WO2015123897A1 - 一种改进的植膜s型纳米氧化锌生产工艺 - Google Patents

一种改进的植膜s型纳米氧化锌生产工艺 Download PDF

Info

Publication number
WO2015123897A1
WO2015123897A1 PCT/CN2014/072988 CN2014072988W WO2015123897A1 WO 2015123897 A1 WO2015123897 A1 WO 2015123897A1 CN 2014072988 W CN2014072988 W CN 2014072988W WO 2015123897 A1 WO2015123897 A1 WO 2015123897A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc oxide
leaching
zinc
ammonia
production process
Prior art date
Application number
PCT/CN2014/072988
Other languages
English (en)
French (fr)
Inventor
黄有余
梁鹤贤
Original Assignee
韶关凯鸿纳米材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 韶关凯鸿纳米材料有限公司 filed Critical 韶关凯鸿纳米材料有限公司
Publication of WO2015123897A1 publication Critical patent/WO2015123897A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the invention relates to a method for producing petrochemical chemical fine chemicals, in particular to an improved planting s-type nano zinc oxide production process.
  • Nano-zinc oxide is a new type of high-value, high value-added fine inorganic chemical product. Its particle size is between 1-100 nm, also known as ultra-fine zinc oxide. Due to the grain refinement, the specific surface area increases sharply, and the surface electronic structure and crystal structure change, resulting in surface effects, volume effects, quantum size effects and macroscopic tunneling effects, and high transparency and high dispersion which are not found in macroscopic objects. Features. Recent studies have found that it has special properties and new uses that are unmatched by general zinc oxide products in terms of catalysis, magnetism, light, electricity, chemistry, physics, biology, and sensitivity.
  • nano-zinc oxide It has broad application prospects in the fields of rubber, paints, inks, pigments, catalysts, high-end cosmetics and medicine. Due to the excellent performance and attractive application prospects of nano-zinc oxide, the development of nano-zinc oxide has become the focus of many scientific and technological personnel.
  • Nano zinc oxide products have high activity and are resistant to infrared, ultraviolet and bactericidal functions. It has been widely used in sunscreen cosmetics, antibacterial, deodorant and UV resistant new functional fibers, self-cleaning antibacterial glass, ceramics, infrared shielding, ultraviolet shielding materials, sanitary ware, sewage treatment and photocatalyst materials.
  • Nano zinc oxide is also the most effective inorganic active agent and vulcanization accelerator in the rubber industry. It is used in rubber and has the characteristics of fast vulcanization speed, wide reaction temperature range and high conversion rate of zinc sulfide. It can improve the finish, mechanical strength, temperature resistance and aging resistance of rubber products, especially to improve its wear resistance. Practice has shown that nano-zinc oxide is no less inferior to ordinary zinc oxide in these applications, and because of its large surface activity, it can be used in a reduced amount, thereby reducing costs.
  • Nano-ZnO is used in high-grade paints, inks, coatings and plastics to greatly improve product hiding power and tinting strength. It is used as a fluxing agent for emulsion glaze in the ceramic industry. In addition, nano zinc oxide is also widely used in the cable, paper, pharmaceutical, printing and dyeing, pigment and defense industries.
  • the method for preparing nano zinc oxide ultrafine powder is mainly divided into physical method and chemical method. Among them, chemical method is the most commonly used method. The methods are described below.
  • the mechanical pulverization method uses a special technique such as mechanical pulverization and electric spark explosion to pulverize ordinary grade zinc oxide to ultrafine.
  • the first fine particle size is 0.1 ⁇ m
  • the ultrafine powder is obtained by using a vertical vibrating mill to obtain a nano-powder such as ⁇ -A1 2 0 3 , Zn0, MgSi0 3 .
  • this method is simple, it has It has high energy consumption, low product purity, uneven particle size distribution, and the size of the grinding media and the fineness of the feed affect the pulverization efficiency.
  • the biggest drawback is that the method does not get ⁇ -lOOnm powder, so this method is not commonly used in industry.
  • the deep plastic deformation method causes the raw material to undergo severe plastic deformation under the action of net pressure, and the size of the material is refined to the nanometer level.
  • This unique method was originally developed by Islamgaliev et al. in early 1994.
  • the zinc oxide powder obtained by the method has high purity and controllable particle size, but the requirements for the production equipment are high.
  • the physical preparation of nano-zinc oxide has the disadvantages of large energy consumption, uneven particle size of the product, or even nanometer-scale, low purity of the product, and is not commonly used in industry, and its development prospects are not large.
  • the chemical method has the characteristics of low cost, simple equipment, and easy enlargement for large-scale industrial production. Mainly divided into sol-gel method, alkoxide hydrolysis method, direct precipitation method, uniform precipitation method and the like.
  • the alkoxide hydrolysis method is a method in which a metal alkoxide is rapidly hydrolyzed in water to form a hydroxide precipitate, and the precipitate is washed with water, dried, and calcined to obtain a nano powder.
  • the outstanding advantages of this method are that the reaction conditions are not required to be high and the operation is simple.
  • the disadvantage is that uneven nucleation is easily formed in the reaction, and the raw material cost is high. For example, using Zn (0C 2 H 5 ) 2 as a raw material, the following reaction occurs:
  • the direct precipitation method is one of the most widely used methods for preparing nano zinc oxide.
  • the principle is to add a precipitant or remove a dissolving agent in a soluble salt solution containing one or more ions, to form a precipitate under certain conditions, and to precipitate a precipitate from the solution, and then to remove the anion, the precipitate
  • the nano zinc oxide is finally obtained by thermal decomposition.
  • Different precipitation agents can be used to obtain different precipitation products.
  • common precipitants are ammonia, ammonium bicarbonate, urea, and the like.
  • the reaction formula of NH 3 ⁇ H 2 0 as a precipitant is as follows:
  • reaction formula using urea as a precipitant is as follows:
  • the direct precipitation method is simple and easy to operate, requires less equipment technology, has high product purity, is not easy to introduce other impurities, and has a low cost.
  • this method has the disadvantage that it is difficult to wash the anions in the precipitate, and the resulting product particles have a wide particle size distribution. Large-scale industrial production must be tackled to overcome these shortcomings.
  • the homogeneous precipitation method utilizes a chemical reaction to slowly and uniformly release the crystallized particles in the solution from the solution.
  • the precipitating agent added does not directly react with the precipitated component, but is uniformly and slowly precipitated throughout the solution by a chemical reaction.
  • Commonly used homogeneous precipitants are urea C0 (NH 2 ) 2 and hexamethylenetetramine C 6 .
  • the particle size of the obtained powder is generally 8-60 nm. Among them, Wei Zhixian et al. used zinc and zinc nitrate as raw materials to prepare zinc oxide, and concluded that temperature is the most sensitive factor affecting the particle size of the product.
  • the hydrothermal method was originally used as a means of studying the genesis of the earth's minerals. It is achieved by atomic and molecular-scale particle construction and crystal growth by chemical reaction under hydrothermal conditions in an autoclave.
  • the method is to dissolve zinc acetate in water in two In ethylene glycol, zinc oxide was obtained by heating and stirring to obtain zinc oxide, and then cooled at room temperature, and the mixture was dried to obtain zinc oxide powder.
  • the powder prepared by the method has complete development, small particle size and uniform distribution, small degree of agglomeration, and high activity during sintering.
  • the disadvantage is that the equipment requires high pressure resistance and high energy consumption, which is not conducive to industrial production.
  • Microemulsions are typically transparent, isotropic thermodynamically stable systems composed of surfactants, co-surfactants (usually alcohols), oils (usually hydrocarbons) and water (or aqueous electrolytes).
  • a tiny "water pool” is surrounded by a monolayer interface composed of a surfactant and a co-surfactant to form microemulsion particles, which can be controlled between several and tens of nanometers in size. .
  • the tiny “pools” are small and separated from each other and thus do not constitute an aqueous phase. This particular microenvironment has proven to be an ideal medium for a variety of chemical reactions.
  • the nano zinc oxide prepared by the microemulsion method has a uniform particle size distribution, but the agglomeration phenomenon is serious. This is because the particle size of the nanomaterial prepared by the microemulsion method is too small, larger than the surface, and the surface effect is severe.
  • nano-zinc oxide has broad application prospects, but its conventional preparation methods are insufficient.
  • the present invention aims to improve the productivity of the nano zinc oxide by changing the concentration of the reactants, in combination with the invention patent application No. 201110450912. 5, the advantage of the technology disclosed in the "manufacturing process of a film-forming nano zinc oxide".
  • the agglomeration of the nano zinc oxide is reduced by changing the catalyst, and the dispersant is changed to avoid the conflict between the product and the dispersant.
  • An improved implanted S-type nano zinc oxide production process which is characterized by the following steps:
  • Leaching using ammonia water and ammonium bicarbonate as a leaching solvent, leaching zinc in the sub-zinc oxide to form a zinc ammonia complex solution;
  • purification liquid purification adding ammonium sulfide to the purification liquid obtained in the above step, causing the residual impurity metal ions in the purification liquid to form a poorly soluble sulfide metal salt, and filtering and removing to obtain a refined liquid;
  • Pre-nanochemical phytosanitary Add dispersant white carbon black to the refined liquid obtained in the above step, activation and nano-catalysis Sodium tripolyphosphate;
  • the pre-nanochemically mobilized suspension solution obtained in the above step is sent to the ammonia tank for steaming ammonia, that is, directly under the negative pressure with water vapor of 100 degrees Celsius or more to the pre-nanochemical phytoreaction
  • the zinc ammonia complex is thermally decomposed into basic zinc carbonate, ammonia gas and carbon dioxide, and the basic zinc carbonate is uniformly attached to the surface of the dispersant and the surface of the pores is precipitated to obtain a S-type nano zinc oxide suspension.
  • the leaching is carried out in two stages, respectively, in two leaching tanks, and the slag after the leaching of the first stage is added to the second leaching tank under stirring to be leached, and the leaching residue of the second stage is leached. Discarded, and the second leaching solution of the second stage is added to the first stage leaching tank as a leaching solvent, and the zinc oxide is introduced into the first leaching tank under stirring, and the leached one immersion liquid proceeds to the next step, Cycle back and forth.
  • the first stage leaching is for the purpose of fully consuming excessive leaching solvent, so that the complexation reaction of ammonia and zinc is sufficiently carried out, the zinc content in the leaching solution is increased, and the steam in the process of steaming ammonia per ton of plant S-type nano zinc oxide is reduced.
  • the leaching time is 3 - 3. 5 hours
  • the first immersing time is 3 - 3. 5 hours
  • the second leaching time the leaching time of the ammonia concentration of 100-120g / L, the ammonium carbonate concentration of 140-170g / L, leaching time of 2-2. 5 hours.
  • the oxidation reaction condition is 40-55 ° C, and the amount of potassium permanganate charged is 3-6 times of the total mass of Fe 2+ +Mn 2+ in an immersion liquid; the reaction time is 1-1. 5 hours.
  • the substitution reaction condition is that zinc powder is added in an amount of 2-4 times the total mass of copper, cadmium and lead in the solution, and the reaction is stirred for 45 minutes.
  • the ammonia sulfide used is an effective sulfur content of 8-9 ° /.
  • the refined liquid has a Zn content of 100 to 140 g/L.
  • the dispersing agent is white carbon black
  • the activation and nano-catalyst is sodium tripolyphosphate
  • the pre-nanochemical phytoreaction requires agitation, reaction The time is 30-40 minutes.
  • the ammonia distillation process adopts a "double tangent direct steaming" process; that is, two steam pipes which are opposite in direction and are parallel to each other and distributed on both sides of the ammonia tank body, and both are steamed with ammonia.
  • the can body extends into the tank in a tangential direction, allowing two high-pressure steam streams to drive the liquid along the wall of the cylinder or to rotate at a high speed clockwise or counterclockwise to perform a thorough mixing reaction.
  • the steaming rate is controlled by controlling the amount of steam at the beginning of the steaming; when the concentration of the zinc ion in the solution is lowered to less than lg/L, the ammonia is stopped.
  • the resulting final product nano zinc oxide is not only stable in size and properties, but also has complete grain development, small particle size and uniform distribution, small degree of agglomeration, high activity and good dispersibility.
  • Leaching Ammonia water and ammonium bicarbonate are used as a leaching solvent to leaching zinc in the sub-zinc oxide to form a zinc-ammonium complex solution; the main reaction formula of this step is as follows:
  • the leaching is carried out in two stages, respectively, in two leaching tanks, and the leaching residue after the first leaching is added to the second leaching tank under stirring to be leached, and the second leaching slag is discarded, and the second
  • the second immersion liquid leached in the section is added to the first leaching tank as a leaching solvent, and the zinc oxynitride is introduced into the first leaching tank under stirring, and the leached one immersion liquid is advanced to the next step, and the cycle is repeated.
  • the first stage leaching is for the purpose of fully consuming excessive leaching solvent, so that the complexation reaction of ammonia and zinc is sufficiently carried out, the zinc content in the leaching solution is increased, and the steam in the process of steaming ammonia per ton of plant S-type nano zinc oxide is reduced.
  • the second stage of the leaching process with a large excess of leaching solvent to ensure that the zinc content of the leaching slag is as low as possible, and it has been proved that it can be reduced by 2% to improve the recovery rate of zinc metal.
  • the second stage is leached, the ammonia concentration in the leaching solvent is 5 ⁇ The leaching time is 2-2. 5 hours.
  • the above oxidation reaction conditions were 50 ° C, and the amount of potassium permanganate charged was 6 times of the total mass of Fe 2+ + Mn 2+ in an immersion liquid; the reaction time was 1 hour.
  • 0001g/L Mn content is 0. 0001g / L.
  • the Mn content is 0. 0003g / L, the manganese content is 0. 0001g / L.
  • the reaction conditions are that zinc powder is added in an amount of 2-4 times the total mass of copper, cadmium and lead in the solution, and the reaction is stirred for 45 minutes.
  • the amount of copper is reduced from 0. 0212g / L to 0. 0002g / L, the lead content is reduced from 0. 021-0. 031g / L
  • ammonium sulfide used is ammonium sulfide with an effective sulfur content of 8%, diluted 10 times with water, slowly added to the purification liquid under stirring, and subjected to pressure filtration after 1 hour of reaction; the ammonium sulfide is added in an amount of impurities such as copper, cadmium and lead. The sum of the molar amounts.
  • Pre-nano-implantation After the refined liquid obtained in the above step is adjusted to Znl20g/L, the dispersant silica is added to activate and nano-catalyze the sodium tripolyphosphate; among them, zinc: dispersant: activation and nanometer
  • the molar ratio of the catalyst was 1:1.5:0.11; the pre-nanochemical physiology reaction was stirred, and the reaction time was 30 minutes.
  • the pre-nanochemically mobilized suspension solution obtained in the above step is sent to the ammonia tank for steaming ammonia, that is, directly under the negative pressure with 10 CTC or more of water vapor to the pre-nanochemical phytos
  • the zinc ammonia complex is thermally decomposed into basic zinc carbonate, ammonia gas and carbon dioxide, and the basic zinc carbonate is uniformly attached to the surface of the dispersant and the surface of the pores thereof to precipitate, and the S-type nano zinc oxide suspension is obtained.
  • the main reaction of this step is as follows:
  • the reaction rate is controlled by controlling the amount of steam to facilitate the formation of nanoparticles.
  • the basic zinc carbonate is continuously precipitated.
  • the precipitation rate of the basic zinc carbonate was 98% or more, and the precipitation gradually decreased thereafter.
  • the zinc ion concentration in the solution dropped below lg/L, and the ammonia distillation was stopped.
  • the evaporated ammonia and carbon dioxide are recovered by cooling and water circulation to recover ammonia water, and can be returned to the leaching section for recycling as a leaching solvent.
  • the ammonia recovery chemical reaction formula is as follows:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

提供一种改进的植膜S型纳米氧化锌生产工艺,包括以下步骤:(1)浸出;(2)氧化除铁、锰;(3)锌粉置换除铜、镉、铅;(4)净化液精制;(5)预纳米化植活:在上述步骤得到的精制液中加入分散剂白炭黑,活化及纳米化催化剂三聚磷酸钠;(6)蒸氨,得到植膜S型纳米氧化锌悬浮液;(7)煅烧;(8)产品包装。

Description

一种改进的植膜 s型纳米氧化锌生产工艺
技术领域
本发明涉及一种石化化工类精细化学品的生产方法, 特别涉及一种改进的植膜 s型纳米 氧化锌生产工艺。
背景技术
纳米氧化锌是一种多功能、 高附加值的新型精细无机化工产品。 其粒径介于 1-100纳米 之间, 又称为超微细氧化锌。 由于晶粒的细微化, 比表面积急剧增加, 其表面电子结构和晶 体结构发生变化, 产生了宏观物体所不具有的表面效应、 体积效应、 量子尺寸效应和宏观隧 道效应以及高透明度、 高分散性等特点。 近年来的研究发现它在催化、 磁、 光、 电、 化学、 物理学、 生物、敏感性等方面具有一般氧化锌产品所无法比拟的特殊性能和新用途。在橡胶、 涂料、 油墨、 颜 (填) 料、 催化剂、 高档化妆品以及医药等领域展现出广阔的应用前景。 由 于纳米氧化锌一系列的优异性和十分诱人的应用前景, 研发纳米氧化锌已经成为了许多科技 人员关注的焦点。
纳米氧化锌产品活性高, 具有抗红外、 紫外线和杀菌的功能。 已被广泛应用于防晒型化 妆品、 抗菌防臭和抗紫外线的新型功能纤维、 自洁抗菌玻璃、 陶瓷、 防红外、 紫外线的屏蔽 材料、 卫生洁具、 污水处理和光催化剂材料等产品中。
纳米氧化锌还是橡胶工业中最有效的无机活性剂和硫化促进剂。 其在橡胶中应用, 具有 硫化速度快, 反应温域宽, 转化为硫化锌的转化率高等特点。 可提高橡胶制品的光洁度、 机 械强度、 耐温性和耐老化性能, 特别是提高其耐磨性能等。 实践表明, 纳米氧化锌在这些方 面应用与普通氧化锌比较毫不逊色, 更因其表面活性大而可以实现减量配用, 进而降低成本。
纳米氧化锌应用于高档油漆、 油墨、 涂料、 塑料中, 能大大提高产品遮盖力和着色力; 在陶瓷工业中用作乳蚀釉料的助熔剂。 此外, 纳米氧化锌还可广泛应用于电缆、 造纸、 医药、 印染、 颜料和国防等行业。
制备纳米氧化锌超微粉的方法主要分物理法和化学法。 其中, 化学法是最常用的方法。 以下对各方法进行阐述。
1. 物理法
物理法包括机械粉碎法和深度塑性变形法。 机械粉碎法是采用特殊的机械粉碎、 电火花 爆炸等技术, 将普通级别的氧化锌粉碎至超细。其中张伟等人利用立式振动磨制备纳米粉体, 得到了 α -A1203、 Zn0、 MgSi03等超微粉, 最细粒度达到 0. 1μ m。 此法虽然工艺简单, 但却具 有能耗大, 产品纯度低, 粒度分布不均匀, 研磨介质的尺寸和进料的细度影响粉碎效能等缺 点。 最大的不足是该法得不到 Ι-lOOnm的粉体, 因此工业上并不常使用此方法。
而深度塑性变形法是使原材料在净压作用下发生严重塑性形变, 使材料的尺寸细化到纳 米量级。 这种独特方法最初是由 Islamgaliev等人于 1994年初发展起来的。 该方法制得的 氧化锌粉体纯度高、 粒度可控, 但对生产设备的要求却很高。 总的说来, 物理法制备纳米氧 化锌存在着耗能大, 产品粒度不均匀甚至达不到纳米级, 产品纯度不高等缺点, 工业上不常 采用, 其发展前景也不大。
2. 化学法
化学法具有成本低, 设备简单, 易放大进行大规模工业化生产等特点。 主要分为溶胶- 凝胶法、 醇盐水解法、 直接沉淀法、 均匀沉淀法等。
2. 1 溶胶-凝胶法
溶胶-凝胶法制备纳米粉体的工作开始于 20世纪 60年代。近年来,用此法制备纳米微粒、 纳米薄膜、 纳米复合材料等的报道很多。 它是以金属的醇盐 Zn (0R) 2 为原料, 在有机介质中 对其进行水解、 縮聚反应, 使溶液经溶胶化得到凝胶。 凝胶再经干燥、 煅烧成粉体的方法。 此法生产的产品粒度小、 纯度高、 反应温度低( 可以比传统方法低 400--500°C )、 过程易控 制、 颗粒分布均匀、 团聚少、 介电性能较好。 但成本昂贵, 排放物对环境有污染, 有待改善。
所述水解、 縮聚反应式如下:
水解反应 : Zn (0R) 2+2H20 → Zn (0H) 2+2R0H
縮聚反应 : Zn (0H) 2 → Zn0+H20
2. 2 醇盐水解法
醇盐水解法是利用金属醇盐在水中快速水解, 形成氢氧化物沉淀, 沉淀物再经水洗、 干 燥、 煅烧而得到纳米粉体的方法。 该方法突出的优点是反应条件要求不高, 操作简单。 缺点 是反应中易形成不均匀成核, 而且原料成本高。 例如以 Zn (0C2H5) 2为原料, 发生以下反应:
Zn (0C2H6) 2+2H20 → Zn (OH) 2+2C2H60H Zn (OH) 2 → Zn0+H20
2. 3 直接沉淀法
直接沉淀法是制备纳米氧化锌最为广泛采用的一种方法。 其原理是在包含一种或多种离 子的可溶性盐溶液中加入沉淀剂或移除溶解剂, 在一定条件下生成沉淀物, 并使其沉淀物从 溶液中析出, 再将阴离子除去, 沉淀物经热分解最终制得纳米氧化锌。 其中选用不同的沉淀 剂, 可得到不同的沉淀产物。 就资料报道看, 常见的沉淀剂为氨水、 碳酸氢铵、 尿素等。 以 NH3 · H20作沉淀剂反应式如下:
Ζη2++2ΝΗ3 · H20 → Zn (OH) 2+2NH4+
Zn (OH) 2 → Zn0+H20
以碳酸氢铵作沉淀剂反应式如下:
3Zn2++2NH4HC03+H20 → ZnC03 · 2Zn (OH) 2 · H20+2NH4+
ZnC03 · 2Zn (OH) 2 · H20 → 3ZnO+C02+H20
以尿素作沉淀剂反应式如下:
CO (NH2) 2+2H20 → C02+2NH3 · H20 3Zn2++C03 2— +40H— +H20 → ZnC03 · 2Zn (OH) 2 · H20
ZnC03 · 2Zn (OH) 2 · H20 → 3ZnO+C02+H20
直接沉淀法操作简单易行, 对设备技术要求不高, 产物纯度高, 不易引入其它杂质, 成 本较低。 但是, 此方法的缺点是洗涤沉淀物中的阴离子较困难, 且生成的产品粒子粒径分布 较宽。 大规模工业生产上须进行攻关克服这些缺点。
2. 4 均匀沉淀法
均匀沉淀法是利用某一化学反应使溶液中的构晶微粒从溶液中缓慢地、均匀地释放出来。 所加入的沉淀剂并不直接与被沉淀组分发生反应, 而是通过化学反应使其在整个溶液中均匀 缓慢地析出。 常用均匀沉淀剂有尿素 C0 (NH2) 2和六亚甲基四胺 C6 。 所得粉末粒径一般为 8-60nmo 其中卫志贤等人以尿素和硝酸锌为原料制备氧化锌, 得出结论: 温度是影响产品粒 径的最敏感因素。 温度低, 尿素水解慢, 溶液中氢氧化锌的过饱和比低, 粒径大; 温度过高, 尿素产生縮合反应生成縮二脲等, 氢氧化锌过饱和比低, 溶液粘稠, 不易干燥, 最终产品颗 粒较大。 另外, 反应物浓度及尿素与硝酸锌的配比也影响溶液中氢氧化锌的过饱和比。 浓度 越高, 在相同的温度下, 氢氧化锌的过饱和比越大。但是过高的浓度和尿素与硝酸锌的比值, 使产品的洗涤、 干燥变得困难, 反应时间过长, 也将造成后期溶液过饱和比降低, 粒径变大。 因此他们得到的最佳工艺条件为: 反应温度〈130°C、 反应时间 150min、 尿素与硝酸锌的配比 2. 5-4. 0: 1 (摩尔比)。 由此可看出, 均匀沉淀法得到的微粒粒径分布较窄, 分散性好, 工业 化前景佳, 是制备纳米氧化锌较理想方法。 但在具体应用于大规模工业生产时, 仍需根据具 体情况进行优化完善。
2. 5 水热法
水热法最初是用来研究地球矿物成因的一种手段。 它是通过在高压釜中适合水热条件下 的化学反应实现从原子级、 分子级的微粒构筑和晶体生长的。 该法是将双水醋酸锌溶解在二 乙烯乙二醇中, 加热并不断搅拌以此得到氧化锌, 再在室温下冷却, 用离心机将水分离, 经 过干燥最终得到氧化锌粉末。 此法制备的粉体晶粒发育完整, 粒径小且分布均匀, 团聚程度 小, 在烧结过程中活性高。 但缺点是设备要求耐高压, 能量消耗也很大, 因此不利于工业化 生产。
2. 6 微乳液法
微乳液通常是由表面活性剂、 助表面活性剂 (通常为醇类)、 油(通常为碳氢化合物)和水 (或电解质水溶液)组成的透明的、 各向同性的热力学稳定体系。 微乳液中, 微小的 "水池" (water pool)被表面活性剂和助表面活性剂所组成的单分子层界面所包围而形成微乳颗粒, 其大小可控制在几个至几十纳米之间。 微小的 "水池"尺度小且彼此分离, 因而不构成水相, 这种特殊的微环境已被证明是多种化学反应的理想介质。 徐甲强等人在硝酸锌溶液中加入环 己烷、正丁醇、 ABS 搅拌,再加入双氧水,并用氨水作为沉淀剂,最终合成了纳米颗粒(19nm)、 气体灵敏度高和工作温度低的纳米氧化锌。 微乳液法制备的纳米氧化锌, 粒径分布均匀, 但 是团聚现象严重。 这是由于微乳液法制得的纳米材料粒径太小, 比表面大, 表面效应较严重 所致。
综上所述, 纳米氧化锌具有广阔的应用前景, 但目前其常规制备方法均有不足。
发明内容
本发明目的在于结合申请号为 201110450912. 5 的发明专利申请 "一种植膜型纳米氧化 锌生产工艺"所公开的技术的优点, 并且在此基础上通过改变反应物浓度提高纳米氧化锌的 产能, 通过改变催化剂来减小纳米氧化锌的团聚度, 同时改变分散剂来避免产品与分散剂的 冲突。
本发明目的通过以下技术方案来实现: 一种改进的植膜 S型纳米氧化锌生产工艺, 其特 征在于包括以下步骤:
( 1 ) 浸出: 以氨水及碳铵作浸出溶剂, 将次氧化锌中的锌浸出制成锌氨络合物溶液;
( 2 )氧化除铁、 锰: 在上述步骤得到的浸出液中加入高锰酸钾进行氧化反应, 将浸出液 中的 Fe2+、 Mn2+氧化成难溶的 Fe3+、 Mn4+沉淀出来, 并过滤除去, 得到滤液;
( 3 ) 锌粉置换除铜、 镉、 铅: 在上述步骤得到的滤液中加入锌粉置换反应, 使铜、 镉、 铅沉淀出来, 并过滤除去, 得到净化液;
( 4)净化液精制: 在上述步骤得到的净化液中加入硫化铵, 使净化液中残余的杂质金属 离子生成难溶的硫化金属盐, 过滤除去, 得到精制液;
( 5 )预纳米化植活: 在上述步骤得到的精制液中加入分散剂白炭黑, 活化及纳米化催化 剂三聚磷酸钠;
(6 )蒸氨; 在上述步骤得到的经预纳米化植活后的悬浮溶液送入蒸氨罐蒸氨, 即在负压 下用 100摄氏度以上水蒸汽直接通入到预纳米化植活后的溶液中, 使锌氨络合物受热分解为 碱式碳酸锌、 氨气和二氧化碳, 所述碱式碳酸锌均匀附着于分散剂表面及其孔隙表面析出, 得到植膜 S型纳米氧化锌悬浮液;
( 7 )煅烧; 将上述步骤得到的悬浮液加水洗涤, 经压滤机压滤, 滤饼送入动态干燥煅烧 一体炉煅烧活化即可得到植膜 S型纳米氧化锌产品;
(8 )产品包装: 产品经冷却后, 进入气流筛、 除铁及自动包装系统过筛、 除铁, 然后包 装。
作为上述技术方案的改进:
步骤(1 ) 中, 所述浸出为两段式, 分别在两个浸出池中进行, 将第一段浸出后的滤渣在 搅拌下加入第二段浸出池中再浸出, 第二段浸出的滤渣弃去, 而第二段浸出的二浸液则加入 第一段浸出池中作为浸出溶剂, 并在搅拌下投入次氧化锌至第一浸出池中, 浸出的一浸液进 入下一步骤, 如此循环往复。 其中, 第一段浸出以充分消耗过量的浸出溶剂为目的, 使氨和 锌的络合反应充分进行, 提高浸出溶液中锌的含量, 减少每吨植模 S型纳米氧化锌蒸氨过程 中蒸汽的消耗量; 第二段浸出工序中则以大量过量的浸出溶剂来保证浸出渣中锌的含量尽可 能地低, 实践证明可以降低 2%, 以提高锌金属回收率。
所述第一段浸出时按总摩尔比 NH4+ : Zn=3. 5-4. 5: 0. 5-1. 5投入次氧化锌, 浸出时间为 3-3. 5小时,所述第二段浸出时,浸出溶剂中的氨浓度为 100-120g/L,碳铵浓度为 140-170g/L, 浸出时间为 2-2. 5小时。
步骤(2 )中,所述氧化反应条件为 40-55°C,搅拌,投入高锰酸钾的量为一浸液中 Fe2++Mn2+ 总质量的 3-6倍; 反应时间为 1-1. 5小时。
步骤(3 ) 中, 置换反应条件为按溶液中铜、 镉、 铅总质量的 2-4倍加入锌粉, 并搅拌反 应 45分钟。
步骤(4) 中, 所用硫化氨为有效硫含量 8-9°/。的硫化铵, 用水稀释 10倍, 在搅拌下缓慢 加入净化液中, 反应 1-1. 5个小时后压滤; 所述硫化铵的加入量为铜、 镉、 铅等杂质的摩尔 量之和的 1-1. 5倍。
步骤 (5 ) 中, 所述精制液 Zn含量为 100-140g/L。
步骤(5 ) 中, 所述分散剂为白炭黑, 活化及纳米化催化剂为三聚磷酸钠, 其中, 锌: 分 散剂: 活化及纳米化催化剂的摩尔比 1 : 1. 5: 0. 001; 所述预纳米化植活反应需搅拌, 反应 时间为 30-40分钟。
步骤(6 ) 中, 所述蒸氨工序采用 "双切线直接打入蒸汽"工艺; 即设两条方向相反且相 互平行地分布于蒸氨罐筒体两侧的蒸汽管道, 并均与蒸氨罐筒体成切线方向伸入罐内, 让两 道高压蒸汽流沿着筒壁带动液体或以顺时针或以逆时针一边高速地旋转一边进行充分混合反 应。
步骤(6 ) 中, 所述蒸氨开始时通过控制蒸汽量来控制反应速度; 当溶液中锌离子浓度可 降到了 lg/L以下即停止蒸氨。
与申请号为 201110450912. 5 的发明专利申请 "一种植膜型纳米氧化锌生产工艺"所公 开的技术相比, 本发明具有的有益效果为:
1 ) 通过控制氨浓度使得整个工艺产能提高了原来的 1/3-1/2, 进一步完善了工艺流程, 更利 于工业化生产。
2 ) 通过改变分散剂, 使得生成的最终产品纳米氧化锌不仅尺寸和性质稳定, 晶粒发育完整, 粒径小且分布均匀, 团聚程度小, 活性超高, 分散性好。
3 ) 通过改变分散剂、 活化及纳米化催化剂, 使得分散剂、 活化及纳米化催化剂与下游产品 不冲突。
具体实施方式
以下结合实施例对本发明做进一步的说明, 但并不对本发明造成任何限制。
实施例 1
一种改进的植膜 s型纳米氧化锌生产工艺, 其特征在于包括以下步骤:
( 1 )浸出: 以氨水及碳铵作浸出溶剂, 将次氧化锌中的锌浸出制成锌氨络合物溶液; 该 步骤主要反应式如下:
Zn0+3NH3 · H20+NH4HC03=Zn (NH3) 4C03+4H20
所述浸出为两段式, 分别在两个浸出池中进行, 将第一段浸出后的滤渣在搅拌下加入第 二段浸出池中再浸出, 第二段浸出的滤渣弃去, 而第二段浸出的二浸液则加入第一段浸出池 中作为浸出溶剂, 并在搅拌下投入次氧化锌至第一浸出池中, 浸出的一浸液进入下一步骤, 如此循环往复。 其中, 第一段浸出以充分消耗过量的浸出溶剂为目的, 使氨和锌的络合反应 充分进行, 提高浸出溶液中锌的含量, 减少每吨植模 S型纳米氧化锌蒸氨过程中蒸汽的消耗 量; 第二段浸出工序中则以大量过量的浸出溶剂来保证浸出渣中锌的含量尽可能地低, 实践 证明可以降低 2%, 以提高锌金属回收率。 所述第一段浸出时按总摩尔比 NH4+: Zn=4: 1投入次氧化锌, 浸出时间为 3-3. 5小时, 所 述第二段浸出时, 浸出溶剂中的氨浓度为 100g/L, 碳铵浓度为 140g/L, 浸出时间为 2-2. 5小 时。
( 2 )氧化除铁、 锰: 在上述步骤得到的浸出液中加入高锰酸钾进行氧化反应, 将浸出液 中的 Fe2+、 Mn2+氧化成难溶的 Fe3+、 Mn4+沉淀出来, 并过滤除去, 得到滤液; 该步骤主要反应式 如下:
Fe2++3Mn7+=Fe3+ \ +3Mn4+ \ 5Mn2++2Mn7+=7Mn4+ \
上述氧化反应条件为 50°C,搅拌,投入高锰酸钾的量为一浸液中 Fe2++Mn2+总质量的 6倍; 反应时间为 1 小时。 可使铁含量为 0. 012g/L、 锰含量为 0. 025g/L 的一浸液氧化为铁含量 0. 0003g/L、 锰含量 0. 0001g/L。
( 3 ) 锌粉置换除铜、 镉、 铅: 在上述步骤得到的滤液中加入锌粉置换反应, 使铜、 镉、 铅沉淀出来, 并过滤除去, 得到净化液; 该步骤主要反应如下:
Pb2++Zn=Zn2++Pb \ Cu2++Zn=Zn2++Cu \ Cd2++Zn=Zn2++Cd \
反应条件为按溶液中铜、 镉、 铅总质量的 2-4倍加入锌粉, 并搅拌反应 45分钟。
可使铜含量由 0. 0212g/L 降至 0. 0002g/L、 铅含量由 0. 021-0. 031g/L 降至
0. 002-0. 005g/L、 镉含量由 0. 025g/L降至 0. 001g/L。
( 4)净化液精制: 在上述步骤得到的净化液中加入硫化铵, 使净化液中残余的杂质金属 离子生成难溶的硫化金属盐, 过滤除去, 得到精制液; 该步骤主要反应如下:
Cd2++S2— =CdS I Cu2++S2— =CuS I Pb2++S2— =PbS I Zn2++S2— =ZnS I
所用硫化铵为有效硫含量 8%的硫化铵, 用水稀释 10倍, 在搅拌下缓慢加入净化液中, 反应 1小时后压滤; 所述硫化铵的加入量为铜、 镉、 铅等杂质的摩尔量之和。
( 5 )预纳米化植活: 在上述步骤得到的精制液调整至 Znl20g/L后, 加入分散剂白炭黑, 活化及纳米化催化剂三聚磷酸钠;其中,锌 : 分散剂: 活化及纳米化催化剂的摩尔比 1 : 1. 5: 0. 001; 所述预纳米化植活反应需搅拌, 反应时间为 30分钟。
( 6 )蒸氨; 在上述步骤得到的经预纳米化植活后的悬浮溶液送入蒸氨罐蒸氨, 即在负压 下用 10CTC以上水蒸汽直接通入到预纳米化植活后的溶液中, 使锌氨络合物受热分解为碱式 碳酸锌、 氨气和二氧化碳, 所述碱式碳酸锌均匀附着于分散剂表面及其孔隙表面析出, 得到 植膜 S型纳米氧化锌悬浮液; 该步骤主要反应式如下:
3Zn (NH3) 4C03+4H20=ZnC03 - 2Zn (0H) 2 - H20 I +12NH3 † +2C02 个 所述蒸氨工序采用 "双切线直接打入蒸汽"工艺。
蒸氨开始时通过控制蒸汽量来控制反应速度,以利于纳米粒子生成。 随着蒸氨不断进行, 碱式碳酸锌不断地析出。 在开始后的 2. 5小时内, 碱式碳酸锌的析出率在 98%以上, 此后析 出逐渐减慢, 到 4小时后, 溶液中锌离子浓度降到 lg/L以下即停止蒸氨。
蒸发出来的氨及二氧化碳经冷却、 水循环吸收制成回收氨水, 还可回到浸出工段作为浸 出溶剂循环使用。 氨回收化学反应式如下:
ΝΗ320=ΝΗ3 · ¾0
NH3 · H20+C02=NH4HC03
( 7)煅烧; 将上述步骤得到的悬浮液加水洗涤, 经压滤机压滤, 滤饼送入动态干燥煅烧 一体炉煅烧活化即可得到植膜 S型纳米氧化锌产品; 该步骤反应式为 :
ZnC03 · 2Zn (OH) 2 · H20=3ZnO+4H20 † +C02
(8)产品包装: 产品经冷却后, 进入气流筛、 除铁及自动包装系统过筛、 除铁, 然后包 装。
实施例 1 与申请号为 201110450912. 5 的发明专利申请 "一种植膜型纳米氧化锌生产工 艺"公开技术中的其中一个实施例的实验数据如下表。 从实验数据可知, 实施例 1的工艺产 能更高, 产品活性更高。
Figure imgf000009_0001
Figure imgf000010_0001
上述的实施例仅为本发明的优选实施例, 不能以此来限定本发明的权利范围, 因此, 依 本发明申请专利范围所作的等同变化, 仍属本发明所涵盖的范围。

Claims

权 利 要 求 书
1、 一种改进的植膜 s型纳米氧化锌生产工艺, 其特征在于包括以下步骤:
( 1 )浸出: 以氨水及碳铵作浸出溶剂, 将次氧化锌中的锌浸出制成锌氨络合物溶液;
( 2 )氧化除铁、锰: 在上述歩骤得到的浸出液中加入高锰酸钾进行氧化反应, 将浸出液 中的 Fe2+、 Mn2+氧化成难溶的 Fe3+、 Mn4+沉淀出来, 并过滤除去, 得到滤液;
( 3 )锌粉置换除铜、 镉、 铅: 在上述步骤得到的滤液中加入锌粉置换反应, 使铜、 镉、 铅沉淀出来, 并过滤除去, 得到净化液;
(4)净化液精制: 在上述步骤得到的净化液中加入硫化铵, 使净化液中残余的杂质金属 离子生成难溶的硫化金属盐, 过滤除去, 得到精制液;
( 5 )预纳米化植活: 在上述步骤得到的精制液中加入分散剂白炭黑, 活化及纳米化催化 剂三聚磷酸钠;
(6 )蒸氨: 在上述步骤得到的经预纳米化植活后的悬浮溶液送入蒸氨罐蒸氨, 即在负压 下用 100°C以上水蒸汽直接通入到预纳米化植活后的溶液中, 使锌氨络合物受热分解为碱式 碳酸锌、 氨气和二氧化碳, 所述碱式碳酸锌均匀附着于分散剂表面及其孔隙表面析出, 得到 植膜 S型纳米氧化锌悬浮液;
( 7 )煅烧: 将上述步骤得到的悬浮液加水洗涤, 经压滤机压滤, 滤饼送入动态干燥煅烧 一体炉煅烧活化即可得到植膜 S型纳米氧化锌产品;
(8 )产品包装: 产品经冷却后, 进入气流筛、 除铁及自动包装系统过筛、 除铁, 然后包 装。
2、 根据权利要求 1所述的一种改进的植膜 S型纳米氧化锌生产工艺, 其特征在于: 歩骤 ( 1 )中, 所述浸出为两段式, 分别在两个浸出池中进行, 将第一段浸出后的滤渣在搅拌下加 入第二段浸出池中再浸出, 第二段浸出的滤渣弃去, 而第二段浸出的二浸液则加入第一段浸 出池中作为浸出溶剂, 并在搅拌下投入次氧化锌至第一浸出池中, 浸出的一浸液进入下一步 骤, 如此循环往复。
3、 根据权利要求 2所述的一种改进的植膜 S型纳米氧化锌生产工艺, 其特征在于: 所述 第一段浸出时按总摩尔比 NH4+: Zn=3. 5-4. 5: 0. 5-1. 5投入次氧化锌, 浸出时间为 3-3. 5小 时, 所述第二段浸出时, 浸出溶剂中的氨浓度为 100-120g/L, 碳铵浓度为 140-170g/L, 浸 出时间为 2-2. 5小时。
4、 根据权利要求 2或 3所述的一种改进的植膜 S型纳米氧化锌生产工艺, 其特征在于: 步骤 (2 ) 中, 所述氧化反应条件为 40-55 °C, 搅拌, 投入高锰酸钾的量为一浸液中 Fe2++Mn2+ 总质量的 3-6倍; 反应时间为 1-1. 5小时。 5、 根据权利要求 1所述的一种改进的植膜 S型纳米氧化锌生产工艺, 其特征在于: 步骤 ( 3 ) 中, 置换反应条件为按溶液中铜、 镉、 铅总质量的 2-4倍加入锌粉, 并搅拌反应 45分 钟。
6、 根据权利要求 1所述的一种改进的植膜 S型纳米氧化锌生产工艺, 其特征在于: 步骤 ( 4) 中, 所用硫化氨为有效硫含量 8-9%的硫化铵, 用水稀释 10倍, 在搅拌下缓慢加入净化 液中, 反应 1-1. 5 个小时后压滤; 所述硫化铵的加入量为铜、 镉、 铅杂质的摩尔量之和的 1-1· 5倍。
7、 根据权利要求 1所述的一种改进的植膜 S型纳米氧化锌生产工艺, 其特征在于: 步骤 ( 5 ) 中, 所述精制液 Zn含量为 100_140g/L。
8、 根据权利要求 1所述的一种改进的植膜 S型纳米氧化锌生产工艺, 其特征在于: 步骤
( 5 ) 中, 锌: 分散剂: 活化及纳米化催化剂的摩尔比 1 : 1. 5: 0. 001; 所述预纳米化植活反 应需搅拌, 反应时间为 30-40分钟。
9、 根据权利要求 1所述的一种改进的植膜 S型纳米氧化锌生产工艺, 其特征在于: 步骤
( 6 )中, 所述蒸氨工序采用 "双切线直接打入蒸汽"工艺; 即设两条方向相反且相互平行地 分布于蒸氨罐筒体两侧的蒸汽管道, 并均与蒸氨罐筒体成切线方向伸入罐内, 让两道高压蒸 汽流沿着筒壁带动液体或以顺时针或以逆时针一边高速地旋转一边进行充分混合反应。
10、 根据权利要求 9所述的一种改进的植膜 S型纳米氧化锌生产工艺, 其特征在于: 步 骤(6 )中, 所述蒸氨开始时通过控制蒸汽量来控制反应速度; 当溶液中锌离子浓度可降到了 lg/L以下即停止蒸氨。
PCT/CN2014/072988 2014-02-18 2014-03-06 一种改进的植膜s型纳米氧化锌生产工艺 WO2015123897A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410055330.0 2014-02-18
CN201410055330.0A CN103910377B (zh) 2014-02-18 2014-02-18 一种改进的植膜s型纳米氧化锌生产工艺

Publications (1)

Publication Number Publication Date
WO2015123897A1 true WO2015123897A1 (zh) 2015-08-27

Family

ID=51036433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/072988 WO2015123897A1 (zh) 2014-02-18 2014-03-06 一种改进的植膜s型纳米氧化锌生产工艺

Country Status (2)

Country Link
CN (1) CN103910377B (zh)
WO (1) WO2015123897A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104591259B (zh) * 2015-02-09 2017-02-22 黄有余 一种植活式纳米氧化锌及其生产工艺
CN104843764A (zh) * 2015-03-31 2015-08-19 南京工业大学 一种流态化煅烧碱式碳酸锌制备纳米氧化锌的方法
CN106279762B (zh) * 2015-06-04 2018-06-15 陆昌化工股份有限公司 核壳氧化锌粉末及其氨式制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1065685A (zh) * 1992-04-28 1992-10-28 中南工业大学 氨法制取氧化锌方法
CN1986421A (zh) * 2006-12-21 2007-06-27 天津化工研究设计院 一种纳米氧化锌的制备方法
CN102515252A (zh) * 2011-12-28 2012-06-27 韶关凯鸿纳米材料有限公司 一种植膜型纳米氧化锌生产工艺

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5515953A (en) * 1978-07-19 1980-02-04 Nippon Jiryoku Senko Kk Simulataneously forming method for activated zinc white and white carbon
CN1035870C (zh) * 1994-08-11 1997-09-17 重庆化肥矿山工业公司 生产高分散性活性氧化锌的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1065685A (zh) * 1992-04-28 1992-10-28 中南工业大学 氨法制取氧化锌方法
CN1986421A (zh) * 2006-12-21 2007-06-27 天津化工研究设计院 一种纳米氧化锌的制备方法
CN102515252A (zh) * 2011-12-28 2012-06-27 韶关凯鸿纳米材料有限公司 一种植膜型纳米氧化锌生产工艺

Also Published As

Publication number Publication date
CN103910377B (zh) 2015-12-09
CN103910377A (zh) 2014-07-09

Similar Documents

Publication Publication Date Title
CN102515252B (zh) 一种植膜型纳米氧化锌生产工艺
Li et al. Preparation of magnetically separable Fe3O4/BiOI nanocomposites and its visible photocatalytic activity
Kallawar et al. Bismuth titanate based photocatalysts for degradation of persistent organic compounds in wastewater: A comprehensive review on synthesis methods, performance as photocatalyst and challenges
Tanveer et al. Template free synthesis of CuS nanosheet-based hierarchical microspheres: an efficient natural light driven photocatalyst
Namratha et al. Novel solution routes of synthesis of metal oxide and hybrid metal oxide nanocrystals
CN104591259B (zh) 一种植活式纳米氧化锌及其生产工艺
Rao et al. Photocatalytic properties of hierarchical CuO nanosheets synthesized by a solution phase method
Roselina et al. Ni nanoparticles: study of particles formation and agglomeration
MX2008008513A (es) Metodos para produccion de nanoparticulas de oxido metalico, y nanoparticulas y preparaciones producidas por los mis
CN107098381B (zh) 特殊形貌的钛酸锌光催化材料的制备方法
JP2015009238A (ja) 中空コアと多孔性シェル層とを有する金属酸化物複合体及びその製造方法
JP2002255515A (ja) 金属酸化物微粒子の製造方法
Yu et al. Facile synthesis of molecularly imprinted black TiO2-x/carbon dots nanocomposite and its recognizable photocatalytic performance under visible-light
Waimbo et al. Improved charge separation through H2O2 assisted copper tungstate for enhanced photocatalytic efficiency for the degradation of organic dyes under simulated sun light
Li et al. Synthesis and characterization of monoclinic BiVO4 nanorods and nanoplates via microemulsion-mediated hydrothermal method
Asl et al. The seeding effect on the microstructure and photocatalytic properties of ZnO nano powders
Jadhav et al. Degradation of Dyes Using High Temperature Stable Anatase Nanosphere TiO 2 Photocatalyst.
WO2015123897A1 (zh) 一种改进的植膜s型纳米氧化锌生产工艺
Devika et al. Low temperature energy-efficient synthesis methods for bismuth-based nanostructured photocatalysts for environmental remediation application: A review
Gaur et al. Current trends: Zinc oxide nanoparticles preparation via chemical and green method for the photocatalytic degradation of various organic dyes
CN106995218B (zh) 一种砖块状单斜相wo3的制备方法
Algarín et al. Synthesis of a magnetic iron oxide/zinc oxide engineered nanocatalyst for enhanced visible-light photodegradation of Cartasol brilliant violet 5BFN in aqueous solution
Atrazina et al. Catalytic study on TiO2 photocatalyst synthesised via microemulsion method on atrazine
Anzlovar et al. Sub micrometer and nano-ZnO as filler in PMMA materials
CN109338466B (zh) 一种制备单晶Fe2O3纳米颗粒自组装椭圆球微纳米结构的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14883409

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14883409

Country of ref document: EP

Kind code of ref document: A1