WO2015124749A1 - Kolben mit einem strömungsgünstige ölführungsflächen aufweisenden offenem kühlraum sowie ein verfahren zur kühlung dieses kolbens - Google Patents

Kolben mit einem strömungsgünstige ölführungsflächen aufweisenden offenem kühlraum sowie ein verfahren zur kühlung dieses kolbens Download PDF

Info

Publication number
WO2015124749A1
WO2015124749A1 PCT/EP2015/053660 EP2015053660W WO2015124749A1 WO 2015124749 A1 WO2015124749 A1 WO 2015124749A1 EP 2015053660 W EP2015053660 W EP 2015053660W WO 2015124749 A1 WO2015124749 A1 WO 2015124749A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
cooling
oil guide
oil
guide surface
Prior art date
Application number
PCT/EP2015/053660
Other languages
English (en)
French (fr)
Inventor
Robert KÜHNEL
Klaus Lormes
Andreas Rehl
Matthias SUPPER
Original Assignee
Ks Kolbenschmidt Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ks Kolbenschmidt Gmbh filed Critical Ks Kolbenschmidt Gmbh
Priority to MX2016010138A priority Critical patent/MX2016010138A/es
Priority to EP15706453.6A priority patent/EP3108133A1/de
Priority to US15/119,767 priority patent/US20170051702A1/en
Priority to CN201580009377.6A priority patent/CN106103959B/zh
Publication of WO2015124749A1 publication Critical patent/WO2015124749A1/de
Priority to US16/241,065 priority patent/US20190136793A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/16Pistons  having cooling means
    • F02F3/20Pistons  having cooling means the means being a fluid flowing through or along piston
    • F02F3/22Pistons  having cooling means the means being a fluid flowing through or along piston the fluid being liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/06Arrangements for cooling pistons
    • F01P3/10Cooling by flow of coolant through pistons

Definitions

  • the invention relates to a piston having a flow-favorable oil guide surfaces having open cooling chamber and a method for cooling this piston according to the features of the respective preambles of the independent claims.
  • Pistons are produced, for example, in a forging process, in a casting process or other comparable process.
  • DE 101 06 435 A1 relates to a piston for an internal combustion engine.
  • This piston comprises a piston head, a piston shaft which has a pair of piston pin bosses and is recessed in the area of the piston pin bosses, so that the piston head projects over the recessed piston shaft in the region of the piston pin bosses in a radial direction, wherein in a piston interior bounded by the piston shaft and the piston head an oil guide wall is provided, which encloses an oil jet impact zone, and at least one passageway extending from the piston interior to the radially outwardly projecting from the piston head piston outer region extends such that the guided through the passage oil in the region of the piston head projection is deflected by the piston head , This makes it possible to cool the piston ring near the peripheral edge region of the piston by a predominantly open flow of oil.
  • the oil guide surface is formed by the inner wall of the piston skirt in cooperation with the underside of the piston head and preferably comprises a channel zone which extends from the Strahlauf Economicszone into the passageway.
  • the object of the invention is to distribute the ⁇ lansphtzstrom optimally to the surface to be cooled and thus to improve the heat transfer to the cooling medium and to provide a method for cooling the piston.
  • At least one oil guide surface of the cooling space has a gradient with respect to the piston stroke axis.
  • the oil transport to the not directly sprayed side of the refrigerator is effected by the slope of the at least one oil guide surface. This results in a more effective use of the cooling oil. This results in a temperature reduction on the piston.
  • the ⁇ lanspritzstrom is optimally distributed to the surface to be cooled of the cooling chamber and the piston.
  • the cooling chamber is designed to be open in the direction of the pin hub bores so that the cooling oil can flow freely.
  • the cooling space is preferably executed circumferentially around a central point, for example the piston stroke axis.
  • the cooling space is preferably designed adjacent to the ring field and delimited by a wall to this.
  • the gradient (oblique position) of the oil guide surface is for example between 0.5 ° and 45 °, relative to the piston stroke axis.
  • the gradient of the at least one oil guide surface between a first point (or area) and at least one further point (or area) is executed.
  • the cooling oil flows along the oil guide surface, starting from the point (or Anspritz Scheme on which the cooling oil impinges) where the ⁇ lanspritzstrom meets the oil guide surface.
  • the slope promotes the flow of the cooling oil along the oil guide surface and the heat exchange between the oil guide surface and the cooling oil is advantageously improved.
  • the first point (or area) describes the height of the refrigerator at its highest point.
  • the at least one further point describes the height of the cooling space at its lowest point.
  • the gradient runs from a first point, the highest point of the refrigerator to at least one other point, the lowest point of the refrigerator.
  • the cooling space thus forms a plane spanned or surface, which is oriented obliquely relative to the Kolbenhubachse (or also relative to the piston head).
  • the gradient thus forms a circumferential inclined plane within the refrigerator.
  • the cooling oil is thus directed from the point of impact along this inclined plane. This allows a high heat exchange performance.
  • the cooling space is limited by three oil guide surfaces. Due to the limitation by three oil guide surfaces, a downwardly open cooling space is formed in the direction of the pin bore holes (or a lower edge of the shaft). This reduces the production costs for the piston, since the formation of a closed cooling channel is not required. Furthermore, the cooling oil can flow freely after receiving a quantity of heat.
  • the three oil guide surfaces form a cold room ceiling and side walls, wherein a wall bounds the cooling space in the direction of the ring field and a wall limits the cooling space in the direction of a combustion bowl.
  • the cooling chamber is designed to be open in the direction of the pin hub bores. This allows a direct outflow of the cooling oil after the absorption of a quantity of heat in the area below the piston. The exchange rate for the cooling oil is thus increased.
  • the cooling chamber has a direct connection to an inner shape of the piston.
  • the interface of the inner mold in the direction of the combustion bowl also serves to heat exchange.
  • the at least one oil guide surface having a gradient has a convex curvature.
  • the at least one oil guide surface having a slope has a concave curvature.
  • a curved oil guide surface favors the drainage of the cooling oil from the point of impact.
  • the heat exchange rate is further increased and the cooling capacity of the piston is increased.
  • the convex or concave design depends on the particular application.
  • the at least one gradient oil guide surface is designed as a cold room ceiling.
  • the impinging cooling oil is guided along the upper oil guide surface. This ensures that the cooling oil flows circumferentially over the entire area adjacent to the edge of the combustion bowl. As a result, a higher heat exchange in a highly stressed area, the edge of the combustion bowl, guaranteed.
  • the cooling method described above allows the wetting of the entire or at least almost entire oil guide surfaces in the refrigerator.
  • the heat exchange rate between the oil guide surfaces and the cooling medium in the form of cooling oil is increased.
  • the efficiency of the cooling capacity of the piston is increased.
  • a piston according to the invention may be made of steel, aluminum, their alloys, alloys or the like.
  • the piston according to the invention can also be designed in several parts. It is essential that the at least one oil guide surface is inclined.
  • Fig. 1A and. 1 B show views of a piston according to the invention with inclined cooling ceiling
  • Fig. 2A u. 2B show views of a further embodiment of a tilted cold room ceiling piston according to the invention
  • Fig. 3 shows a view of another embodiment of a piston according to the invention with a convexly inclined cooling chamber ceiling
  • FIG. 4 shows a view of a further exemplary embodiment of a piston according to the invention with a concave cooling ceiling.
  • FIGS. 1A and 1B show a first embodiment of a piston 1 according to the invention with an inclined cooling chamber ceiling.
  • a second embodiment of a piston 100 of the invention with an inclined cooling chamber ceiling is shown in FIGS. 2A and 2B.
  • FIG. 3 shows a further exemplary embodiment of a piston 200 according to the invention with a convexly inclined cooling chamber ceiling.
  • FIG. 4 in turn shows a further exemplary embodiment of a piston 300 according to the invention with a concavely inclined cooling chamber ceiling.
  • FIGS 1A, 1B, 2A, 2B, 3 and 4 show various embodiments of the piston 1, 100, 200, 300.
  • the pistons 1, 100, 200, 300 have a combustion bowl 2.
  • a ring field 3 is arranged on the outer circumference of the piston.
  • a shaft 4 connects.
  • pin boss holes 5 are arranged in the shaft 4 .
  • the interior of the piston is limited by the recessed walls (also called connecting walls) of the shaft 4 and by the bottom of the combustion chamber trough opposite surface.
  • An inner mold 6 lies opposite the bottom of the combustion bowl 2, a wall forms the demarcation between these areas.
  • a cooling chamber 8 Circulating, on the outer inner circumference of the piston, a cooling chamber 8 is formed. This cooling chamber 8 is delimited by oil guide surfaces 10.
  • the bolt hub bores 5 facing away from the oil guide surface 10 is formed by a cold room ceiling 8.
  • This cold room ceiling 8 is equipped with variable height over the circumference. The resulting gradient is shown in the figures in section through points X, Y. Where X is the height of the refrigerator at the lowest point and Y is the height of the refrigerator at the highest point. It follows:
  • ⁇ (Delta) thus stands for the height difference between Y and X. Furthermore, the value for X is smaller than the value for Y.
  • the resulting gradient is for example, between 0.5 ° and 45 °. Seen in three dimensions, these are surfaces.
  • the oil guide surfaces 10 are wetted by a ⁇ lanspritzstrom 9.
  • this oil spray stream 9 is shown at an angle.
  • FIGS. 2A and 2B show a piston 100 with a cooling space 7 of variable height over the circumference. Furthermore, alternative positions of the cooling chambers 7 and additional cooling chambers 7 are shown.
  • FIG. 3 shows a piston 200 with a convexly curved cooling chamber ceiling 8. This convex curvature directs the oil spray stream 9 away from its point of impact.
  • a radius Ri stands for the convex curvature of at least one oil guide surface 10.
  • FIG. 4 shows a piston 300 with a concavely curved cooling chamber ceiling 8.
  • the concave curvature of the cooling chamber ceiling 8 also leads to improved dissipation of the cooling oil away from the point of impact of the oil spray stream 9.
  • a radius R2 describes the concave curvature of at least one oil guide surface 10.
  • piston (either generally or according to the first and second embodiment) is used in a conventional manner in an internal combustion engine.
  • the internal combustion engine has at least one cylinder space in which the piston is arranged and can move (oscillate) in a known manner up and down.
  • the at least one ⁇ lläitzdüse (also referred to as cooling oil nozzle) is provided, via which an oil jet in the direction of the piston head, ie in the direction of the downwardly open cooling chamber, exits to supply the downwardly open cooling chamber the cooling medium, which along the and thus sweeps over the wall of the downwardly open cooling space where it absorbs heat and then returned to the interior of the piston and thus also in the interior of the crankcase to the Heat, which arises due to the combustion in the region of the piston crown dissipate. Thereafter, the recirculated in the crankcase cooling medium is returned to the cooling circuit and can be discharged again through the An moussedüse as oil jet.

Abstract

Die Erfindung betrifft einen Kolben (1, 100, 200, 300) für Brennkraftmaschinen, aufweisend ein Ringfeld (3), einen Schaft (4) und Bolzennabenbohrungen (5) sowie mindestens einen Kühlraum (7) mit Ölführungsflächen (10), wobei mindestens eine Ölführungsfläche (10) ein Gefälle aufweist sowie ein Verfahren zur Kühlung dieses Kolbens (1, 100, 200, 300).

Description

Kolben mit einem strömungsgünstige Ölführungsflächen aufweisenden offenem Kühlraum sowie ein Verfahren zur Kühlung dieses Kolbens
B E S C H R E I B U N G
Die Erfindung betrifft einen Kolben mit einem strömungsgünstige Ölführungsflächen aufweisenden offenen Kühlraum sowie ein Verfahren zur Kühlung dieses Kolbens gemäß den Merkmalen der jeweiligen Oberbegriffe der unabhängigen Patentansprüche.
Verfahren zur Herstellung von Kolben sind bekannt. Kolben werden beispielsweise in einem Schmiedeverfahren, in einem Gießverfahren oder anderen vergleichbaren Verfahren hergestellt.
Die DE 101 06 435 A1 betrifft einen Kolben für eine Brennkraftmaschine. Dieser Kolben umfasst einen Kolbenkopf, einen Kolbenschaft, der ein Paar Kolbenbolzennaben aufweist und im Bereich der Kolbenbolzennaben zurückgesetzt ausgebildet ist, so dass der Kolbenkopf den zurückgesetzten Kolbenschaft im Bereich der Kolbenbolzennaben in radialer Richtung überkragt, wobei in einem von dem Kolbenschaft und dem Kolbenkopf begrenzten Kolbeninnenraum eine Ölführungswandung vorgesehen ist, die eine Ölstrahlauftreffzone einschließt, und wenigstens ein Durchgangskanal vorgesehen ist, der sich von dem Kolbeninnenraum zu dem von dem Kolbenkopf radial überkragten Kolbenaußenbereich derart gerichtet erstreckt, dass das durch den Durchgangskanal zugeleitete Öl im Bereich des Kolbenkopfüberstandes von dem Kolbenkopf umgelenkt wird. Hierdurch wird es möglich, den kolbenringnahen Umfangsrandbereich des Kolbens durch einen überwiegend offenen Ölstrom zu kühlen. Die Ölführungsfläche wird durch die Innenwandung des Kolbenschaftes im Zusammenspiel mit der Unterseite des Kolbenkopfes gebildet und umfasst vorzugsweise eine Rinnenzone, die sich von der Strahlauftreffzone in den Durchgangskanal hinein erstreckt. Aufgabe der Erfindung ist es, den Ölansphtzstrom optimal auf die zu kühlende Fläche zu verteilen und somit den Wärmeübergang auf das Kühlmedium zu verbessern sowie ein Verfahren zur Kühlung des Kolbens bereitzustellen.
Diese Aufgabe wird durch einen Kolben und ein Verfahren mit den Merkmalen der unabhängigen Patentansprüche gelöst.
Erfindungsgemäß ist vorgesehen, dass zumindest eine Ölführungsfläche des Kühlraumes ein Gefälle in Bezug auf die Kolbenhubachse aufweist.
Der Öltransport auf die nicht direkt angespritzte Seite des Kühlraums wird durch das Gefälle der mindestens einen Ölführungsfläche bewirkt. Dadurch erfolgt eine effektivere Nutzung des Kühlöls. Hieraus folgt eine Temperaturreduzierung am Kolben. Der Ölanspritzstrom wird optimal auf die zu kühlende Fläche des Kühlraums bzw. des Kolbens verteilt. Der Kühlraum ist in Richtung der Bolzennabenbohrungen offen ausgeführt, sodass das Kühlöl frei abfließen kann. Der Kühlraum ist bevorzugt umlaufend um einen zentralen Punkt, beispielsweise die Kolbenhubachse, ausgeführt. Der Kühlraum ist bevorzugt benachbart zum Ringfeld ausgeführt und durch eine Wandung zu diesem abgegrenzt. Das Gefälle (Schräganstellung) der Ölführungsfläche beträgt beispielsweise zwischen 0,5° und 45°, bezogen auf die Kolbenhubachse.
Weiterhin ist es erfindungsgemäß vorgesehen, dass das Gefälle der mindestens einen Ölführungsfläche zwischen einem ersten Punkt (bzw. Bereich) und mindestens einem weiteren Punkt (bzw. Bereich) ausgeführt ist. Das Kühlöl fließt entlang der Ölführungsfläche, ausgehend von dem Punkt (bzw. Anspritzbereich, auf den das Kühlöl auftrifft) an dem der Ölanspritzstrom auf die Ölführungsfläche trifft. Das Gefälle begünstigt den Fluss des Kühlöls entlang der Ölführungsfläche und der Wärmeaustausch zwischen Ölführungsfläche und dem Kühlöl wird in vorteilhafter Weise verbessert.
Weiterhin ist es erfindungsgemäß vorgesehen, dass der erste Punkt (bzw. flächige Bereich) die Höhe des Kühlraums an seinem höchsten Punkt beschreibt.
Weiterhin ist es erfindungsgemäß vorgesehen, dass der mindestens eine weitere Punkt (bzw. flächige Bereich) die Höhe des Kühlraums an seinem niedrigsten Punkt beschreibt. Das Gefälle verläuft von einem ersten Punkt, dem höchsten Punkt des Kühlraums zum mindestens einem weiteren Punkt, dem niedrigsten Punkt des Kühlraums. Der Kühlraum bildet somit eine aufgespannte Ebene bzw. Fläche, die bezogen auf die Kolbenhubachse (oder aber auch bezogen auf den Kolbenboden) schräg ausgerichtet ist.
Das Gefälle bildet somit innerhalb des Kühlraums eine umlaufende schiefe Ebene aus. Das Kühlöl wird somit ausgehend von der Auftreffstelle entlang dieser schiefen Ebene geleitet. Hierdurch wird eine hohe Wärmeaustauschleistung ermöglicht.
Weiterhin ist es erfindungsgemäß vorgesehen, dass der Kühlraum durch drei Ölführungsflächen begrenzt ist. Durch die Begrenzung durch drei Ölführungsflächen wird ein nach unten, in Richtung der Bolzennabenbohrungen (bzw. einer Schaftunterkante), offener Kühlraum gebildet. Hierdurch sinken die Produktionskosten für den Kolben, da die Ausbildung eines geschlossenen Kühlkanals nicht erforderlich ist. Weiterhin kann das Kühlöl nach der Aufnahme einer Wärmemenge frei abfließen.
Weiterhin ist es erfindungsgemäß vorgesehen, dass die drei Ölführungsflächen eine Kühlraumdecke sowie seitliche Wände bilden, wobei eine Wand den Kühlraum in Richtung des Ringfeldes begrenzt und eine Wand den Kühlraum in Richtung einer Brennraummulde begrenzt. Durch diese Gestaltung ist, sofern eine Brennraummulde vorhanden ist, ein direkter Wärmeübergang von der Brennraummulde auf die ihr zugehörige Ölführungsfläche ermöglicht und damit ein Wärmeübergang auf das Kühlöl. Die abzuführende Wärmemenge aus dem Verbrennungsprozess kann somit nahe ihrer Entstehung durch das Kühlöl abgeführt werden.
Weiterhin ist es erfindungsgemäß vorgesehen, dass der Kühlraum in Richtung der Bolzennabenbohrungen offen gestaltet ist. Dies ermöglicht einen direkten Abfluss des Kühlöls nach der Aufnahme einer Wärmemenge in den Bereich unterhalb des Kolbens. Die Austauschrate für das Kühlöl wird somit erhöht.
Weiterhin ist es erfindungsgemäß vorgesehen, dass der Kühlraum eine direkte Verbindung zu einer Innenform des Kolbens aufweist. Die Grenzfläche der Innenform in Richtung der Brennraummulde dient ebenfalls dem Wärmeaustausch. Dadurch, dass die Innenform und der umlaufende Kühlraum im direkten Kontakt stehen, kann das Kühlöl ungehindert von dem einen in den anderen Bereich gelangen. Weiterhin ist es erfindungsgemäß vorgesehen, dass die mindestens eine ein Gefälle aufweisende Ölführungsfläche eine konvexe Krümmung aufweist. Alternativ oder ergänzend ist es erfindungsgemäß vorgesehen, dass die mindestens eine ein Gefälle aufweisende Ölführungsfläche eine konkave Krümmung aufweist. Eine eine Krümmung aufweisende Ölführungsfläche begünstigt das Abfließen des Kühlöls von der Auftreffstelle. Die Wärmeaustauschrate wird weiter gesteigert und die Kühlleistung des Kolbens wird erhöht. Die konvexe oder konkave Ausführung ist abhängig von dem jeweiligen Anwendungsfall.
Weiterhin ist es erfindungsgemäß vorgesehen, dass die mindestens eine ein Gefälle aufweisende Ölführungsfläche als Kühlraumdecke ausgeführt ist. Dadurch wird das auftreffende Kühlöl entlang der oberen Ölführungsfläche geleitet. Hierdurch wird gewährleistet, dass das Kühlöl umlaufend über den gesamten dem Rand der Brennraummulde benachbarten Bereich fließt. Hierdurch wird ein höherer Wärmeaustausch in einem stark beanspruchten Bereich, dem Rand der Brennraummulde, gewährleistet.
Bezüglich des Verfahrens zur Kühlung eines Kolbens mit offenem Kühlraum, sind erfindungsgemäß die folgenden Schritte vorgesehen:
- Richten eines Ölanspritzstroms auf mindestens eine schräg angestellte Ölführungsfläche
- Benetzen der mindestens einen Ölführungsfläche mit Kühlöl
- Leiten des Kühlöls entlang der Ölführungsflächen
- Wärmetausch zwischen den Ölführungsflächen und dem Kühlöl
- Abführen des aufgeheizten Kühlöls durch den in Richtung der Bolzennabenbohrungen geöffneten Kühlraum
Das zuvor beschriebene Kühlverfahren ermöglicht die Benetzung der gesamten oder zumindest nahezu gesamten Ölführungsflächen im Kühlraum. Die Wärmeaustauschrate zwischen den Ölführungsflächen und dem Kühlmedium in Form von Kühlöl wird erhöht. Der Wirkungsgrad der Kühlleistung des Kolbens wird gesteigert.
Mit anderen Worten erfolgt eine Verbesserung der Kühlwirkung durch eine gelenkte Ölströmung. Bisher erfolgte die Darstellung des Kühlraumes durch Klapptechnologie mit hohem Materialeinsatz und Zerspanarbeit. Durch die erfindungsgemäße Gestaltung in Form von geneigten Ölführungsflächen wird der Ölanspritzstrom optimal auf die zu kühlende Fläche verteilt. Der Öltransport auf die nicht direkt angespritzte Seite der Kühltasche erfolgt durch eine geneigte Decke, dadurch wird eine effektivere Nutzung des Kühlöls erzielt, hieraus folgt eine Temperaturreduzierung am Kolben. Die Schrägstellung der Kühltaschendecke erfolgt um 0,5° bis 45°.
Ein erfindungsgemäßer Kolben kann aus Stahl, Aluminium, deren Legierungen, Legierungen oder dergleichen gefertigt sein.
Der erfindungsgemäße Kolben kann auch mehrteilig ausgeführt sein. Wesentlich ist, dass die mindestens eine Ölführungsfläche geneigt ausgeführt ist.
Ein Ausführungsbeispiel der Erfindung ist in den Figuren gezeigt und in folgendem beschrieben.
Fig. 1A u. 1 B zeigen Ansichten eines erfindungsgemäßen Kolbens mit geneigter Kühlraumdecke,
Fig. 2A u. 2B zeigen Ansichten eines weiteren Ausführungsbeispiels eines erfindungsgemäßen Kolbens mit geneigter Kühlraumdecke,
Fig. 3 zeigt eine Ansicht eines weiteren Ausführungsbeispiels eines erfindungsgemäßen Kolbens mit konvex geneigter Kühlraumdecke und
Fig. 4 zeigt eine Ansicht eines weiteren Ausführungsbeispiels eines erfindungsgemäßen Kolbens mit konkav geneigter Kühlraumdecke.
Die Figuren 1A und 1 B zeigen ein erstes Ausführungsbeispiel eines erfindungsgemäßen Kolbens 1 mit geneigter Kühlraumdecke. Ein zweites Ausführungsbeispiel eines erfindungsgemäßen Kolbens 100 mit geneigter Kühlraumdecke zeigen die Figuren 2A und 2B. Ein weiteres Ausführungsbeispiel eines erfindungsgemäßen Kolbens 200 mit konvex geneigter Kühlraumdecke zeigt die Figur 3. Die Figur 4 wiederum zeigt ein weiteres Ausführungsbeispiel eines erfindungsgemäßen Kolbens 300 mit konkav geneigter Kühlraumdecke.
Gleiche Elemente erhalten in allen Figuren gleiche Bezugszeichen. In der nachfolgenden Figurenbeschreibung beziehen sich Begriffe wie oben, unten, links, rechts, vorne, hinten usw. ausschließlich auf die in den jeweiligen Figuren gewählte beispielhafte Darstellung und Position der Vorrichtung und anderer Elemente. Diese Begriffe sind nicht einschränkend zu verstehen, das heißt durch verschiedene Positionen und/oder spiegelsymmetrische Auslegung oder dergleichen können sich diese Bezüge ändern.
Die Figuren 1A, 1 B, 2A, 2B, 3 und 4 zeigen verschiedene Ausführungsbeispiele des Kolbens 1 , 100, 200, 300. Nachfolgend werden die Gemeinsamkeiten dieser Kolben 1 , 100, 200, 300 beschrieben. Die Kolben 1 , 100, 200, 300 weisen eine Brennraummulde 2 auf. Am äußeren Umfang des Kolbens ist ein Ringfeld 3 angeordnet. An das Ringfeld 3 schließt sich ein Schaft 4 an. In dem Schaft 4 sind Bolzennabenbohrungen 5 angeordnet. Der Innenraum des Kolbens wird durch die zurückgesetzte Wände (auch Verbindungswände genannt) des Schafts 4 sowie durch die dem Boden der Brennraummulde gegenüberliegende Fläche begrenzt. Eine Innenform 6 liegt dem Boden der Brennraummulde 2 gegenüber, eine Wandung bildet die Abgrenzung zwischen diesen Bereichen.
Umlaufend, am äußeren inneren Umfang des Kolbens ist ein Kühlraum 8 ausgebildet. Dieser Kühlraum 8 wird von Ölführungsflächen 10 begrenzt. Die den Bolzennabenbohrungen 5 abgewandte Ölführungsfläche 10 wird von einer Kühlraumdecke 8 gebildet. Diese Kühlraumdecke 8 ist mit über den Umfang variabler Höhe ausgestattet. Das hierdurch entstehende Gefälle wird in den Figuren im Schnitt durch Punkte X, Y dargestellt. Wobei X die Höhe des Kühlraums am niedrigsten Punkt darstellt und Y die Höhe des Kühlraums am höchsten Punkt darstellt. Hieraus ergibt sich:
Δ = Y - X
X < Y
Δ (Delta) steht somit für die Höhendifferenz zwischen Y und X. Weiterhin ist der Wert für X kleiner als der Wert für Y. Das hierdurch entstehende Gefälle beträgt beispielsweise zwischen 0,5° und 45°. Dreidimensional betrachtet handelt es sich um Flächen.
Die Ölführungsflächen 10 werden von einem Ölanspritzstrom 9 benetzt.
In den Figuren 1A und 1 B ist dieser Ölanspritzstrom 9 schräg dargestellt.
Die Figuren 2A und 2B zeigen einen Kolben 100 mit einen Kühlraum 7 mit über dem Umfang variabler Höhe. Weiterhin werden alternative Positionen der Kühlräume 7 bzw. zusätzliche Kühlräume 7 dargestellt.
Die Figur 3 zeigt einen Kolben 200 mit konvex gekrümmter Kühlraumdecke 8. Diese konvexe Krümmung leitet den Ölanspritzstrom 9 von seiner Auftreffstelle weg. Ein Radius Ri steht für die konvexe Krümmung mindestens einer Ölführungsfläche 10.
Die Figur 4 wiederum zeigt einen Kolben 300 mit konkav gekrümmter Kühlraumdecke 8. Auch die konkave Krümmung der Kühlraumdecke 8 führt zu einer verbesserten Ableitung des Kühlöls von der Auftreffstelle des Ölanspritzstroms 9 weg. Ein Radius R2 beschreibt die konkave Krümmung mindestens einer Ölführungsfläche 10.
Der vorstehend beschriebene und auch in den Patentansprüchen beanspruchte Kolben (entweder allgemein oder gemäß dem ersten bzw. zweiten Ausführungsbeispiel) wird in an sich bekannter Weise in einem Verbrennungsmotor eingesetzt. Der Verbrennungsmotor hat zumindest einen Zylinderraum, in dem der Kolben angeordnet ist und in bekannter Weise sich auf und ab bewegen (oszillieren) kann. In einem Kurbelgehäuse des Verbrennungsmotors ist die zumindest eine Ölanspritzdüse (auch als Kühlöldüse bezeichnet) vorhanden, über die ein Ölstrahl in Richtung des Kolbenbodens, also in Richtung des nach unten offenen Kühlraumes, austritt, um dem nach unten offenen Kühlraum das Kühlmedium zuzuführen, welches entlang der und somit über die Wandung des nach unten offenen Kühlraumes streicht, dort Wärme aufnimmt und danach wieder in den Innenbereich des Kolbens und somit auch in den Innenbereich des Kurbelgehäuses zurückgeführt wird, um die Wärme, die aufgrund der Verbrennung im Bereich des Kolbenbodens entsteht, abzuführen. Danach wird das im Kurbelgehäuse zurückgeführte Kühlmedium in den Kühlkreislauf zurückgeführt und kann erneut durch die Anspritzdüse als Ölstrahl abgegeben werden.
BEZUGSZEICH EN LISTE
1 Kolben
100 Kolben
200 Kolben
300 Kolben
2 Brennraummulde
3 Ringfeld
4 Schaft
5 Bolzennabenbohrung
6 Innenform
7 Kühlraum
8 Kühlraumdecke
9 Ölansp tzstrom
10 Ölführungsfläche
X Höhe des Kühlraums am niedrigsten Punkt
Y Höhe des Kühlraums am höchsten Punkt
Δ (Delta) Differenz zwischen Y und X
Ri Radius konvex
R2 Radius konkav

Claims

P A T E N T A N S P R Ü C H E
1 . Kolben (1 , 100, 200, 300) für Brennkraftmaschinen, aufweisend ein Ringfeld (3), einen Schaft (4) und Bolzennabenbohrungen (5) sowie zumindest einen Kühlraum (7) mit Ölführungsflächen (10), dadurch gekennzeichnet, dass zumindest eine Ölführungsfläche (10) des Kühlraums (7) ein Gefälle aufweist.
2. Kolben (1 , 100, 200, 300) nach Patentanspruch 1 , dadurch gekennzeichnet, dass das Gefälle der mindestens einen Ölführungsfläche (10) zwischen einem ersten Punkt (Y) und mindestens einem weiteren Punkt (X) ausgeführt ist.
3. Kolben (1 , 100, 200, 300) nach einem der vorherigen Patentansprüche, dadurch gekennzeichnet, dass der erste Punkt (Y) die maximale Höhe des Kühlraums (7) an seinem höchsten Punkt bildet.
4. Kolben (1 , 100, 200, 300) nach einem der vorherigen Patentansprüche, dadurch gekennzeichnet, dass der mindestens eine weitere Punkt (X) die Höhe des Kühlraums (7) an seinem niedrigsten Punkt bildet.
5. Kolben (1 , 100, 200, 300) nach einem der vorherigen Patentansprüche, dadurch gekennzeichnet, dass der Kühlraum (7) durch drei Ölführungsflächen (10) begrenzt ist.
6. Kolben (1 , 100, 200, 300) nach einem der vorherigen Patentansprüche, dadurch gekennzeichnet, dass die drei Ölführungsflächen (10) eine Kühlraumdecke (8) sowie seitliche Wände bilden, wobei eine Wand den Kühlraum (7) in Richtung des Ringfeldes (3) begrenzt und eine Wand den Kühlraum (7) in Richtung einer Brennraummulde (2) begrenzt.
7. Kolben (1 , 100, 200, 300) nach einem der vorherigen Patentansprüche, dadurch gekennzeichnet, dass der Kühlraum (7) in Richtung der Bolzennabenbohrungen (5) offen gestaltet ist.
8. Kolben (1 , 100, 200, 300) nach einem der vorherigen Patentansprüche, dadurch gekennzeichnet, dass der Kühlraum (7) eine direkte Verbindung zu einer Innenform (6) aufweist.
9. Kolben (200) nach einem der vorherigen Patentansprüche, dadurch gekennzeichnet, dass die mindestens eine ein Gefälle aufweisende Ölführungsfläche (10) eine konvexe Krümmung aufweist.
10. Kolben (300) nach einem der vorherigen Patentansprüche, dadurch gekennzeichnet, dass die mindestens eine ein Gefälle aufweisende Ölführungsfläche (10) eine konkave Krümmung aufweist.
1 1 . Kolben (1 , 100, 200, 300) nach einem der vorherigen Patentansprüche, dadurch gekennzeichnet, dass die mindestens eine ein Gefälle aufweisende Ölführungsfläche (10) als Kühlraumdecke (8) ausgeführt ist.
12. Verfahren zur Kühlung eines Kolbens (1 , 100, 200, 300) gemäß der Patentansprüche 1 bis 1 1 , gekennzeichnet durch die Schritte:
- Richten eines Ölanspritzstroms (9) auf mindestens eine schräg angestellte Ölführungsfläche (10)
- Benetzen der mindestens einen Ölführungsfläche (10) mit Kühlöl
- Leiten des Kühlöls entlang der Ölführungsflächen (10)
- Wärmetausch zwischen den Ölführungsflächen (10) und dem Kühlöl
- Abführen des aufgeheizten Kühlöls durch den in Richtung der Bolzennabenbohrungen (5) geöffneten Kühlraum (7)
PCT/EP2015/053660 2014-02-21 2015-02-20 Kolben mit einem strömungsgünstige ölführungsflächen aufweisenden offenem kühlraum sowie ein verfahren zur kühlung dieses kolbens WO2015124749A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
MX2016010138A MX2016010138A (es) 2014-02-21 2015-02-20 Piston con camara de refrigeracion abierta que tiene superficies de distribucion de aceite favorables al flujo y metodo para la refrigeracion de este piston.
EP15706453.6A EP3108133A1 (de) 2014-02-21 2015-02-20 Kolben mit einem strömungsgünstige ölführungsflächen aufweisenden offenem kühlraum sowie ein verfahren zur kühlung dieses kolbens
US15/119,767 US20170051702A1 (en) 2014-02-21 2015-02-20 Piston with an open cooling chamber having a flow-effective oil guiding surface and method for cooling said piston
CN201580009377.6A CN106103959B (zh) 2014-02-21 2015-02-20 带敞开的具有利于流动的油引导面的冷却腔的活塞以及用于冷却所述活塞的方法
US16/241,065 US20190136793A1 (en) 2014-02-21 2019-01-07 Piston with an open cooling chamber having a flow-effective oil guiding surface and method for cooling said piston

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014203184.2 2014-02-21
DE102014203184 2014-02-21

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/119,767 A-371-Of-International US20170051702A1 (en) 2014-02-21 2015-02-20 Piston with an open cooling chamber having a flow-effective oil guiding surface and method for cooling said piston
US16/241,065 Continuation US20190136793A1 (en) 2014-02-21 2019-01-07 Piston with an open cooling chamber having a flow-effective oil guiding surface and method for cooling said piston

Publications (1)

Publication Number Publication Date
WO2015124749A1 true WO2015124749A1 (de) 2015-08-27

Family

ID=52589381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/053660 WO2015124749A1 (de) 2014-02-21 2015-02-20 Kolben mit einem strömungsgünstige ölführungsflächen aufweisenden offenem kühlraum sowie ein verfahren zur kühlung dieses kolbens

Country Status (6)

Country Link
US (2) US20170051702A1 (de)
EP (1) EP3108133A1 (de)
CN (1) CN106103959B (de)
DE (1) DE102015203135A1 (de)
MX (1) MX2016010138A (de)
WO (1) WO2015124749A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111512036A (zh) 2017-11-14 2020-08-07 Ks科尔本施密特有限公司 优化设计的钢制活塞

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6032965A (ja) * 1983-08-01 1985-02-20 Toyota Motor Corp 内燃機関用ピストン
JPS60132051A (ja) * 1983-12-21 1985-07-13 Toyota Motor Corp 内燃機関のピストン
JPS60132050A (ja) * 1983-12-21 1985-07-13 Toyota Motor Corp 内燃機関のピストン
US4530312A (en) * 1984-03-14 1985-07-23 Toyota Jidosha Kabushiki Kaisha Piston with crown cooling cavity and radial ribs formed therein
DE10126359A1 (de) * 2001-05-30 2003-01-02 Federal Mogul Nuernberg Gmbh Kolben für einen Verbrennungsmotor

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1191176B (de) * 1962-09-08 1965-04-15 Mahle Kg Kolben fuer Brennkraftmaschinen
FR2079873A5 (de) * 1970-02-16 1971-11-12 Semt
US4428330A (en) * 1982-09-08 1984-01-31 Kabushiki Kaisha Komatsu Seisakusho Piston for internal combustion engines
US5115725A (en) * 1990-03-30 1992-05-26 Isuzu Motors Limited Piston and connecting rod assembly
DE19810937C1 (de) * 1998-03-13 1999-11-25 Daimler Chrysler Ag Kolben für eine Brennkraftmaschine
DE19926567A1 (de) * 1999-06-11 2000-12-14 Mahle Gmbh Gekühlter Kolben für Verbrennungsmotoren
US6327962B1 (en) * 1999-08-16 2001-12-11 Caterpillar Inc. One piece piston with supporting piston skirt
EP1268991B1 (de) * 2000-03-28 2006-07-05 Federal-Mogul Corporation Hochleistungskolben mit öldeflektor
DE10106435A1 (de) 2001-02-13 2002-08-14 Bayerische Motoren Werke Ag Kolben, insbesondere für eine Brennkraftmaschine
DE102006002949A1 (de) * 2006-01-21 2007-08-02 Ks Kolbenschmidt Gmbh Kühlkanalkolben für eine Brennkraftmaschine
US8511261B2 (en) * 2010-02-23 2013-08-20 Honda Motor Co., Ltd. Piston cooling device
US8544441B2 (en) * 2011-08-04 2013-10-01 Federal-Mogul Ignition Company Piston including a pair of cooling chambers
DE102013013962A1 (de) * 2013-08-23 2015-02-26 Mahle International Gmbh Baueinheit aus einem Kolben und einer Anspritzdüse für einen Verbrennungsmotor
US10227948B2 (en) * 2015-12-18 2019-03-12 Mahle International Gmbh Piston for an internal combustion engine
US10126359B2 (en) * 2017-01-12 2018-11-13 Sensata Technologies Free piston stirling cooler temperature control system for semiconductor test

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6032965A (ja) * 1983-08-01 1985-02-20 Toyota Motor Corp 内燃機関用ピストン
JPS60132051A (ja) * 1983-12-21 1985-07-13 Toyota Motor Corp 内燃機関のピストン
JPS60132050A (ja) * 1983-12-21 1985-07-13 Toyota Motor Corp 内燃機関のピストン
US4530312A (en) * 1984-03-14 1985-07-23 Toyota Jidosha Kabushiki Kaisha Piston with crown cooling cavity and radial ribs formed therein
DE10126359A1 (de) * 2001-05-30 2003-01-02 Federal Mogul Nuernberg Gmbh Kolben für einen Verbrennungsmotor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3108133A1 *

Also Published As

Publication number Publication date
CN106103959B (zh) 2019-12-13
EP3108133A1 (de) 2016-12-28
US20190136793A1 (en) 2019-05-09
CN106103959A (zh) 2016-11-09
US20170051702A1 (en) 2017-02-23
MX2016010138A (es) 2016-11-15
DE102015203135A1 (de) 2015-08-27

Similar Documents

Publication Publication Date Title
EP1963654B1 (de) Kolben für einen verbrennungsmotor
EP2761210B1 (de) Zweiteiliger stahlkolben für brennkraftmaschinen
DE102013002895B4 (de) Kolben für eine Hubkolben-Verbrennungskraftmaschine
EP2342441B1 (de) Kühlkanalkolben einer brennkraftmaschine mit einem verschlusselement, das den kühlkanal verschliesst
DE112012004427T5 (de) Kolben für einen Verbrennungsmotor
DE102008034430A1 (de) Reibgeschweißter Stahlkolben mit optimiertem Kühlkanal
WO2011131266A1 (de) KOLBENOBERTEIL EINES GEBAUTEN ODER GESCHWEIßTEN KOLBENS MIT ERWEITERTEN KÜHLRÄUMEN
DE102005029417A1 (de) Verfahren zur Herstellung eines Kolbens für einen Verbrennungsmotor
DE102013214738A1 (de) Leichtbau eines Dieselkolbens
EP3108134A1 (de) Kolben ohne geschlossenen kühlraum für verbrennungsmotoren mit mindestens einer kühlöldüse pro zylinder sowie ein verfahren zur kühlung dieses kolbens
DE102014205118A1 (de) Kolben für eine Verbrennungskraftmaschine
DE112016005765T5 (de) Kolben für einen Verbrennungsmotor
WO2014190962A1 (de) Kolben für einen verbrennungsmotor
WO2012116688A1 (de) Kolben für einen verbrennungsmotor
DE102013215538B4 (de) Kolben für einen Verbrennungsmotor
WO2017025608A1 (de) Kolben für eine brennkraftmaschine
WO2014190964A1 (de) Kolben für einen verbrennungsmotor
DE102014204089A1 (de) Kolben für eine Verbrennungskraftmaschine
EP1231374B1 (de) Kolben, insbesondere für eine Brennkraftmaschine
DE102015122364B4 (de) Kolben für einen verbrennungsmotor
WO2015124749A1 (de) Kolben mit einem strömungsgünstige ölführungsflächen aufweisenden offenem kühlraum sowie ein verfahren zur kühlung dieses kolbens
EP3411585A1 (de) Kolben aus stahl- oder grauguss für einen verbrennungsmotor und verfahren zur herstellung eines kolbens durch stahl- oder grauguss
DE102013205298B4 (de) Kolben mit durch Spritzöl gekühltem Kolbenboden
DE102004029926A1 (de) Kolben für einen Verbrennungsmotor
EP3615784B1 (de) Einteiliger, gegossener kolben für einen verbrennungsmotor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15706453

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015706453

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015706453

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/010138

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 15119767

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE