limiting resistor Rp is applied between the node N1 and the node N2 of the charging current control circuit 100, and the timing control circuit 10 has the node N1 clamped by the first voltage clamp element Znr1. A voltage is applied.
  • charging of the first timing capacitor C1 is started via the resistor R1 and the resistor Rc1.
  • the charging time of the first timing capacitor C1 depends on the values of the resistor Rc1, the first discharge resistor Rc2, and the first timing capacitor C1 that determine the time constant of the charging voltage, and the voltage value applied to the timing control circuit 10. To do.
  • discharging of the first timing capacitor C1 due to voltage fluctuation at the node N1 is blocked by the diode D1.
  • the second switching element SCR2 When charging of the first timing capacitor C1 proceeds and the value of the conduction control signal Sg exceeds the threshold voltage of the second switching element SCR2, the second switching element SCR2 changes from the non-conduction state to the conduction state, and the first The gate voltage of the switching element SCR1 is increased.
  • the cathode voltage of the second switching element SCR2 exceeds the threshold voltage of the first switching element SCR1
  • the first switching element SCR1 changes to a conductive state, and the impedance between the node N1 and the node N2 is lower than the value of the limiting resistor Rp. Are connected by the first switching element SCR1 set to.
  • the timing control circuit 10 by appropriately setting the values of the resistor Rc1 and the first timing capacitor C1, the conduction path between the node N1 and the node N2 is smoothly switched from the limiting resistor Rp to the first switching element SCR1. It becomes possible. Further, the voltage applied to the timing control circuit 10 is clamped to a constant value by the first voltage clamp element Znr1, thereby minimizing the variation in the charging time of the first timing capacitor C1 due to the voltage variation at the node N1. It becomes possible to suppress.
  • the operation of the charging current control circuit 100 when the power is turned off will be described.
  • the diode bridge Db when the diode bridge Db is charging the smoothing capacitor Cs via the first switching element SCR1, the supply of the AC voltage Vin is temporarily interrupted. Over the cutoff time, the charge accumulated in the smoothing capacitor Cs decreases due to discharge to a load (not shown), and the voltage of the smoothing capacitor Cs decreases.
  • the smoothing is performed from the diode bridge Db via the first switching element SCR1. Inrush current flows to the capacitor Cs. Therefore, when the diode bridge Db stops outputting the DC voltage, it is necessary to quickly set the first switching element SCR1 to the non-conductive state in preparation for the resumption of the supply of the AC voltage Vin thereafter.
  • the first timing capacitor C1 and the first discharge resistor Rc2 connected in parallel included in the timing control circuit 10 operate as a timing circuit that sets the second switching element SCR2 from the conductive state to the non-conductive state. . That is, when the diode bridge Db stops supplying the DC voltage to the timing control circuit 10, the charge accumulated in the first timing capacitor C1 is discharged via the first discharge resistor Rc2, and the voltage of the first timing capacitor C1 Declines rapidly.
  • the discharge time of the first timing capacitor C1 depends on the values of the first discharge resistor Rc2 and the first timing capacitor C1 that determine the time constant of the discharge voltage.
  • the second switching element SCR2 changes from the conduction state to the non-conduction state. Furthermore, the first switching element SCR1 is also set to a non-conduction state.
  • the timing control circuit 10 by appropriately setting the values of the first discharge resistor Rc2 and the first timing capacitor C1, the second switching element SCR2 and the first switching element SCR1 are within the assumed power-off time. Can be set from the conductive state to the non-conductive state.
  • the charging current control circuit 100 Based on the conduction control signal Sg output from the timing control circuit 10, the charging current control circuit 100 provides a conduction path for supplying the DC voltage output from the diode bridge Db to the smoothing capacitor Cs from the limiting resistor Rp to the first switching element SCR1. Switch. The switching of the conduction path is performed based on a conduction control signal Sg that changes with a time constant determined by the values of resistance and capacitance.
  • the charging current control circuit can be reduced in size and price by being configured with small electronic components such as resistors and capacitors.
  • the timing control circuit 10 controls the conduction state of the first switching element SCR1 based on the conduction control signal Sg not only when the AC / DC converter circuit is turned on but also when the power is turned off. Specifically, when the power interruption occurs, the timing control circuit 10 quickly sets the first switching element SCR1 in the conductive state to the non-conductive state. As a result, the occurrence of inrush current is suppressed not only when the power is turned on but also when the power is restored.
  • the charging current control circuit 100 clamps the DC voltage output from the diode bridge Db with the first voltage clamp element Znr1, and applies it to the timing control circuit 10. Thereby, it is possible to reduce the influence of the conduction timing of the second switching element SCR2 due to fluctuations in the power supply voltage and the inrush phase. Further, since the maximum value of the power supply voltage applied to the timing control circuit 10 does not exceed the breakdown voltage of the first voltage clamp element Znr1, the withstand voltage of the electronic components constituting the timing control circuit 10 can be lowered. Electronic parts can be reduced in size and price.
  • FIG. 2 is a circuit diagram of an AC / DC conversion circuit including the charging current control circuit 200 according to the second embodiment.
  • the charging current control circuit 200 shown in FIG. 2 has a configuration in which, in the charging current control circuit 100 shown in FIG. 1, the second switching element SCR2 is replaced with a field effect transistor FET and a second voltage clamp element Znr2 is added. Equivalent to.
  • the second voltage clamp element Znr2 is, for example, a Zener diode or a diac.
  • the drain of the field effect transistor FET is connected to the node N1 via the resistor R1.
  • the source of the field effect transistor FET is connected to the gate of the first switching element SCR1.
  • the gate of the field effect transistor FET is connected to the anode of the diode D1 included in the timing control circuit 10 and the cathode of the second voltage clamp element Znr2, and the conduction control signal Sg is applied.
  • the anode of the second voltage clamp element Znr2 is connected to the node N2.
  • the second voltage clamp element Znr2 is a gate protection element for preventing gate breakdown of the field effect transistor FET due to high voltage.
  • the diode bridge Db to which the AC voltage Vin is applied starts charging the smoothing capacitor Cs via the limiting resistor Rp.
  • a voltage generated at both ends of the limiting resistor Rp is applied between the node N1 and the node N2 of the timing control circuit 10, and the voltage of the node N1 clamped by the first voltage clamp element Znr1 is applied to the timing control circuit 10. Is done.
  • the first switching element SCR1 changes from the non-conduction state to the conduction state. Change.
  • the conductive path between the node N1 and the node N2 is switched to the first switching element SCR1 set to a lower impedance state than the value of the limiting resistor Rp.
  • the field effect transistor FET becomes non-conductive, and as a result, the field effect transistor FET and the first switching element SCR1 It changes from the conductive state to the non-conductive state.
  • the effect of the charging current control circuit 200 will be described.
  • the second switching element SCR2 of the charging current control circuit 100 by applying a field effect transistor FET whose switching speed is higher than that of the thyristor, the switching speed of the conduction state of the first switching element SCR1 can be further increased. It becomes.
  • FIG. 3 is a circuit diagram of an AC / DC converter circuit including a charging current control circuit 300 according to the third embodiment.
  • the charging current control circuit 300 shown in FIG. 3 corresponds to a configuration in which the second switching element SCR2 is replaced with an npn bipolar transistor TR1 in the charging current control circuit 100 shown in FIG.
  • the collector of the bipolar transistor TR1 is connected to the node N1 via the resistor R1.
  • a conduction control signal Sg output from the timing control circuit 10 is applied to the base of the bipolar transistor TR1 via the resistor Rb.
  • the emitter of the bipolar transistor TR1 is connected to the gate of the first switching element SCR1.
  • the value of the conduction control signal Sg also increases.
  • the bipolar transistor TR1 raises the gate voltage of the first switching element SCR1.
  • the first switching element SCR1 changes to the conductive state, the conductive path between the node N1 and the node N2 is switched to the first switching element SCR1 set to a lower impedance state than the value of the limiting resistor Rp.
  • the bipolar transistor TR1 becomes non-conductive, and as a result, the bipolar transistor TR1 and the second transistor TR1. 1 switching element SCR1 changes from a conductive state to a non-conductive state.
  • the effect of the charging current control circuit 300 will be described.
  • the second switching element SCR2 of the charging current control circuit 100 by applying the bipolar transistor TR1 whose switching speed is higher than that of the thyristor, it is possible to further increase the switching speed of the conduction state of the first switching element SCR1. Become.
  • FIG. 4 is a circuit diagram of an AC / DC converter circuit including a charging current control circuit 400 according to the fourth embodiment.
  • the charging current control circuit 400 shown in FIG. 4 corresponds to a configuration in which the timing control circuit 10 is replaced with the timing control circuit 20 in the charging current control circuit 100 shown in FIG.
  • the timing control circuit 20 improves the response speed of the timing control circuit 10.
  • the timing control circuit 20 includes a resistor Rc1, a diode D1, and a first timing capacitor C1 connected in series between the anode of the second switching element SCR2 and the node N2.
  • the first discharge resistor Rc2 is connected in parallel with the first timing capacitor C1 via a pnp bipolar transistor TR2 (discharge switch).
  • the bipolar transistor TR2 When the bipolar transistor TR2 is set to the conductive state, the first discharge resistor Rc2 is connected in parallel with the first timing capacitor C1 via the emitter and collector of the bipolar transistor TR2, and the bipolar transistor TR2 is set to the nonconductive state.
  • the bipolar transistor TR2 operates as a discharge switch that controls the discharge of the first timing capacitor C1 by the first discharge resistor Rc2.
  • the timing control circuit 20 is further connected in parallel with the resistor Rc3, the diode D2, the second timing capacitor C2, and the second timing capacitor C2 connected in series between the anode of the second switching element SCR2 and the node N2. And a second discharge resistor Rc4.
  • a connection point between the cathode of the diode D2 and the second timing capacitor C2 is connected to the base of the bipolar transistor TR2.
  • the resistor Rc3, the diode D2, the second timing capacitor C2, and the second discharge resistor Rc4 perform the same operation as the timing control circuit 10.
  • the increasing speed of the conduction control signal Sg is improved, and the first switching element SCR1 is changed from the non-conduction state to the conduction state at a higher speed.
  • the speed of switching the conduction path between the node N1 and the node N2 is increased.
  • the second timing capacitor C2 starts to be discharged.
  • the discharge time depends on the values of the second discharge resistor Rc4 and the second timing capacitor C2 that determine the time constant of the discharge voltage.
  • the first timing capacitor C1 and the first discharge resistor Rc2 are connected in parallel.
  • the discharge of the first timing capacitor C1 is also started, and the voltage of the conduction control signal Sg is also lowered. Since the value of the resistor Rc1 of the timing control circuit 20 can be set smaller than the value of the resistor Rc1 of the timing control circuit 10 shown in FIG. 1 and the like, the timing control circuit 20 compares the conduction control signal Sg with the timing control circuit 10. Can be reduced more quickly.
  • the charging current control circuit 400 According to the timing control circuit 20 included in the charging current control circuit 400, when the voltage at the node N1 is increased, the conduction path between the node N1 and the node N2 is further transferred from the limiting resistor Rp to the first switching element SCR1. It becomes possible to switch quickly.
  • FIG. 5 is a circuit diagram of an AC / DC converter circuit including a charging current control circuit 500 according to the fifth embodiment.
  • the charging current control circuit 400 shown in FIG. 5 corresponds to a configuration in which the timing control circuit 10 is replaced with the timing control circuit 20 in the charging current control circuit 200 shown in FIG.
  • the timing control circuit 20 improves the response speed of the timing control circuit 10.
  • the configuration and operation of the timing control circuit 20 of FIG. 5 are the same as those of the timing control circuit 20 shown in FIG. According to the charging current control circuit 500, when the voltage at the node N1 is rising, the conduction path between the node N1 and the node N2 can be more quickly switched from the limiting resistor Rp to the first switching element SCR1. It becomes.
  • FIG. 6 is a circuit diagram of an AC / DC converter circuit including a charging current control circuit 600 according to the sixth embodiment.
  • the charging current control circuit 600 shown in FIG. 6 corresponds to a configuration in which the timing control circuit 10 is replaced with the timing control circuit 20 in the charging current control circuit 300 shown in FIG.
  • the timing control circuit 20 improves the response speed of the timing control circuit 10.
  • the configuration and operation of the timing control circuit 20 of FIG. 6 are the same as those of the timing control circuit 20 shown in FIG. According to the charging current control circuit 600, when the voltage at the node N1 is increasing, the conduction path between the node N1 and the node N2 can be more quickly switched from the limiting resistor Rp to the first switching element SCR1. It becomes.
  • FIG. 7 is a perspective view of a charging current control device equipped with the charging current control circuit according to any one of the first to sixth embodiments.
  • the charging current control device includes terminals T1, terminal T2, wiring board PCB, limiting resistor Rp, and electronic components constituting any of charging current limiting circuits 100 to 600 according to the first embodiment.
  • the first switching element SCR1 is shown as an example of the electronic component.
  • a printed wiring board is applied as an example.
  • On one surface of the wiring substrate PCB (the surface facing upward in FIG. 7), electronic components included in the charging current limiting circuit selected from the charging current limiting circuits 100 to 600 are mounted. Each electronic component is connected by wiring (not shown).
  • the charging current limiting circuit 100 is mounted on the wiring board PCB, the node N1 and the node N2 are connected to the terminal T1 and the terminal T2, respectively.
  • a limiting resistor Rp is mounted on the other surface of the wiring board PCB (the surface facing downward in FIG. 7).
  • the charging current control device has an outer shape in which a pair of terminals T1 / T2 extend from the wiring board PCB.
  • the terminals T1 and T2 are inserted into connection holes of another main wiring board (not shown) on which the diode bridge Db and the smoothing capacitor Cs provided in the AC / DC converter circuit shown in FIG. Electrically connect the boards.
  • the limiting resistor Rp may be mounted on the main wiring board instead of the wiring board PCB. In that case, in the main wiring board, the connection holes into which the terminals T1 and T2 of the wiring board PCB are inserted are electrically connected to one terminal and the other terminal of the limiting resistor Rp, respectively.
  • the surface directions of the two wiring boards are set not perpendicular to each other but perpendicular to each other. That is, the wiring board PCB is mounted perpendicular to the surface of the main wiring board on which the limiting resistor Rp and the like are mounted. As a result, the heat dissipation performance of the wiring board PCB is sufficiently exhibited without deteriorating the heat dissipation characteristics of the main wiring board. Further, by arranging the main wiring board and the wiring board PCB in parallel, the height of the wiring board PCB can be suppressed low, and the power circuit can be reduced in height.
  • the charging current control circuit 100 connected in parallel with the limiting resistor Rp is mounted on a wiring board PCB different from the main wiring board, so that the output voltage of the diode bridge Db mounted on the main wiring board is obtained. It is easy to change to a charging current control circuit having necessary characteristics according to the maximum value of the output current, the temperature characteristic of the limiting resistor Rp, the capacitance value of the smoothing capacitor Cs, or the like.
  • timing control circuit 100, 200, 300, 400, 500, 600 charging current control circuit, C0 capacity, C1 first timing capacity, C2 second timing capacity, Cs smoothing capacitor, D1, D2 diode, Db diode bridge , FET field effect transistor, GND ground voltage, HS radiator, N1, N2 node, PCB wiring board, R1, Rb, Rc1, Rc3, Rg resistance, Rc2 first discharge resistance, Rc4 second discharge resistance, Rp limiting resistance, SCR1, SCR2 switching element, Sg conduction control signal, T1, T2 terminal, TR1, bipolar transistor, TR2, bipolar transistor (discharge switch), Vin AC voltage, Znr1, Znr2 voltage clamping element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

Disclosed is a charging current control circuit that controls the charging current of a smoothing capacitor which is charged by a rectifier circuit, wherein a first switching element (SCR1) is connected between a first node (N1) to which an output voltage of the rectifier circuit is applied, and a second node (N2) that is connected to a positive electrode of the smoothing capacitor. When the value of a conduction control signal (Sg), which is generated on the basis of the voltage of a first timing capacitor (C1) charged by the voltage of the first node (N1), becomes equal to or higher than a threshold voltage of a second switching element (SCR2), the second switching element and the first switching element successively change from a non-conducting state to a conducting state. Thus, in cases of switching the charging path of the smoothing capacitor at turn-on to a thyristor, there is no need for a gate-triggering transformer for controlling the conduction of the thyristor, and an increase in size of the power supply circuit is prevented.

Description

充電電流制御回路、および充電電流制御装置Charging current control circuit and charging current control device
 本発明は、充電電流制御回路、および充電電流制御装置に関し、例えば、電源投入時における平滑コンデンサへの過大な充電電流(所謂、突入電流)の流入を抑制する充電電流制御回路、および充電電流制御装置に関する。 The present invention relates to a charging current control circuit and a charging current control device, for example, a charging current control circuit for suppressing an inflow of an excessive charging current (so-called inrush current) into a smoothing capacitor when power is turned on, and charging current control Relates to the device.
 交流電源を整流回路で整流し、平滑コンデンサで脈流を抑えた直流電圧を生成する電源回路において、交流電源投入時における突入電流を抑制する機能を有する種々の電源回路が提案されている。 Various power supply circuits having a function of suppressing an inrush current when an AC power supply is turned on have been proposed in a power supply circuit that rectifies an AC power supply with a rectifier circuit and generates a DC voltage in which a pulsating current is suppressed with a smoothing capacitor.
 特許文献1は、整流回路および平滑コンデンサの間に並列接続された限流抵抗およびサイリスタと、そのサイリスタの点孤位相を制御するトランジスタと、を備える電源回路を開示する。平滑コンデンサに全波整流電圧を印加する経路を、限流抵抗からサイリスタに切り替えるタイミングは、点孤位相を制御するトランジスタにより行われる。 Patent Document 1 discloses a power supply circuit including a current-limiting resistor and a thyristor connected in parallel between a rectifier circuit and a smoothing capacitor, and a transistor for controlling the arc-phase of the thyristor. The timing for switching the path for applying the full-wave rectified voltage to the smoothing capacitor from the current limiting resistor to the thyristor is performed by a transistor that controls the arc-phase.
 特許文献2は、整流回路および平滑コンデンサの間に並列接続された限流抵抗およびサイリスタと、サイリスタのゲート端子に導通電圧を供給する容量と、を備えるスイッチング電源回路を開示する。 Patent Document 2 discloses a switching power supply circuit including a current limiting resistor and a thyristor connected in parallel between a rectifier circuit and a smoothing capacitor, and a capacitor for supplying a conduction voltage to the gate terminal of the thyristor.
 特許文献3は、整流ダイオードおよび平滑コンデンサの間に並列接続された限流抵抗およびサイリスタと、当該サイリスタのゲート電圧を制御する時限回路と、を備えるスイッチング電源を開示する。時限回路は、脈流出力電圧を分圧する分圧抵抗と、その分圧抵抗とともに時限回路を形成する遅延用コンデンサで構成される。 Patent Document 3 discloses a switching power supply including a current limiting resistor and a thyristor connected in parallel between a rectifier diode and a smoothing capacitor, and a time limit circuit for controlling the gate voltage of the thyristor. The time limit circuit includes a voltage dividing resistor that divides the pulsating output voltage and a delay capacitor that forms a time limit circuit together with the voltage dividing resistor.
特開昭63-224666号公報JP-A 63-224666 特開2012-157221号公報JP 2012-157221 A 実用新案登録第2546843号公報Utility Model Registration No. 2546843
 特許文献1および特許文献2が開示する電源回路は、いずれも、サイリスタのゲートに点孤用コンデンサを接続し、その点孤用コンデンサをトランスで生成した電力で充電することで、電源投入後にサイリスタを点孤させている。そのため、サイリスタのゲート点孤用のトランスが必要となり、電源回路の複雑化や大型化を招く。特許文献3が開示するスイッチング電源は、サイリスタのゲートに点孤用コンデンサを接続し、その点孤用コンデンサを入力電圧で充電することで、サイリスタを点孤させている。そのため、サイリスタの点孤タイミングが入力電圧の変動の影響を受け、バラツキが大きくなる。また、突入電流を抑制する回路をモジュール化する場合は、接続端子数が増加するため、主配線基板の配線が複雑になる。その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。 The power circuits disclosed in Patent Document 1 and Patent Document 2 are both connected to a thyristor gate at the gate of the thyristor, and the thyristor is charged with power generated by a transformer so that the thyristor is turned on after the power is turned on. Is confused. For this reason, a transformer for isolating the gate point of the thyristor is necessary, which causes the power supply circuit to become complicated and large. In the switching power supply disclosed in Patent Document 3, a thyristor is lit by connecting a lone capacitor to the gate of the thyristor and charging the lone capacitor with an input voltage. As a result, the timing of the thyristor's point-to-point is affected by fluctuations in the input voltage, resulting in large variations. Further, when the circuit for suppressing the inrush current is modularized, the number of connection terminals increases, and the wiring of the main wiring board becomes complicated. Other problems and novel features will become apparent from the description of the specification and the accompanying drawings.
 本発明は、整流回路で充電される平滑コンデンサの充電電流を制御する充電電流制御回路であって、整流回路の出力電圧が印加される第1ノードと、平滑コンデンサの正極と接続される第2ノードと、第1ノードおよび第2ノードに、それぞれ、第1電極および第2電極が接続される第1スイッチング素子と、第3電極が第1ノードと電気的に接続され、第4電極が第1スイッチング素子の第1制御電極と接続される第2スイッチング素子と、第2スイッチング素子の第3電極、および第2ノード間に接続され、第2スイッチング素子の第2制御電極へ導通制御信号を出力するタイミング制御回路と、を備え、タイミング制御回路は、第1ノードに印加された電圧で充電される第1タイミング容量と、第1タイミング容量の蓄積電荷を放電する第1放電抵抗を含むとともに、第1タイミング容量の電圧に基づき、導通制御信号を生成し、導通制御信号の値が、第2スイッチング素子の閾値電圧以上になると、第2スイッチング素子、および第1スイッチング素子は、順次、非導通状態から導通状態に変化し、導通制御信号の値が、第2スイッチング素子の閾値電圧未満になると、第2スイッチング素子、および第1スイッチング素子は、導通状態から非導通状態に変化する、充電電流制御回路である。 The present invention is a charging current control circuit for controlling a charging current of a smoothing capacitor charged by a rectifying circuit, and a second node connected to a first node to which an output voltage of the rectifying circuit is applied and a positive electrode of the smoothing capacitor. A first switching element connected to the first node and the second node, the third electrode is electrically connected to the first node, and the fourth electrode is connected to the first node and the second node, respectively; A second switching element connected to the first control electrode of the first switching element; a third electrode of the second switching element; and a second node connected to the second control electrode of the second switching element. A timing control circuit for outputting, wherein the timing control circuit discharges a first timing capacitor charged with a voltage applied to the first node and a charge accumulated in the first timing capacitor. A conduction control signal is generated based on the voltage of the first timing capacitor, and when the value of the conduction control signal is equal to or higher than the threshold voltage of the second switching element, The one switching element sequentially changes from the non-conduction state to the conduction state, and when the value of the conduction control signal becomes less than the threshold voltage of the second switching element, the second switching element and the first switching element are changed from the conduction state. It is a charging current control circuit which changes to a non-conduction state.
 本発明は、充電電流制御装置であって、第1端子、第2端子、および配線基板を備え、配線基板には、整流回路の出力電圧が印加される第1ノードと、平滑コンデンサの正極と接続される第2ノードと、第1ノードおよび第2ノードに、それぞれ、第1電極および第2電極が接続される第1スイッチング素子と、第3電極が第1ノードと電気的に接続され、第4電極が第1スイッチング素子の第1制御電極と接続される第2スイッチング素子と、第2スイッチング素子の第3電極、および第2ノード間に接続され、第2スイッチング素子の第2制御電極へ導通制御信号を出力するタイミング制御回路と、を備え、タイミング制御回路は、第1ノードに印加された電圧で充電される第1タイミング容量と、第1タイミング容量の蓄積電荷を放電する第1放電抵抗を含むとともに、第1タイミング容量の電圧に基づき、導通制御信号を生成し、導通制御信号の値が、第2スイッチング素子の閾値電圧以上になると、第2スイッチング素子、および第1スイッチング素子は、順次、非導通状態から導通状態に変化し、導通制御信号の値が、第2スイッチング素子の閾値電圧未満になると、第2スイッチング素子、および第1スイッチング素子は、導通状態から非導通状態に変化し、第1端子、および第2端子は、それぞれ、第1ノード、および第2ノードと接続される、充電電流制御装置である。 The present invention is a charging current control device comprising a first terminal, a second terminal, and a wiring board, wherein the wiring board has a first node to which an output voltage of a rectifier circuit is applied, a positive electrode of a smoothing capacitor, A first switching element to which the first electrode and the second electrode are connected to the second node to be connected, the first node and the second node, respectively, and a third electrode to be electrically connected to the first node; A second switching element connected to the first control electrode of the first switching element; a third electrode of the second switching element; and a second control electrode of the second switching element connected between the second node. A timing control circuit that outputs a conduction control signal to the first node, the timing control circuit discharging a charge stored in the first timing capacitor and a first timing capacitor charged with a voltage applied to the first node. A conduction control signal is generated based on the voltage of the first timing capacitor, and when the value of the conduction control signal is equal to or higher than the threshold voltage of the second switching element, The one switching element sequentially changes from the non-conduction state to the conduction state, and when the value of the conduction control signal becomes less than the threshold voltage of the second switching element, the second switching element and the first switching element are changed from the conduction state. The charging current control device is changed to a non-conduction state, and the first terminal and the second terminal are connected to the first node and the second node, respectively.
 前記一実施の形態によれば、電源投入後にサイリスタのゲート点孤用のトランスが不要で、サイリスタの点孤タイミングに対する入力電圧の変動の影響が抑制された充電電流制御回路と、主配線基板との接続端子数が最小限に抑えられた充電電流制御装置を実現することが可能となる。 According to the embodiment, a charging current control circuit that does not require a transformer for the gate point of the thyristor after turning on the power and suppresses the influence of the fluctuation of the input voltage on the timing of the point of the thyristor, the main wiring board, Thus, it is possible to realize a charging current control device in which the number of connection terminals is minimized.
実施の形態1に係る充電電流制御回路を含む交流直流変換回路の回路図である。2 is a circuit diagram of an AC / DC converter circuit including a charging current control circuit according to Embodiment 1. FIG. 実施の形態2に係る充電電流制御回路を含む交流直流変換回路の回路図である。5 is a circuit diagram of an AC / DC converter circuit including a charging current control circuit according to Embodiment 2. FIG. 実施の形態3に係る充電電流制御回路を含む交流直流変換回路の回路図である。6 is a circuit diagram of an AC / DC converter circuit including a charging current control circuit according to Embodiment 3. FIG. 実施の形態4に係る充電電流制御回路を含む交流直流変換回路の回路図である。6 is a circuit diagram of an AC / DC converter circuit including a charging current control circuit according to Embodiment 4. FIG. 実施の形態5に係る充電電流制御回路を含む交流直流変換回路の回路図である。FIG. 10 is a circuit diagram of an AC / DC conversion circuit including a charging current control circuit according to a fifth embodiment. 実施の形態6に係る充電電流制御回路を含む交流直流変換回路の回路図である。FIG. 10 is a circuit diagram of an AC / DC converter circuit including a charging current control circuit according to a sixth embodiment. 実施の形態1~6のいずれかに係る充電電流制御回路を搭載した充電電流制御装置の斜視図である。FIG. 7 is a perspective view of a charging current control device equipped with a charging current control circuit according to any of Embodiments 1 to 6.
 以下、図面を参照しつつ、実施の形態について説明する。実施の形態の説明において、個数、量などに言及する場合、特に記載ある場合を除き、必ずしもその個数、量などに限定されない。実施の形態の図面において、同一の参照符号や参照番号は、同一部分または相当部分を表わすものとする。また、実施の形態の説明において、同一の参照符号等を付した部分等に対しては、重複する説明は繰り返さない場合がある。 Hereinafter, embodiments will be described with reference to the drawings. In the description of the embodiment, reference to the number, amount, and the like is not necessarily limited to the number, amount, and the like unless otherwise specified. In the drawings of the embodiments, the same reference numerals and reference numerals represent the same or corresponding parts. Further, in the description of the embodiments, the overlapping description may not be repeated for the portions with the same reference numerals and the like.
 <実施の形態1>
 図1は、実施の形態1に係る充電電流制御回路100を含む交流直流変換回路の回路図である。
<Embodiment 1>
FIG. 1 is a circuit diagram of an AC / DC converter circuit including a charging current control circuit 100 according to the first embodiment.
 交流直流変換回路は、入力された交流電圧Vinを整流して直流電圧を出力するダイオードブリッジDb、制限抵抗Rp、平滑コンデンサCs、および充電電流制御回路100を備える。ダイオードブリッジDbが出力する直流電圧は、制限抵抗Rpを経由して、平滑コンデンサCsの一端に印加される。ダイオードブリッジDbにおいて、直流電圧を出力する側と対向する側、および平滑コンデンサCsの他端には、接地電圧GNDが印加される。制限抵抗Rpは、一例として、正特性サーミスタ(PTC)が適用される。 The AC / DC conversion circuit includes a diode bridge Db that rectifies an input AC voltage Vin and outputs a DC voltage, a limiting resistor Rp, a smoothing capacitor Cs, and a charging current control circuit 100. The DC voltage output from the diode bridge Db is applied to one end of the smoothing capacitor Cs via the limiting resistor Rp. In the diode bridge Db, the ground voltage GND is applied to the side facing the side that outputs a DC voltage and the other end of the smoothing capacitor Cs. For example, a positive temperature coefficient thermistor (PTC) is applied to the limiting resistor Rp.
 充電電流制御回路100は、ノードN1、ノードN2、第1スイッチング素子SCR1、第2スイッチング素子SCR2、抵抗R1、抵抗Rg、容量C0、タイミング制御回路10、および第1電圧クランプ素子Znr1を含む。タイミング制御回路10は、抵抗Rc1、第1放電抵抗Rc2、ダイオードD1、および第1タイミング容量C1を有し、第2スイッチング素子SCR2の導通状態を制御する導通制御信号Sgを出力する。第1スイッチング素子SCR1および第2スイッチング素子SCR2は、いずれも、サイリスタ(SCR)であり、第1電圧クランプ素子Znr1は、ツェナーダイオード、またはダイアック(DIAC)である。 The charging current control circuit 100 includes a node N1, a node N2, a first switching element SCR1, a second switching element SCR2, a resistor R1, a resistor Rg, a capacitor C0, a timing control circuit 10, and a first voltage clamp element Znr1. The timing control circuit 10 includes a resistor Rc1, a first discharge resistor Rc2, a diode D1, and a first timing capacitor C1, and outputs a conduction control signal Sg that controls the conduction state of the second switching element SCR2. The first switching element SCR1 and the second switching element SCR2 are both thyristors (SCR), and the first voltage clamp element Znr1 is a Zener diode or a diac (DIAC).
 第1スイッチング素子SCR1のアノードおよびカソードは、それぞれ、ノードN1およびノードN2と接続される。制限抵抗Rpの一端および他端も、それぞれ、ノードN1およびノードN2と接続される。第1スイッチング素子SCR1および制限抵抗Rpは、並列に接続される。第1スイッチング素子SCR1のゲートとカソード間に容量C0を接続することで、第1スイッチング素子SCR1のノイズ耐性が向上する。 The anode and cathode of the first switching element SCR1 are connected to the node N1 and the node N2, respectively. One end and the other end of the limiting resistor Rp are also connected to the node N1 and the node N2, respectively. The first switching element SCR1 and the limiting resistor Rp are connected in parallel. By connecting the capacitor C0 between the gate and the cathode of the first switching element SCR1, the noise resistance of the first switching element SCR1 is improved.
 第2スイッチング素子SCR2のアノードは、抵抗R1を経由して、ノードN1と接続される。抵抗R1の値は、第2スイッチング素子SCR2のアノードに印加する電圧が最適値となるように選択される。第2スイッチング素子SCR2のカソード、およびゲートは、それぞれ、第1スイッチング素子SCR1のゲートおよび、抵抗Rgの一端と接続される。 The anode of the second switching element SCR2 is connected to the node N1 via the resistor R1. The value of the resistor R1 is selected so that the voltage applied to the anode of the second switching element SCR2 becomes an optimum value. The cathode and gate of second switching element SCR2 are connected to the gate of first switching element SCR1 and one end of resistor Rg, respectively.
 タイミング制御回路10は、第2スイッチング素子SCR2のアノードとノードN2間に配置される。タイミング制御回路10において、抵抗Rc1の一端、および他端は、それぞれ、第2スイッチング素子SCR2のアノード、およびダイオードD1のアノードと接続される。ダイオードD1のアノードは、抵抗Rgの他端と接続され、その接続ノードから導通制御信号Sgを出力する。ダイオードD1のカソードとノードN2間には、第1タイミング容量C1および第1放電抵抗Rc2が並列接続される。 The timing control circuit 10 is disposed between the anode of the second switching element SCR2 and the node N2. In the timing control circuit 10, one end and the other end of the resistor Rc1 are connected to the anode of the second switching element SCR2 and the anode of the diode D1, respectively. The anode of the diode D1 is connected to the other end of the resistor Rg, and the conduction control signal Sg is output from the connection node. A first timing capacitor C1 and a first discharge resistor Rc2 are connected in parallel between the cathode of the diode D1 and the node N2.
 タイミング制御回路10において、この直列接続された抵抗Rc1および第1タイミング容量C1は、後述の通り、第2スイッチング素子SCR2が非導通状態から導通状態に変化するタイミングを決定する。さらに、並列接続された第1タイミング容量C1および第1放電抵抗Rc2は、第2スイッチング素子SCR2が導通状態から非導通状態に変化するタイミングを決定する。 In the timing control circuit 10, the resistor Rc1 and the first timing capacitor C1 connected in series determine the timing at which the second switching element SCR2 changes from the non-conductive state to the conductive state, as will be described later. Further, the first timing capacitor C1 and the first discharge resistor Rc2 connected in parallel determine the timing at which the second switching element SCR2 changes from the conductive state to the non-conductive state.
 第1電圧クランプ素子Znr1は、タイミング制御回路10に印加される電圧を制限し、電源電圧の変動などによる第1タイミング容量C1の充電時間の変動を抑制するために接続される。 The first voltage clamp element Znr1 is connected to limit the voltage applied to the timing control circuit 10 and to suppress fluctuations in the charging time of the first timing capacitor C1 due to fluctuations in the power supply voltage or the like.
 図1を参照して、充電電流制御回路100の動作を説明する。
 最初に、電源投入時における充電電流制御回路100の動作を説明する。
The operation of the charging current control circuit 100 will be described with reference to FIG.
First, the operation of the charging current control circuit 100 when the power is turned on will be described.
 ダイオードブリッジDbに交流電圧Vinを印加する、即ち、交流直流変換回路に電源投入すると、ダイオードブリッジDbは、交流電圧Vinを全波整流した直流電圧の生成を開始する。この直流電圧は、最大電圧値が交流電圧Vinの振幅値まで上昇するリップルを有する。ダイオードブリッジDbが出力する直流電圧は、制限抵抗Rpを経由して、平滑コンデンサCsに印加され、平滑コンデンサCsの充電を開始する。制限抵抗Rpの値は、電源投入直後の突入電流により、図1の交流直流変換回路がダメージを受けない値に設定される。 When the AC voltage Vin is applied to the diode bridge Db, that is, when the AC / DC converter circuit is powered on, the diode bridge Db starts generating a DC voltage obtained by full-wave rectifying the AC voltage Vin. This DC voltage has a ripple whose maximum voltage value rises to the amplitude value of the AC voltage Vin. The DC voltage output from the diode bridge Db is applied to the smoothing capacitor Cs via the limiting resistor Rp, and charging of the smoothing capacitor Cs is started. The value of the limiting resistor Rp is set to a value that does not damage the AC / DC converter circuit of FIG. 1 due to the inrush current immediately after the power is turned on.
 平滑コンデンサCsの充電が進行するに従い、平滑コンデンサCsの充電電流は、減少する。また、交流直流変換回路に異常が発生していない場合、制限抵抗Rpの値は、平滑コンデンサCsが満充電状態に達するまで、ほぼ変化しない。即ち、正特性サーミスタ特性を備える制限抵抗Rpの抵抗値は、一定的なジュール熱を吸収しても、増加しない。その結果、平滑コンデンサCsに印加される直流電圧のピーク値および平滑コンデンサCsの充電電流は、それぞれ、一定値に収束する。一方、充電電流制御回路100のノードN1およびノードN2間には、制限抵抗Rpの両端に発生する電圧が印加され、タイミング制御回路10には、第1電圧クランプ素子Znr1でクランプされたノードN1の電圧が印加される。 As the charging of the smoothing capacitor Cs proceeds, the charging current of the smoothing capacitor Cs decreases. Further, when no abnormality has occurred in the AC / DC converter circuit, the value of the limiting resistor Rp hardly changes until the smoothing capacitor Cs reaches the fully charged state. That is, the resistance value of the limiting resistor Rp having a positive thermistor characteristic does not increase even when absorbing a constant Joule heat. As a result, the peak value of the DC voltage applied to the smoothing capacitor Cs and the charging current of the smoothing capacitor Cs each converge to a constant value. On the other hand, a voltage generated at both ends of the limiting resistor Rp is applied between the node N1 and the node N2 of the charging current control circuit 100, and the timing control circuit 10 has the node N1 clamped by the first voltage clamp element Znr1. A voltage is applied.
 タイミング制御回路10にノードN1の電圧が印加されると、抵抗R1および抵抗Rc1を経由して、第1タイミング容量C1の充電が開始される。第1タイミング容量C1の充電時間は、充電電圧の時定数を決定する抵抗Rc1、第1放電抵抗Rc2、および第1タイミング容量C1の各値と、タイミング制御回路10に印加される電圧値に依存する。第1タイミング容量C1の充電期間において、ノードN1の電圧変動による第1タイミング容量C1の放電は、ダイオードD1により阻止される。 When the voltage of the node N1 is applied to the timing control circuit 10, charging of the first timing capacitor C1 is started via the resistor R1 and the resistor Rc1. The charging time of the first timing capacitor C1 depends on the values of the resistor Rc1, the first discharge resistor Rc2, and the first timing capacitor C1 that determine the time constant of the charging voltage, and the voltage value applied to the timing control circuit 10. To do. During the charging period of the first timing capacitor C1, discharging of the first timing capacitor C1 due to voltage fluctuation at the node N1 is blocked by the diode D1.
 第1タイミング容量C1の充電が進行し、導通制御信号Sgの値が、第2スイッチング素子SCR2の閾値電圧を超えると、第2スイッチング素子SCR2は、非導通状態から導通状態に変化し、第1スイッチング素子SCR1のゲート電圧を上昇させる。第2スイッチング素子SCR2のカソード電圧が、第1スイッチング素子SCR1の閾値電圧を超えると、第1スイッチング素子SCR1が導通状態に変化し、ノードN1およびノードN2間は、制限抵抗Rpの値より低インピーダンスに設定された第1スイッチング素子SCR1により接続される。 When charging of the first timing capacitor C1 proceeds and the value of the conduction control signal Sg exceeds the threshold voltage of the second switching element SCR2, the second switching element SCR2 changes from the non-conduction state to the conduction state, and the first The gate voltage of the switching element SCR1 is increased. When the cathode voltage of the second switching element SCR2 exceeds the threshold voltage of the first switching element SCR1, the first switching element SCR1 changes to a conductive state, and the impedance between the node N1 and the node N2 is lower than the value of the limiting resistor Rp. Are connected by the first switching element SCR1 set to.
 上述の通り、ノードN1およびノードN2間の電圧は、電源投入時以降、低下するため、ノードN1およびノードN2間の導通経路を、制限抵抗Rpから第1スイッチング素子SCR1に切り替えるタイミング設定が重要となる。つまり、切り替えタイミングが早すぎると、第1スイッチング素子SCR1を経由した突入電流による交流直流変換回路へのダメージが発生し、切り替えタイミングが遅すぎる場合は、制限抵抗Rpの発熱や、この発熱による制限抵抗Rpの抵抗値増加に起因するシステムダウンが懸念される。 As described above, since the voltage between the node N1 and the node N2 decreases after the power is turned on, it is important to set the timing for switching the conduction path between the node N1 and the node N2 from the limiting resistor Rp to the first switching element SCR1. Become. That is, if the switching timing is too early, damage to the AC / DC converter circuit due to the inrush current via the first switching element SCR1 occurs, and if the switching timing is too late, the limiting resistor Rp generates heat or is limited by this heating. There is a concern that the system may be down due to an increase in the resistance value of the resistor Rp.
 タイミング制御回路10によれば、抵抗Rc1および第1タイミング容量C1の値を適宜設定することで、ノードN1およびノードN2間の導通経路を、制限抵抗Rpから第1スイッチング素子SCR1へ、スムーズに切り替えることが可能となる。さらに、タイミング制御回路10に印加される電圧を、第1電圧クランプ素子Znr1で一定値にクランプすることで、ノードN1の電圧変動に起因する第1タイミング容量C1の充電時間の変動を最小限に抑えることが可能となる。 According to the timing control circuit 10, by appropriately setting the values of the resistor Rc1 and the first timing capacitor C1, the conduction path between the node N1 and the node N2 is smoothly switched from the limiting resistor Rp to the first switching element SCR1. It becomes possible. Further, the voltage applied to the timing control circuit 10 is clamped to a constant value by the first voltage clamp element Znr1, thereby minimizing the variation in the charging time of the first timing capacitor C1 due to the voltage variation at the node N1. It becomes possible to suppress.
 次に、電源遮断時における充電電流制御回路100の動作を説明する。
 図1に示される交流直流変換回路において、ダイオードブリッジDbが、第1スイッチング素子SCR1を経由して、平滑コンデンサCsを充電している時に、交流電圧Vinの供給が一時的に遮断されると、その遮断時間に亘り、平滑コンデンサCsが蓄積する電荷は、負荷(図示せず)への放電により減少し、平滑コンデンサCsの電圧は低下する。その後、交流電圧Vinの供給が再開された時に、充電電流制御回路100の第1スイッチング素子SCR1が導通状態を維持していると、ダイオードブリッジDbから、第1スイッチング素子SCR1を経由して、平滑コンデンサCsへ突入電流が流れる。従って、ダイオードブリッジDbが直流電圧の出力を停止した場合、その後の交流電圧Vinの供給再開に備え、第1スイッチング素子SCR1を速やかに非導通状態に設定する必要がある。
Next, the operation of the charging current control circuit 100 when the power is turned off will be described.
In the AC / DC conversion circuit shown in FIG. 1, when the diode bridge Db is charging the smoothing capacitor Cs via the first switching element SCR1, the supply of the AC voltage Vin is temporarily interrupted. Over the cutoff time, the charge accumulated in the smoothing capacitor Cs decreases due to discharge to a load (not shown), and the voltage of the smoothing capacitor Cs decreases. After that, when the supply of the AC voltage Vin is resumed, if the first switching element SCR1 of the charging current control circuit 100 is maintained in the conductive state, the smoothing is performed from the diode bridge Db via the first switching element SCR1. Inrush current flows to the capacitor Cs. Therefore, when the diode bridge Db stops outputting the DC voltage, it is necessary to quickly set the first switching element SCR1 to the non-conductive state in preparation for the resumption of the supply of the AC voltage Vin thereafter.
 充電電流制御回路100において、タイミング制御回路10が有する並列接続された第1タイミング容量C1および第1放電抵抗Rc2は、第2スイッチング素子SCR2を導通状態から非導通状態に設定するタイミング回路として動作する。即ち、ダイオードブリッジDbがタイミング制御回路10への直流電圧の供給を停止すると、第1タイミング容量C1が蓄積する電荷は、第1放電抵抗Rc2を経由して放電され、第1タイミング容量C1の電圧は急速に低下する。この第1タイミング容量C1の放電時間は、放電電圧の時定数を決定する第1放電抵抗Rc2および第1タイミング容量C1の各値に依存する。第1タイミング容量C1の電圧低下により、導通制御信号Sgの値が第2スイッチング素子SCR2の閾値電圧より低下すると、第2スイッチング素子SCR2は、導通状態から非導通状態に変化する。さらに、第1スイッチング素子SCR1も、非導通状態に設定される。 In the charging current control circuit 100, the first timing capacitor C1 and the first discharge resistor Rc2 connected in parallel included in the timing control circuit 10 operate as a timing circuit that sets the second switching element SCR2 from the conductive state to the non-conductive state. . That is, when the diode bridge Db stops supplying the DC voltage to the timing control circuit 10, the charge accumulated in the first timing capacitor C1 is discharged via the first discharge resistor Rc2, and the voltage of the first timing capacitor C1 Declines rapidly. The discharge time of the first timing capacitor C1 depends on the values of the first discharge resistor Rc2 and the first timing capacitor C1 that determine the time constant of the discharge voltage. When the value of the conduction control signal Sg falls below the threshold voltage of the second switching element SCR2 due to the voltage drop of the first timing capacitor C1, the second switching element SCR2 changes from the conduction state to the non-conduction state. Furthermore, the first switching element SCR1 is also set to a non-conduction state.
 従って、タイミング制御回路10によれば、第1放電抵抗Rc2および第1タイミング容量C1の値を適宜設定することで、想定される電源遮断時間内に、第2スイッチング素子SCR2および第1スイッチング素子SCR1を導通状態から非導通状態に設定することが可能となる。 Therefore, according to the timing control circuit 10, by appropriately setting the values of the first discharge resistor Rc2 and the first timing capacitor C1, the second switching element SCR2 and the first switching element SCR1 are within the assumed power-off time. Can be set from the conductive state to the non-conductive state.
 充電電流制御回路100の効果を説明する。
 充電電流制御回路100は、タイミング制御回路10が出力する導通制御信号Sgに基づき、ダイオードブリッジDbが出力する直流電圧を平滑コンデンサCsへ供給する導通経路を、制限抵抗Rpから第1スイッチング素子SCR1へ切り替える。この導通経路の切り替えは、抵抗および容量の値で定まる時定数で変化する導通制御信号Sgに基づき行われる。構造が複雑なインダクタを使用する従来の一般的な構成に代えて、抵抗や容量という小型の電子部品で構成することで、充電電流制御回路の小型化・低価格化が実現される。
The effect of the charging current control circuit 100 will be described.
Based on the conduction control signal Sg output from the timing control circuit 10, the charging current control circuit 100 provides a conduction path for supplying the DC voltage output from the diode bridge Db to the smoothing capacitor Cs from the limiting resistor Rp to the first switching element SCR1. Switch. The switching of the conduction path is performed based on a conduction control signal Sg that changes with a time constant determined by the values of resistance and capacitance. Instead of the conventional general configuration using an inductor having a complicated structure, the charging current control circuit can be reduced in size and price by being configured with small electronic components such as resistors and capacitors.
 タイミング制御回路10は、交流直流変換回路への電源投入時に加え、電源遮断時にも、導通制御信号Sgに基づき、第1スイッチング素子SCR1の導通状態を制御する。具体的には、電源遮断が発生すると、タイミング制御回路10は、導通状態にある第1スイッチング素子SCR1を、速やかに非導通状態に設定する。これにより、電源投入時に加え、電源復帰時においても、突入電流の発生が抑制される。 The timing control circuit 10 controls the conduction state of the first switching element SCR1 based on the conduction control signal Sg not only when the AC / DC converter circuit is turned on but also when the power is turned off. Specifically, when the power interruption occurs, the timing control circuit 10 quickly sets the first switching element SCR1 in the conductive state to the non-conductive state. As a result, the occurrence of inrush current is suppressed not only when the power is turned on but also when the power is restored.
 充電電流制御回路100は、ダイオードブリッジDbが出力する直流電圧を、第1電圧クランプ素子Znr1でクランプして、タイミング制御回路10に印加する。これにより、第2スイッチング素子SCR2の導通タイミングが、電源電圧や突入位相の変動による影響を低減することが可能となる。また、タイミング制御回路10に印加される電源電圧の最大値は、第1電圧クランプ素子Znr1の降伏電圧を超えることがないので、タイミング制御回路10を構成する電子部品の耐圧を下げることが出来、電子部品の小型化や低価格化が可能となる。 The charging current control circuit 100 clamps the DC voltage output from the diode bridge Db with the first voltage clamp element Znr1, and applies it to the timing control circuit 10. Thereby, it is possible to reduce the influence of the conduction timing of the second switching element SCR2 due to fluctuations in the power supply voltage and the inrush phase. Further, since the maximum value of the power supply voltage applied to the timing control circuit 10 does not exceed the breakdown voltage of the first voltage clamp element Znr1, the withstand voltage of the electronic components constituting the timing control circuit 10 can be lowered. Electronic parts can be reduced in size and price.
 <実施の形態2>
 図2は、実施の形態2に係る充電電流制御回路200を含む交流直流変換回路の回路図である。
<Embodiment 2>
FIG. 2 is a circuit diagram of an AC / DC conversion circuit including the charging current control circuit 200 according to the second embodiment.
 図2において、図1と同一の符号が付されたものは、同一の機能または構成を有し、それらの重複説明は、省略する。図2に示される充電電流制御回路200は、図1に示される充電電流制御回路100において、第2スイッチング素子SCR2を、電界効果トランジスタFETに置き換えるとともに、第2電圧クランプ素子Znr2を追加した構成に相当する。第2電圧クランプ素子Znr2は、例えば、ツェナーダイオード、またはダイアックである。 In FIG. 2, the same reference numerals as those in FIG. 1 have the same functions or configurations, and the duplicate description thereof is omitted. The charging current control circuit 200 shown in FIG. 2 has a configuration in which, in the charging current control circuit 100 shown in FIG. 1, the second switching element SCR2 is replaced with a field effect transistor FET and a second voltage clamp element Znr2 is added. Equivalent to. The second voltage clamp element Znr2 is, for example, a Zener diode or a diac.
 充電電流制御回路200において、電界効果トランジスタFETのドレインは、抵抗R1を経由して、ノードN1と接続される。電界効果トランジスタFETのソースは、第1スイッチング素子SCR1のゲートと接続される。電界効果トランジスタFETのゲートは、タイミング制御回路10が有するダイオードD1のアノード、および第2電圧クランプ素子Znr2のカソードと接続され、導通制御信号Sgが印加される。第2電圧クランプ素子Znr2のアノードは、ノードN2と接続される。第2電圧クランプ素子Znr2は、高電圧による電界効果トランジスタFETのゲート破壊を防止するためのゲート保護素子である。 In the charging current control circuit 200, the drain of the field effect transistor FET is connected to the node N1 via the resistor R1. The source of the field effect transistor FET is connected to the gate of the first switching element SCR1. The gate of the field effect transistor FET is connected to the anode of the diode D1 included in the timing control circuit 10 and the cathode of the second voltage clamp element Znr2, and the conduction control signal Sg is applied. The anode of the second voltage clamp element Znr2 is connected to the node N2. The second voltage clamp element Znr2 is a gate protection element for preventing gate breakdown of the field effect transistor FET due to high voltage.
 充電電流制御回路200の動作を説明する。
 交流電圧Vinが印加されたダイオードブリッジDbは、制限抵抗Rpを経由して、平滑コンデンサCsの充電を開始する。タイミング制御回路10のノードN1およびノードN2間には、制限抵抗Rpの両端に発生する電圧が印加され、タイミング制御回路10には、第1電圧クランプ素子Znr1でクランプされたノードN1の電圧が印加される。
The operation of the charging current control circuit 200 will be described.
The diode bridge Db to which the AC voltage Vin is applied starts charging the smoothing capacitor Cs via the limiting resistor Rp. A voltage generated at both ends of the limiting resistor Rp is applied between the node N1 and the node N2 of the timing control circuit 10, and the voltage of the node N1 clamped by the first voltage clamp element Znr1 is applied to the timing control circuit 10. Is done.
 タイミング制御回路10における第1タイミング容量C1の充電電圧が増加し、導通制御信号Sgの値が、電界効果トランジスタFETの閾値電圧を超えると、第1スイッチング素子SCR1は、非導通状態から導通状態に変化する。第1スイッチング素子SCR1が導通状態に変化すると、ノードN1およびノードN2間の導通経路は、制限抵抗Rpの値より低インピーダンス状態に設定された第1スイッチング素子SCR1に切り替わる。さらに、電源遮断により、導通制御信号Sgの値が電界効果トランジスタFETの閾値電圧より低下すると、電界効果トランジスタFETは、非導通状態となり、その結果、電界効果トランジスタFETおよび第1スイッチング素子SCR1は、導通状態から非導通状態に変化する。 When the charging voltage of the first timing capacitor C1 in the timing control circuit 10 increases and the value of the conduction control signal Sg exceeds the threshold voltage of the field effect transistor FET, the first switching element SCR1 changes from the non-conduction state to the conduction state. Change. When the first switching element SCR1 changes to the conductive state, the conductive path between the node N1 and the node N2 is switched to the first switching element SCR1 set to a lower impedance state than the value of the limiting resistor Rp. Further, when the value of the conduction control signal Sg drops below the threshold voltage of the field effect transistor FET due to power shutdown, the field effect transistor FET becomes non-conductive, and as a result, the field effect transistor FET and the first switching element SCR1 It changes from the conductive state to the non-conductive state.
 充電電流制御回路200の効果を説明する。
 充電電流制御回路100の第2スイッチング素子SCR2として、サイリスタよりスイッチング速度が高速な電界効果トランジスタFETを適用することで、第1スイッチング素子SCR1の導通状態の切り替え速度を、より高速化することが可能となる。
The effect of the charging current control circuit 200 will be described.
As the second switching element SCR2 of the charging current control circuit 100, by applying a field effect transistor FET whose switching speed is higher than that of the thyristor, the switching speed of the conduction state of the first switching element SCR1 can be further increased. It becomes.
 <実施の形態3>
 図3は、実施の形態3に係る充電電流制御回路300を含む交流直流変換回路の回路図である。
<Embodiment 3>
FIG. 3 is a circuit diagram of an AC / DC converter circuit including a charging current control circuit 300 according to the third embodiment.
 図3において、図1と同一の符号が付されたものは、同一の機能または構成を有し、それらの重複説明は、省略する。図3に示される充電電流制御回路300は、図1に示される充電電流制御回路100において、第2スイッチング素子SCR2を、npn型のバイポーラトランジスタTR1に置き換えた構成に相当する。 In FIG. 3, components having the same reference numerals as those in FIG. 1 have the same functions or configurations, and redundant description thereof will be omitted. The charging current control circuit 300 shown in FIG. 3 corresponds to a configuration in which the second switching element SCR2 is replaced with an npn bipolar transistor TR1 in the charging current control circuit 100 shown in FIG.
 充電電流制御回路300において、バイポーラトランジスタTR1のコレクタは、抵抗R1を経由して、ノードN1と接続される。バイポーラトランジスタTR1のベースには、抵抗Rbを経由して、タイミング制御回路10が出力する導通制御信号Sgが印加される。バイポーラトランジスタTR1のエミッタは、第1スイッチング素子SCR1のゲートと接続される。 In the charging current control circuit 300, the collector of the bipolar transistor TR1 is connected to the node N1 via the resistor R1. A conduction control signal Sg output from the timing control circuit 10 is applied to the base of the bipolar transistor TR1 via the resistor Rb. The emitter of the bipolar transistor TR1 is connected to the gate of the first switching element SCR1.
 ダイオードブリッジDbが平滑コンデンサCsの充電を開始し、タイミング制御回路10における第1タイミング容量C1の充電電圧が増加すると、導通制御信号Sgの値も増加する。導通制御信号Sgの値が、バイポーラトランジスタTR1のベース・エミッタ間の順方向電圧の値を超えると、バイポーラトランジスタTR1は、第1スイッチング素子SCR1のゲート電圧を引き上げる。第1スイッチング素子SCR1が導通状態に変化すると、ノードN1およびノードN2間の導通経路は、制限抵抗Rpの値より低インピーダンス状態に設定された第1スイッチング素子SCR1に切り替わる。 When the diode bridge Db starts charging the smoothing capacitor Cs and the charging voltage of the first timing capacitor C1 in the timing control circuit 10 increases, the value of the conduction control signal Sg also increases. When the value of the conduction control signal Sg exceeds the value of the forward voltage between the base and emitter of the bipolar transistor TR1, the bipolar transistor TR1 raises the gate voltage of the first switching element SCR1. When the first switching element SCR1 changes to the conductive state, the conductive path between the node N1 and the node N2 is switched to the first switching element SCR1 set to a lower impedance state than the value of the limiting resistor Rp.
 さらに、電源遮断により、導通制御信号Sgが、バイポーラトランジスタTR1のベース・エミッタ間に必要な順方向電圧を供給出来なくなると、バイポーラトランジスタTR1は、非導通状態となり、その結果、バイポーラトランジスタTR1および第1スイッチング素子SCR1は、導通状態から非導通状態に変化する。 Further, when the conduction control signal Sg cannot supply the necessary forward voltage between the base and emitter of the bipolar transistor TR1 due to the power interruption, the bipolar transistor TR1 becomes non-conductive, and as a result, the bipolar transistor TR1 and the second transistor TR1. 1 switching element SCR1 changes from a conductive state to a non-conductive state.
 充電電流制御回路300の効果を説明する。
 充電電流制御回路100の第2スイッチング素子SCR2として、サイリスタよりスイッチング速度が高速なバイポーラトランジスタTR1を適用することで、第1スイッチング素子SCR1の導通状態の切り替え速度を、より高速化することが可能となる。
The effect of the charging current control circuit 300 will be described.
As the second switching element SCR2 of the charging current control circuit 100, by applying the bipolar transistor TR1 whose switching speed is higher than that of the thyristor, it is possible to further increase the switching speed of the conduction state of the first switching element SCR1. Become.
 <実施の形態4>
 図4は、実施の形態4に係る充電電流制御回路400を含む交流直流変換回路の回路図である。
<Embodiment 4>
FIG. 4 is a circuit diagram of an AC / DC converter circuit including a charging current control circuit 400 according to the fourth embodiment.
 図4において、図1と同一の符号が付されたものは、同一の機能または構成を有し、それらの重複説明は、省略する。図4に示される充電電流制御回路400は、図1に示される充電電流制御回路100において、タイミング制御回路10を、タイミング制御回路20に置き換えた構成に相当する。タイミング制御回路20は、タイミング制御回路10の応答速度を向上させたものである。 In FIG. 4, components having the same reference numerals as those in FIG. 1 have the same functions or configurations, and redundant description thereof will be omitted. The charging current control circuit 400 shown in FIG. 4 corresponds to a configuration in which the timing control circuit 10 is replaced with the timing control circuit 20 in the charging current control circuit 100 shown in FIG. The timing control circuit 20 improves the response speed of the timing control circuit 10.
 タイミング制御回路20は、タイミング制御回路10と同様に、第2スイッチング素子SCR2のアノードと、ノードN2間に、直列に接続された抵抗Rc1、ダイオードD1、および第1タイミング容量C1を備える。第1放電抵抗Rc2は、pnp型のバイポーラトランジスタTR2(放電スイッチ)を経由して、第1タイミング容量C1と並列に接続される。バイポーラトランジスタTR2が導通状態に設定された場合、第1放電抵抗Rc2は、バイポーラトランジスタTR2のエミッタおよびコレクタを経由して、第1タイミング容量C1と並列に接続され、バイポーラトランジスタTR2が非導通状態に設定された場合、第1放電抵抗Rc2と第1タイミング容量C1の並列接続は、解除される。つまり、バイポーラトランジスタTR2は、第1放電抵抗Rc2による第1タイミング容量C1の放電を制御する放電スイッチとして動作する。 As with the timing control circuit 10, the timing control circuit 20 includes a resistor Rc1, a diode D1, and a first timing capacitor C1 connected in series between the anode of the second switching element SCR2 and the node N2. The first discharge resistor Rc2 is connected in parallel with the first timing capacitor C1 via a pnp bipolar transistor TR2 (discharge switch). When the bipolar transistor TR2 is set to the conductive state, the first discharge resistor Rc2 is connected in parallel with the first timing capacitor C1 via the emitter and collector of the bipolar transistor TR2, and the bipolar transistor TR2 is set to the nonconductive state. When set, the parallel connection of the first discharge resistor Rc2 and the first timing capacitor C1 is released. That is, the bipolar transistor TR2 operates as a discharge switch that controls the discharge of the first timing capacitor C1 by the first discharge resistor Rc2.
 タイミング制御回路20は、さらに、第2スイッチング素子SCR2のアノードとノードN2間に、直列に接続された抵抗Rc3、ダイオードD2、および第2タイミング容量C2と、第2タイミング容量C2と並列に接続された第2放電抵抗Rc4と、を備える。ダイオードD2のカソードと第2タイミング容量C2の接続点は、バイポーラトランジスタTR2のベースと接続される。抵抗Rc3、ダイオードD2、第2タイミング容量C2、および第2放電抵抗Rc4は、タイミング制御回路10と同様の動作を行う。 The timing control circuit 20 is further connected in parallel with the resistor Rc3, the diode D2, the second timing capacitor C2, and the second timing capacitor C2 connected in series between the anode of the second switching element SCR2 and the node N2. And a second discharge resistor Rc4. A connection point between the cathode of the diode D2 and the second timing capacitor C2 is connected to the base of the bipolar transistor TR2. The resistor Rc3, the diode D2, the second timing capacitor C2, and the second discharge resistor Rc4 perform the same operation as the timing control circuit 10.
 ノードN1の電圧が上昇すると、第2タイミング容量C2の充電が開始される。その充電時間は、充電電圧の時定数を決定する抵抗Rc3、第2放電抵抗Rc4、および第2タイミング容量C2の各値に依存する。ダイオードD2のカソード電圧が上昇し、バイポーラトランジスタTR2が非導通状態になると、第1タイミング容量C1と第1放電抵抗Rc2の並列接続は解除される。その結果、第1タイミング容量C1は、抵抗Rc1およびダイオードD1を経由して供給される電流の全てにより、充電される。第1放電抵抗Rc2が第1タイミング容量C1と並列接続されている場合、第1タイミング容量C1に供給される充電電流は、第1放電抵抗Rc2に分流する分だけ減少する。 When the voltage at the node N1 rises, charging of the second timing capacitor C2 is started. The charging time depends on the values of the resistor Rc3, the second discharge resistor Rc4, and the second timing capacitor C2 that determine the time constant of the charging voltage. When the cathode voltage of the diode D2 rises and the bipolar transistor TR2 becomes non-conductive, the parallel connection between the first timing capacitor C1 and the first discharge resistor Rc2 is released. As a result, the first timing capacitor C1 is charged by all of the current supplied via the resistor Rc1 and the diode D1. When the first discharge resistor Rc2 is connected in parallel with the first timing capacitor C1, the charging current supplied to the first timing capacitor C1 is reduced by the amount diverted to the first discharge resistor Rc2.
 従って、第1タイミング容量C1と第1放電抵抗Rc2の並列接続を解除することで、導通制御信号Sgの上昇速度が向上し、第1スイッチング素子SCR1は、より高速に非導通状態から導通状態に変化し、ノードN1およびノードN2間の導通経路の切り替えが高速化される。 Accordingly, by releasing the parallel connection of the first timing capacitor C1 and the first discharge resistor Rc2, the increasing speed of the conduction control signal Sg is improved, and the first switching element SCR1 is changed from the non-conduction state to the conduction state at a higher speed. The speed of switching the conduction path between the node N1 and the node N2 is increased.
 ノードN1の電圧が降下すると、第2タイミング容量C2の放電が開始される。その放電時間は、放電電圧の時定数を決定する第2放電抵抗Rc4および第2タイミング容量C2の各値に依存する。ダイオードD2のカソード電圧が降下し、バイポーラトランジスタTR2が導通状態になると、第1タイミング容量C1および第1放電抵抗Rc2は、並列接続される。その結果、第1タイミング容量C1の放電も開始され、導通制御信号Sgの電圧も低下する。タイミング制御回路20の抵抗Rc1の値は、図1等に示されるタイミング制御回路10の抵抗Rc1の値より小さく設定できるため、タイミング制御回路20は、タイミング制御回路10と比較し、導通制御信号Sgをより早く低下させることが可能となる。 When the voltage at the node N1 drops, the second timing capacitor C2 starts to be discharged. The discharge time depends on the values of the second discharge resistor Rc4 and the second timing capacitor C2 that determine the time constant of the discharge voltage. When the cathode voltage of the diode D2 drops and the bipolar transistor TR2 becomes conductive, the first timing capacitor C1 and the first discharge resistor Rc2 are connected in parallel. As a result, the discharge of the first timing capacitor C1 is also started, and the voltage of the conduction control signal Sg is also lowered. Since the value of the resistor Rc1 of the timing control circuit 20 can be set smaller than the value of the resistor Rc1 of the timing control circuit 10 shown in FIG. 1 and the like, the timing control circuit 20 compares the conduction control signal Sg with the timing control circuit 10. Can be reduced more quickly.
 充電電流制御回路400の効果を説明する。
 充電電流制御回路400が備えるタイミング制御回路20によれば、ノードN1の電圧が上昇している場合に、ノードN1およびノードN2間の導通経路を、制限抵抗Rpから第1スイッチング素子SCR1へ、より速やかに切り替えることが可能となる。
The effect of the charging current control circuit 400 will be described.
According to the timing control circuit 20 included in the charging current control circuit 400, when the voltage at the node N1 is increased, the conduction path between the node N1 and the node N2 is further transferred from the limiting resistor Rp to the first switching element SCR1. It becomes possible to switch quickly.
 <実施の形態5>
 図5は、実施の形態5に係る充電電流制御回路500を含む交流直流変換回路の回路図である。
<Embodiment 5>
FIG. 5 is a circuit diagram of an AC / DC converter circuit including a charging current control circuit 500 according to the fifth embodiment.
 図5において、図2と同一の符号が付されたものは、同一の機能または構成を有し、それらの重複説明は、省略する。図5に示される充電電流制御回路400は、図2に示される充電電流制御回路200において、タイミング制御回路10を、タイミング制御回路20に置き換えた構成に相当する。タイミング制御回路20は、タイミング制御回路10の応答速度を向上させたものである。 In FIG. 5, the same reference numerals as those in FIG. 2 have the same functions or configurations, and duplicate descriptions thereof are omitted. The charging current control circuit 400 shown in FIG. 5 corresponds to a configuration in which the timing control circuit 10 is replaced with the timing control circuit 20 in the charging current control circuit 200 shown in FIG. The timing control circuit 20 improves the response speed of the timing control circuit 10.
 図5のタイミング制御回路20の構成および動作は、図4に示されるタイミング制御回路20と同一である。充電電流制御回路500によれば、ノードN1の電圧が上昇している場合に、ノードN1およびノードN2間の導通経路を、制限抵抗Rpから第1スイッチング素子SCR1へ、より速やかに切り替えることが可能となる。 The configuration and operation of the timing control circuit 20 of FIG. 5 are the same as those of the timing control circuit 20 shown in FIG. According to the charging current control circuit 500, when the voltage at the node N1 is rising, the conduction path between the node N1 and the node N2 can be more quickly switched from the limiting resistor Rp to the first switching element SCR1. It becomes.
 <実施の形態6>
 図6は、実施の形態6に係る充電電流制御回路600を含む交流直流変換回路の回路図である。
<Embodiment 6>
FIG. 6 is a circuit diagram of an AC / DC converter circuit including a charging current control circuit 600 according to the sixth embodiment.
 図6において、図3と同一の符号が付されたものは、同一の機能または構成を有し、それらの重複説明は、省略する。図6に示される充電電流制御回路600は、図3に示される充電電流制御回路300において、タイミング制御回路10を、タイミング制御回路20に置き換えた構成に相当する。タイミング制御回路20は、タイミング制御回路10の応答速度を向上させたものである。 In FIG. 6, components having the same reference numerals as those in FIG. 3 have the same functions or configurations, and redundant description thereof will be omitted. The charging current control circuit 600 shown in FIG. 6 corresponds to a configuration in which the timing control circuit 10 is replaced with the timing control circuit 20 in the charging current control circuit 300 shown in FIG. The timing control circuit 20 improves the response speed of the timing control circuit 10.
 図6のタイミング制御回路20の構成および動作は、図4に示されるタイミング制御回路20と同一である。充電電流制御回路600によれば、ノードN1の電圧が上昇している場合に、ノードN1およびノードN2間の導通経路を、制限抵抗Rpから第1スイッチング素子SCR1へ、より速やかに切り替えることが可能となる。 The configuration and operation of the timing control circuit 20 of FIG. 6 are the same as those of the timing control circuit 20 shown in FIG. According to the charging current control circuit 600, when the voltage at the node N1 is increasing, the conduction path between the node N1 and the node N2 can be more quickly switched from the limiting resistor Rp to the first switching element SCR1. It becomes.
 <実施の形態7>
 図7は、実施の形態1~6のいずれかに係る充電電流制御回路を搭載した充電電流制御装置の斜視図である。
<Embodiment 7>
FIG. 7 is a perspective view of a charging current control device equipped with the charging current control circuit according to any one of the first to sixth embodiments.
 充電電流制御装置は、端子T1、端子T2、配線基板PCB、制限抵抗Rp、および実施の形態1に係る充電電流制限回路100~600のいずれかを構成する電子部品を備える。図7では、電子部品の例として、第1スイッチング素子SCR1が示されている。 The charging current control device includes terminals T1, terminal T2, wiring board PCB, limiting resistor Rp, and electronic components constituting any of charging current limiting circuits 100 to 600 according to the first embodiment. In FIG. 7, the first switching element SCR1 is shown as an example of the electronic component.
 配線基板PCBは、一例として、プリント配線基板が適用される。配線基板PCBの一方の面(図7において、上を向いている面)には、充電電流制限回路100~600から選択された充電電流制限回路が含む電子部品が搭載される。各電子部品は、図示しない配線で接続される。例えば配線基板PCBに充電電流制限回路100が搭載されている場合、ノードN1およびノードN2は、それぞれ、端子T1および端子T2と接続される。配線基板PCBの他方の面(図7において、下を向いている面)には、制限抵抗Rpが搭載される。 As the wiring board PCB, a printed wiring board is applied as an example. On one surface of the wiring substrate PCB (the surface facing upward in FIG. 7), electronic components included in the charging current limiting circuit selected from the charging current limiting circuits 100 to 600 are mounted. Each electronic component is connected by wiring (not shown). For example, when the charging current limiting circuit 100 is mounted on the wiring board PCB, the node N1 and the node N2 are connected to the terminal T1 and the terminal T2, respectively. A limiting resistor Rp is mounted on the other surface of the wiring board PCB (the surface facing downward in FIG. 7).
 図7から理解される通り、充電電流制御装置は、配線基板PCBから1対の端子T1/T2が伸びている外形を有する。この端子T1および端子T2を、図1に示される交流直流変換回路が備えるダイオードブリッジDbおよび平滑コンデンサCsが搭載される別の主配線基板(図示せず)の接続孔に挿入して、両配線基板を電気的に接続する。なお、制限抵抗Rpは、配線基板PCBではなく、主配線基板に搭載しても良い。その場合、主配線基板において、配線基板PCBの端子T1および端子T2が挿入される接続孔は、それぞれ、制限抵抗Rpの一方の端子および他方の端子と電気的に接続される。 As understood from FIG. 7, the charging current control device has an outer shape in which a pair of terminals T1 / T2 extend from the wiring board PCB. The terminals T1 and T2 are inserted into connection holes of another main wiring board (not shown) on which the diode bridge Db and the smoothing capacitor Cs provided in the AC / DC converter circuit shown in FIG. Electrically connect the boards. The limiting resistor Rp may be mounted on the main wiring board instead of the wiring board PCB. In that case, in the main wiring board, the connection holes into which the terminals T1 and T2 of the wiring board PCB are inserted are electrically connected to one terminal and the other terminal of the limiting resistor Rp, respectively.
 配線基板PCBの端子T1および端子T2を主配線基板の接続孔に挿入することで、両配線基板の面方向は、並行ではなく、互いに垂直方向に設定される。即ち、制限抵抗Rp等が搭載される主配線基板に対し、配線基板PCBは、その面に垂直に搭載されることになる。その結果、主配線基板の放熱特性を低下させることなく、配線基板PCBの放熱性能が十分に発揮される。また、主配線基板と配線基板PCBを並行に配置することで配線基板PCBの高さが低く抑えられ、電源回路の低背化が可能となる。 By inserting the terminals T1 and T2 of the wiring board PCB into the connection holes of the main wiring board, the surface directions of the two wiring boards are set not perpendicular to each other but perpendicular to each other. That is, the wiring board PCB is mounted perpendicular to the surface of the main wiring board on which the limiting resistor Rp and the like are mounted. As a result, the heat dissipation performance of the wiring board PCB is sufficiently exhibited without deteriorating the heat dissipation characteristics of the main wiring board. Further, by arranging the main wiring board and the wiring board PCB in parallel, the height of the wiring board PCB can be suppressed low, and the power circuit can be reduced in height.
 交流直流変換回路において、制限抵抗Rpと並列に接続される充電電流制御回路100を、主配線基板と別の配線基板PCBに搭載することで、主配線基板に搭載されるダイオードブリッジDbの出力電圧や出力電流の最大値、制限抵抗Rpの温度特性、または平滑コンデンサCsの容量値等に応じ、必要な特性を有する充電電流制御回路に変更することが容易となる。 In the AC / DC converter circuit, the charging current control circuit 100 connected in parallel with the limiting resistor Rp is mounted on a wiring board PCB different from the main wiring board, so that the output voltage of the diode bridge Db mounted on the main wiring board is obtained. It is easy to change to a charging current control circuit having necessary characteristics according to the maximum value of the output current, the temperature characteristic of the limiting resistor Rp, the capacitance value of the smoothing capacitor Cs, or the like.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 10,20 タイミング制御回路、100,200,300,400,500,600 充電電流制御回路、C0 容量、C1 第1タイミング容量、C2 第2タイミング容量、Cs 平滑コンデンサ、D1,D2 ダイオード、Db ダイオードブリッジ、FET 電界効果トランジスタ、GND 接地電圧、HS 放熱体、N1,N2 ノード、PCB 配線基板、R1,Rb,Rc1,Rc3,Rg 抵抗、Rc2 第1放電抵抗、Rc4 第2放電抵抗、Rp 制限抵抗、SCR1,SCR2 スイッチング素子、Sg 導通制御信号、T1,T2 端子、TR1 バイポーラトランジスタ、TR2 バイポーラトランジスタ(放電スイッチ)、Vin 交流電圧、Znr1,Znr2 電圧クランプ素子。 10, 20 timing control circuit, 100, 200, 300, 400, 500, 600 charging current control circuit, C0 capacity, C1 first timing capacity, C2 second timing capacity, Cs smoothing capacitor, D1, D2 diode, Db diode bridge , FET field effect transistor, GND ground voltage, HS radiator, N1, N2 node, PCB wiring board, R1, Rb, Rc1, Rc3, Rg resistance, Rc2 first discharge resistance, Rc4 second discharge resistance, Rp limiting resistance, SCR1, SCR2 switching element, Sg conduction control signal, T1, T2 terminal, TR1, bipolar transistor, TR2, bipolar transistor (discharge switch), Vin AC voltage, Znr1, Znr2 voltage clamping element.

Claims (8)

  1.  整流回路で充電される平滑コンデンサの充電電流を制御する充電電流制御回路であって、
     前記整流回路の出力電圧が印加される第1ノードと、
     前記平滑コンデンサの正極と接続される第2ノードと、
     前記第1ノードおよび前記第2ノードに、それぞれ、第1電極および第2電極が接続される第1スイッチング素子と、
     第3電極が前記第1ノードと電気的に接続され、第4電極が前記第1スイッチング素子の第1制御電極と接続される第2スイッチング素子と、
     前記第2スイッチング素子の第3電極、および前記第2ノード間に接続され、前記第2スイッチング素子の第2制御電極へ導通制御信号を出力するタイミング制御回路と、
    を備え、
     前記タイミング制御回路は、前記第1ノードに印加された電圧で充電される第1タイミング容量と、前記第1タイミング容量の蓄積電荷を放電する第1放電抵抗を含むとともに、前記第1タイミング容量の電圧に基づき、前記導通制御信号を生成し、
     前記導通制御信号の値が、前記第2スイッチング素子の閾値電圧以上になると、前記第2スイッチング素子、および前記第1スイッチング素子は、順次、非導通状態から導通状態に変化し、
     前記導通制御信号の値が、前記第2スイッチング素子の閾値電圧未満になると、前記第2スイッチング素子、および前記第1スイッチング素子は、導通状態から非導通状態に変化する、充電電流制御回路。
    A charging current control circuit for controlling a charging current of a smoothing capacitor charged by a rectifier circuit,
    A first node to which an output voltage of the rectifier circuit is applied;
    A second node connected to the positive electrode of the smoothing capacitor;
    A first switching element having a first electrode and a second electrode connected to the first node and the second node, respectively;
    A second switching element in which a third electrode is electrically connected to the first node, and a fourth electrode is connected to a first control electrode of the first switching element;
    A timing control circuit connected between the third electrode of the second switching element and the second node and outputting a conduction control signal to the second control electrode of the second switching element;
    With
    The timing control circuit includes a first timing capacitor that is charged with a voltage applied to the first node, and a first discharge resistor that discharges a stored charge of the first timing capacitor, and the timing control circuit includes: Generating the conduction control signal based on the voltage;
    When the value of the conduction control signal becomes equal to or higher than the threshold voltage of the second switching element, the second switching element and the first switching element sequentially change from a non-conduction state to a conduction state,
    When the value of the conduction control signal becomes less than a threshold voltage of the second switching element, the second switching element and the first switching element change from a conduction state to a non-conduction state.
  2.  前記タイミング制御回路は、さらに、
     前記第1放電抵抗と前記第2ノード間の接続を制御する放電スイッチと、
     前記第1ノードに印加された電圧で充電される第2タイミング容量と、
     前記第2タイミング容量と並列に接続され、前記第2タイミング容量の蓄積電荷を放電する第2放電抵抗と、を含み、
     前記第2タイミング容量の電圧が所定電圧以上になると、前記放電スイッチは、導通状態から非導通状態に変化し、
     前記第2タイミング容量の電圧が前記所定電圧未満になると、前記放電スイッチは、非導通状態から導通状態に変化する、請求項1に記載の充電電流制御回路。
    The timing control circuit further includes:
    A discharge switch for controlling connection between the first discharge resistor and the second node;
    A second timing capacitor charged with a voltage applied to the first node;
    A second discharge resistor connected in parallel with the second timing capacitor and discharging the accumulated charge of the second timing capacitor;
    When the voltage of the second timing capacitor becomes equal to or higher than a predetermined voltage, the discharge switch changes from a conductive state to a non-conductive state,
    2. The charging current control circuit according to claim 1, wherein when the voltage of the second timing capacitor becomes less than the predetermined voltage, the discharge switch changes from a non-conductive state to a conductive state.
  3.  前記第2スイッチング素子の第3電極、および前記第2ノード間に接続される電圧クランプ素子を、さらに備え、
     前記電圧クランプ素子は、前記第2スイッチング素子の第3電極と前記第2ノード間の電圧を、所定の電圧にクランプする、請求項1または請求項2に記載の充電電流制御回路。
    A voltage clamp element connected between the third electrode of the second switching element and the second node;
    3. The charging current control circuit according to claim 1, wherein the voltage clamp element clamps a voltage between the third electrode of the second switching element and the second node to a predetermined voltage. 4.
  4.  前記第1スイッチング素子、および前記第2スイッチング素子は、サイリスタであり、
     前記第1スイッチング素子の前記第1電極、前記第2電極、および前記第1制御電極は、それぞれ、アノード、カソード、およびゲートであり、
     前記第2スイッチング素子の前記第3電極、前記第4電極、および前記第2制御電極は、それぞれ、アノード、カソード、およびゲートである、請求項1に記載の充電電流制御回路。
    The first switching element and the second switching element are thyristors,
    The first electrode, the second electrode, and the first control electrode of the first switching element are an anode, a cathode, and a gate, respectively;
    2. The charging current control circuit according to claim 1, wherein the third electrode, the fourth electrode, and the second control electrode of the second switching element are an anode, a cathode, and a gate, respectively.
  5.  前記第1スイッチング素子は、サイリスタであり、
     前記第2スイッチング素子は、電界効果トランジスタであり、
     前記第1スイッチング素子の前記第1電極、前記第2電極、および前記第1制御電極は、それぞれ、アノード、カソード、およびゲートであり、
     前記第2スイッチング素子の前記第3電極、前記第4電極、および前記第2制御電極は、それぞれ、ドレイン、ソース、およびゲートである、請求項1に記載の充電電流制御回路。
    The first switching element is a thyristor;
    The second switching element is a field effect transistor;
    The first electrode, the second electrode, and the first control electrode of the first switching element are an anode, a cathode, and a gate, respectively;
    2. The charging current control circuit according to claim 1, wherein the third electrode, the fourth electrode, and the second control electrode of the second switching element are a drain, a source, and a gate, respectively.
  6.  前記第1スイッチング素子は、サイリスタであり、
     前記第2スイッチング素子は、バイポーラトランジスタであり、
     前記第1スイッチング素子の前記第1電極、前記第2電極、および前記第1制御電極は、それぞれ、アノード、カソード、およびゲートであり、
     前記第2スイッチング素子の前記第3電極、前記第4電極、および前記第2制御電極は、それぞれ、コレクタ、エミッタ、およびベースである、請求項1に記載の充電電流制御回路。
    The first switching element is a thyristor;
    The second switching element is a bipolar transistor;
    The first electrode, the second electrode, and the first control electrode of the first switching element are an anode, a cathode, and a gate, respectively;
    2. The charging current control circuit according to claim 1, wherein the third electrode, the fourth electrode, and the second control electrode of the second switching element are a collector, an emitter, and a base, respectively.
  7.  充電電流制御装置であって、
     第1端子、第2端子、および配線基板を備え、
     前記配線基板には、請求項1に記載の充電電流制御回路が搭載され、
     前記第1端子、および前記第2端子は、それぞれ、前記第1ノード、および前記第2ノードと接続される、充電電流制御装置。
    A charging current control device comprising:
    A first terminal, a second terminal, and a wiring board;
    The wiring current board according to claim 1 is mounted on the wiring board,
    The charging current control device, wherein the first terminal and the second terminal are connected to the first node and the second node, respectively.
  8.  前記配線基板には、さらに、前記第1端子および前記第2端子間に接続された制限抵抗が搭載される、請求項7に記載の充電電流制御装置。 The charging current control device according to claim 7, wherein a limiting resistor connected between the first terminal and the second terminal is further mounted on the wiring board.
PCT/JP2014/075821 2014-02-20 2014-09-29 Charging current control circuit and charging current control device WO2015125333A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016503923A JP6202186B2 (en) 2014-02-20 2014-09-29 Charging current control circuit and charging current control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014030366 2014-02-20
JP2014-030366 2014-02-20

Publications (1)

Publication Number Publication Date
WO2015125333A1 true WO2015125333A1 (en) 2015-08-27

Family

ID=53877863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075821 WO2015125333A1 (en) 2014-02-20 2014-09-29 Charging current control circuit and charging current control device

Country Status (2)

Country Link
JP (1) JP6202186B2 (en)
WO (1) WO2015125333A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112737360A (en) * 2020-12-29 2021-04-30 上海骄成机电设备有限公司 Rectifying circuit and power supply

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6135593U (en) * 1984-07-31 1986-03-05 株式会社東芝 Inverter device
JPH04372582A (en) * 1991-06-19 1992-12-25 Fuji Electric Co Ltd Capacitor rush current preventing circuit for rectifier
JPH06189549A (en) * 1992-12-15 1994-07-08 Matsushita Electric Works Ltd Rush current control circuit
JPH07147770A (en) * 1993-11-25 1995-06-06 Matsushita Electric Works Ltd Power unit
JPH07176390A (en) * 1993-12-21 1995-07-14 Tec Corp Electric discharge lamp lighting device
JPH08111978A (en) * 1994-10-11 1996-04-30 Sony Corp Switching power unit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6135593U (en) * 1984-07-31 1986-03-05 株式会社東芝 Inverter device
JPH04372582A (en) * 1991-06-19 1992-12-25 Fuji Electric Co Ltd Capacitor rush current preventing circuit for rectifier
JPH06189549A (en) * 1992-12-15 1994-07-08 Matsushita Electric Works Ltd Rush current control circuit
JPH07147770A (en) * 1993-11-25 1995-06-06 Matsushita Electric Works Ltd Power unit
JPH07176390A (en) * 1993-12-21 1995-07-14 Tec Corp Electric discharge lamp lighting device
JPH08111978A (en) * 1994-10-11 1996-04-30 Sony Corp Switching power unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112737360A (en) * 2020-12-29 2021-04-30 上海骄成机电设备有限公司 Rectifying circuit and power supply
CN112737360B (en) * 2020-12-29 2022-07-05 上海骄成超声波技术股份有限公司 Rectifying circuit and power supply

Also Published As

Publication number Publication date
JPWO2015125333A1 (en) 2017-03-30
JP6202186B2 (en) 2017-09-27

Similar Documents

Publication Publication Date Title
AU770941B2 (en) Method and apparatus for converting a DC voltage to an AC voltage
JP6787989B2 (en) Driver with open output protection
EP2618443B1 (en) Dynamic damper and lighting driving circuit comprising the dynamic damper
US20160164429A1 (en) Constant inrush current circuit for ac input power supply unit
EP2745368B1 (en) Start-up circuit
EP1095444B1 (en) Power factor correction application
US8184457B2 (en) Switch mode power supply for in-line voltage applications
US9674907B1 (en) Input surge protection circuit and method for a non-isolated buck-boost LED driver
CN110719041B (en) Power conversion circuit with inrush current limiting resistor bypass
US10219334B2 (en) Circuit arrangement for operating semiconductor light sources
JP6202186B2 (en) Charging current control circuit and charging current control device
US7304456B2 (en) Input inrush current control and/or output short-circuit control to a boost converter in a power supply
JP2011101512A (en) Input protection circuit used for usb connection apparatus
JPH0681494B2 (en) DC voltage feeder
JP2002186174A (en) Protection circuit for power supply circuit
JP2006217753A (en) Power supply device and electronic equipment
JP4022223B2 (en) Apparatus and method for converting alternating voltage
CN109617385B (en) Capacitor precharge circuit
JP7029353B2 (en) Power supply for lighting
CN114072997A (en) Power converter with multiple main switches connected in series and power conversion method
JP4859528B2 (en) Snubber circuit
EP1411623B1 (en) Input inrush current control and/or output short-circuit control to a boost converter in a power supply
JP2016101034A (en) Overvoltage protection circuit and electrical equipment with the same
JPH10508459A (en) Power supply with improved efficiency
JP7380174B2 (en) Lighting devices and luminaires

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14883030

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016503923

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14883030

Country of ref document: EP

Kind code of ref document: A1